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VARIQuery: VAE Segment-based Active Learning for Query Selection in
Preference-based Reinforcement Learning

Daniel Marta*, Simon Holk*, Christian Pek, Jana Tumova, and Iolanda Leite

Abstract— Human-in-the-loop reinforcement learning (RL)
methods actively integrate human knowledge to create reward
functions for various robotic tasks. Learning from preferences
shows promise as alleviates the requirement of demonstrations
by querying humans on state-action sequences. However, the
limited granularity of sequence-based approaches complicates
temporal credit assignment. The amount of human querying
is contingent on query quality, as redundant queries result
in excessive human involvement. This paper addresses the
often-overlooked aspect of query selection, which is closely
related to active learning (AL). We propose a novel query
selection approach that leverages variational autoencoder (VAE)
representations of state sequences. In this manner, we formulate
queries that are diverse in nature while simultaneously taking
into account reward model estimations. We compare our ap-
proach to the current state-of-the-art query selection methods in
preference-based RL, and find ours to be either on-par or more
sample efficient through extensive benchmarking on simulated
environments relevant to robotics. Lastly, we conduct an online
study to verify the effectiveness of our query selection approach
with real human feedback and examine several metrics related
to human effort.

I. INTRODUCTION

Translating complex goals into robot policies has previ-
ously been carried out by hand-crafting meticulous reward
functions which requires considerable fine-tuning and expert
human knowledge. A popular alternative to hand-crafting
reward functions devises robot policies to be taught by
humans through human-in-the-loop methods [1], [2]. This
paper centers on a promising approach that involves learning
by iteratively querying humans for preferences between pairs
of state-action sequences generated from a policy [3]–[6].
Preferences allow non-experts to contribute without explic-
itly providing demonstrations, which may be infeasible or
expensive to obtain. By learning from human preferences,
we can directly convey subtle nuances of the reward function
that are difficult to model a priori [4].

Despite its potential benefits, preference-based RL poses a
significant challenge in terms of scalability due to the consid-
erable amount of human feedback needed to capture complex
objectives. While many preference-based algorithms rely on
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Fig. 1: Example showcasing queries A and B drawn from different query
selection methods. Each query element depicts a trajectory in a robot social
navigation scenario.

abundant human feedback to learn from human preferences,
the cost of obtaining such feedback can be significant.
However, simply limiting the amount of human feedback
may result in a biased query set [7] that does not generalize
well, necessitating over-querying of humans to overcome this
issue. This work focuses on alleviating the burden on human
experts by creating sets of queries that are representative of
the larger population of state-action sequences produced by
a policy. Query selection, which is often overlooked, is a
crucial aspect of the preference-based RL process.

To better illustrate the importance and need for more
informative methods of selecting queries, we present an
example of a social robot navigation scenario. Fig. 1 displays
two preference queries with two trajectories each. In query
A (Fig. 1.a), we observe two trajectories that were obtained
through uniform random sampling. Because trajectories A1

and A2 are quite similar, a human may struggle to make a
preference decision, since they are structurally similar and
there is no clear preference. Eliciting preferences from hu-
mans incurs a cost, and a human skipping a query altogether,
is not only detrimental to learning performance - as a skipped
query carries no additional information - but also raises the
overall cost. In contrast, in query B (Fig. 1.b), trajectories B1

and B2 are sampled from different clusters, ensuring greater
query diversity. Additionally, it would be advantageous if the
selected query B is likely to improve our reward model.

Our work proposes a query selection method with the
goal of selecting diverse and informative queries. We achieve
this through an approach that leverages two synergistic
components: (1) latent space representations of query el-
ements provided by a variational autoencoder (VAE) [8];
and (2) ranking of the resulting queries by current reward



model estimations. In this manner, we ensure queries are
informative with respect to the current reward model while
avoiding similar queries from being repeatedly presented to
humans. Our contributions can be summarized as follows:

1) VARIQuery: VAE Segment-based Active LeaRnIng
for Query Selection in Preference-based Reinforcement
Learning (see Sec. IV), a query selection method which
aims at decreasing query redundancy by simultaneously
taking into account two factors: the underlying structure
of state-action sequences; and their likeliness of improv-
ing the reward model.

2) We compare VARIQuery to other state-of-the-art query
selection methods, currently used in preference-based
RL.

3) We conduct an online user study in a crowded robot
navigation simulated environment with the goal of col-
lecting human preferences from queries produced by
our method against several query selection methods and
evaluating human effort on quantitative metrics.

II. RELATED WORK

Deep Active Learning. Active learning (AL) techniques
attempt to maximize a model’s performance when labelled
data is scarce and dependent on human effort. AL has
gathered increasing research interest [9], specifically in the
computer vision community. A subset of AL techniques
referred to as pool-based [9], [10] aims at finding the best
samples to be queried, giving an evaluation and ranking of a
set of unlabelled samples. To this end, there is a plethora of
various query strategies that comprise uncertainty-based ap-
proaches [11]–[13], expected model changes approach [14],
[15] and diversity-based [16]–[18]. Additionally, numerous
studies have explored hybrid query strategies [19]–[21] that
aim to strike a balance between uncertainty and diversity of
query samples. However, sampling-based solely on uncer-
tainty often leads to sampling bias [7], resulting in selected
samples that do not accurately represent the distribution of
unlabeled datasets. Deep active learning (DeepAL) [22]–
[24] aims at leveraging deep learning to improve previous
AL techniques. We turn to DeepAL to address the high-
dimensionality of sequences of state-action pairs, while ex-
ploring suitable pool-based hybrid techniques, to formulate
a query selection method.

More specifically, we take inspiration from works such as
VAAL (Variational Adversarial Active Learning) [25] which
leverage VAEs (Variational AutoEnconder) [8] to build an
adversarial network model to discriminate between unlabeled
and labelled data. The purpose is to discriminate between dis-
similarities in the latent space to select images for labelling.
We gather inspiration from TA-VAAL [26] (Task-Aware
Variational Adversarial Active Learning) which aims at set-
ting a balance between uncertainty and diversity. TA-VAAL
achieves this balance by integrating a loss prediction module
[27] with a ranking approach [28] (RankCGAN). TA-VAAL
operates on the premise that uncertainty-based techniques
overlook the entire data distribution, while distribution-based

methods disregard the overall task structure. Drawing in-
spiration from DeepAL techniques, our approach involves
contributing with an hybrid query strategy that considers the
underlying structure of preference queries in the context of
preference-based RL.

Query synthesis in preference-based RL The utilization
of preferences for learning has gained a significant amount
of attention in the literature [4], and poses as a promising RL
approach suitable for robotics [29]. However, the efficacy of
preference-based RL as a viable approach is contingent upon
the capability to generate informative queries when soliciting
feedback from humans on pairs of trajectories.

Initial strategies proposed on elaborating objectives to
explore the preference function space [30]. In Akrour et al.
[31], a utility function was defined alongside an exploration
term, to derive a diversity function applicable to discrete state
spaces. Later on, Akrour proposes a different selection crite-
rion that maximizes the expected utility of selection [3], [32],
similarly to AL techniques. There are several relevant works
which also actively select queries by searching a discrete
or sampled set [33]–[35]. In an AL approach, Sadigh et al.
[36], propose a method to actively synthesize queries with
the aim of maximizing volume removal from the distribution
of potential rewards. In situations where reducing volume (on
a Gaussian process regression framework) would prompt a
robot to solicit preferences for highly similar trajectories, al-
ternative strategies based on information gain were explored
[37], [38]. Current preference-based RL [5], [39] approaches
take advantage of state-of-the-art policy gradient methods
which make the computation of expected utility intractable.
In Cristiano at al. [5], an ensemble variance ranking method
is employed and in PEBBLE [39], a particle-based entropy
strategy is introduced. Our work differs from the above
by simultaneously utilizing latent space representations of
queries and their impact on the performance of the reward
model.

III. BACKGROUND

A. Learning from Human preferences

A robotic agent operates under a policy, which gener-
ates trajectories. Each trajectory can be represented as a
sequence of segments τ = (σ1, . . . , σN ), where N is the
number of segments in a trajectory. Trajectory segments
consist of sequences of state-action pairs, denoted as σj =
((sjt , a

j
t ), . . . , (s

j
t+l, a

j
t+l)), where j denotes the index of the

segment, which contains state-action pairs ranging from t
to t + l, where l + 1 is the length of the segment. The
goal of preference-based RL [4], [5] is to obtain feedback
from humans on segments of state-action pairs, instead
of individual pairs, reducing the number of requests. The
feedback is gathered by presenting pairwise comparisons
of segments to humans, where preferences between two
segments, are denoted by a preference operator ≻. Thus, if
σ1 is preferred over σ2, we represent it by writing σ1≻σ2.
The resulting preference provided by the human is a 2-D
tuple denoted by ζ = (ζ1, ζ2), where ζ = (1, 0) if σ1 is
preferred over σ2, and (0, 1) if σ2 is preferred over σ1. If no



preference is observed, the feedback is denoted by (0.5, 0.5),
and (0, 0) if unrelated. The aim is to learn a policy π
that is according to these preferences. Therefore, preferences
need to be mapped to concrete effects in a reward function
represented by R(st, at). If a human prefers σ1≻σ2 then
we assume

∑
tR(s

1
t , a

1
t ) >

∑
tR(s

2
t , a

2
t ) . To achieve this,

we estimate R with R̂. We use a combination of softmax
functions to compute the probability of a human choosing
one segment over another. The probability is represented as
follows:

µ(σ1≻σ2)=
exp(

∑
t R̂(s

1
t , a

1
t ))

exp(
∑

t R̂(s
1
t , a

1
t )) + exp(

∑
t R̂(s

2
t , a

2
t ))

(1)

Preferences are collected from humans and stored alongside
segments to form queries, which are tuples of the form
q = (σ1, σ2, ζ). In turn, queries are stored in a query dataset
Dq . We sample mini-batches from Dq , to compute the loss
for the reward estimator R̂. The loss function is defined as
the cross-entropy between the predicted preference and the
actual preference. Specifically, we use the following equation
[5]:

L(R̂) = −
∑

(σ1,σ2,ζ)

ζ1logµ(σ1≻σ2) + ζ2logµ(σ2≻σ1) (2)

By using Eq. 2, we can train our model to predict
preferences accurately to compute the reward and update
policy π accordingly.

B. Query selection methods in preference-based RL

Uniform sampling. The simplest query-selection strategy,
where a large number of segments σ are sampled uniformly
at random to form random queries.

Ensemble-based sampling. Let R̂ = (R̂1, . . . , R̂n) be an
ensemble of n reward estimators, each of which is a function
that takes a state-action pair and produces a reward prediction
as output. The reward estimators are initialized with different
network parameters and trained on the same queries. Let
X be a random variable representing the sum of predicted
rewards for a given segment, as produced by the ensemble.
Then, the variance of the ensemble is given by:

Var(X) =
1

n

n∑
i=1

(
∑
t

R̂i(st, at)− µ̄)2 (3)

where R̂i(st, at) is the reward prediction produced by the
i-th estimator for the pair (st, at), and µ̄ is the mean reward
prediction across all estimators in the ensemble, i.e.,

µ̄ =
1

n

n∑
i=1

∑
t

R̂i(st, at) (4)

The variance of the ensemble is the average squared
deviation of the reward predictions from the mean prediction,
divided by the size of the ensemble. The authors of [5]
used this variance to rank segments by disagreement across
the ensemble members. Then the top ranked segments are
sampled to produce queries to be presented to humans.

Particle-based entropy sampling. Given a state-action
sequence σj = ((sjt , a

j
t ), . . . , (s

j
t+l, a

j
t+l)), let us denote

sσ
j

= (sjt , . . . , s
j
t+l) its corresponding state sequence. In the

particle-based entropy sampling approach, the entropy of a
segment σj is equivalent to the entropy of its corresponding
state sequence H(sσj

) which is approximated via a simpli-
fied version of a particle-based entropy estimator Ĥσ [39]:

Ĥσ(s
σj

) ∝
N∑
i

log(∥sσ
j

i − ksσ
j

i ∥), (5)

where ksσ
j

i represents the k-th nearest neighbor (k-NN)
of sσ

j

i . Thus, the entropy of a state sσ
j

i is increased by
maximizing the distance between the state and the nearest
neighbour. An interpretation is to consider, a state as a
particle [40] which contributes to the overall entropy of the
sequence.

Moreover, queries are also evaluated by their information
entropy regarding the predictions of the reward model R̂.
More concretely, for each query the information entropy [9]
is defined as follows:

HR̂(σ1, σ2) =− µ(σ1≻σ2) log2 µ(σ
2≻σ1)

− (1−µ(σ2≻σ1)) log2(1− µ(σ1≻σ2)).
(6)

This entropy is used to select queries at the boundary of
the decision of R̂. This is analogous to margin sampling
[24], [41] in AL, where samples are chosen to be selected
for labelling by the difference (margin) of the highest two
predicted labels. The smaller the margin M, the greater
the uncertainty of a sample. Thus, in particle-based entropy
sampling, segment pairs are randomly sampled and ordered
according to HR̂, and the top pairs which have higher
information entropy are sampled again and ordered by the
maximum entropy of their segments Ĥσ .

IV. VARIQUERY

A natural criteria for query selection would be to maximize
the expected value of information (EVOI) [42], i.e, selecting
queries which will improve policy π with respect to the util-
ity of queries. However there are two limitations which make
the computation of EVOI infeasible: (1) The computation
of EVOI is intractable as it requires taking an expectation
across all conceivable trajectories that are generated by an
updated policy π; (2) It requires the assumption of an
utility function [3], [42] for the user (humans), which could
potentially introduce a bias and is task dependant. Several
approximations have been explored such as sampling queries
based on the variance of an ensemble or based on the total
entropy of segments (see Sec. III-B).

A. Selecting queries with VARIQuery

In this work we propose a query strategy, which takes into
account both the likeliness of improving the reward model R̂,
while ensuring query diversity, both relevant when eliciting
preferences from humans. Our query selection approach (see
Alg. 1 and Fig. 2) contemplates three major steps:
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Fig. 2: The VARIQuery framework. The robot collects a set of trajectory segments and processes them into their latent representation. The segments are
classified into clusters based on their representations using k-NN and are then collected from distinct clusters to form queries. The queries are then ranked
based on the ensemble disagreement. Finally, the chosen queries are shown to and labelled by humans.

• Step 1: We collect a large amount of unlabelled seg-
ments DUn following policy π.

• Step 2: From DUn, we train a VAE according to Eq. 7.
Then we transform each segment into a latent space
representation to form Dz . Both datasets are pair-wise
linked, e.g, each segment in DUn has a latent represen-
tation on Dz (see Sec. IV-B).

• Step 3: We process Dz into K clusters using k-NN
clusters (see Sec. IV-C).

• Step 4: We finally obtain queries by sampling segments
uniformly from diverse clusters and ranking them based
on the variance of a reward ensemble (see Sec. IV-D).

B. Segment-based VAE Representations
When employing particle-based entropy sampling (see

Sec. III-B), one of its constraints is that segments are
assessed state by state, without considering the segment’s
overall structure. For example, consider two segments σB1

and σB2 . Both segments may have been selected by having
comparable high entropy when summed over states according
to Eq. 5, i.e., Ĥσ(s

σB1
) ≈ Ĥσ(s

σB2
). However, high entropy

alone is a not sufficient criteria to unbias both segments: seg-
ments may have similar entropy because they are structurally
similar. Thus, a particle-based entropy approach in isolation
may potentially generate redundant queries.

We aim to enhance the analysis and selection of queries
to reduce redundancy and increase their informativeness,
with the goal of minimizing the human effort involved
in the process. To achieve this, we employ a Variational
Autoencoder (VAE) [8] to learn a concise and informative
representation of state sequences. Specifically, we use an
encoder q(z|sσ) to obtain a latent representation z ∈ Z
from the state sequence sσ , which captures the underlying
structure of the sequence and facilitates query creation. In
addition, we utilize a decoder p(sσ|z) to map the learned
representation back to the input space. By jointly optimizing
the encoder and decoder, we minimize the following loss
function:

LV AE=−Eq(z|sσ) [log p(s
σ|z)]+KL (q(z|sσ)|p(sσ)) (7)

The first term in the loss function measures the reconstruction
error, while the second term acts as a regularizer, encourag-
ing the posterior distribution to remain close to the prior
distribution p(sσ).

C. Segment-based Clustering

Given the learned representation over state sequences, we
utilize the fact that the latent representation forms natural
clusters where similar sequences will be closer together
and other sequences drift further away in the latent space.
Furthermore, the latent representation greatly reduces the
dimensionality of the data which makes it more suitable for
clustering methods such as k-NN which are sensitive to the
curse of dimensionality [43]. We therefore perform k-NN to
find the clusters and use them to classify state-sequences.
Let DUn = {sσ1

, sσ
2

, . . . , sσ
n} be the set of state sequences

for different segments in the original feature space, where
sσ

i ∈ Rk represents the i-th state sequence, and l + 1
the lenght of a segment. We first map each state sequence
sσ

i

to its corresponding latent representation zi using the
encoder q(z|sσi

). We then use k-NN to cluster the latent
representations into k clusters. For each representation zi,
we find its k nearest neighbors in the latent space, and assign
zi to the cluster that contains the majority of its neighbors.
The result is a set of k clusters C = {C1,C2, . . . ,Ck},
where each cluster Cj contains the set of representations
zi|zi ∈ Cj . Each latent representation zi is mapped to a
state sequence sσ

i

by its index i.

D. Ranking queries in VARIQuery

After clustering the state sequences into k clusters C =
{C1,C2, . . . ,Ck} based on their learned latent representa-
tions zi using k-NN, query selection can be performed in two
distinct steps. First, to ensure diversity within the queries,
trajectory segments are sampled from distinct clusters. Let
Ca and Cb be two different clusters selected at random from
C. Then, a segment is sampled uniformly at random from
each of these clusters to form a query pair q = (σa, σb). The
indexes of the sampled latent space representations are used



Algorithm 1: VARIQuery

1 Input: π current policy, N total number of
unlabelled segments σ, L length of segments σ, Q
number of queries, K number of k-NN clusters, R̂
ensemble of reward networks;

2 Output: D′
q dataset of selected queries

3 Dq ← ∅; Dz ← ∅; DUn ← ∅;
// Step 1 (see Sec. IV-A)

4 for i to N do
5 Sample σi, by getting st+1 following at ∼ π(st)
6 σi = sampleSegment(π, L)
7 DUn ← DUn ∪ σi

// Step 2 (see Sec. IV-B)
8 Train VAE from DUn with respect to Eq.7
9 V AE = trainVAE(DUn)

10 for i to N do
11 Get σi from DUn
12 zi = VAEencoder(σ

i)
13 Dz ← Dz ∪ zi
// Step 3 (see Sec. IV-C)
// Store K clusters in C

14 C ← k-NN(Dz,K);
// Step 4 (see Sec. IV-D)

15 Sample pairs at random σ1, σ2 ∼ C
16 Dq = samplePairs(C)

17 Order Dq by ensemble variance R̂ with Eq. 3
18 Dranked = Rank(Dq, R̂)
19 D′

q = sampleFromTop(Dranked)
20 return D′

q

to obtain the corresponding segments. Each query pair q is
stored in the set of query pairs Dq . Finally, the queries are
ranked based on the variance across the ensemble members
using the method described in Sec. III, where the variance of
the query is the maximum of the variance of the segments of
the query. Thus, Dq is ordered by ensemble disagreement to
obtain the sorted set of query pairs D′

q . The resulting queries
D′

q are then presented to humans for preference collection.
This hybrid approach aims to create queries that are diverse
enough so that a human can clearly distinguish between the
trajectories while also collecting queries which are likely to
impact the reward model the most.

V. EXPERIMENTAL RESULTS

This section involves benchmarking our method across
various robotic tasks and query selection methods, with a
focus on addressing three essential questions:

• Question 1 (Q1): How does VARIQuery compare to
other state-of-the-art query selection methods in terms
of sample query complexity and learning performance?
(see Sec. V-B)

• Question 2 (Q2): Is the k-NN clustering of the latent
space produced by VARIQuery sufficiently able to pro-
duce queries with diverse segments? (see Sec. V-C)

• Question 3 (Q3): Can VARIQuery reduce human effort,
as measured by the time spent per query and the
occurrence of deadlocks during the labeling of query
batches? (see Sec. VI)

A. Benchmark details

To verify VARIQuery, we selected two robotics-related
control tasks simulated on MuJoCo and available on Ope-
nAI Gym [44]: Walker2d and Cheetah. Using a state-of-
the-art policy gradient algorithm, PPO [45], we implement
preference-based RL as described in the work by Christiano
et al. [5]. In order to eliminate the influence of suboptimal
hyperparameters causing randomness in PPO’s performance,
we conduct a grid search for both environments using the
default reward function.

In order to model human feedback, we make use of a
synthetic oracle that has access to the true reward function.
The preferences of the synthetic oracle are according to the
ones outlined in Sec. III-A. An oracle prefers a segment
over the other if the cumulative reward is higher. To emulate
the input of a human teacher, we incorporate noise into the
system by deliberately mislabelling 10% of the preferences
provided. Both policy π and R̂ are asynchronously updated.
Policy π is updated every 1024 steps. To update the reward
function R̂, query samples are obtained through the different
query selection methods and filled by a common synthetic
oracle. Then, we use the batch of queries to optimize R̂ every
20K steps, according to eq.2. In each R̂ update we request
1/10 of the total planned queries. For all environments the
length L of the segments making up the queries are set to 50.
We employ neural networks of different architectures. The
reward network R̂ for both environments has a hidden layer
size of (256, 256, 256) with ReLu activations. The policy
π and value networks for the Cheetah environment consist
of hidden layers of size (256, 256) with ReLu activations,
while the Walker2D environment uses hidden layers of size
(64, 64) with Tanh activations respectively.

Additionally, we utilize a VAE to acquire a latent space for
VARIQuery. For Walker and Cheetah, the encoder contains
a hidden layer size of (128, 64, 32), whereas for the social
navigation environment, it contains a hidden layer size of
(256, 128, 64). Similarly, the decoder comprises the same
sizes in reverse order. Consequently, the latent vectors we
obtain are of size 64 for the social navigation environment
and 32 for Cheetah and Walker.

B. Exploring the impact of query selection methods

To answer Q1, we implement all query selection strategies
presented in Sec. III-B. We re-implement into our own
framework the entropy-based sampling approach presented
by Lee et al. [39] which the authors made available as an
open-source implementation. The ensemble-based sampling
can be considered an ablation of VARIQuery as we also
order queries by the variance of the ensemble as part of
our approach (see Sec. IV). We assess the performance of
each query selection method using 400 and 800 queries. In



Fig. 3: The figure presents the learning curves obtained by four different sampling methods: VARIQuery, ensemble-based, particle-based entropy-based,
and uniform sampling, for both Walker2D and Cheetah environments. The solid lines represent the mean, and the shaded regions represent the standard
deviation. All conditions were run for both 400 and 800 queries over a total of 1× 106 environment steps.

Fig. 3 are the complete outcomes of executing VARIQuery
and alternative query selection methods.

Walker2D. In Walker2D we observe a gradient in perfor-
mance for the considered query selection methods. By order
of highest to lowest performance: VARIQuery, ensemble-
based, entropy-based, and uniform sampling. We find uni-
form sampling to perform significantly worse regardless of
the number of queries considered. Both VARIQuery and
ensemble-based sampling perform similarly in this environ-
ment, with VARIQuery only outperforming ensemble-based
sampling by ∼ 11%. Nevertheless, our results show that
both methods present better learning performance and sample
complexity by outperforming uniform and entropy-based
sampling. Indeed, VARIQuery presents a similar learning
performance to entropy-based sampling for half the queries.

Cheetah. The experiments for Cheetah reveal more
expressive outcomes (see Fig. 3). Both ensemble-based,
entropy-based and uniform sampling methods, appear to
plateau around ∼ 3K environmental reward, for both 400
and 800 queries. These findings are consistent with previous
research [5], [6]. Although VARIQuery shows comparable
performance with 400 queries, we observe a significant
improvement in environmental reward performance for 800
queries. This improvement amounts to almost ∼ 21% com-
pared to other query selection methods.

C. Underlying query structure

In this section, we utilize VARIQuery to examine the
latent space representations of selected queries in both the
Cheetah and Walker environment. We first train an agent
using VARIQuery for 100K timesteps, and then we collect a
sample of 40 queries to demonstrate their distribution. Using

t-distributed stochastic neighbor embedding (t-SNE), we
project the latent representation of the queries and sampled
segments into 2D space to visualize the underlying structure.
Fig.4 highlights how the latent space creates clusters of
similar segments, with clearly distinguished k-NN clusters.
By sampling segments based on clusters, we ensure that
queries represent all clusters in the latent space. Additionally,
we ensure the segments making up our queries are sampled
from different k-NN clusters (see Sec. IV-C), which are
visually represented by the lines drawn between different
segments forming a single query, showing support for Q2.

VI. VARIQUERY WITH HUMAN FEEDBACK

A. Social Navigation

To test VARIQuery with human feedback we use an addi-
tional social navigation environment introduced in [46]. The
environment contemplates a robot, walls, navigation goals
and three moving humans in a narrow corridor (see Fig.5).
The robot observes the environment through simulated lidar
rays which are one-hot encoded with object information and
distance. Since the environment is quite challenging due to its
high dimensionality, we bootstrap from a performant policy
to save human feedback from teaching a robot to avoid
collisions.

B. Procedure

To better understand Q3, we collect feedback in an online
human study. We implement a browser-based framework on
Amazon Mechanical Turk (AMT) which presents pairs of
videos of trajectory segments from a policy. Each video has
the same duration of 4 seconds since queries are evaluated
on segments of equal length. To keep the initial conditions
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Fig. 4: Using t-SNE in the Walker and Cheetah enviroments, we show the 2D projection of the latent representation learned by the VAE. The various
colors represents state-sequences assigned to different k-NN clusters on the latent space. Red points are segments selected for queries and the red lines
show example distances between segments forming a query pair.

Fig. 5: The social navigation environment. The robot has to navigate to the
end goal while avoiding humans walking in the environment. The robot can
observe the environment using a lidar.

equal, we start the preference learning process with the same
policy π, and reward model R̂ parameters and a dataset of
unlabelled segments DUn. We quantify human effort as time
spent per query answered and the number of times a human
has an impasse when giving a preference, resulting in a skip,
which we consider an indirect measure of query redundancy.

C. Participants

We recruited a total of 70 crowdworkers, with 24 using
VARIQuery, 23 using entropy-based sampling, and 23 using
uniform sampling. Of the participants, 40% were female and
60% were male, with ages ranging from 20 to 70 years. Ten
participants were excluded for failing an attention check. All
participants were from the United States.

D. Human effort results

We found that users expressed no preference for 64 pairs
using VARIQuery and 88 pairs using uniform sampling. To
compare the differences between VARIQuery and uniform
sampling, we used Pearson’s χ2-test for independence with
a 2x2 contingency table. The test yielded a result of (χ2 =
4.3, p < 0.05), showing statistical significance, indicating
that users were able to express a preference more often
using VARIQuery than with uniform sampling. For entropy

sampling, users expressed no preference for 75 pairs. While
we observed a trend of more users expressing no preferences
with entropy sampling, the difference to VARIQuery did not
reach statistical significance (χ2 = 0.87, p = 0.35).

Upon measuring the time participants took to provide pref-
erences over all queries, we observed that the average time
per query was 21.2±9.5 seconds for VARIQuery; 23±9.35
seconds for entropy-based sampling; 24.35±8.9 seconds for
uniform sampling. This indicates that VARIQuery required
approximately 13% less time than uniform sampling and
8.5% less time than entropy sampling. Therefore, it is
possible that users might find it easier to provide preferences
with sampling methods that encourage dissimilarity within
queries. Videos of different policies can be found on the
supplemental materials of this paper.

VII. CONCLUSIONS

In this paper, we present VARIQuery, a novel query
selection algorithm for preference-based RL. Our experi-
mental results show a clear trend with VARIQuery con-
sistently performing on-par or above other state-of-the-art
methods. VARIQuery achieves this by clustering the latent
representation of trajectory segments. To better understand
the dissimilarity of segments within queries, we offered
additional insight in the form of t-SNE visualizations. We
conducted a user study collecting actual human preferences
elicited with query batches produced by different query
selection methods. Our findings indicate our approach was
able to produce queries which take less time to evaluate and
are less prone to cause an impasse in ∼27% and ∼13% for
uniform and entropy-based sampling respectively.
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[33] J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.-H. Park, “Preference-
based reinforcement learning: a formal framework and a policy itera-
tion algorithm,” Machine learning, vol. 89, pp. 123–156, 2012.

[34] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 10, pp. 1296–1313,
2015.

[35] R. Holladay, S. Javdani, A. Dragan, and S. Srinivasa, “Active com-
parison based learning incorporating user uncertainty and noise,” in
RSS Workshop on Model Learning for Human-Robot Communication,
2016.

[36] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active
preference-based learning of reward functions.” in Robotics: Science
and Systems, 2017.

[37] E. Bıyık, N. Huynh, M. J. Kochenderfer, and D. Sadigh, “Active
preference-based gaussian process regression for reward learning,” in
Robotics: Science and Systems (RSS), 2020.

[38] E. Bıyık, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions from diverse sources of human
feedback: Optimally integrating demonstrations and preferences,” The
International Journal of Robotics Research, vol. 41, no. 1, pp. 45–67,
2022.

[39] K. Lee, L. Smith, and P. Abbeel, “Pebble: Feedback-efficient interac-
tive reinforcement learning via relabeling experience and unsupervised
pre-training,” arXiv preprint arXiv:2106.05091, 2021.

[40] H. Liu and P. Abbeel, “Behavior from the void: Unsupervised active
pre-training,” Advances in Neural Information Processing Systems,
vol. 34, pp. 18 459–18 473, 2021.

[41] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden markov
models for information extraction,” in Advances in Intelligent Data
Analysis: 4th International Conference, IDA 2001 Cascais, Portugal,
September 13–15, 2001 Proceedings 4. Springer, 2001, pp. 309–318.

[42] P. Viappiani and C. Boutilier, “Optimal bayesian recommendation
sets and myopically optimal choice query sets,” Advances in neural
information processing systems, vol. 23, 2010.

[43] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
“nearest neighbor” meaningful?” in Database Theory—ICDT’99: 7th
International Conference Jerusalem, Israel, January 10–12, 1999
Proceedings 7. Springer, 1999, pp. 217–235.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[46] D. Marta, C. Pek, G. I. Melsión, J. Tumova, and I. Leite, “Human-
feedback shield synthesis for perceived safety in deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp.
406–413, 2021.


