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Summary: We present an R-package developed for modeling of biochemical reaction networks
that especially includes tools for uncertainty quantification and sensitivity analysis. Estimating
parameters and quantifying their uncertainty, especially in relationship with prediction uncer-
tainty, is required for data-driven systems biology modeling. The methods we chose require
efficient sampling from high-dimensional, correlated parameter distributions. We have developed
UQSA (Uncertainty Quantification and Sensitivity Analysis) to be fast for the problem class
and work well with other tools for modelling. We aim for simplicity, and part of that is our use
of the SBtab format for the unified storage of model and data. Our tool-set is modular enough,
that parts can be replaced. We use intermediate formats that are not hidden from the user to
make this feasible. UQ is performed through Markov chain Monte Carlo (MCMC) sampling
in an Approximate Bayesian Computation (ABC) setting. This can be followed by a variance-
decomposition based global sensitivity analysis. If needed, complex parameter distributions can
be described, evaluated, and sampled from, with the help of Vine-copulas that are available in R.
This approach is especially useful when new experimental data become available, and a previously
calibrated model needs to be updated. An additional feature is that complicated experimental
input data can be easily fitted to corresponding model functions. This is important for e.g.
neuroscience applications, where transient time dependent input (spike-trains) are common.
Availability and Implementation: The main part of the code is written in R, as well as the
user facing functions. R is a high-level language and allows the use of sophisticated statistical
methods. The ode solver is written in C in order to be computationally efficient (from the
GSL, odeiv2). We use the SBtab table format for Systems Biology projects [20] for the model
description as well as the calibration data and an event system to be able to model complicated
transient input. The code has been tested on a one node 256 core computer cluster, but
smaller examples are included that can be run on a laptop. The source code is hosted on
github.com/icpm-kth/uqsa.
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1 Introduction

UQSA has the goal to combine the preexisting
statistics tools of R with functions specific to the
modeling of biological reaction networks. This R
package is well suited for systems biology projects
as it uses the SBtab table format [20] for the
model description and experimental data. It also
has functionalities to represent complicated tran-
sient input, like spike trains within neuroscience.
With uncertainty quantification (UQ) we refer
to any method that characterizes the full region
of the parameter space that result in a good fit
to experimental data. While (global) sensitiv-
ity analysis (SA) refers to the attribution of the
uncertainty in outputs to the uncertainty in the
parameters over their entire (joint) probability
distribution. In the first case (UQ) quantitative
experimental data is of utmost importance, in the
second case, experimental data is not necessarily
needed.

Biochemical reaction network models within
systems biology, in neuroscience and elsewhere,
have a tendency to be over-parameterized1, see
also [11]. We are confronted with large possible
parameter regions, rather than a unique optimal
point. In such cases many points allow equally
valid best fits to experimental data [15, 24]. There
is also measurement noise, as well as intrinsic
stochasticity of these systems to consider. Thus,
it is important to include the parameter uncer-
tainty in model based predictions. It is also of
interest to assess where the uncertainty in the
prediction stems from to guide new experiments.
It is therefore we include tools for both uncer-
tainty quantification and global sensitivity analy-
sis (GSA) in this package [11] (Figure 1).

The uncertainty of the parameter estimates are
quantified directly during the parameter estima-
tion process through a Bayesian approach. The
aim is to get a representative sample of the pa-
rameter region (the posterior distribution) which
allow a good fit to data (Figure 1). This done
through Markov chain Monte Carlo (MCMC)
sampling [13] an an Approximate Bayesian Com-

putation (ABC) [21] framework. The standard
Bayesian framework is likelihood-based (see e.g.
[18]), but it is common to use Approximate
Bayesian Computation (ABC) [21] when the like-
lihood is intractable or complex, as for stochastic
models. For practical reasons we use ABC for
all our models, both stochastic and deterministic
ODE models (were a likelihood exist), with the
aim to also implement likelihood based methods
in the future. The use of ABC with determinis-
tic ordinary differential equation (ODE) models
(see e.g. [27]) have been discussed recently [1]
with the recommendation to use likelihood-based
Bayesian methods for these, when possible, be-
cause of computational efficiency. It has also been
emphasized that the measurement noise has to
be accounted for if ABC methods are used with
deterministic ODE models, either directly when
the model is simulated or through probabilistic
acceptance criteria ([1, 26, 28]).

Bayesian methods provide a good framework
for uncertainty analysis and MCMC is a good
method to use the Bayes theorem for this prob-
lem class in practice; but, MCMC and ABC2

have costly disadvantages. Sampling (using either
method) means to solve the model many thou-
sands of times (forward), accepting and rejecting
moves; this is computationally costly and forces
us to use fast and efficient ODE solvers. Sam-
pling explores the volume of the parameter space
within the limits of acceptable fits and thus scales
exponentially with increasing numbers of param-
eters3. The samples have intrinsic (integrated)
auto-correlation; every MCMC sample has an
effictive sample size, which is lower if the auto-
correlation is higher, see [2]. Bad MCMC configu-
rations (transition kernel choice, etc.) have large
auto-correlations. Furthermore, MCMC methods
typically need a good initial location to begin
sampling and have a convergence phase, where
the target distribution is approached. Many im-
plementations have been developed specifically
to solve these difficulties generally: parallel tem-
pering [10], Hamiltonian Monte Carlo [4], Fisher
information as metric tensors for movement [14],

1for good reason, in mechanistic models the parameters have meaning by themselves, so in this case the data sets are
too sparse rather than the model too large

2both are sampling methods
3this is worse than with optimization - a big optimization problem differs from a big sampling problem by many

orders of magnitude
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and automatic tuning of acceptance rates [6].
However, for some model classes4 these solutions
can further increase the computational costs dra-
matically; the urgent need for numerically effi-
cient implementations remains, regardless of the
chosen algorithm. Other approaches, such as the
profile likelihood method [19], address the scal-
ing problem directly by exploring the likelihood’s
shape5 rather than sampling from a target distri-
bution. Our package aims to offer a use-friendly
tool with good sampling methods specifically for
models in biology.

In previous work, we introduced the use of
Vine-copulas to model complex multivariate prob-
ability distributions between sampling runs, for
use in model calibration [11]. Vine copulas are
flexible tools to model high-dimensional proba-
bility distributions [3]. By separating the depen-
dency structure from the marginal distributions
and using bivariate copulas with Vines, complex
distributions can be described. We recommend
using Vine copulas especially in the setting when
an already calibrated model needs to be adapted
to new experimental data sets. As new data be-
come available, the posterior distribution of the
parameters from the previous model calibration
can be approximated via Vine copulas and used
as the prior for the fitting of the new data sets,
avoiding the need to re-calibrate the model with
all available data sets.

In [11] we also introduced the possibility per-
form a global sensitivity analysis [25] on the pos-
terior distribution from an uncertainty quantifica-
tion run (see Figure 1). This could, for example,
be done in order to find out which parameter that
if it was known, would reduce the uncertainty
of the predictions the most; to guide further ex-
periments. This required adaptions to standard
global sensitivity analysis algorithms were the
input factors (e.g. model parameters) are as-
sumed to be orthogonal, in order to handle the
non-orthogonal inputs [25, 11] resulting from a
uncertainty quantification run.

SBtab (table format for Systems Biology) is
designed to support automated data integration
and model building [20]. The format can be
adapted to new types of data and can be used

for data exchange in Systems Biology. SBtab
relies on the structure of spreadsheets and in-
cludes predefined table types for experimental
data and SBML-compliant model constituents.
SBtab is well suited to deal with model calibra-
tion projects as the model, the experimental data,
and the prior assumptions made on the possible
parameter distributions can be defined within
SBtab. These prior assumptions (prior distribu-
tion) can for example correspond to ranges for
all parameters taken from previous knowledge, or
to known physical constraints.

The UQSA tool allows the user to chose
whether to simulate the model as a stochastic or
deterministic system. Several other implementa-
tions of model fitting via MCMC and/or ABC in
R exist (e.g. [16], [9]), however, the UQSA tool
is more comprehensive, offering a full framework
for UQSA on biochemical network models.

2 Implementation

In our implementation, functionality that can
be more broadly useful, has been turned into a
standalone package when feasible. We use these
packages as dependencies, if needed, especially
in examples. But, they use standard R variable
types (no special classes), and can be replaced
with alternative methods to achieve the same ef-
fect. The packages we use in our examples can be
found in the same GitHub account; we consider
them a part of the UQSA tool-set.

2.1 Features of the UQSA tool-set

• An easy to use, human, and machine read-
able format for reaction based models and
calibration data in the form of SBtab.

• Functions for converting models and ex-
perimental data from SBtab spreadsheets
into R variables (icpm-kth/SBtabVFGEN).
While parsing a model, these functions also
create R and C files6 that contain functions
with the ODE vector field and its Jacobian,
as well as other functions related to the
model, [12, 17].

4including ordinary differential equation models
5in profile
6we use the solvers in the GNU Scientific Library
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Figure 1: Full model calibration requires the uncertainty of the parameter estimates to be quanti-
fied through a Bayesian approach and that this uncertainty (the posterior distribution) is propagated
to the predictions made from the model. Finally a global sensitivity analysis can be performed on
the posterior distribution to guide further experiments. Figure modified from [11]

• Functions7 for simulating the model either
as an ODE system in R or C [12, 17] or as
a stochastic model using the GillespieSSA2
package [7].

• An MCMC algorithm to sample from the
posterior distribution using an ABC scheme.
For ODE models measurement noise is mod-
eled.

• An ABC distance function in the form of
weighted euclidean distance, with weights
given by (the reciprocals of) the experimen-
tal measurement errors (if available) [23].
The ABC distance function can be also
user-defined.

• Interfacing a Vine copula based approach to
sample from a non-trivial, non-orthogonal
prior, most relevant for sequential fitting of
data sets to a model.

• Functionality for global sensitivity analy-
sis on orthogonal and non-orthogonal input
factors.

• An approach to model simulation that is ori-
ented around experiments; one experiment
may be composed of several simulations.

• An event system for scheduled events within
an experiment, to model sudden activation
(or other changes) within an experimental
protocol.

2.2 Modelling examples

We provide a range of different models and corre-
sponding experimental data to demonstrate the
use of the UQSA software. These examples are
named: AKAR4, AKAP79, CaMKII after some
important species of the models. The AKAR4
model is the smallest example and available as a
Jupyter notebook in the format of a tutorial.

• AKAR4 [8], a small model with two simu-
lation backends

– ODE model with stochastic noise, also
provided as a Jupyter notebook.

– stochastic model, available as an R-
script, using a Gillespie solver.

• AKAP79 [5, 8], larger ODE model example
provided as an R-script. The experimental
data correspond to time-series.

7interfaces
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• CaMKII [22, 11], larger ODE model exam-
ple provided as an R-script. The experimen-
tal data consist of dose-response curves.

3 Conclusion and outlook

The UQSA tool addresses a need for better valida-
tion of biochemical network models occurring for
example within neuroscience or systems biology
projects. With this package the uncertainty of
parameter estimates can be provided at the same
time as the parameter estimation is performed.
This uncertainty can also be propagated to the
predictions made by the model and a global sensi-
tivity analysis can be performed to guide further
experiments (Figure 1). Other tools for uncer-
tainty quantification exist (see e.g. pyABC [26]),
the advantages with this toolbox is that it is tai-
lored for biochemical network models (through
the use of SBtab) and the ability to preform
uncertainty quantification as well as global sensi-
tivity analysis. The users get a choice between
different numerical solvers for the simulations,

in R and C. This means that you can run your
model either as an ODE or a stochastic system.
It is also fast and should be relatively easy to
use.

Apart from being necessary in order to falsify
a specific model structure, uncertainty quantifi-
cation is also important for the reproducibility of
the model calibration process. As the aim is to
provide a representative sample of all statistically
viable parameter sets, different calibration results
can be compared. In comparison, one (locally)
optimal value can differ between different opti-
mization runs (depending on method, or starting
locations); the parameters may also be unidenti-
fiable (even structurally) making reproducibility
more difficult in the case of optimization.

It is however important to note that when using
UQSA only the parameter uncertainty is quanti-
fied. The uncertainty of the model structure is
not investigated.

This toolbox is under further development and
our aims are to provide a likelihood based MCMC
algorithm, parallel tempering, as well as improve
user-friendliness.
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