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Abstract. To sample from a given target distribution, Markov chain Monte
Carlo (MCMC) sampling relies on constructing an ergodic Markov chain with
the target distribution as its invariant measure. For any MCMC method,
an important question is how to evaluate its efficiency. One approach is to
consider the associated empirical measure and how fast it converges to the
stationary distribution of the underlying Markov process. Recently, this ques-
tion has been considered from the perspective of large deviation theory, for
different types of MCMC methods, including, e.g., non-reversible Metropolis-
Hastings on a finite state space, non-reversible Langevin samplers, the zig-zag

sampler, and parallell tempering. This approach, based on large deviations,
has proven successful in analysing existing methods and designing new, effi-
cient ones. However, for the Metropolis-Hastings algorithm on more general
state spaces, the workhorse of MCMC sampling, the same techniques have
not been available for analysing performance, as the underlying Markov chain
dynamics violate the conditions used to prove existing large deviation results
for empirical measures of a Markov chain. This also extends to methods built
on the same idea as Metropolis-Hastings, such as the Metropolis-Adjusted
Langevin Method or ABC-MCMC. In this paper, we take the first steps to-
wards such a large-deviations based analysis of Metropolis-Hastings-like meth-
ods, by proving a large deviation principle for the the empirical measures of
Metropolis-Hastings chains. In addition, we also characterize the rate func-
tion and its properties in terms of the acceptance- and rejection-part of the
Metropolis-Hastings dynamics.

1. Introduction

Sampling from a given probability distribution is an essential problem in a range
of areas, for example biology, physics, epidemiology and ecology, and statistics. The
most common approach is Markov chain Monte Carlo (MCMC), which allows the
user to sample from a target probability distribution π, by generating an ergodic
Markov chain {Xi}i≥0 with π as stationary distribution. These sampling techniques
are particularly helpful when it is not possible to use methods that simulate directly
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from π, for example for computing posterior distributions in a Bayesian setting, or
more generally when π is only known up to a normalizing constant. Because of this,
MCMC methods are now widely used across scientific disciplines, and are integral
tools in areas such as computational chemistry and physics, statistics and machine
learning [RC04, AG07, AdFDJ03].

Because of their prevalence in a range of fields, the performance of MCMC
algorithms has become an important topic within applied probability and compu-
tational statistics. In principle, even the standard Metropolis-Hastings algorithm
[MRR+53, Has70] can be used to sample from essentially any target distribution π.
However, when the underlying problem, and thus the distribution π, becomes more
and more complex, convergence speed or the cost per iteration becomes an issue.
Analysing and improving the convergence speed of a given class of algorithms, as
well as comparing the performance of different types of algorithms, is therefore not
only interesting from a theoretical perspective, it is also of central importance for
applications, where fast and accurate methods are needed for increasingly complex
problems.

When analysing performance of MCMC methods, the rate of convergence of
time averages is a central quantity for comparing different metods, and for choosing
hyperparameters. The fundamental idea underlying MCMC is that for an observ-
able f ∈ L1(π), for an ergodic Markov chain {Xi}i∈N with invariant distribution

π, the n-step average 1
n

∑n−1
i=0 f(Xi) can be used to approximate the expectation

Eπ[f(X)]. This average can be viewed as the integral of f with respect to the
empirical measure of the Markov process. The rate of convergence of the empirical
measure is therefore directly linked to the performance of a given MCMC method.

Because of the role the empirical measure plays in MCMC, and for Monte Carlo
methods in general, in the past decade there has been an increasing interest in using
the theory of large deviations for empirical measures to study the performance of
MCMC methods [DLPD12, PDD+11, RBS15a, RBS15b, RBS16, DDN18, BNS21,
Bie16]. However, surprisingly, existing large deviation results do not cover the em-
pirical measure arising from the Metropolis-Hastings algorithm [MRR+53, Has70]
on a general state space. Thus, in order to use a large deviation approach to analyse
this foundational algorithm, or more advanced MCMC methods built on the same
ideas as Metropolis-Hastings—such as the Metropolis-Adjusted Langevin Method
(MALA) [Bes94, RT96a, RR98] and methods based on Approximate Bayesian
Computation (ABC) (see [MMPT03, Bea19] for an overview and further refer-
ences)—the relevant large deviation results must first be established. This is the
main contribution of this paper: we prove the large deviation principle for the
empirical measures associated with Markov chains arising from the Metropolis-
Hastings algorithm. This sets the stage for future work proving similar results for
Markov chains with dynamics that resemble those of Metropolis-Hastings, and for
analysing the corresponding MCMC methods.

The theory of large deviations has become a cornerstone in modern probability
theory, with a wide range of applications. In the context of Monte Carlo methods,
it has been known for a long time that for rare-event simulation, sample-path large
deviations results are integral to analysing and designing efficient algorithms; see
[Buc04, AG07, BD19] and the references therein. In the MCMC setting, the theory
remains much less explored for analysing performance and designing new, efficient
methods. Instead, standard tools for convergence analysis of sampling methods
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based on ergodic Markov processes include: the spectral gap of the associated dy-
namics, mixing times of the process, asymptotic variance and functional inequali-
ties (Poincaré, log-Sobolev) [BR08, Ros03, DHN00, FHPS10, FdSHS93, HHMS05].
However, these tools mainly provide information about convergence of the asso-
ciated n-step transition operator or the law of the process, neither of which are
directly linked to the convergence of the empirical measure. Empirical measure
large deviations are instead concerned precisely with the convergence of the empir-
ical measure. This is in turn linked to the transient behaviour of the underlying
Markov chain, which is of central importance for the performance of MCMC meth-
ods.

To the best of our knowledge, the first works on using large deviation theory
to study the convergence of the empirical measures arising from MCMC sampling
are [DLPD12, PDD+11]. Therein, the authors analyse the performance of parallel
tempering, one of the most frequently applied MCMC methods in computational
chemistry and physics, from the perspective of large deviations, leading to the
construction of a new type of method known as infinite swapping. In the subsequent
work [DDN18], empirical measure large deviations and associated stochastic control
problems are used to analyse the convergence properties of parallel tempering and
infinite swapping. In [DW22] the authors study methods like parallel tempering
and infinite swapping in the low-temperature regime, and use empirical measure
large deviations to solve the long-standing open problem of optimal temperature
selection. Similarly, in [Bie16, RBS15a, RBS15b, RBS16] a large deviation approach
is used to analyse certain irreversible samplers. In [BNS21], large deviations for the
empirical measures of certain piecewise deterministic Markov processes, including
the zig-zag sampler, are obtained, and the associated rate function is used to address
a key question concerning the optimal choice of the so-called switching rate of the
zig-zag process. The results therein also highlight the differences in considering
convergence of empirical averages, and in studying the convergence to equilibrium
with, e.g., the spectral gap; see also [Ros03, VM20].

In this paper we focus on the Metropolis-Hastings algorithm [MRR+53] (de-
scribed in Section 2.3), the most classical MCMC method and the main building
block for many more advanced methods [RC04, AG07, AdFDJ03, Tie98]. Be-
cause of its importance in the area of Monte Carlo sampling, the method is well-
studied and classical results on convergence properties and performance include
[MT96, RT96b, GGR97, RR97, RR01, CRR05]; see also [MT12, DMPS18] and
the references therein for the general theory of Markov chains. However, despite
significant efforts over long time, there are still gaps in our understanding of the
theoretical properties of this fundamental class of algorithms. As an example, in a
recent tour de force [ALPW22a, ALPW22b] the authors develop a functional ana-
lytical framework, aimed at analysing Markov chains arising in sampling algorithms,
and obtain the first explicit convergence bounds for the Metropolis algorithm. In
[Bie16] a non-reversible version of Metropolis-Hastings is introduced and studied.
One of the methods used for analysing performance is large deviations for the asso-
ciated empirical measure. Because the setting is a finite state space S, the classical
results [DV75, DV75b, DV76], due to Donsker and Varadhan, give the large devia-
tion principle. To the best of our knowledge, this is the only work that studies large
deviations for Markov chains arising from algorithms of Metropolis-Hastings-type.
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In [Bie16] the focus is on the effects of non-reversibility, and there is thus no at-
tempt of extending the large deviation results to the setting where the state space
S is instead a (uncountable) subset of Rd. This is the setting typically encountered
in applications.

The pioneering work by Donsker and Varadhan [DV75, DV75b, DV76] is often
the starting point for empirical measure large deviations for Markov processes, and
their results have been extended in numerous directions; see [DZ94, FK06, BD19]
and the references therein. However, it is pointed out in [DL15] (see also Section
2.2) that even for fairly simple continuous-time pure-jump processes, the results by
Donsker and Varadhan, or more general versions of them such as in, e.g., [KM05],
do not hold. This is because all such large deviation results rely on the transition
probability function of the Markov process to have a density with respect to some
reference measure. In [DL15] the authors show how this condition can be replaced
by a more general transitivity condition (Condition 2.1) to ensure that a large
class of processes are covered. However, for the Metropolis-Hastings chains, neither
of these conditions hold due to the rejection part of the dynamics. The purpose
of this paper is to show that, despite this violation of the standard transitivity
conditions, the empirical measures of the Metropolis-Hastings chain do satisfy a
large deviation principle. The proof is based on the weak convergence approach
[DE97, BD19], which is described in some more detail in Sections 2.2 and 4. With
the large deviation results established, our future work is aimed at (i) analysing
the performance and comparing various Metropolis-Hastings algorithms using the
rate function, and comparing the conclusion to, e.g., the recent results [ALPW22a];
(ii) investigate whether optimal scaling results, similar to the celebrated results in
[GGR97, RR01], can be obtained from a large deviation perspective; (iii) extend
the results to cover more advanced MCMC algorithms, such as MALA and ABC-
MCMC. These topics are all significant undertakings in their own right and we
leave them to be investigated separately in future work.

The remainder of the paper is organized as follows. In Section 2 we provide
the preliminaries needed for the paper: notation and definitions, a brief overview
of large deviations for empirical measures, and a description of the Metropolis-
Hastings algorithm. Next, in Section 3 we present the assumptions used for the
Metropolis-Hastings chain. The main result is stated in Theorem 4.1 in Section 4.
In this section we also show some properties of the associated rate function. The
proof of Theorem 4.1 is divided into two parts, in Sections 5 and 6 we prove the
Laplace upper and lower bound, respectively, which combined prove Theorem 4.1.

2. Preliminaries

2.1. Notation and definitions. Throughout the paper we work with some prob-
ability space (Ω,F ,P). We use a.s. and w.p. 1 as shorthand for almost sure, or
almost surely, and with probability 1, respectively.

For a Polish space S, with a translation invariant metric dS , B(S) is the Borel
σ−algebra on S, and C(S) and Cb(S) denote the spaces of functions f : S → R

that are continuous, and bounded and continuous, respectively. For any r ∈ R+

and x ∈ S, Br(x) is the open ball of radius r with center in x:

Br(x) = {y ∈ S : dS(x, y) < r}.
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When S ⊆ R
d, for some d ≥ 1, we take λ to denote Lebesgue measure on R

d. We
abuse notation a bit in that λ is generically taken to represent Lebesgue measure,
regardless of the underlying dimension d. For integration with respect to λ we use
the standard notation dx for λ(dx).

For a measure η on S, and measurable function f on S, we denote the integral
of f with respect to η by η(f) =

∫

S
f(x)η(dx). When f is the indicator of a set A,

we write η(A) =
∫

A
η(dx).

The space of probability measures on S is denoted by P(S). Given γ ∈ P(S2),
denote by [γ]1 and [γ]2 the first and second marginals of γ, respectively. For µ ∈
P(S), define

(2.1) A(µ) = {γ ∈ P(S2) : [γ]1 = [γ]2 = µ}.

We consider the topology of weak convergence on P(S): νn → ν in this topology
if, for all f ∈ Cb(S),

νn(f) =

∫

S

f(x)νn(dx) →

∫

S

f(x)ν(dx) = ν(f), n → ∞.

We use νn ⇒ ν as shorthand notation for {νn} ⊂ P(S) converging weakly to
ν ∈ P(S). Unless otherwise stated, we equip P(S) with the Lévy-Prohorov metric,
denoted dLP : for ν, µ ∈ P(S),

dLP (ν, µ) = inf {ǫ > 0 : ν(A) ≤ µ(Aǫ) + ǫ, for all closed subsets A ⊂ S} ,

where Aǫ = {x ∈ S : dS(x,A) < ǫ}. This metric is compatible with the topology of
weak convergence (see, e.g., [BD19], Theorem A.1), and turns P(S) into a Polish
space. For any signed measure η on S, the total variation norm of η, ‖η‖TV , is
defined as

‖η‖TV = sup
f

|η(f)| ,

where the supremum is taken over all measurable functions bounded by 1. For
ν, µ ∈ P(S), the total variation norm provides an upper bound on dLP :

dLP (ν, µ) ≤ ‖ν − µ‖TV .

For a measurable space (Y,A), let q(y, dx) be a collection of probability measures
on S parameterized by y ∈ Y . Then q is called a stochastic kernel on S given Y if,
for every A ∈ B(S), the map y 7→ q(y,A) ∈ [0, 1] is measurable.

For a Markov chain {Xi}i∈N taking values in S, for a given x0 ∈ S, we denote
by Px0 the distribution of {Xi}i∈N starting at x0. The associated expectation
operator is denoted by Ex0 . The transition probability function, or transition kernel,
of a Markov chain is a stochastic kernel q, such that the distribution of Xi given
Xi−1 is given by q(Xi−1, ·). We say that a transition probability function q(x, dy)
on S × P(A) satisfies the Feller property if, for any sequence {xn}n∈N such that
xn → x ∈ S as n → ∞, q(xn, ·) ⇒ q(x, ·).

Given a measure µ ∈ P(S) and a transition kernel q(x, dy), we say that µ is
invariant for q, or for the corresponding Markov chain, if for all A ∈ B(S),

µ(A) =

∫

S

q(x,A)µ(dx).
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For ν ∈ P(S), R(· ‖ ν) : P(S) → [0,∞] is the relative entropy (with respect to
ν), defined by

R(µ ‖ ν) =

{

∫

S
log
(

dµ
dν

)

dµ, µ ≪ ν,

+∞, otherwise.

We recall the following properties of relative entropy (see Lemmas 1.4.1 and 1.4.3
in [DE97]): R(· ‖ ·) is jointly convex and jointly lower semi-continuous with respect
to the weak topology on P(S)2, and R(µ ‖ ν) = 0 if and only if µ = ν. Another
useful property follows from the chain rule for relative entropy (see Theorem 2.6
and Corollary 2.7 in [BD19]): given two transition kernels p, q, for any µ ∈ P(S),

(2.2) R(µ⊗ p ‖ µ⊗ q) =

∫

S

R(p(x, ·) ‖ q(x, ·))µ(dx).

Lastly, for a set A, A◦ and Ā denote the interior and closure of the set, respec-
tively, and x 7→ I{x ∈ A} is the indicator function of the set A. When the set is a
singleton, A = {y}, we write I{x = y}. We also use δy to denote this case.

2.2. Large deviations for empirical measures of a Markov chain. Consider
a Markov chain X = {Xi}i≥0 with state space S and transition probability function
p. The empirical measure, Ln, associated with the chain X is defined as

Ln(·) =
1

n

n−1
∑

i=0

δXi
(·).(2.3)

For each n, this is a random element of P(S). We can also view {Ln}n≥0 as a
stochastic process in P(S).

In the context of MCMC methods, empirical measures are essential objects as
they are used for forming approximations for any observable: for a given observable
f ∈ Cb(S), we have

Ln(f) =
1

n

n
∑

i=1

f(Xi).

If the Markov chain X has an invariant distribution π ∈ P(S) and is ergodic, we
have Ln(f) → π(f), a.s. as n → ∞. Thus, there is a direct link between the
convergence properties of the empirical measure Ln and the performance of Monte
Carlo methods based on time averages for approximating observables.

Classical methods for studying performance of MCMC methods are often mixing
properties or asymptotic variance, which are not directly linked to the empirical
measure Ln of the underlying Markov chain. The theory of large deviations on
the other hand, is concerned precisely with deviations of Ln from π as the number
of steps n grows. It therefore serves as a useful complement to the more tradi-
tional methods for analysing performance of a given MCMC method, as well as for
designing new algorithms.

At the heart of the theory of large deviations is the large deviation principle
(LDP): the sequence {Ln} is said to satisfy an LDP with speed n and rate function
I : S → [0,∞], if I is lower semi-continuous, has compact sub-level sets and for any
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measurable A ⊂ P(S),

− inf
ν∈A◦

I(ν) ≤ lim inf
n→∞

1

n
logP(Ln ∈ A◦)

≤ lim sup
n→∞

1

n
logP(Ln ∈ Ā) ≤ − inf

ν∈Ā
I(ν).

The gist of these inequalities is that, if {Ln} satisfies an LDP with speed n and
rate function I, then for any ν ∈ P(S) and n large,

P(Ln ≈ ν) ≃ exp{−nI(ν)}.

The definition of an LDP makes this statement rigorous in the limit n → ∞.
For any metric space, an equivalent formulation of the LDP is the Laplace prin-

ciple (see e.g., Theorems 1.5 and 1.8 in [BD19]). In the setting of the empirical
measures {Ln}, we have that this sequence satisfies a Laplace principle, with speed
n and rate function I (same as in the LDP), if for any F ∈ Cb (P(S)),

lim
n→∞

1

n
logE

[

e−nF (Ln)
]

= − inf
ν∈P(S)

{F (ν) + I(ν)} .(2.4)

The starting point for large deviations of empirical measures of Markov processes
is the pioneering work of Donsker and Varadhan [DV75, DV76]. A central assump-
tion in those works is that the transition probability function p has a density with
respect to some reference measure. This is a reasonable transitivity assumption for
processes that involve something that, in some sense, resembles a diffusive term.
However, in [DL15] the authors show that it is a rather restrictive condition and as
an example construct a simple continuous-time pure-jump process for which it does
not hold. The following alternative condition on p was used in [DL15] to establish
an LDP for the empirical measures of a Markov process.

Condition 2.1 (Condition 6.3 in [BD19]). The transition kernel p of the Markov
chain X is such that there exist positive integers l0 and n0, such that for all x and
ζ in S,

(2.5)
∑

i≥l0

2−ip(i)(x, dy) ≪
∑

j≥n0

2−jp(j)(ζ, dy),

where p(k) denotes the k−step transition probability.

This condition is general enough to cover a large class of Markov processes, both
in discrete and continuous time; see e.g., [BD19, DL15] and the references therein.
However, it does not cover the case when X comes from a Metropolis-Hastings
scheme, as we show with a simple counterexample in Section 4. Condition 2.1, or
variations of it, is a key ingredient in existing work on large deviations for Markov
chains. Because it is not satisfied for Metropolis-Hastings, in order to use large
deviations to analyse the performance of such algorithms, and with an outlook
towards more advanced MCMC methods that build on the Metropolis-Hastings
algorithm—e.g., MALA and ABC-MCMC—we must first establish the relevant
LDP. This is the main contribution of this paper.

2.3. Metropolis-Hastings algorithm. We now give a brief description of the
Metropolis-Hastings (MH) algorithm for constructing a Markov chain X = {Xi}i≥0

with the target measure π as invariant distribution. For simplicity we restrict
ourselves to the setting where S ⊆ R

d and π is equivalent to Lebesgue measure.
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More abstract settings are possible as well, see for example [Tie98]. However this
would require different assumptions and modifications of the proof of the large
deviation principle in Section 2.2.

The main ingredient of the MH algorithm is the proposal distribution J(·|x) ∈
P(S), defined for all x ∈ S. If the chain after n steps is in some state Xn = xn, a
proposal Yn+1 for the next state Xn+1 is generated from J(·|xn). This is followed
by an acceptance-rejection step, which is defined in terms of the Hastings ratio,

̟(x, y) = min

{

1,
π(y)J(x|y)

π(x)J(y|x)

}

;

where if π(x)J(y|x) = 0, we set ̟(x, y) = 1. The proposed move from Xn =
xn to Xn+1 = Yn+1 is accepted with probability ̟(xn, Yn+1), and rejected with
probability 1−̟(xn, Yn+1). In the latter case, we set Xn+1 = xn. The pseudocode
for the update step in the MH algorithm is presented in Algorithm 2.1.

Algorithm 2.1 Metropolis-Hastings algorithm

Given Xi = xi,
1: Generate a proposal Yi+1 ∼ J(·|xi)
2: Set

Xi+1 =

{

Yi+1 with probability ̟(xi, Yi+1)

xi with probability 1−̟(xi, Yi+1)

Define a transition kernel a(x, dy) and a function r : S → [0, 1] by

(2.6) a(x, dy) = min

{

1,
π(y)J(x|y)

π(x)J(y|x)

}

J(dy|x),

and

(2.7) r(x) = 1− a(x, S) = 1−

∫

S

a(x, dy).

The kernel a corresponds to the acceptance-part of the MH algorithm, i.e., it cor-
responds to transitions to proposed states that are accepted in the MH algorithm.
Similarly, r corresponds to the rejection part: it represents the probability of reject-
ing a proposed state, and thus remaining at the current state of the chain. With
these definitions, the dynamics of the MH algorithm corresponds to generating a
Markov chain {Xi}i≥0, the MH chain, with transition kernel

(2.8) K(x, dy) = a(x, dy) + r(x)δx(dy).

For a more in-depth look at the MH algorithm and its various properties, see for ex-
ample [RC04] and the references therein. A key observation is that due to the form
of the Hastings ratio, and the corresponding kernel K, under reasonable assump-
tions on the proposal distribution J , the MH chain {Xi}i≥0 generated according to
the above has π as its unique invariant measure.

3. Assumptions

In this section, we state the assumptions we make on the MH chain defined in
Section 2.3. Rather than aiming to make them as general as possible, we have
aimed for assumptions, primarily on the proposal distribution J , that are tangible
from the perspective of MCMC methods. One alternative, commonly used when
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studying this type of Markov chain, is to assume the existence of some Lyapunov
function [MT96, RT96a, KM03, KM05]. Although this ensures the convergence
of the empirical measures, however for the large deviation results additional as-
sumptions are still needed; see e.g., the Donsker-Varadhan-like assumption on the
transition kernel in [KM05].

As mentioned in Section 2.3, we make the assumption that S ⊆ R
d, for some

d ≥ 1. We make a slight abuse of notation, in that we let π(·), J(·|x), and a(x, ·)
denote both the corresponding measures and probability density functions. In order
to establish the LDP, we make the following additional assumptions.

(A.1) The target probability measure π is equivalent to λ on S (i.e., π ≪ λ and
λ ≪ π). The probability density π(x) is a continuous function.

(A.2) The proposal distribution J(·|x) is absolutely continuous with respect to
the target measure π (i.e., J(·|x) ≪ π), for all x ∈ S. The probability
density J(y|x) is a continuous and bounded function of x and y, and it
satisfies

(3.1) J(y|x) > 0, ∀(x, y) ∈ S2.

(A.3) There exists a Lyapunov function U : S → [0,∞] such that the following
properties hold:
(a) infx∈S

[

U(x)− log
∫

S
eU(y)K(x, dy)

]

> −∞
(b) For each M < ∞, the set

{

x ∈ S : U(x) − log

∫

S

eU(y)K(x, dy) ≤ M

}

is a relatively compact subset of S.
(c) For every compact set K ⊂ S there exists CK < ∞ such that

sup
x∈K

U(x) ≤ CK .

Because π and λ are equivalent measures, the support of π is all of S. However,
it is not necessarily the case that π(x) > 0 for all x ∈ S, as there may exist a
(nonempty) set E ⊂ S, such that λ(E) = 0 and π(x) = 0 for x ∈ E. Therefore,
define the set S+ as

(3.2) S+ = {y ∈ S : π(y) > 0}.

Observe that S+ is an open subset of S, being the density function π(x) continuous.
Assumptions (A.1)-Assumption (A.2) are used to show that the MH transition

kernel K, and thus the MH chain {Xi}i≥0, has certain properties. Assumption
(A.3) replaces a compactness-assumption on S for proving the LDP. In the case of
a compact state space S, this assumption is not needed.

Remark 3.1. We start by showing that the combination of (A.1) and (A.2) ensure
continuity and boundedness of the components a (acceptance part) and r (rejection
part) of the MH transition kernel K. To see this, note first that it is sufficient to
define K only for the states x ∈ S+. If x ∈ S+, the quantity

(3.3) min

{

1,
π(y)J(x|y)

π(x)J(y|x)

}

is well defined, and therefore so is the MH transition kernel K(x, ·). Moreover,
if the initial point X0 of the chain belongs to S+, the MH algorithm only allows
moves to states y that preserve the property π(y) > 0.
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Consider now x ∈ S+. Assumption (A.1) and Assumption (A.2) imply that
J(·|x) ≪ λ. Therefore, the acceptance part (2.6) of K(x, ·) is absolutely continuous
with respect to the Lebesgue measure (i.e., a(x, ·) ≪ λ), and its density is given by

(3.4) a(x, y) = min

{

1,
π(y)J(x|y)

π(x)J(y|x)

}

J(y|x).

Since π(x) is continuous for all x ∈ S and J(x|y) is continuous and bounded for all
(x, y) ∈ S2, we have a(x, y) ∈ Cb(S+ × S).

From the continuity of a(x, y) on S+ × S, we obtain that r(x) = 1 − a(x, S) is
also continuous for all x ∈ S+. This continuity extends to all of S. First, if x /∈ S+,
so that π(x) = 0, then

r(x) = 1− a(x, S) = 1−

∫

S

J(y|x)dy = 0,

since π(y) > 0 for λ-almost all y ∈ S. Take x /∈ S+ and a sequence {xn} ⊂ S
that converges to x. From the continuity of the target density function π, π(xn) →
π(x) = 0. Moreover, for a fixed y such that π(y) > 0, we have a(xn, y) → J(y|x)
as n → ∞. To see this, note that since π and λ are equivalent, π(y) > 0 for
λ−almost all y ∈ S. It follows that limn→∞ a(xn, y) = J(y|x) for λ−almost all
y ∈ S. Recalling that J is bounded, by dominated convergence we have

lim
n→∞

a(xn, S) = lim
n→∞

∫

S

a(xn, y)dy =

∫

S

lim
n→∞

a(xn, y)dy =

∫

S

J(y|x)dy = 1.

This in turn implies that

lim
n→∞

r(xn) = 1− lim
n→∞

a(xn, S) = 0.

Since r(x) = 0, this shows that r is continuous on S.

Remark 3.2. Next, we show that (A.1)-(A.2) ensure thatK has the target measure
π as its unique invariant distribution, and the MH chain {Xi}i≥0 is ergodic.

Let x ∈ S+ as defined in (3.2). Since λ ≪ π by (A.1), π(y) > 0 for λ−almost
every y ∈ S. Moreover, by Assumption (A.2), J(x|y) > 0 for all (x, y) ∈ S2. It
follows that a(x, y) > 0 for λ−a.e. y ∈ S. This in turn implies that λ ≪ a(x, ·),
and λ and a(x, ·) are equivalent measures for all x ∈ S+. By transitivity, a(x, ·)
and a(y, ·) are equivalent for all x, y,∈ S+. We now show that from this it follows
that the MH transition kernel K is indecomposable, i.e. there are no disjoint Borel
sets A1, A2 ∈ B(S) such that

K(x,A1) = 1 ∀x ∈ A1 and K(y,A2) = 1 ∀y ∈ A2.

We argue by contradiction. Assume that two such sets exist. Then,

(3.5) 1 = K(x,A1) = a(x,A1) + r(x)δx(A1).

Since λ ≪ a(x, ·), we have a(x, S) > 0, and thus r(x) = 1−a(x, S) < 1 for all x ∈ s.
Combined with (3.5), this shows a(x,A1) > 0. It follows from a(x, ·) and a(y, ·)
being equivalent measures that a(y,A1) > 0, which contradicts the assumption.
Hence, K(x, dy) is indecomposable. By Theorem 7.16 in [Bre92], π is the unique
invariant distribution for the MH transition kernel K(x, dy) and the Markov chain
associated with π and K(x, dy) is ergodic.
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Remark 3.3. For the case S = R
d, Section 8.2 in [DE97] describes a class of models

for which a Lyapunov function U that satisfies (A.3) exists. Here we present their
example adapted to the MH kernel K. For specific choices of J and/or π, this
assumption can be made more explicit (or verified).

Let b : Rd → R
d be measurable. Denote by 〈·, ·〉 the scalar product in R

d and
for α ∈ R

d define

Hb(x, α) = log

[∫

Rd

e〈α,y−x−b(x)〉a(x, dy) + r(x)e−〈α,b(x)〉

]

.

Consider the following assumptions.

(a) b is bounded on all compact sets in R
d

(b) there exists r > 0 such that

sup
x∈Rd

Hb(x, α) < ∞,

for all α ∈ R
d that satisfy ‖α‖ ≤ r

(c) there exists a Lipschitz continuous function U : Rd → [0,∞) for which

lim
‖x‖→∞

[U(x+ b(x)) − U(x)] = −∞.

If (a), (b) and (c) hold, then U is a Lyapunov function as required by Assumption(A.3).
A natural choice for b is

b(x) =

∫

Rd

y · a(x, dy)− (1− r(x)) · x,

and the corresponding Hb is

Hb(x, α) = log e−〈α,
∫

a(x,dy)+r(x)·x〉 + log

[∫

Rd

e〈α,y〉a(x, dy) + r(x)e〈α,x〉
]

.

Note that if the space S is compact, then Assumption (A.3) is automatically satis-
fied (for example, take U(x) ≡ 0).

4. Large deviations for empirical measures of Metropolis-Hastings

chains

We are now ready to state our main result, an LDP for the sequence {Ln} of
empirical measures of the MH chain {Xi}i≥0 with invariant distribution π (see
Section 2.3 for the definition).

Theorem 4.1. Let {Xi}i≥0 be the Metropolis-Hastings chain from Section 2.3 and
K(x, dy) the associated transition kernel. Let {Ln}n≥0 ⊂ P(S) be the corresponding
sequence of empirical measures, defined in (2.3). Under Assumptions (A.1)-(A.3),
with A(µ) as in (2.1), {Ln}n≥0 satisfies an LDP with speed n and rate function

(4.1) I(µ) = inf
γ∈A(µ)

R(γ ‖ µ⊗K).

As mentioned in Section 2.1, we consider P(S) as a metric space (equipped with,
e.g., the Lévy-Prohorov metric). Therefore, the LDP is equivalent to the Laplace
principle, and we will use the latter to prove Theorem 4.1. More specifically, the
proof is split up into proving the Laplace principle upper bound,

lim inf
n→∞

−
1

n
Exn

[

e−nF (Ln)
]

≥ inf
µ∈P(S)

{F (µ) + I(µ)} ,(4.2)
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and the Laplace principle lower bound,

lim sup
n→∞

−
1

n
Ex

[

e−nF (Ln)
]

≤ inf
µ∈P(S)

{F (µ) + I(µ)} ,(4.3)

for every F ∈ Cb(P(S)), every sequence {xn} ⊂ S and x ∈ S. The respective proofs
are given in Sections 5 and 6. The starting point for both bounds is the following
representation formula (Proposition 6.1 in [BD19]): for every bounded, measurable
F : P(S) → R,

−
1

n
logE

[

e−nF (Ln)
]

= inf
{µ̄n

i }
E

[

F (L̄n) +
1

n

n
∑

i=1

R(µ̄n
i ‖ K(X̄n

i , ·))

]

,(4.4)

where L̄n is the controlled empirical measure, L̄n = 1
n

∑n−1
i=0 δX̄n , and the condi-

tional distribution of X̄n
i given σ(X̄n

1 , . . . , X̄
n
i−1) is µ̄

n
i . The infimum is over all such

controls, i.e., random probability measures, µ̄n
i , such that µ̄n

i is measurable with
respect to Fn

i−1 = σ
(

X̄n
1 , . . . , X̄

n
i−1

)

, with Fn
0 = {∅,Ω}; see [DE97, BD19] for more

details.
For the upper bound, under Assumptions (A.1)-(A.3), the proof of Proposition

6.13 in [BD19], with the additional arguments in Section 6.10 therein to account
for a non-compact state space, can be applied in our setting as well. The only thing
that needs to be verified is the Feller property of the MH transition kernel K (see
Lemma 5.2).

The work for proving Theorem 4.1 lies in proving the lower bound (4.3). Existing
results rely on some variation of Condition 2.1. However, such a condition is not
applicable in our setting, as the following simple example shows: Take an x ∈ S
such that r(x) > 0 (i.e., when in x, there is a positive probability of rejecting a
proposed move and stay in x) and consider the Borel set A = {x} ∈ B(S). If x 6= ζ,
then p(j)(ζ, A) = p(j)(ζ, x) = 0, ∀j ≥ 0. However, p(i)(x, x) > 0, ∀i ≥ 0, since
r(x) > 0 . This shows that (2.5) does not hold for all x ∈ S, and Condition 2.1
does not hold for the MH kernel K, nor for kernels of similar type, such as those
arising in ABC-MCMC or MALA.

In Section 6 we show how the Laplace principle lower bound can be shown for the
MH chain without relying on a transitivity assumption like Condition 2.1. The main
point is that due to the specific structure of the MH kernel, under Assumptions
(A.1)-(A.2) the chain retains the properties that are important for proving the
LDP (and typically guaranteed by something like Condition 2.1 combined with
other assumptions).

The main difficult in the proof arises from the fact that, contrary to the setting
in [BD19], for ν ∈ P(S), I(ν) < ∞ does not imply that ν ≪ π. In [BD19] this
implication is used in defining near-optimal controls in the representation (4.4),
which in turn can be used to prove the lower bound.

Before proceeding with the proofs of the upper and lower bounds, in the following
section we give some different characterizations and properties of the rate function
I in (4.1).

4.1. Characterization and properties of the rate function. We first express
the rate function (4.1) in a more convenient form. By Lemma 6.8(a) in [BD19], the
probability measures in the set A(ν) are of the form

γ(dx × dy) = ν(dx) q(x, dy),
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for a transition kernel q(x, dy) such that ν is invariant for q. Therefore, using (2.2),
the chain rule for relative entropy, we can rewrite (4.1) as

(4.5) I(ν) = inf
q∈Q

∫

S

R(q(x, ·) ‖ K(x, ·))ν(dx),

where Q denotes the set of all the transition kernels q(x, dy) on S such that ν is an
invariant distribution for q. Lemma 6.8(b) in [BD19] guarantees the existence of a
minimizing q in the definition of I(ν), under the assumption I(ν) < ∞. That is,
there exists a transition kernel q with stationary distribution ν such that

(4.6) I(ν) =

∫

S

R(q(x, ·) ‖ K(x, ·))ν(dx).

The representation (4.6) of the rate function allows us to characterize the mini-
mizers q, based on the form of the MH transition kernel K (2.8), as the following
result shows.

Lemma 4.2. If I(ν) < ∞, then the transition kernel q(x, dy) in (4.6) is q(x, ·) ≪
K(x, ·) ν-a.s. In particular, it is of the form

(4.7) q(x, ·) = α(x, ·) + ρ(x)δx(·), ν-a.s.,

with α(x, ·) ≪ a(x, ·) ν-a.s. and ρ(x) is a measurable function.

Proof. If I(ν) < ∞, then (4.6) implies R(q(x, ·) ‖ K(x, ·)) < ∞ ν−a.s. By the
definition of relative entropy, this means that q(x, ·) ≪ K(x, ·) ν−a.s. Recall that

K(x, dy) = a(x, y)dy + r(x)δx(dy),

i.e. K(x, ·) is a mixture of a transition kernel a(x, ·) ≪ λ, and a point mass in x.
Therefore, for the transition kernel q(x, ·) to be q(x, ·) ≪ K(x, ·) ν−a.s., it must be
of the form

q(x, y) = α(x, y)dy + ρ(x)δx(dy),

where α(x, ·) ≪ a(x, ·) ≪ λ, and ρ(x) = 0 if r(x) = 0. In particular, ρ(x) must
be a measurable function in order to make x 7→ q(x,A) a measurable function for
every A ∈ B(S), and therefore q a stochastic kernel. �

With the characterization of q from Lemma 4.2, we can write the rate function
(4.6) in a more explicit way.

Proposition 4.3. If I(ν) < ∞, then the rate function can be expressed as

(4.8) I(ν) =

∫

S

∫

S

log

(

α(x, y)

a(x, y)

)

α(x, y) dy ν(dx) +

∫

S

log

(

ρ(x)

r(x)

)

ρ(x) ν(dx),

with α(x, y) and ρ(x) as in Lemma 4.2.

Proof. Applying the definition of relative entropy in (4.6), the rate function becomes

(4.9) I(ν) =

∫

S

∫

S

log (fx(y)) q(x, dy)ν(dx),

where fx denotes the Radon-Nikodym derivative of the transition kernel q(x, ·)
with respect to K(x, ·) for a fixed x ∈ S. By Lemma 4.2 fx exists ν-a.s. and, by
combining (2.8) and (4.7),

(4.10) fx(y) =
α(x, y)

a(x, y)
I{y 6= x}+

ρ(x)

r(x)
I{y = x}.
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Indeed, let A ∈ B(S) and recall that a(x, ·) ≪ λ. Then, it holds
∫

A

fx(y)K(x, dy) =

∫

A

(

α(x, y)

a(x, y)
I{y 6= x} +

ρ(x)

r(x)
I{y = x}

)

(a(x, y)dy + r(x)δx(dy))

=

∫

A

α(x, y)dy + ρ(x)δx(A) = q(x,A),

for ν-almost all x ∈ S. This proves that fx(y) in (4.10) is the Radon-Nikodym
derivative of q(x, ·) with respect to K(x, ·) for ν-almost all x in S.

Replacing fx(y) in (4.9) with (4.10) gives

I(ν) =

∫

S

∫

S

log

(

α(x, y)

a(x, y)
I{y 6= x} +

ρ(x)

r(x)
I{y = x}

)

(α(x, y)dy + ρ(x)δx(dy)) ν(dx)

=

∫

S

(∫

S

log

(

α(x, y)

a(x, y)

)

α(x, y)dy + log

(

ρ(x)

r(x)

)

ρ(x)

)

ν(dx),

which leads to (4.8). �

We end this section with an alternative characterization of the rate function,
that highlights the fact that measures ν ∈ P(S) for which I(ν) < ∞ need not be
absolutely continuous with respect to π.

For any ν ∈ P(S), by the Lebesgue decomposition theorem, we have

(4.11) ν = (1− p) · νλ + p · νs,

where p ∈ [0, 1], νλ, νs ∈ P(S), with νλ ≪ λ and νs ⊥ λ. Note that p is specific to
ν, which we suppress in the notation. Associated with the decomposition (4.11), we
also define the partition S = Sλ ∪ Ss, with Ss ∩ Sλ = ∅, νs(Sλ) = 0 and λ(Ss) = 0.
The following Lemma shows that I(ν) is split into two parts, one corresponding to
νλ and one corresponding to νs.

Lemma 4.4. Let ν ∈ P(S) with I(ν) < ∞ and consider its decomposition as in
(4.11). Let q(x, dy) be a transition kernel on S with invariant distribution ν, that
satisfies

I(ν) =

∫

S

R(q(x, ·) ‖ K(x, ·))ν(dx).

Define Qλ and Qs as the set of transitions kernels that νλ and νs are invariant for,
respectively. The following holds:

(a) q ∈ Qλ ∩Qs, i.e. both νλ and νs are invariant for q,
(b) the rate function satisfies

(4.12) I(ν) = (1 − p)I(νλ) + pI(νs).

Proof. (a) By Lemma 4.2, we can write

q(x, ·) = α(x, ·) + ρ(x)δx(·), ν-a.s.,

where α(x, ·) ≪ λ. By invariance of ν for q, for all A ∈ B(S),

ν(A) =

∫

S

q(x,A)ν(dx) =

∫

S

α(x,A)ν(dx) +

∫

A

ρ(x)ν(dx).

If we consider A = Ss, for which λ(Ss) = 0, then α(x, Ss) = 0 for ν-almost all
x ∈ S (because of α(x, ·) ≪ λ), and thus ν(Ss) =

∫

Ss
ρ(x)ν(dx). On the other

hand, ν(Ss) =
∫

Ss
ν(dx). This implies that for all x ∈ Ss ν-a.s., we have that

ρ(x) = 1 a.s., and therefore q(x, dy) = δx(dy).
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With the form of q on Ss established, for A ∈ B(S), we have

∫

S

q(x,A)νs(dx) =

∫

Ss

q(x,A)νs(dx) =

∫

Ss

δx(A)νs(dx) = νs(A),

where the last equality is due to q(x, ·) = δx(·) a.s. being the only νs-invariant
transition kernel (Lemma 6.2). This proves that νs is invariant for q, which means
that q ∈ Qs.

We now show that νλ is also invariant for q. The decomposition (4.11) combined
with the invariance of ν for q, and given that q(x, ·) = δx(dy), νs-a.s., gives, for
A ∈ B(S),

(1− p) · νλ(A) + p · νs(A) = ν(A) =

∫

q(x,A)ν(dx)

= (1− p) ·

∫

q(x,A)νλ(dx) + p ·

∫

q(x,A)νs(dx)

= (1− p) ·

∫

q(x,A)νλ(dx) + p · νs(A).

It follows that νλ(A) =
∫

q(x,A)νλ(dx). Since A ∈ B(S) was chosen arbitrarily, νλ
is invariant for q, i.e., q ∈ Qλ.

To prove (b), by convexity of I (see Lemma 6.10(a) in [BD19]),

(4.13) I(ν) = I ((1− p) · νλ + p · νs) ≤ (1− p) · I(νλ) + p · I(νs).

On the other hand, by the decomposition (4.11),

I(ν) =

∫

S

R(q(x, ·) ‖ K(x, ·))ν(dx)

(4.14)

= (1 − p) ·

∫

S

R(q(x, ·) ‖ K(x, ·))νλ(dx) + p ·

∫

S

R(q(x, ·) ‖ K(x, ·))νs(dx).

From part (a), q is an element of both Qλ and Qs. Therefore,

∫

S

R(q(x, ·) ‖ K(x, ·))νλ(dx) ≥ inf
q̃∈Qλ

∫

S

R(q̃(x, ·) ‖ K(x, ·))νλ(dx).

The right-hand side of the previous display is precisely I(νλ). Similarly,

∫

S

R(q(x, ·) ‖ K(x, ·))νs(dx) ≥ inf
q̃∈Qs

∫

S

R(q̃(x, ·) ‖ K(x, ·))νs(dx),

and the right-hand side of this inequality is now I(νs). The two inequalities together
with (4.14) imply

I(ν) ≥ (1 − p) · I(νλ) + p · I(νs).

Combined with the opposite inequality (4.13), this proves the desired equality
(4.12).

�
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5. Laplace principle upper bound

In this section we prove the Laplace principle upper bound (4.2).

Proposition 5.1. Let {Ln}n≥0 be the empirical measures defined in (2.3) and
{xn}n≥0 any sequence in S. Take F ∈ Cb (P(S)) and define I : P(S) → [0,∞] as
in (4.1). Assume (A.1), (A.2) and (A.3). Then,

lim inf
n→∞

−
1

n
logExn

[

e−nF (Ln)
]

≥ inf
ν∈P(S)

[F (ν) + I(ν)].

As mentioned in Section 4, under (A.1)-(A.3), the arguments from [BD19] can be
used. We include the main steps here for self-containment and convenience of the
reader; we emphasise that once the Feller property ofK(x, dy) has been established,
this part of the proof goes precisely as in [BD19].

Lemma 5.2. Under Assumptions (A.1)-(A.2), the Metropolis-Hastings transition
kernel K(x, ·) satisfies the Feller property.

Proof. Recall the form (2.8) for K, with a(x, y) in (3.4) corresponding to the prob-
ability density of the acceptance part and r corresponding to the rejection part.
The assumptions ensure that both a and r are continuous (see Remark 3.1) and
bounded as functions of x. Consider now a function f ∈ Cb(S), and a sequence
{xn}n∈N ⊂ S such that xn → x ∈ S. By dominated convergence, we have

∫

S

f(y)K(xn, dy) =

∫

S

f(y)a(xn, y)dy + f(xn)r(xn)

→

∫

S

f(y)a(x, y)dy + f(x)r(x) =

∫

S

f(y)K(x, dy).

An application of the Portmanteau theorem then completes the proof.
�

Proof of Proposition 5.1. In (4.4), take a control sequence {µ̄n
i } such that

E

[

F (L̄n) +
1

n

n
∑

i=1

R(µ̄n
i ‖ K(X̄n

i , ·))

]

≤ inf
{µ̂n

i }
E

[

F (L̂n) +
1

n

n
∑

i=1

R(µ̂n
i ‖ K(X̂n

i , ·))

]

+
1

n
,

where L̄n is the controlled empirical measure associated with {µ̄n
i }. Let

λn(dx× dy) =
1

n

n
∑

i=1

δX̄n
i−1

(dx)µ̄n
i (dy).

By Assumption (A.3), {(Ln, λn)} is tight; see Section 10 in [BD19]. Thus, there
is a subsequence, also denoted by n, such that {(Ln, λn)} converge along that
subsequence, to some limit (L̄, λ), and it is enough to prove the upper bound (4.2)
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for this subsequence. In fact, taking n → ∞, we have

lim inf
n→∞

−
1

n
Exn

[

e−nF (L̄n)
]

≥ E
[

F (L̄) +R(λ ‖ L̄⊗K)
]

≥ inf
ν∈P(S)

[

F (ν) + inf
γ∈A(ν)

R(γ ‖ ν ⊗K)

]

= inf
ν∈P(S)

[F (ν) + I(ν)] .

�

6. Laplace principle lower bound

We now proceed to prove the Laplace principle lower bound (4.3).

Proposition 6.1. Let {Ln}n≥0 be the empirical measures defined in (2.3) and
define I : P(S) → [0,∞] as in (4.1). Assume (A.1)-(A.2). Then, for x ∈ S,

(6.1) lim sup
n→∞

−
1

n
logEx

[

e−nF (Ln)
]

≤ inf
ν∈P(S)

[F (ν) + I(ν)].

As described in Section 4, in proving Theorem 4.1, the lower bound is where the
lack of Condition 2.1 for the MH kernel K plays a role. To see why the lack of this
transitivity condition becomes an issue, one of the consequences of the condition
is that if ν ∈ P(S) is such that I(ν) < ∞, then ν ≪ π. This property plays an
important role in the proof of the LDP for empirical measures of a Markov chain
in [BD19]—it is implicitly used to define a sequence of near-optimal controls in the
representation (4.4). Here, because of the rejection part of the MH kernel, which is
the reason Condition 2.1 does not hold, the implication is not true in general. As a
counterexample, consider an x0 ∈ S such that r(x0) > 0 and take ν = δx0 ∈ P(S).
Then ν is not absolutely continuous with respect to λ, and thus not with respect
to π. Consider the transition kernel q̃(x, ·) = δx. Then ν is invariant for q̃ and from
(4.5),

I(ν) ≤

∫

S

R(δx(·) ‖ K(x, ·))ν(dx) = R(δx0(·) ‖ K(x0, ·)).

From (4.10), the Radon-Nikodym derivative of δx0(·) with respect to K(x, ·), for
x = x0, is given by fx0(y) = 1

r(x0)
I{y = x0}. It follows that the rate function is

finite, since

I(ν) ≤ R(δx0(·) ‖ K(x0, ·)) ≤ log
1

r(x0)
< ∞.

We circumvent the problem of not having Condition 2.1 by showing that if
ν ∈ P(S) is such that I(ν) < ∞, then there exists another probability measure
ν∗ ∈ P(S) that is arbitrarily close to ν, and satisfies ν⋆ ≪ π and I(ν∗) ≤ I(ν) + ε.

To prove the existence of such a measure, recall that the decomposition (4.11)
allows us to separate ν into two parts: one part, νλ, with a density with respect to
λ (and thus with respect to π) and one, νs, that is singular with respect to λ. The
idea is to approximate the latter with measures that are absolutely continuous with
respect to λ. This allows us to construct near-optimal controls in the representation
formula, which in turn are used to prove Proposition 6.1.

The following is a brief outline of the argument.
In Lemma 6.2, we characterize the transition kernels q that achieve the infimum

in (4.5) for νs ∈ P(S) such that νs ⊥ λ and I(νs) < ∞. Next, in Lemma 6.3, we
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construct a sequence of random measures {νns } ⊂ P(S) that are absolutely contin-
uous with respect to λ, νns ⇒ ν as n → ∞, and I(νns ) → I(ν). This construction
allows us to show (Lemma 6.4) that for any ν ∈ P(S) such that I(ν) < ∞, for
any ε > 0, there exists a ν† ∈ P(S) that is arbitrarily close to ν, ν† ≪ λ and
I(ν†) ≤ I(ν) + ε. The existence of such a probability is then used in Lemma 6.5
to prove the existence of a ν∗ ∈ P(S) with the desired properties. From there, the
proof of Proposition 6.1 follows largely that of [BD19].

Lemma 6.2. Let νs ∈ P(S) be such that νs ⊥ λ and I(νs) < ∞. Then, q(x, ·) =
δx(·) νs−a.s. is the only transition kernel that satisfies (4.6), i.e.,

I(νs) =

∫

S

R(δx(·) ‖ K(x, ·))νs(dx) =

∫

S

log
1

r(x)
νs(dx)

Proof. By Lemma 4.2, if I(νs) < ∞, then the kernels q(x, ·) that satisfy (4.6) are
of the form α(x, ·) + ρ(x)δx(·), νs−a.s. with α(x, ·) ≪ a(x, ·), νs−a.s. Moreover,
a(x, ·) is in turn absolutely continuous with respect to λ. Observe that since the
set Ss satisfies λ(Ss) = 0, then a(x, Ss) = 0 and therefore α(x, Ss) = 0. On the
other hand, νs(Ss) = 1 by definition, and by invariance the following must hold:

1 = νs(Ss)

=

∫

S

q(x, Ss)νs(dx)

=

∫

S

(α(x, Ss) + ρ(x)δx(Ss)) νs(dx)

=

∫

S

(0 + ρ(x)δx(Ss)) νs(dx)

=

∫

Ss

ρ(x)νs(dx).

Given that ρ(x) ≤ 1 ∀x ∈ S,
∫

Ss
ρ(x)νs(dx) = 1 can only hold if ρ(x) ≡ 1 νs−a.s.

We conclude that the singular measure νs admits only q(x, ·) = δx(·) νs−a.s. as
invariant kernel. This implies that

I(νs) =

∫

S

R(δx(·) ‖ K(x, ·))νs(dx).

Furthermore, by Proposition 4.3, we have
∫

S

R(δx(·) ‖ K(x, ·))νs(dx) =

∫

S

log
1

r(x)
νs(dx).

This completes the proof. �

We now move to the construction of a sequence of random measures {νns } ⊂ P(S)
that can be used to approximate νs arbitrarily well and satisfy limn→∞ I(νns ) ≤ I(ν)
a.s., while maintaining absolute continuity with respect to λ. To facilitate this, we
define, for ε > 0 and x ∈ S+,

∆ǫ(x) = sup{t : |log a(x, x) − log a(y, z)| < ǫ and

|log r(x) − log r(y)| < ǫ, ∀y, z ∈ Bt(x)}.(6.2)
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Lemma 6.3. Take νs ∈ P(S) such that νs ⊥ λ and I(νs) < ∞. Let {Yi}∞i=1 be
independent and identically distributed according to νs. For n ∈ N, define
(6.3)

̺n = min

{

1

n
, min
1≤i≤n

∆ 1
n
(Yi),

1

2
min
Yi 6=Yj

dS(Yi, Yj),
1

2
min

1≤i≤n
dS(∂S, Yi), min

1≤i≤n
a(Yi, Yi)

}

.

Let Vn = λ(B̺n(0)), the (Lebesgue) volume of the balls of radius ̺n, and define the
sequence of random measures {νns }n∈N ⊂ P(S) by

(6.4) νns (dx) :=
1

n

1

Vn

n
∑

i=1

I{x ∈ B̺n(Yi)}λ(dx).

This sequence satisfies the following properties:

(a) νns ≪ λ for all n ∈ N,
(b) νns ⇒ νs a.s.,
(c) There is an n0 ∈ N such that, for all n > n0, I(ν

n
s ) < ∞ a.s.,

(d) limn→∞ I(νns ) ≤ I(νs) a.s.

Before we embark on the proof, some comments on the construction. First,
because we consider νs such that I(νs) < ∞, νs can only put mass on points in
S+: if νs(x) > 0 for some x such that π(x) = 0, then r(x) = 0 (see Remark 3.1).
By Lemma 4.2, the corresponding transition kernel is of the form q(x, ·) = α(x, ·),
where α(x, ·) ≪ a(x, ·). This is not compatible with νs being singular with respect
to λ; see also Lemma 6.2. Thus, the Yis used in the construction are in S+ νs-a.s.

Next, we verify that for any fixed n ∈ N, the radius ̺n of the B̺n(Yi)-balls is
well-defined, i.e., ̺n > 0 νs-a.s. Note that if νs = δx for some x ∈ S+, then ̺n

becomes

̺n = min

{

1

n
,∆ 1

n
(x),

1

2
dS(∂S, x), a(x, x)

}

.

Because I(νs) < ∞, we have for Yi ∼ νs,

E

[

log
1

r(Yi)

]

=

∫

S

log
1

r(x)
νs(dx) = I(νs) < ∞.

It follows that r(Yi) > 0 w.p. 1. From Assumption (A.2) we have a(Yi, Yi) =
J(Yi|Yi) > 0. Since the support of νs is in S+ (an open subset of S; see Assump-
tion (A.1)), and a(Yi, Yi) and r(Yi) are both strictly positive νs-a.s., the continuity of
r(·) and a(·, ·) on S and S+×S, respectively, ensures that ∆ 1

n
(Yi) > 0, i = 1, . . . , n.

Moreover, dS(Yi, Yj) > 0 for Yi 6= Yj by definition, and dS(∂S, Yi) > 0 νs-a.s. since
the support of νs is a subset of S+, which is an open subset of S. Combined, these
show that ̺n > 0 νs-a.s.

Proof of Lemma 6.3. Part (a) follows directly from the definition (6.4) of νns . In
particular, since λ and π are equivalent measures (Assumption (A.1)), then νns ≪ π.

To prove (b), that the sequence {νns } converges weakly to νs a.s., we show that for
any bounded and Lipschitz continuous function f it holds that

∫

S
fdνns →

∫

S
fdνs

a.s. An application of the Portmanteau theorem then gives the claim.
To this end, let f ∈ Cb(S) be Lipschitz continuous and denote its Lipschitz

constant by Lf < ∞. For n ∈ N, we have

(6.5)

∫

S

f(x)νns (dx) =
1

n

1

Vn

n
∑

i=1

∫

B̺n (Yi)

f(x)λ(dx).
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The Lipschitz continuity of f implies that for all x ∈ B̺n(Yi) and for all i ∈
{1, . . . , n},

f(Yi)− Lf · ̺n ≤ f(x) ≤ f(Yi) + Lf · ̺n.

By integrating over B̺n(Yi) and dividing by Vn, it follows that

f(Yi)− Lf · ̺n ≤
1

Vn

∫

B̺n (Yi)

f(x)λ(dx) ≤ f(Yi) + Lf · ̺n, i = 1, . . . , n.

This implies the following bounds on the integral (6.5):

1

n

n
∑

i=1

f(Yi)−
Lf · ̺n

n
≤

∫

S

f(x)νns (dx) ≤
1

n

n
∑

i=1

f(Yi) +
Lf · ̺n

n
.

By the strong law of large numbers, 1
n

∑n
i=1 δYi

(·) ⇒ νs(·) a.s., and it follows that
1
n

∑n
i=1 f(Yi) →

∫

S
fdνs a.s. Moreover, by construction ̺n → 0 as n → ∞, which

implies
Lf ·̺

n

n
→ 0. The squeeze theorem now yields the desired result.

We now move to part (c). To show that I(νns ) is finite for large enough n ∈ N,
we first note that by construction, Vn → 0 as n → ∞. Therefore, there is an n0 ∈ N

such that Vn < 1 for all n > n0. Henceforth, we only consider such n.
Recall the characterization (4.5) of the rate function,

I(νns ) = inf
q

∫

S

R(q(x, ·) ‖ K(x, ·))νns (dx),

where the infimum is taken over all the transition kernels q(x, dy) that are νns −irreducible.
We will now construct such a transition kernel qn(x, dy), for which it also holds that

∫

S

R(qn(x, ·) ‖ K(x, ·))νns (dx) < ∞.

This in turn implies that I(νns ) < ∞. The collection of transition kernels {qn} will
also be used to show part (d).

We begin by defining Nn(x) as the number of B̺n(Yi), i = 1, . . . , n, that x ∈ S
belongs to,

Nn(x) =
n
∑

i=1

I{x ∈ B̺n(Yi)}.

Next, we define qn by

qn(x, dy) =
1

Nn(x)

n
∑

i=1

I{x ∈ B̺n(Yi)}I{y ∈ B̺n(Yi)}dy + (1− Vn) δx(dy),

for x such that Nn(x) ≥ 1, and otherwise qn(x, dy) = δx(dy). Then, for all x ∈ S,
qn(x, ·) is a transition probability: if Nn(x) ≥ 1,

qn(x, S) =
1

Nn(x)

n
∑

i=1

I{x ∈ B̺n(Yi)}Vn + (1− Vn) δx(S) = 1,

and, for Nn(x) = 0, it holds immediately that qn(x, S) = 1. Moreover, due to the
choice of n > n0 qn(x,A) ∈ [0, 1], for every A ∈ B(S).

To show that qn(x, ·) is also invariant for νns , consider a set A ∈ B(S). We have

νns (A) =
1

n

1

Vn

n
∑

i=1

∫

A

I{x ∈ B̺n(Yi)}λ(dx) =
1

n

1

Vn

n
∑

i=1

λ(A ∩B̺n(Yi)).
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Take x ∈ S. If Nn(x) ≥ 1,

qn(x,A)

=
1

Nn(x)

n
∑

i=1

I{x ∈ B̺n(Yi)}

∫

A

I{y ∈ B̺n(Yi)}λ(dy) + (1− Vn) δx(A)

=
1

Nn(x)

n
∑

i=1

I{x ∈ B̺n(Yi)}λ(A ∩B̺n(Yi)) + (1− Vn) δx(A).

From this it follows that
∫

S

qn(x,A)dνns (dx)

=
1

n

1

Vn

n
∑

i=1

∫

B̺n (Yi)





1

Nn(x)

n
∑

j=1

I{x ∈ B̺n(Yj)}λ(A ∩B̺n(Yj)) + (1− Vn) δx(A)



λ(dx)

=
1

n

1

Vn

n
∑

i=1

∫

B̺n (Yi)

(λ(A ∩B̺n(Yi)) + (1− Vn)λ(A ∩B̺n(Yi))) λ(dx)

=
1

n

1

Vn

n
∑

i=1

λ(A ∩B̺n(Yi)) = νns (A),

where in the second equality we use that, due to the definition of ̺n, there are no
overlaps between the B̺n(Yi)-balls. If instead Nn(x) = 0, then qn(x,A) = δx(A),
and we have

∫

S

δx(A)ν
n
s (dx) =

∫

A

νns (dx) = νns (A).

Combined with the computation for Nn(x) ≥ 1, this proves the invariance.
From (4.5), I(νns ) is defined in terms of the infimum over the set of νns -invariant

kernels (4.5). Therefore,

I(νns ) ≤

∫

S

R(qn(x, ·) ‖ K(x, ·))νns (dx)

=

∫

{x:Nn(x)=0}

R(qn(x, ·) ‖ K(x, ·))νns (dx)

+

∫

{x:Nn(x)≥1}

R(qn(x, ·) ‖ K(x, ·))νns (dx).

For the first integral in the last display, since νns has no mass on {x ∈ S : Nn(x) =
0}, this integral is zero. For the second integral, we have
∫

{x:Nn(x)≥1}

R(qn(x, ·) ‖ K(x, ·))νns (dx)

=
1

n

1

Vn

n
∑

i=1

∫

B̺n (Yi)

(

∫

B̺n (Yi)

log
1

a(x, y)
λ(dy) + (1− Vn) · log

1− Vn

r(x)

)

λ(dx)

=
1

n

1

Vn

n
∑

i=1

(

∫∫

(B̺n (Yi))
2
log

1

a(x, y)
λ(dydx) + (1 − Vn)

∫

B̺n (Yi)

log
1− Vn

r(x)
λ(dx)

)
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Recalling that we only consider n > n0, so that Vn < 1, we obtain the upper bound
∫

{x:Nn(x)≥1}

R(qn(x, ·) ‖ K(x, ·))νns (dx)

≤
1

n

1

Vn

n
∑

i=1

(

∫∫

(B̺n (Yi))
2
log

1

a(x, y)
λ(dydx) +

∫

B̺n (Yi)

log
1

r(x)
λ(dx)

)

.(6.6)

From the definition of ̺n (see (6.3)), it holds that ̺n ≤ a(Yi, Yi) and ̺n ≤ ∆ 1
n
(Yi)

for all i = 1, . . . , n. Moreover, the definition of ∆ 1
n

implies that, for a fixed i =

1, . . . , n and (x, y) ∈ (B̺n(Yi))
2
,

log
1

a(x, y)
= − log a(x, y) + log a(Yi, Yi)− log a(Yi, Yi)

< − log a(Yi, Yi) +
1

n

≤ − log ̺n +
1

n

= − log
(

CdV
1
d
n

)

+
1

n
,(6.7)

for some constant Cd that depends on the dimension d of the space S ⊆ R
d.

Similarly, for a fixed i = 1, . . . , n and x ∈ B̺n(Yi),

(6.8) log
1

r(x)
= − log r(x) ≤ − log r(Yi) +

1

n
.

Using the inequalities (6.7) and (6.8) in (6.6) gives the upper bound

I(νns ) ≤
1

n

1

Vn

n
∑

i=1

(

V 2
n

(

− log
(

CdV
1
d
n

)

+
1

n

)

+ Vn

(

− log r(Yi) +
1

n

))

= −Vn log
(

CdV
1
d
n

)

+
Vn

n
+

1

n

n
∑

i=1

log
1

r(Yi)
+

1

n
,

whenever n > n0. Since Vn → 0 by construction, we conclude that

lim
n→∞

I(νns ) ≤ lim
n→∞

1

n

n
∑

i=1

log
1

r(Yi)
=

∫

S

log
1

r(x)
νs(dx) = I(νs) a.s.,

where the second-to-last equality follows from the strong law of large numbers, and
the last equality is motivated by Lemma 6.2.

�

Lemma 6.4. Let ν ∈ P(S) be such that I(ν) < ∞. Take ε > 0 and δ > 0. There
exists a probability measure ν† ∈ P(S) absolutely continuous with respect to the
Lebesgue measure and such that

dLP (ν
†, ν) <

δ

2
and I(ν†) < I(ν) + ε.

Proof. First, if ν ≪ λ there is nothing to prove. Therefore, suppose this does not
hold and the decomposition (4.11) is non-trivial.
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Sample {Yi}∞i=1 i.i.d. νs and define the sequence of random probability measures
{νns }n∈N as in the construction in Lemma 6.3. Motivated by the decomposition
(4.11) for ν, we define a new sequence of random probability measures {νn}n∈N by

νn = (1 − p) · νλ + p · νns ,

where p ∈ [0, 1] is the same as in (4.11), again suppressing in the notation that
p depends on ν. By part (a) of Lemma 6.3, νns ≪ λ for all n. It follows that
νn ≪ λ. Moreover, from part (b) of the same Lemma, νn converges weakly to ν
νs-a.s. Therefore, for any ω ∈ Ω outside of a νs-null set, there is an Nδ = Nδ(ω) ∈ N

such that

dLP (ν
n(ω), ν) <

δ

2
, ∀n ≥ Nδ(ω).

Consider now I(νn). By convexity,

I(νn) ≤ (1− p) · I(νλ) + p · I(νns ),

for which the right-hand-side is finite w.p. 1 whenever n ≥ n0. Combined with part
(d) of Lemma 6.3, this yields that, νs-a.s.,

lim
n→∞

I(νn) ≤ (1 − p)I(νλ) + p · I(νs) = I(ν).

Similar to before, this implies that for any ω ∈ Ω outside of a νs-null set, there is
a Nε = Nε(ω) ∈ N, such that

I(νn(ω)) < I(ν) + ε, ∀n ≥ Nε(ω).

As a consequence, for any ω ∈ Ω outside of a null set, we can define

N(ω) = max{Nδ(ω), Nε(ω), n0}.

Then, for n ≥ N(ω), νn(ω) ≪ λ, dLP (ν
n(ω), ν) < δ/2, and I(νn(ω)) < I(ν) + ε.

Since this is outside a νs-null set, it has positive probability also under ν. This
proves the existence of a measure ν† with the claimed properties. �

We emphasise that the randomness of the sequence {νn} is entirely due to the
sequence of random variables {Yi}∞i=1. Thus, the set of outcomes of {Yi} that lead
to a measure νn with the desired properties is a set with strictly positive probability.
This guarantees the existence of a measure ν† with the claimed properties. The
following result is a version of Lemma 6.17 in [BD19].

Lemma 6.5. Let ν ∈ P(S) satisfy I(ν) < ∞. Under (A.1)-(A.2), for given ε > 0
and δ > 0, there exists ν∗ ∈ P(S) with the following properties:

(a) dLP (ν
∗, ν) < δ;

(b) ν∗ ≪ π and π ≪ ν∗;
(c) there exists a transition probability function q∗(x, dy) on S such that ν∗ is

an invariant measure of q∗(x, dy), the associated Markov chain is ergodic,
and

(6.9) I(ν∗) ≤ I(ν) + ε.

Proof. To prove (a), by Lemma 6.4, there exists a measure ν† that satisfies

(6.10) dLP (ν
†, ν) <

δ

2
and I(ν†) < I(ν) + ε
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Define ν∗ by

(6.11) ν∗ =

(

1−
δ

4

)

ν† +
δ

4
π.

Then,

dLP (ν
∗, ν†) ≤ ‖ν∗ − ν†‖TV =

∥

∥

∥

∥

∥

(

1−
δ

4

)

ν† +
δ

4
π − ν†

∥

∥

∥

∥

∥

TV

=
δ

4
‖π − ν†‖TV ≤

δ

2
.

Combining this with (6.10) and the triangle inequality now yields the desired upper
bound on dLP (ν

∗, ν),

dLP (ν
∗, ν) ≤ dLP (ν

†, ν) + dLP (ν
∗, ν†) < δ.

(b). The first part of follows from ν† ≪ λ (see Lemma 6.4) and the fact that, by
Assumption (A.1), λ ≪ π. For the second part, for any A ∈ B(S), ν∗(A) ≥ δ

4π(A)
by construction. Thus, π ≪ ν∗.

We now prove part (c), following the steps in [BD19, Lemma 6.17]. Since I(ν†) <
∞, by Lemma 6.8(b) in [BD19], we can choose a transition kernel q(x, dy) with
invariant measure ν† and

∫

S

R(q(x, ·) ‖ K(x, ·))ν†(dx) = I(ν†).

Define the γ†, θ and γ∗ in P(S2) by,

γ† = ν† ⊗ q,

θ = π ⊗K,

and

γ∗ =

(

1−
δ

4

)

γ† +
δ

4
θ.

Both marginals of γ† equal ν†. Similarly, both marginals of θ equal π. From (6.11)
it then follows that both marginals of γ∗ equal ν∗. From Lemma 6.8(a) in [BD19],
there exists a transition kernel q∗(x, dy) that has ν∗ as invariant probability dis-
tribution and such that γ∗ = ν∗ ⊗ q∗. Using the convexity of relative entropy, the
property R(α ‖ α) = 0 and (6.10), we obtain the upper bound (6.9):

I(ν∗) ≤

∫

S

R(q∗(x, ·) ‖ K(x, ·))ν∗(dx)

= R(γ∗ ‖ ν∗ ⊗K)

= R

((

1−
δ

4

)

ν† ⊗ q +
δ

4
π ⊗K

∥

∥

∥

(

1−
δ

4

)

ν† ⊗K +
δ

4
π ⊗K

)

=

(

1−
δ

4

)

R(ν† ⊗ q ‖ ν† ⊗K) +
δ

4
R(π ⊗K ‖ π ⊗K)

=

(

1−
δ

4

)

I(ν†)

< I(ν) + ε.

It remains to show that the Markov process associated with q∗ is ergodic. Let
f = dν∗

dπ
be the Radon-Nikodym derivative of ν∗ with respect to π, which is well-

defined by part (b). Since ν∗(A) ≥ δ
4π(A) for all A ∈ B(S), for all x ∈ S, f(x) ≥ δ

4 .
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We observe that for any A,B ∈ B(S),

γ∗(A×B) =

∫

A

q∗(x,B)ν∗(dx) =

∫

A

q∗(x,B)f(x)π(dx),

and, from the definition of γ∗,

γ∗(A×B) ≥
δ

4
θ(A×B) =

δ

4

∫

A

K(x,B)π(dx).

It follows that

q∗(x,B) ≥
δ

4f(x)
K(x,B), ∀x, π − a.s.,

for all B ∈ B(S). Thus, π-.a.s. for x ∈ S, K(x, ·) ≪ q∗(x, ·). To show absolute
continuity in the reverse direction, note that from

∫

S

R(q∗(x, ·) ‖ K(x, ·))ν∗(dx) < ∞,

it follows thatR(q∗(x, ·) ‖ K(x, ·)) < ∞. Thus, q∗(x, ·) ≪ K(x, ·), ν∗-a.s. As ν∗ and
π are equivalent measures, we obtain that q∗(x, ·) and K(x, ·) are equivalent π-a.s.
This means that there exists a Borel set C ∈ B(S) such that π(C) = 0 = ν∗(C), and
q∗(x, ·) and K(x, ·) are equivalent for all x in the complement of C. If we redefine
q∗(x, ·) = K(x, ·) for all x ∈ C, we obtain the equivalence between q∗(x, dy) and
K(x, ·) for all x ∈ S. Besides, being ν∗(C) = 0, the newly defined q∗(x, ·) still has
ν∗ as invariant measure. To show that q∗(x, ·) is ergodic, recall that in Remark 3.2
we proved that there are no disjoint Borel sets A1, A2 ∈ B(S) such that

K(x,A1) = 1 ∀x ∈ A1 and K(y,A2) = 1 ∀y ∈ A2.

Because q∗(x, ·) and K(x, ·) are equivalent for all x ∈ S, it follows that also q∗(x, ·)
satisfies the property that there do not exist disjoint A1, A2 ∈ B(S) for which

q∗(x,A1) = 1 ∀x ∈ A1 and q∗(y,A2) = 1 ∀y ∈ A2,

meaning that q∗(x, ·) is indecomposable. Therefore, by Theorem 7.16 in [Bre92], ν∗

is the unique invariant distribution for q∗(x, dy) and the Markov chain associated
with ν∗ and q∗(x, dy) is ergodic. �

We are ready to prove Proposition 6.1, the Laplace principle lower bound. The
following proof is mostly based on the proof of Proposition 6.15 in [BD19], with
minor changes due to the lack of Condition 2.1. The main work has been done in
Lemmas 6.2-6.5, and most of the proof from [BD19] now goes through, with some
minor modifications to rely on those results rather than Condition 2.1. We include
the full argument for self-containment and convenience for the reader.

Proof of Proposition 6.1. To prove the Laplace lower bound (6.1), it is sufficient
to consider only bounded Lipschitz continuous functions F (see Corollary 1.10
in [BD19]). Since we have endowed P(S) with the Lévy-Prohorov metric dLP ,
a function F ∈ Cb(P(S)) is Lipschitz if

sup
ν1 6=ν2

|F (ν1)− F (ν2)|

dLP (ν1, ν2)
< ∞.
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Recall that X = {Xi}i≥0 denotes the Metropolis-Hastings chain, as described
in Section 2.3, and {Ln}n the associated sequence of empirical measures. We now
construct a nearly optimal sequence of controls in variational representation (4.4),

−
1

n
logE

[

e−nF (Ln)
]

= inf
{µ̄n

i }
E

[

F (L̄n) +
1

n

n
∑

i=1

R(µ̄n
i ‖ K(X̄n

i , ·))

]

.(6.12)

Let ε > 0 be given and choose ν ∈ P(S) such that

(6.13) F (ν) + I(ν) ≤ inf
µ∈P(S)

[F (µ) + I(µ)] + ε < ∞

Since F is continuous, there exists δ > 0 such that dLP (µ, ν) < δ implies |F (µ)− F (ν)| <
ε. In Lemma 6.5 it is shown that, for any such pair δ, ε, there exists a probabil-
ity measure ν∗ ∈ P(S) and a transition probability q∗(x, dy) such that ν∗ is an
invariant measure for q∗(x, dy), the Markov chain with initial distribution ν∗ and
transition probability q∗(x, dy) is ergodic, besides

(6.14) I(ν∗) ≤

∫

S

R(q∗(x, ·) ‖ K(x, ·))ν∗(dx) ≤ I(ν) + ε < ∞.

Moreover, Part (a) of the Lemma ensures dLP (ν
∗, ν) < δ, which then implies

(6.15) F (ν∗) ≤ F (ν) + ε.

Thus, ν∗ is such that

F (ν∗) + I(ν∗) ≤ F (ν) + I(ν) + 2ε.

The transition probability function q∗ associated with ν∗ is now used to define the
controls,

(6.16) µ̄n
i (dy) = q∗(X̄n

i−1, dy), i = 1, . . . , n.

With the inequalities (6.14)-(6.15) established, and the choice (6.16) for the con-
trols, we can proceed with the same arguments as in the proof of Proposition 6.15
in [BD19].

With the choice (6.16), the running costs for the controlled chain X̄n are

1

n

n−1
∑

i=0

R(µ̄n
i (·) ‖ K(X̄n

i , ·)) =
1

n

n−1
∑

i=0

R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·)).

The µ̄n
i s only give the conditional distributions for X̄n

i for i = 1, . . . , n. For the
distribution of the initial point X̄n

0 , consider two choices: δx and ν∗. Let Px and P
∗

denote the corresponding probability measures and let Ex and E
∗ be the associated

expectation, respectively. Define Dn and Dn
x as the expected difference between the

empirical average of the relative entropy between q∗ and K, and its mean, under
P
∗ and Px, respectively,

Dn = E
∗

[∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·))−

∫

S

R(q∗(ξ, ·) ‖ K(ξ, ·))ν∗(dξ)

∣

∣

∣

∣

∣

]

,

and

Dn
x = Ex

[∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·))−

∫

S

R(q∗(ξ, ·) ‖ K(ξ, ·))ν∗(dξ)

∣

∣

∣

∣

∣

]

.

From the definition of the controls (6.16), and since ν∗ is an invariant measure
of q∗(x, dy), all terms of the controlled process {X̄n

i }
n
i=0 are distributed according
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to ν∗. By the non-negativity of the relative entropy and R(· ‖ ·) and (6.14), we
obtain

E
∗
[∣

∣R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·))
∣

∣

]

=

∫

S

R(q∗(ξ, ·) ‖ K(ξ, ·))ν∗(dξ) ≤ I(ν) + ε < ∞.

The L1-ergodic theorem [Bre92, Corollary 6.25] then gives

lim
n→∞

Dn = 0.

Moreover, note that Dn =
∫

S
Dn

xν
∗(dx). Therefore, the convergence of Dn also

implies that

lim
n→∞

∫

S

Dn
xν

∗(dx) = 0.

Convergence in probability of Dn
x to 0 now follows from Chebyshev’s inequality:

for any c > 0,

lim
n→∞

ν∗{x ∈ S : Dn
x ≥ c} ≤ lim

n→∞

1

c

∫

{x:Dn
x≥c}

Dn
xν

∗(dx) ≤
1

c
lim
n→∞

Dn = 0.

From this convergence in probability, for every subsequence of {n} there is a further
subsequence, which we also denote by {n}, such that the convergence is w.p. 1. That
is, there is a Borel set Φ1 with ν∗(Φ1) = 1, such that along such (sub)subsequences
and for all x ∈ Φ1,
(6.17)

lim
n→∞

Ex

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·))−

∫

S

R(q∗(ξ, ·) ‖ K(ξ, ·))ν∗(dξ)

∣

∣

∣

∣

∣

= 0.

Abusing notation, we now fix such a subsubsequence {n}. The previous argument
show the a.s. convergence of the running costs and we now consider the corre-
sponding sequence of controlled empirical measures {L̄n}. Because S ⊂ R

d, there
is a countable convergence-determining class Ξ ⊂ Cb(S) (see e.g. Appendix A in
[BD19]). For each g ∈ Ξ, we define the set

A(g) =

{

ω ∈ Ω : lim
n→∞

1

n

n−1
∑

i=0

g(X̄n
i (ω)) =

∫

S

g(x)ν∗(dx)

}

.

By the pointwise ergodic theorem [Bre92, Sect. 6.5],

P
∗ {A(g)} = 1.

Observing that P∗ {A(g)} =
∫

S
Px {A(g)} ν∗(dx), we obtain

∫

S

Px {A(g)} ν∗(dx) = 1.

This implies that Px {A(g)} = 1 a.s., i.e., there exists a Borel set Φ2(g) ∈ B(S)
with ν∗(Φ2(g)) = 1 and such that Px {A(g)} = 1 for x ∈ Φ2(g).

To establish the convergence of L̄n, we define Φ2 = ∩g∈ΞΦ2(g). Since Ξ is
countable, Φ2 satisfies ν∗(Φ2) = 1. Then, for all initial points X̄n

0 = x ∈ Φ2,

lim
n→∞

∫

S

g dL̄n = lim
n→∞

1

n

n−1
∑

i=0

g(X̄n
i ) =

∫

S

g dν∗,
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Px−a.s. for all g ∈ Ξ. Because Ξ a convergence determining class, it follows that
L̄n ⇒ ν∗ Px−a.s. for all x ∈ Φ2. From the continuity of F on P(S), we then have

(6.18) lim
n→∞

F (L̄n) = F (ν∗),

for all x ∈ Φ2.
We now combine the arguments for the running costs and the controlled empirical

measures to show the Laplace principle lower bound on a set of ν∗-measure 1. Define
the set Φ = Φ1 ∩ Φ2 ⊂ S. Since ν∗(Φ) = ν∗(Φ2) = 1, we have ν∗(Φ) = 1. For all
x ∈ Φ, both (6.17) and (6.18) hold, and

lim sup
n→∞

−
1

n
logEe−nF (Ln) ≤ lim

n→∞
Ex

[

F (L̄n) +
1

n

n−1
∑

i=0

R(q∗(X̄n
i , ·) ‖ K(X̄n

i , ·))

]

= F (ν∗) +

∫

S

R(q∗(ξ, ·) ‖ K(ξ, ·))ν∗(dξ)

≤ F (ν) + I(ν) + 2ε

≤ inf
µ∈P(S)

[F (µ) + I(µ)] + 3ε,

where the inequality on the third line comes from (6.14) and (6.15), while the
inequality on the last line follows from (6.13). By taking the limit ε → 0 we obtain
the upper bound (6.1) for all x ∈ Φ.

We conclude the proof by extending this result from Φ to the whole space S.
Whereas [BD19] relies on the transitivity condition (2.5) for this extension, we
instead rely on the properties of the MH kernel; this requires only minor changes
in the argument.

By Lemma 6.5, ν∗ and π are equivalent, thus ν∗(Φ) = 1 implies π(Φ) = 1.
Moreover, π and λ are equivalent measures by Assumption (A.1), and we have

a(x,Φ) =

∫

Φ

a(x, y)dy =

∫

S

a(x, y)dy = a(x, S),

for all x ∈ S. As a consequence, K(x,Φ) ≥ a(x,Φ) = a(x, S), which is strictly
positive for all x ∈ S (see Remark 3.2). It follows that

(6.19) K(x,Φ) > 0, ∀x ∈ S.

Define L̃n as the empirical measure of X1, . . . , Xn,

L̃n =
1

n

n
∑

i=1

δXi
.

Since Ln and L̃n only differ in the first and last summands,

‖L̃n − Ln‖TV ≤
2

n
.

Let LF < ∞ denote the Lipschitz constant of F with respect to the Lévy-Prohorov
metric. For all ω ∈ Ω,

F (Ln) ≤ F (L̃n) + LF · dLP (L
n, L̃n) ≤ F (L̃n) + LF‖L

n − L̃N‖TV ≤ F (L̃n) +
2LF

n
.
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Take any x ∈ S and n ∈ N. Since the Xn
i s evolve according to K, using the previous

inequality we have,

Ex

[

e−nF (Ln)
]

≥ e−2LFEx

[

e−nF (L̃n)
]

= e−2LF

∫

S

E

[

e−nF (L̃n) | X1 = y
]

K(x, dy)

= e−2LF

∫

S

Ey

[

e−nF (Ln)
]

K(x, dy)

≥ e−2LF

∫

Φ

Ey

[

e−nF (L̃n)
]

K(x, dy),(6.20)

where the equality on the third line is due to the Markov property. With this lower
bound established, from here we can again follow the proof of Proposition 6.15 in
[BD19]. Let ε > 0 be fixed. We have that (6.1) holds for all y ∈ Φ, why for each
such y there exists an N(y, ε) ∈ N such that

(6.21) −
1

n
logEy

[

e−nF (Ln)
]

≤ inf
µ∈P(S)

[F (µ) + I(µ)] + ε

for all n ≥ N(y, ε). Without loss of generality, take N(y, ε) as the smallest in-
teger with this property. Then, the function S → N that maps y into N(y, ε) is
measurable, the sets

Φ(i) = {y ∈ Φ : N(y, ε) = i} ⊂ S

are disjoint Borel sets, and Φ = ∪∞
i=1Φ

(i).
Because K(x,Φ) > 0 for all x ∈ S (see (6.19)), we have that for all x ∈ S there

exists an i0 ∈ N such that K(x,Φ(i0)) > 0. Combined with the bounds in (6.20),
and (6.21), this implies that for all n ≥ i0,

Ex

[

e−nF (Ln)
]

≥ e−2LF

∫

Φ

Ey

[

e−nF (L̃n)
]

K(x, dy)

≥ e−2LF

∫

Φ(i0)

Ey

[

e−nF (L̃n)
]

K(x, dy)

≥ e−2LF exp

{

−n

(

inf
µ∈P(S)

[F (µ) + I(µ)] + ε

)}

K(x,Φ(i0)).

It follows that

lim sup
n→∞

−
1

n
logEx

[

e−nF (Ln)
]

≤ inf
µ∈P(S)

[F (µ) + I(µ)] + ε+ lim
n→∞

2LF − logK(x,Φ(i0))

n

= inf
µ∈P(S)

[F (µ) + I(µ)] + ε.

In the limit ε → 0, we have for all x ∈ S,

lim sup
n→∞

−
1

n
logEx

[

e−nF (Ln)
]

≤ inf
µ∈P(S)

[F (µ) + I(µ)] + ε.

This concludes the proof of the Laplace principle lower bound. �
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