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Travel time prediction

• Use in traffic management centers and routing applications
• Research has until recently focused mainly on motorways or main 

arterials
• Large-scale urban road networks

Forecasting in this context is challenging: 
- Complexity     
- Heterogeneity      
- Network size

Travel time measurements from floating car data
- Noisy data     
- Missing data     
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Network partitioning

Bias-variance trade-off:
• Large neighborhoods (in the extreme, the whole network) 

can lower the variance

• Smaller neighborhoods (in the extreme, each link individually) 
can lower the bias

• High bias can lead to under-fitting the prediction model

• High variance can lead to over-fitting the prediction model

What partitioning method works best?

What is the effect on computational cost?



Case study
Large-scale urban network
11,340 link segments

Motorways: functional class 0 and 1
Urban roads: functional class 2 and higher

Link travel times (working days of year 2014)  
are estimated for 15 minute time intervals 
using GPS probes from 1,500 taxis 

Framework for processing GPS probes to 
travel times on link level:
Cebecauer, M., Jenelius, E., & Burghout, W. (2018) 
Integrated framework for real-time urban network 
travel time prediction on sparse probe data. IET 
Intelligent Transport Systems 12(1), 66-74.

North-south axis

Stockholm



Computational experiments

• Several different clustering methods and 
levels of aggregation are used to provide 
clusters (sets of links)

• To each cluster the latent factor model 
(Probabilistic principal component analysis 
PPCA) is applied for short-term travel time 
prediction (15 minutes horizon)
• Prediction model is calibrated on 30 

training days

• Results are evaluated for four groups of links 
on the 30 evaluation days:

– Motorways                  func.class 0,1
– North-south axis
– Main urban streets      func.class 2
– Minor urban streets     func.class 3,4,5

North-south axis

Stockholm



Computational experiments
Clustering approach    
• Historical mean                  
• One cluster
• Cluster per link
• Functional                          
• Spatial

• Districts                        
• Districts & Functional                
• P-median                          

• Spatio-temporal
– K-means                      
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Computational experiments
Clustering approach    
• Historical mean                  (11,430)
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Prediction for link k in time interval f is the 
mean value across all historical day 
observations of link k and time interval f.
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Computational experiments
Clustering approach    
• Historical mean                  (11,430)
• One cluster                         (1)
• Cluster per link                   (11,430)
• Functional                          (6)
• Spatial

• Districts                     
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Clustering based 
on the links’ 
functional class 
attribute

(6 clusters)
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Computational experiments
Clustering approach    
• Historical mean                  (11,430)
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• Cluster per link                   (11,430)
• Functional                          (6)
• Spatial

• Districts                        (25)
• Districts & Functional               
• P-median                     

• Spatio-temporal
– K-means                

Motorways North-south
axis

M
or

ni
ng

 p
ea

k 
(0

7:
45

 –
09

:0
0)

legend(number of clusters)

Clustering based on 
administrative districts

(25 clusters)
Af

te
rn

oo
n 

pe
ak

 (1
6:

45
 –

18
:0

0)

Main urban
streets

Minor urban
streets



Computational experiments
Clustering approach    
• Historical mean                  (11,430)
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• Cluster per link                   (11,430)
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• Districts & Functional                (110)
• P-median                   

• Spatio-temporal
– K-means              

Motorways North-south
axis

M
or

ni
ng

 p
ea

k 
(0

7:
45

 –
09

:0
0)

legend(number of clusters)

Clustering based on combining the 
functional class and administrative 
districts attributes. It results in 110 non-
empty sets
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Clusters based on the optimal location of centers
in the case study area, considering network 
distances

(25 clusters)
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Clusters based on k-means consider spatial 
coordinates and speed on the links in particular 
time intervals. It aims to partition the K
observations to J clusters 𝐶𝐶 = 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾
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Conclusions
Clustering approach    
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Conclusions

• Prediction accuracy can be improved by 
utilizing multivariate models over time intervals 
and neighborhoods of links

• There is a bias-variance trade-off where using 
larger neighborhoods can lower the variance but 
increase the bias

• The appropriate number of clusters depends 
on specific time interval and network region
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Conclusions

• When link travel time variability grows, the 
mean prediction error rises as well

• Benefit of partitioning increases with growing 
variability

• Positive effect especially for links with larger 
variability
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Time efficiency
Clustering approach    
• Historical mean                  (11,430)
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• Spatial
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Conclusions

• Decrease of computational cost

• Enables real-time prediction
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