
Degree Project in Technology

First cycle, 15 credits

Benchmarking the request
throughput of conventional API
calls and gRPC
A Comparative Study of REST and gRPC

JOHAN BERG
DANIEL MEBRAHTU REDI

Stockholm, Sweden, 2023

Benchmarking the request
throughput of conventional API
calls and gRPC

A Comparative Study of REST and gRPC

JOHAN BERG

DANIEL MEBRAHTU REDI

Degree Programme in Computer Engineering
Date: June 20, 2023

Supervisor: Mira Kajko-Matsson
Examiner: Johan Montelius

School of Electrical Engineering and Computer Science
Swedish title: Mätning av genomströmningen av förfrågningar hos
konventionella API-anrop och gRPC
Swedish subtitle: En jämförande studie mellan REST och gRPC

© 2023 Johan Berg and Daniel Mebrahtu Redi

Abstract | i

Abstract
As the demand for better and faster applications increase every year, so does
the demand for new communication systems between computers. Today, a
common method for computers and software systems to exchange information
is the use of REST APIs, but there are cases where more efficient solutions
are needed. In such cases, RPC can provide a solution. There are many RPC
libraries to choose from, but gRPC is the most widely used today.

gRPC is said to offer faster and more efficient communication than
conventional web-based API calls. The problem investigated in this thesis
is that there are few available resources demonstrating how this performance
difference translates into request throughput on a server.

The purpose of the study is to benchmark the difference in request
throughput for conventional API calls (REST) and gRPC. This was done with
the goal of providing a basis for making better decisions regarding the choice
of communication infrastructure between applications. A qualitative research
method with support of quantitative data was used to evaluate the results.

REST and gRPC servers were implemented in three programming
languages. A benchmarking client was implemented in order to benchmark
the servers and measure request throughput. The benchmarks were conducted
on a local network between two hosts.

The results indicate that gRPC performs better than REST for larger
message payloads in terms of request throughput. REST initially outperforms
gRPC for small payloads but falls behind as the payload size increases. The
result can be beneficial for software developers and other stakeholders who
strive to make informed decisions regarding communication infrastructure
when developing and maintaining applications at scale.

Keywords
REST, gRPC, JSON, Protocol Buffers, API, HTTP, Benchmark, Performance,
Microservices, Network Communication

ii | Abstract

Sammanfattning | iii

Sammanfattning
Eftersom efterfrågan på bättre och snabbare applikationer ökar varje år, så ökar
även behovet av nya kommunikationssystem mellan datorer. Idag är det vanligt
att datorer och programvara utbyter information genom användning av APIer,
men det finns fall där mer effektiva lösningar behövs. I sådana fall kan RPC
erbjuda en lösning. Det finns många olika RPC-bibliotek att välja mellan, men
gRPC är det mest använda idag.

gRPC sägs erbjuda snabbare och mer effektiv kommunikation än
konventionella webbaserade API-anrop. Problemet som undersöks i denna
avhandling är att det finns få tillgängliga resurser som visar hur denna
prestandaskillnad översätts till genomströmning av förfrågningar på en server.

Syftet med studien är att mäta skillnaden i genomströmning av förfråg-
ningar för konventionella API-anrop (REST) och gRPC. Detta gjordes med
målet att ge en grund för att fatta bättre beslut om val av kommunikationsin-
frastruktur mellan applikationer. En kvalitativ forskningsmetod med stöd av
kvantitativa data användes för att utvärdera resultaten.

REST- och gRPC-servrar implementerades i tre programmeringsspråk.
En benchmarking-klient implementerades för att mäta servrarnas prestanda
och genomströmning av förfrågningar. Mätningarna genomfördes i ett lokalt
nätverk mellan två datorer.

Resultaten visar att gRPC presterar bättre än REST för större meddelanden
när det gäller genomströmning av förfrågningar. REST presterade initialt
bättre än gRPC för små meddelanden, men faller efter när meddelan-
destorleken ökar. Resultatet kan vara fördelaktig för programutvecklare
och andra intressenter som strävar efter att fatta informerade beslut
gällande kommunikationsinfrastruktur vid utveckling och underhållning av
applikationer i större skala.

Nyckelord
REST, gRPC, JSON, Protocol Buffers, API, HTTP, Benchmark, Prestanda,
Mikrotjänster, Nätverkskommunikation

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
First and foremost, we would like to express our heartfelt gratitude to our
supervisor Mira Kajko-Mattsson for her guidance, support, and continuous
assistance throughout the entire thesis process. Her expertise and insightful
feedback have been instrumental in shaping this thesis report.

We would also like to extend our appreciation to our examiner, Johan
Montelius. His constructive input and feedback during the initial stages of the
thesis, as well as ongoing guidance throughout the process, helped to focus
the scope of the thesis.

Additionally, we would like to thank seminar participants and opponents
who dedicated their time and shared their feedback on the thesis report and
our presentation.

Last but not least, we would like to extend our thanks to our friends and
family for their encouragement and patience throughout this demanding time.
Their constant support has been a tremendous source of motivation.

Stockholm, June 2023
Johan Berg Daniel Mebrahtu Redi

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 2
1.4 Goal . 2
1.5 Research Methodology . 3
1.6 Target Audience . 3
1.7 Scope and Limitations . 3
1.8 Benefits, Ethics, and Sustainability 4
1.9 Terminology . 4
1.10 Structure of the Thesis . 5

2 REST and gRPC 7
2.1 Interservice Communication 7
2.2 Explanation and Comparison of

Relevant Concepts . 9
2.2.1 HTTP . 9
2.2.2 JSON . 10
2.2.3 Protocol Buffers . 11
2.2.4 API . 12
2.2.5 REST . 13
2.2.6 RPC and gRPC . 13
2.2.7 Differences in API Design 14

2.3 Previous Work . 15
2.3.1 Continuous Benchmarks of gRPC 15
2.3.2 Difference in Response Time 15

3 Research Methodology 17
3.1 Research Strategy . 17

viii | Contents

3.2 Research Phases . 18
3.3 Research Methods . 19
3.4 Research Instruments . 19
3.5 Validity Threats . 19

4 Implementation and Execution of Benchmarks 21
4.1 Overview . 21
4.2 Selection of Criteria and Environment 22
4.3 Data Models and Message Size 24
4.4 Implementation of Servers 25

4.4.1 Languages and Frameworks 25
4.4.2 Java . 25

4.4.2.1 REST Server 26
4.4.2.2 gRPC Server 26

4.4.3 Python . 27
4.4.3.1 REST Server 27
4.4.3.2 gRPC Server 27

4.4.4 Rust . 28
4.4.4.1 REST Server 28
4.4.4.2 gRPC Server 28

4.5 Implementation of Client . 29
4.6 Execution of Benchmarks . 32

5 Results 35

6 Analysis and Discussion 39
6.1 Analysis . 39
6.2 Discussion . 40
6.3 Validity Analysis . 41

6.3.1 Credibility . 41
6.3.2 Transferability . 41
6.3.3 Reliability . 42
6.3.4 Objectivity . 42

7 Conclusions and Future Work 43
7.1 Conclusions . 44
7.2 Future Work . 44

References 47

Contents | ix

A Full Results from Benchmark 51
A.1 Java REST Server, XS messages 51
A.2 Java REST Server, S messages 52
A.3 Java REST Server, M messages 52
A.4 Java REST Server, L messages — capped at 1 Gbit/s 53
A.5 Java gRPC Server, XS messages 53
A.6 Java gRPC Server, S messages 54
A.7 Java gRPC Server, M messages 54
A.8 Java gRPC Server, L messages — capped at 1 Gbit/s 55
A.9 Python REST Server, XS messages 55
A.10 Python REST Server, S messages 56
A.11 Python REST Server, M messages 56
A.12 Python REST Server, L messages 57
A.13 Python gRPC Server, XS messages 57
A.14 Python gRPC Server, S messages 57
A.15 Python gRPC Server, M messages 58
A.16 Python gRPC Server, L messages 58
A.17 Rust REST Server, XS messages 58
A.18 Rust REST Server, S messages 59
A.19 Rust REST Server, M messages — capped at 1 Gbit/s 60
A.20 Rust REST Server, L messages — capped at 1 Gbit/s 60
A.21 Rust gRPC Server, XS messages 61
A.22 Rust gRPC Server, S messages 62
A.23 Rust gRPC Server, M messages 62
A.24 Rust gRPC Server, L messages 63

x | Contents

List of Figures | xi

List of Figures

2.1 Concepts explained in Section 2.2 9
2.2 Services written in different languages using gRPC for

interservice communication [32]. The server and client code
stubs are generated based on a shared protobuf specification.
Appears here under CC BY 4.0 14

2.3 Screenshot of one of many gRPC continuous benchmarks [35] 15

3.1 Research phases . 18

4.1 The six servers. Each server was benchmarked four times,
one for each message size. The same client was used for all
benchmarks, operating in either REST mode or gRPC mode . 22

4.2 Setup of test environment network 23
4.3 Logical flow of a full test, simplified. Purple rectangles refer

to one benchmark round (Figure 4.4) 30
4.4 Logical flow of one benchmark round, simplified. The

blue rectangle refers to several instances of spammer threads
(Figure 4.5) . 31

4.5 Logical flow of a spammer thread, simplified 31
4.6 Discovery of optimal client thread count against the Java

gRPC server with M-sized messages. Each line chart
represents a 20-second benchmark 33

4.7 Average requests/s per thread count during discovery phase.
Aggregation of Figure 4.6. During this test, 32 was a clear
sweet spot, and was therefore used as the number of threads in
the full 100-second test . 33

5.1 Results benchmarks against Java servers. An asterisk (*)
denotes that the benchmark was capped by the 1 Gbit/s
network bandwidth instead of the server’s CPU 35

xii | List of Figures

5.2 Results benchmarks against Python servers 36
5.3 Results benchmarks against Rust servers. An asterisk (*)

denotes that the benchmark was capped by the 1 Gbit/s
network bandwidth instead of the server’s CPU 37

List of Tables | xiii

List of Tables

3.1 Overview of the research strategy 17

4.1 Specification of client and server 23
4.2 The four message payloads with serialized lengths and aliases . 24
4.3 Programming languages and libraries used for testing REST

and gRPC . 25

xiv | List of Tables

List of Listings | xv

List of Listings

2.1 A JSON object . 10
2.2 A protobuf message definition (proto3 syntax) 11
2.3 Hexadecimal representation of the bytes that resulted from

encoding a SearchRequest protobuf object. Line 1: The
bytes. Lines 2-5: The values contained and arrows to the bytes
that hold them. Lines 7-23: Explanation of all byte values. . . 12

2.4 Pseudo-code for calling an endpoint 14
4.1 Inventory service proto definition 24

xvi | List of Listings

List of acronyms and abbreviations | xvii

List of acronyms and abbreviations

API Application Programming Interface
Arch. Architecture

CPU Central Processing Unit
CRUD Create Read Update Delete

Freq. Frequency

gRPC gRPC Remote Procedure Call

HTTP Hypertext Transfer Protocol
HTTP/1.1 Hypertext Transfer Protocol version 1.1
HTTP/2 Hypertext Transfer Protocol version 2

IDL Interface Description Language

JSON JavaScript Object Notation
JVM Java Virtual Machine

LAN Local Area Network

OS operating system

protobuf Protocol Buffers

RAM Random Access Memory
REST Representational State Transfer
RPC Remote Procedure Call

SOA Service-Oriented Architecture
SSH Secure Shell

URL Uniform Resource Locator

xviii | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

As the demand for better and faster applications increase every year, so does
the demand for new communication systems between computers. In order
for a computer to send a message to another computer over the Internet,
it needs to establish a connection with the target host and transfer data in
accordance with agreed upon communication protocols that ensure reliable
and correct transmission. In the early days of computer networking, computers
communicated with one another by being connected to the same Local
Area Network (LAN). As technology developed and the Internet became
widely available, new communication protocols were developed to handle the
increasing demand for communication systems.

Today, a common method for computers and software systems to exchange
information is the use of Representational State Transfer (REST) Application
Programming Interfaces (APIs). An API is a set of definitions that allow
different applications to communicate with an agreed upon protocol and data
format. APIs on the web enable many of today’s software systems, but
more complex applications encounter new challenges in terms of scalability,
performance and efficiency in their communication infrastructure.

1.1 Background
When designing the communication between network-connected services, it
is important to consider factors such as desired functionality, scalability and
performance. Using a conventional way of implementing a web-based API
is desirable in many ways. It is easy to use, read, debug, and experiment
with, making it a good choice for most projects. But there are cases where
more efficient solutions are needed. This is where Remote Procedure Call

2 | Introduction

(RPC) comes in handy. Generally, RPC implementations specialize in making
network calls by abstracting away the communication logic while also using a
more efficient way of transferring the data. There are a number of different
RPC libraries to choose from, but gRPC Remote Procedure Call (gRPC)
is the most widely used one. Adopting gRPC is said to bring advantages
such as faster development cycles, less code duplication, lower network
latency, higher request throughput, and more stable communication compared
to conventional API calls [1, 2, 3]. Measurements show that this claim
holds when measuring response time [4, 5, 6], but there are few resources
showing how this difference translates to a difference in request throughput on
a server. The resources that do exist fail to give a comprehensive and detailed
view. If a server uses less computing and network resources per request, the
number of server instances needed when the application is under a certain load
decreases, which reduces operating costs. Therefore, today’s applications that
use conventional design of web-based APIs might be using more computing
and network resources than necessary.

1.2 Problem
There are few benchmarks showing the difference in request throughput
between conventional web-based API calls and gRPC.

1.3 Purpose
The purpose of this thesis is to benchmark the request throughput for
conventional web-based API calls and gRPC calls and to evaluate the
differences and performance trade-offs.

1.4 Goal
The goal of this thesis is to provide a basis for making better decisions
regarding communication infrastructure between applications, such as
microservices. This basis can be of use for software developers, network
engineers, architects and stakeholders to use more effective communication
systems. This thesis will specifically focus on comparing the request
throughput of traditional API calls and gRPC, with the goal of identifying
performance differences.

Introduction | 3

1.5 Research Methodology
Since this study mainly consists of gathering and analyzing performance
data from handpicked technologies, a qualitative research approach based on
quantitative data was used. This is explained in further detail in Chapter 3.

The data was collected with quantitative observation by measuring the
maximum request throughput during benchmark tests. The measurements
were analyzed by comparing the data from the two subjects: an application
using JavaScript Object Notation (JSON) over Hypertext Transfer Protocol
version 1.1 (HTTP/1.1) and an application using gRPC.

1.6 Target Audience
The outcome of this thesis can be of interest for software developers, software
architects, and network engineers that are looking to create a new project
or migrate an existing project. The results can be beneficial for software
developers and architects by helping them make more informed decisions
regarding communication infrastructure when building and maintaining
applications at scale. Similarly, researchers and students studying distributed
systems or software architecture can also make use of the results, as
they provide insights into the performance trade-offs of different network
communication alternatives.

1.7 Scope and Limitations
Many variables can impact the real-world performance of network calls. To
keep this thesis in a reasonable scope, some limitations to the study have been
put in place:

• In order to measure the performance of only the network protocols to the
degree possible, the application for testing did not include any business
logic, database calls, or other time-consuming tasks.

• There are many modern implementations of RPC libraries. Comparing
several of them would take too much time. Therefore, this report only
focuses on comparing gRPC to a conventional REST API.

• There are many ways of implementing REST and gRPC APIs, and many
more ways of constructing the tests. The dimensions of the benchmarks

4 | Introduction

in this study have been kept within reasonable limits in order to see
general patterns, but not to extensively find answers for every possible
scenario.

• The tests were conducted on a local network. This simulates services
deployed in the same cloud cluster to some degree, but calls over the
Internet are also of interest to measure.

1.8 Benefits, Ethics, and Sustainability
The insights in this report can be beneficial in regards to more efficient
computing resource usage. In computing, a faster program implies that less
computations are used in order to achieve the same amount of work. Therefore,
a faster program uses less energy, reducing the energy cost of running it. The
same argument can be made about the efficiency of the network protocols used,
reducing load on the network infrastructure. Today’s applications are often
deployed using cloud hosting providers, where services are typically billed
based on the amount of resources used [7]. A reduction in resource usage can
therefore be of interest from a financial and sustainability perspective.

1.9 Terminology
This section clarifies some terms that are used extensively throughout this
thesis. More technical descriptions of some acronyms can be found in
Section 2.2.

The word benchmark refers to a test designed to evaluate the performance of
computer software.

The term request throughput is used throughout this thesis when referring to
the number of requests per second handled by a server. It is usually used in the
context of maximum throughput, the highest number of requests that a server
can handle (during benchmark measurement).

There are many types of APIs. For example, a code library API concerns
the set of functions and data types that it exposes to users of the library, while
a web API concerns the names, methods, and data formats of the endpoints
that are served by a web server. RPC libraries are not exclusively used as

Introduction | 5

replacements for web APIs, but this thesis focuses on gRPC which does.
Therefore, the term API mainly refers to a web API in this thesis.

A conventional web API is often called a REST API, or RESTful, if it follows
the design principles of Representational State Transfer (see Section 2.2.5). If
an API uses JSON and HTTP/1.1, it is not guaranteed to follow the conventions
of REST. However, the term REST is often used loosely to describe variants
of this combination. In this thesis, the term REST is used interchangeably
between its formal definition and when referring to programs that use JSON
and HTTP/1.1 (the left column in Figure 2.1).

The words server and client can refer to both the roles of physical computers,
and the software that runs on them. In this thesis they mostly refer to software,
but in Section 4.2 both meanings are used.

The term serialize means to convert the state of a data object, which can be
spread out pieces of memory, to a sequence of bytes that can be persisted or
transported.

1.10 Structure of the Thesis
The remainder of this thesis consists of the following chapters:

Chapter 2: REST and gRPC: This chapter provides a more in depth coverage
and context of relevant concepts. Literature about the subject is also reviewed
and compared to what this thesis aims to cover.

Chapter 3: Research Methodology: This chapter describes what methods,
tools, and resources were used to obtain the results.

Chapter 4: Implementation and Execution of Benchmarks: This chapter
describes the work that was done to achieve the results: iterations of
implementation of servers and client, and how the final benchmarks were
conducted to produce the results.

Chapter 5: Results: This chapter shows the results of the benchmarks.

Chapter 6: Analysis and Discussion: This chapter contains analysis of the
results, a discussion about validity and sources of error in the results, and a

6 | Introduction

comparison with other measurements of REST and gRPC performance.

Chapter 7: Conclusions and Future Work: This chapter discusses our
conclusions drawn from the result, provides our input of our work and
proposes future work.

REST and gRPC | 7

Chapter 2

REST and gRPC

In this chapter, the problem domain is explained in more detail in Section 2.1.
Then, Section 2.2 gives explanations with examples of relevant technologies
and concepts for the reader. Last, Section 2.3 evaluates literature and previous
work about the subject, and how this study relates to it.

2.1 Interservice Communication
When sharing resources on the World Wide Web became prevalent, Hypertext
Transfer Protocol (HTTP) rose to become the dominant way of sending data
on the Internet. As web sites grew in complexity and scale, incentive grew for
developers to separate user-facing logic (frontend) from services that handle
business logic and data (backend). One consequence of separating services
is that a common language for exchanging data between them is needed.
This language, or data format, is typically defined in a service’s API. Due
to JavaScript being the main scripting language available in all web browsers,
JSON has become the standard choice when serializing data for APIs on the
Web [8].

When Web applications grow in size and complexity, the pattern of
splitting applications into smaller services becomes more necessary. This shift
led to the rise of the pattern Service-Oriented Architecture (SOA) in the early
2000s [9], which later was built upon and became microservices.

Microservices is an architectural style for large and complex applications
that involves splitting the application into a collection of loosely coupled,
collaborating services, where each service is independently deployable [10].
It has also received criticism due to the fact that, by their nature, microservices
are heavier and more complex to develop, test, and debug [11]. For example,

8 | REST and gRPC

an error in one service might have been caused by a different service that it
is depended upon. Their increased complexity and distributed nature also
introduces overhead and data consistency issues.

The extra communication between microservices can also prevent
applications with throughput limitations from being able to scale. A recent
article describes how a service in Amazon’s Prime Video achieved a 90%
cost decrease when moving from distributed microservices to a monolithic
architecture [12].

Building internal communication in a cluster of services comes with new
challenges regarding choice of technologies. The conventional choice is
to use REST APIs with JSON encoded data over the HTTP/1.1 protocol
due to its simplicity and widespread use in web development. A large,
performance-critical microservice application that needs to send thousands of
internal messages per second could suffer from using an inefficient method
for inter-service communication, but knowing which solutions work best in
such a case can be hard without proper research and testing. As microservice
applications grow in size and complexity it becomes even more important
to choose a good method for inter-service communication. While JSON is
seen as a good choice for most projects, newer technologies provide more
efficient alternatives for larger performance critical applications that need to
send hundreds of thousands of messages per second. One of those alternatives
is to use an RPC library.

RPC is a way for a computer program to call a function (procedure) to
execute in a different program, usually on a different machine over the network.
The call is coded as if it were a normal function call, without the programmer
explicitly coding the details for the network call [13]. The use of RPC abstracts
the logic for handling the remote call, which saves work for the programmer.

Among the many RPC libraries available, gRPC is the most widely used
one. It supports all mainstream programming languages, and adopting gRPC
is said to bring advantages such as faster development cycles, less code
duplication, lower network latency, higher request throughput, and more stable
communication due to using Hypertext Transfer Protocol version 2 (HTTP/2)
[14]. There are several other RPC libraries that challenge the leading position
of gRPC [15, 16, 17, 18, 19, 20], but none with the same level of widespread
compatibility and support.

There are many ways of designing APIs. Knowing which solutions work
best for a service that deals with a lot of traffic can be hard without proper
research and testing. This thesis compares conventional API designs to gRPC
in the scope of request throughput.

REST and gRPC | 9

Figure 2.1: Concepts explained in Section 2.2

2.2 Explanation and Comparison of
Relevant Concepts

This section explains the relevant concepts needed to read and understand this
thesis. Figure 2.1 shows the relationships between technologies mentioned.
This section covers these concepts from bottom to top, with comparisons along
the way.

If an API uses JSON and HTTP/1.1, it is not guaranteed to follow the
conventions of REST. However, the term REST is often used loosely to
describe variants of this combination. In this thesis, the term REST is used
interchangeably between its formal definition (see Section 2.2.5) and when
referring to programs that use JSON and HTTP/1.1.

While HTTP/2 is rising in popularity, we chose to use HTTP/1.1 for the
REST implementation in this study due to it usually being the default setting
in most frameworks. The left column in Figure 2.1 represents a more naive
approach, and the right column a more thought through implementation.

2.2.1 HTTP
Hypertext Transfer Protocol (HTTP) is an application protocol used for
transmitting data over the Internet. It is known as the foundation of data
communication on the World Wide Web and is used by web browsers and
web servers to communicate with each other. [21]

The 1.1 version of the protocol, which was first introduced in 1997, has
received updates over the years [22]. In a typical HTTP/1.1 request and

10 | REST and gRPC

response cycle, the client sends a request to the server which includes a method
(such as GET, POST, PUT, or DELETE), a resource identifier (part of the
Uniform Resource Locator (URL)), headers with metadata, and a message
body. The server then responds with a status code indicating the success
or failure of the request, more headers, and if the request was successful, a
message body containing the requested resource.

HTTP/1.1 has several limitations such as inefficient use of network
resources, high latency, and poor performance over slow or unreliable
connections. To improve on these issues, HTTP/2 was developed to use several
new features [23]. Among these features are multiplexing, which allows
several requests to be sent over the same connection, server push, which allows
the server to send resources that the client is likely to request in advance, and
header compression, which greatly reduces the size of headers in subsequent
requests.

Overall, HTTP/2 provides significant performance improvements over
HTTP/1.1, making it a better choice for modern applications.

2.2.2 JSON
JavaScript Object Notation (JSON) is a lightweight, text-based file format and
data-interchange format [24]. It is by far the most popular format used when
accessing APIs on the Internet [8], but it is also used for other purposes, such
as configuration files. It is easy for humans to read and write, and easy for
computers to parse and generate. Although it is based on JavaScript (as the
name suggests), it is completely language-independent and can be used in all
mainstream programming languages.

The format consists of key-value objects, arrays, and values such as strings,
numbers, true, false, and null. Listing 2.1 shows an example object
represented in JSON. When sending data over the network, unnecessary
whitespace is usually removed to reduce the amount of bytes sent. The
example object takes up 55 bytes when whitespace is removed.

Listing 2.1 A JSON object

{
”query”: ”apples”,
”page_number”: 2,
”result_per_page”: 50

}

REST and gRPC | 11

2.2.3 Protocol Buffers
Protocol Buffers (protobuf) are a language-neutral mechanism for serializing
structured data [25]. It was originally developed by Google for internal use,
but later released as open-source [26]. Contrary to self-describing data formats
such as JSON, protobufs involves an Interface Description Language (IDL),
such as proto3 [27], to define the structure of messages. The proto definitions
are then used by a compiler to generate code stubs for the programming
language(s) of choice, which can then be used to serialize and deserialize
messages. The messages are serialized to a binary format which is more
compact than text formats.

Although protobufs are a great alternative for serializing data, they have
some limitations. The protobuf documentation lists a few points [28], the most
significant being:

• Messages have no way of being parsed correctly without the correct IDL
specification.

• The entire message has to be in memory at once, meaning very large
messages need a different approach.

• Messages are not compressed. Data with special-purpose compression
algorithms, such as images, will produce much smaller files for data of
such types.

Listing 2.2 shows an example of a protobuf definition of a message (object)
that can be used in a gRPC request or response.

Listing 2.2 A protobuf message definition (proto3 syntax)

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 result_per_page = 3;

}

Listing 2.3 shows the bytes representing a SearchRequest object with
the same values as the JSON example in Listing 2.1. The main resources used
for decoding the bytes was Wireshark [29] and the Protobuf docs [30].

12 | REST and gRPC

Listing 2.3 Hexadecimal representation of the bytes that resulted from
encoding a SearchRequest protobuf object. Line 1: The bytes. Lines
2-5: The values contained and arrows to the bytes that hold them. Lines 7-23:
Explanation of all byte values.

1 Bytes: 0a 06 61 70 70 6c 65 73 10 02 18 32
2 ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑
3 | | | | | | | |
4 Characters: a p p l e s | |
5 Integers: 2 50
6

7 0a:
8 .0001... = Field Number 1
9010 = Length-delimited

10 06:
11 Value Length 6
12 61 70 70 6c 65 73:
13 The ASCII values of the letters in ”apples”
14 10:
15 .0010... = Field Number 2
16000 = varint (integer)
17 02:
18 Value 2
19 18:
20 .0011... = Field Number 3
21000 = varint (integer)
22 32:
23 Value 50

To reiterate, the protobuf message shown in Listing 2.3 can be decoded
to reveal that it contains a string ”apples”, and the integers 2 and 50. Despite
this, the meaning of the value fields (what they represent) can not be known
without the protobuf definition that was used to encode it.

Compared to the JSON message in Listing 2.1, which takes 55 bytes to
send, the same message encoded with protobufs only takes 12 bytes to send.

2.2.4 API
An Application Programming Interface (API) is a set of rules that provides a
way for applications to communicate with each other [31]. This means that
developers can use an API to access the functionality of another system.

In the context of HTTP, the APIs are typically used to retrieve information.
The application that wants to retrieve information (client) sends an API

REST and gRPC | 13

request. The request is then served by the application providing the
information (server) by sending a response to the client.

2.2.5 REST
Representational State Transfer (REST) is a software architectural style that
defines a set of constraints to be used when designing web services. A REST
API is built around the idea of resources where each resource is identified with
a unique URL. Requests to a REST API are made using HTTP verbs such as
GET, POST, PUT, and DELETE. Each HTTP verb corresponds to actions
such as retrieving data, creating new resources, updating existing resources,
and deleting resources. As REST APIs communicate via HTTP requests,
functions like creating, reading, updating, and deleting records may be used
within a resource to preform standard database functions. These functions,
usually referred to as Create Read Update Delete (CRUD) operations are often
associated with RESTful APIs and correspond to the HTTP verbs.

2.2.6 RPC and gRPC
Remote Procedure Call (RPC) is a software communication protocol that
uses the client-server model for communication between different software
applications over a network. gRPC is an open-source RPC framework
developed by Google [3]. It is designed to build scalable and fast APIs that
can run in many environments. It provides a connectivity layer between client
applications and server applications on different machines, making it easier
to create distributed applications and services. gRPC combines HTTP/2 and
protobufs to achieve these goals. Protobufs are used for serializing data and for
generating code stubs for the client and server, which saves time and reduces
the chance of errors such as version mismatches or carelessness.

One of the advantages of gRPC is its support for multiple programming
languages, unlike many other RPC implementations that only work in a single
programming language. gRPC has official support for C++, Go, Java, Node.js,
PHP, Python, Ruby and more [33]. This advantage makes it easier to transfer
shared data between services that use different programming languages [14].
Figure 2.2 shows an example of this.

Despite its benefits, gRPC has some limitations and challenges. Unlike
JSON, protobuf messaging format is not human readable. The binary format
used in HTTP/2 is also hard to read without proper tools. This makes using
extra tools necessary for debugging or manual testing of endpoints.

14 | REST and gRPC

Figure 2.2: Services written in different languages using gRPC for interservice
communication [32]. The server and client code stubs are generated based on
a shared protobuf specification. Appears here under CC BY 4.0

2.2.7 Differences in API Design
The differences in API design varies between REST APIs and gRPC. While
REST APIs are usually designed to only follow the CRUD operations on
resources, gRPC methods can be designed to fit arbitrary purposes more
specifically. While CRUD operations are also common operations to perform
between gRPC services, the protocol also offers more advanced features due
to the use of HTTP/2, such as streams.

A stream call can be set up between two services, letting one service send
messages at any time, without the overhead of establishing a new connection.
This enables services to achieve the Observer design pattern across an API,
something that is not possible with REST APIs over HTTP/1.1. A gRPC call
is made by directly calling a generated method. On the client side, developers
can invoke these generated methods just as if they were local functions. As
the provided pseudo-code shows, represented in Listing 2.4, the gRPC call
demonstrates how the HTTP logic is abstracted away.

Listing 2.4 Pseudo-code for calling an endpoint

// REST API (normal HTTP call)
client.post(”/api/items”, request_body)

// gRPC call (HTTP logic is abstracted away)
client.items(request_body)

REST and gRPC | 15

Figure 2.3: Screenshot of one of many gRPC continuous benchmarks [35]

2.3 Previous Work
This section summarizes and discusses other work in the field of benchmarking
JSON REST APIs and gRPC. Several sources have measurements showing
that gRPC calls have better response times than a REST API, and throughput
is measured in few places. This is what this thesis aims to expand knowledge
about.

2.3.1 Continuous Benchmarks of gRPC
The gRPC development team uses a continuous performance benchmarking
workflow as part of the development [34]. Every few hours, performance tests
are run for several languages against the master branch, and the results are
reported to a dashboard for visualization, available at [35]. The benchmarks
measure the response time, requests per second, and Central Processing Unit
(CPU) usage of a varying set of tests. Figure 2.3 shows one of the graphs
displayed on the dashboard.

Overall, the benchmarks on the dashboard show the relative performance
for different language implementations, but not how gRPC performs compared
to other RPC variants or other types of API calls.

2.3.2 Difference in Response Time
In a blog post from 2019 [4], Ruwan Fernando describes how using JSON
REST APIs in his microservice project started to reach throughput limits. He

16 | REST and gRPC

constructed a test with C# where the same type of message was sent hundreds
of times over a REST API using JSON and a gRPC endpoint, while the
execution time was measured. The benchmark results showed that, for small
payloads, the gRPC execution time was barely performing better than REST,
while for large payloads, it performed roughly two times better.

In a blog post from 2021 [5], Recep İnanç, Software Development
Engineer at Amazon, did a similar comparison in Java Spring, where the
response time of many calls with small, medium and large payloads were
sampled using JMeter and shown on graphs. His results showed a slight edge
for REST APIs when sending small payloads, a tie when sending medium
sized payloads, and a factor of two win for gRPC for large payloads. The sizes
of these three categories of payloads were not shown.

In an IEEE conference paper from 2021 [36], Kumar et al. measured the
time of making many sequential calls with REST, gRPC, and Apache Thrift
[15] between microservices on the same machine, and applied optimizations
to increase performance in such setups. The number of requests ranged from
1,000 to 100,000, and the three payload sizes were 100 kB, 500 kB, and
1,000 kB. Their results show that gRPC outperformed REST, and Thrift even
more so. Many implementation details, such as programming languages and
message composition were not shown.

These three sources show what difference can be expected in response time
between the two technologies, but to what level the request throughput can
differ is left for question.

Research Methodology | 17

Chapter 3

Research Methodology

This chapter describes the research methods used in this thesis. Section 3.1
provides an overview of the research strategy used. Section 3.2 lists the
research phases. Section 3.3 describes the our research methods and motivates
why they were appropriate for this study. Section 3.4 presents the research
instruments used for data collection and evaluation of our results. Section 3.5
lists the possible validity threats to our study.

3.1 Research Strategy
In order to ensure that that we achieved valid results and optimized output
within the time constraints of this thesis, an appropriate research strategy was
chosen. An overview of our research strategy listing the research phases,
research methods, research instruments and validity threats used is presented
in Table 3.1. The rest of this chapter contains a section explaining each part.

Table 3.1: Overview of the research strategy

Research Phases Research Methods Research Instruments Validity Threats
Literature study Qualitative study Research literature Credibility

Choice of criteria Comparative study Benchmark parameters Transferability
Choice of environment Quantitative data Testing hardware Reliability
Implementation of tools Benchmarking software Objectivity
Benchmark execution

Result evaluation

18 | Research Methodology

Figure 3.1: Research phases

3.2 Research Phases
This section describes how the authors organized the research process model.
Figure 3.1 shows a time diagram illustrating the phases of the research process.

The first and largest phase was the Literature study. In the beginning of
the thesis project, the subject of this thesis was still too loosely defined. By
studying the problem domain and evaluating existing work in the field, the
scope and goal of the thesis got more focused during its early stages. The
internet was searched to gather knowledge about the technologies under test
and the underlying foundations. The search was conducted using Google,
Google Scholar, and IEEE Xplore with search terms such as grpc, rest vs grpc,
grpc performance, grpc throughput, grpc benchmark, and grpc competitors.

When sufficient knowledge had been gathered through studying the
subject, the phase of choosing what criteria to assess and in what environment
to conduct the experiment was started.

When all criteria were defined, the implementation of the testing tools
started. During this phase, the literature study phase was still ongoing. The
plan for what to implement was done, but developing the test programs
involved consultation of relevant documentation throughout the process. This
was an iterative process where the different sets of code were written, tested,
and evaluated. Evaluation cycles improved the code while enhancing the
reliability and robustness of the benchmark tests, and mitigated potential
validity threats.

When all code for the final testing was ready, the execution of the final

Research Methodology | 19

benchmarks were performed, and the measured results were collected. Lastly,
an evaluation of the results was conducted to validate, analyze and draw
conclusions from the benchmarks.

3.3 Research Methods
Since this study is not a statistical study with test subjects from a random
sample in a larger population, a qualitative research approach was chosen. The
benchmark tests that are conducted give quantitative data, that then undergoes
qualitative comparison.

Inductive reasoning is used to draw conclusions about the software under
test. Due to the limited scope of the study and selection of measurements,
no generalized conclusions about other communication technologies can be
made from the results. The conclusions only cover the specific conditions
which were measured during the study.

3.4 Research Instruments
The research instruments used in this study were (1) research literature, (2)
benchmark parameters, (3) testing hardware, and (4) benchmarking software.

The research literature laid the foundation for which benchmark parame-
ters to use in the experiment and which technologies to use when developing
the benchmarking software. The benchmark parameters selected were (1) the
two request technologies to compare, (2) request message size for comparing
efficiency of data encoding methods, and (3) programming language to see if
each type of language saw similar magnitudes of performance gains across the
tests. The testing hardware and benchmarking software were used to conduct
the experiment. The choice and implementation of these is explained further
in Chapter 4.

3.5 Validity Threats
To evaluate the validity of our study, four criteria are used: (1) credibility, (2)
transferability, (3) reliability, and (4) objectivity. These criteria are used to
judge the quality of qualitative research [37]. They are explained further here.

Credibility is to what degree the research can be trusted. The potential
threats to the credibility of our research are: (1) An unrealistically assembled
test application and workload that does not reflect real-world usage, leading to

20 | Research Methodology

misleading or biased results. This includes choice of what metrics to measure
and manipulate, the choice of the hardware and software used, and network
congestion on local networks or the Internet. (2) Flaws or limitations in our
implementation of the software may affect the accuracy of the results.

Transferability, which concerns to what extent findings may be applicable
in other situations, may be limited by differences in server hardware,
application architecture, usage of the application, or network configuration.
Another aspect of transferability is how the findings can be generalized to
other RPC libraries or network call protocols. Due to the small sample size
(two protocols, four message sizes, and three programming languages), the
findings can not be generalized with confidence to other setups. In general,
results from isolated benchmarks are not always accurate indicators for real
world performance, and this also applies to our research.

The reliability of the study, which concerns the consistency of measure-
ment values under the same conditions, is regarded as fairly high due to the
well-defined and isolated test environment. The major consistency factor is the
randomness benchmarks, which could lead to varying results. Small variations
in performance can be expected across CPUs of the same model, this difference
is considered negligible in the scope of this study.

Objectivity is that the researchers should not allow their own biases to
affect the study. There is possibility of unintentional biases in our selection
of languages and frameworks used. It is also possible that different amounts
of optimization effort was put into each server, leading to misleading results.
There is also possibility of bias in our interpretation of the benchmark results.

Implementation and Execution of Benchmarks | 21

Chapter 4

Implementation and Execution
of Benchmarks

This chapter describes how the study was conducted. Section 4.1 gives an
overview of the entire study. Section 4.2 describes and motivates the decisions
regarding evaluation criteria, and shows the setup of the test environment.
Section 4.3 describes the data models and messages used in the tests, and
how they were shaped to fit the study. Section 4.4 describes how the
six servers were implemented, and what languages and frameworks were
used. Section 4.5 describes how the benchmark client was designed and
implemented. Section 4.6 describes how the final benchmarks were run to
produce the final results. All source code can be found at:
https://github.com/jonaro00/rest-vs-grpc

4.1 Overview
Initially, the evaluation criteria and test environment were specified. Then,
servers were set up to implement the same API using REST (with JSON)
and gRPC respectively. This was done for the programming languages Java,
Python, and Rust, for a total of six servers. A client program was also created,
capable of spamming requests of both types while counting the number of
completed requests per second. The client runs a test against one server at a
time, requesting responses with one of the four pre-defined payload sizes. The
smallest response payload is an empty response, leaving just the OK response
status and headers. The other three sizes of messages have response bodies
with dummy data, encoded as JSON and protobufs respectively.

The servers’ request throughput were measured by running the client test

https://github.com/jonaro00/rest-vs-grpc

22 | Implementation and Execution of Benchmarks

Figure 4.1: The six servers. Each server was benchmarked four times, one for
each message size. The same client was used for all benchmarks, operating in
either REST mode or gRPC mode

with each message size against each server, totalling in 24 tests (six servers,
four message sizes). This is visualized in Figure 4.1.

4.2 Selection of Criteria and Environment
The main measurement criterion in this experiment is the number of requests
that a server can handle per second (request throughput). In order to test this
criterion to the fullest extent, the servers were implemented to handle each
request without any state, business logic, database calls, or logging.

In order to test how the serialization formats perform when payload sizes
increase and how that effects the throughput, four sizes of request payload
were chosen. The smallest possible requests were used by the client, and all
payload data was placed in the server response. The client used a GET request
for REST, and a custom empty object with no data for the gRPC servers. The
smallest payload size (”XS”) was chosen to be an empty response body. This
serves as a baseline for the throughput, as the request will only consist of HTTP
headers and leave serialization out of the picture. The other three sizes of
messages (”S”, ”M”, and ”L”) were constructed to contain dummy data of
varying types: lists, objects, strings, numbers, booleans, enums, and null. See
Section 4.3 for more details on the messages.

The tests were replicated in three programming languages of different
characteristics to compare the performance among them, but also to compare
the magnitude of performance differences that each programming language
can observe when switching between REST and gRPC. The choice of
languages was based on the authors’ areas of interest and experience.

Implementation and Execution of Benchmarks | 23

The experiment is about measuring the maximum throughput seen from
the server with the CPU being the main targeted bottleneck. Because of this,
the client program was not hosted on the same hardware as the server, as they
would have competed for execution time.

A Raspberry Pi 400 was chosen to host the server and a desktop computer
to host the client. Since the desktop has a much more powerful CPU, it will
always be ready to send requests for the server to handle. A gigabit (1 Gbit/s)
network switch was used, with both hosts directly connected to it. This is also
the max Ethernet networking speed supported by both machines. One gigabit
was assumed to be enough to not limit the benchmarks, but turned out to be
a limiting factor for some of them, see Chapter 5. The test environment was
mainly chosen based on what hardware the authors had available. Figure 4.2
shows the network setup. Table 4.1 lists the main specifications of the test
machines.

Figure 4.2: Setup of test environment network

Table 4.1: Specification of client and server

Client Server
Computer Desktop Raspberry Pi 400

CPU Intel Core i5-7600K Broadcom Cortex-A72
Freq. 3.8GHz 1.8GHz
Arch. x86_64 aarch64
Cores 4 4

Threads 4 4
RAM 32GB DDR4-3000 4GB LPDDR4-3200
OS Ubuntu 22.04 in WSL2 Raspberry Pi OS

on Windows 10 (Debian 11)

24 | Implementation and Execution of Benchmarks

4.3 Data Models and Message Size
For the purpose of testing the servers, a protobuf definition file was written
with mockup data resembling a hypothetical data model of an inventory
service of a large company. Listing 4.1 shows an excerpt. The same data
model was followed when implementing the equivalent JSON-based services.

Listing 4.1 Inventory service proto definition

// A hypothetical Inventory service
service Inventory {

// Empty request to check responsiveness
rpc HeartBeat (Empty) returns (Empty);
// Get aggregate statistics for all items
rpc ItemsStatus (Empty) returns (ItemsStatusResponse);
// Get summary for every item
rpc ItemsSummary (Empty) returns (ItemsSummaryResponse);
// Get full details of every item
rpc ItemsFull (Empty) returns (ItemsFullResponse);

}

The HeartBeat (size ”XS”) response contains no data, and servers
as a reference for the maximum performance throughput possible. The
ItemsStatus (size ”S”) response contains an object with strings and
numbers. It was shaped to reach a size of approximately 1 kB when serialized
as JSON. The ItemsSummary (size ”M”) and ItemsFull (size ”L”)
responses contain a list of identical objects with various data. The length of
the lists were adjusted to reach sizes of approximately 50 kB and 500 kB when
serialized as JSON.

Table 4.2: The four message payloads with serialized lengths and aliases

Size Serialized length Serialized length
alias with JSON [bytes] with protobuf [bytes]
XS 0 5
S 646 556
M 49,945 22,080
L 500,820 220,410

Table 4.2 shows the length, in bytes, of the messages when serialized by
the two methods, along with the alias they will be referred to as in the results.

Implementation and Execution of Benchmarks | 25

Note that this is the size of the message payload, not the size of a network
frame or the total bytes sent on wire.

4.4 Implementation of Servers
This section describes how the six servers were implemented, and what
languages and frameworks were used. Section 4.4.1 is an overview of
the languages and frameworks. Section 4.4.2 to Section 4.4.4 contain
brief descriptions of the programming languages used and subsections with
more details regarding implementation decisions that were made when
implementing each test server.

4.4.1 Languages and Frameworks
In order to see how much an observed difference between conventional
APIs and gRPC is affected by the underlying programming language,
the experiment was conducted for three programming languages that are
candidates when building a backend service: Java, Python, and Rust. Needless
to say, the languages used are not solely responsible for performance. The
choice of frameworks and their implementations are also a significant factor.
Table 4.3 shows the versions and libraries used to build the servers.

Table 4.3: Programming languages and libraries used for testing REST and
gRPC

Language & Version REST API framework gRPC library
Java 17.0.6 Spring io.grpc (official)

Python 3.11.2 FastAPI grpcio (official)
Rust 1.69.0 Axum Tonic

Before implementing the full Inventory service, minimal functionalities of
all frameworks used was first ensured by implementing a Hello World testing
service in each language. After verifying that all frameworks functioned as
expected and that they worked together with the client across the network, the
implementation of the Inventory service was started.

4.4.2 Java
Java [38] is an object-oriented compiled language. It has been a popular choice
for many years, and is still taught at many schools and universities. Java code

26 | Implementation and Execution of Benchmarks

is compiled to intermediate byte code, which can then be executed on multiple
platforms by the Java Virtual Machine (JVM).

The two servers written in Java used Java version 17.0.6 and the Spring
framework [39]. Additionally, Spring Boot — a framework that simplifies the
creation of web servers [40], was used for both the REST and gRPC server. It
offers a wide range of features and modules for creating REST APIs, such as
Spring MVC. The project dependencies were managed using Maven, which
facilitated the installation and management of the required Java libraries and
frameworks.

4.4.2.1 REST Server

To enable the development of the REST application, the Spring Web
dependency was added to the project. This dependency provides a set of
classes and utilities that help build RESTful application using Spring MVC.

In order to create the REST API, two new packages were created: the
Controller package and the Item package. The Item package represents
the model which defines the dataclasses for the objects that are returned
by the API. The Controller package contains the REST controller which is
responsible for processing incoming requests and returning responses. For
the heartbeat endpoint, modifications was made so that the response body
was now an empty response body (void) instead of an empty string. The
@GetMapping annotation was used to map the endpoints to their function
for handling the API call.

4.4.2.2 gRPC Server

To generate the necessary classes for the gRPC server, a protobuf Maven
plugin was used. Unlike the REST server, the models were automatically
generated when the server was compiled. These generated sources were
then included in the project structure and added as a dependency. A
subclass of InventoryGrpc.InventoryImplBase was created and
methods for each gRPC endpoint were overwritten and modified to return
the appropriate response. The @GRpcService annotation allowed for
the automatic registration of the annotated bean as a gRPC service. The
annotation also allows the server to utilize the built-in threading mechanism.

Implementation and Execution of Benchmarks | 27

4.4.3 Python
Python [41] is an object-oriented interpreted language, famous for having
simple syntax and being beginner-friendly. Python code is parsed and
executed by an interpreter, which makes the language more flexible, but slower
than compiled languages.

Both servers used version 3.11.2 of the Python interpreter. A virtual
environment was set up to isolate the versions of Python executables and
dependencies. Dependencies were installed with the default pip tool.

4.4.3.1 REST Server

For the REST server, the FastAPI framework was used together with Pydantic
for replicating the data models. In order to host and manage multiprocessing
of the FastAPI instance, the Uvicorn web server was used.

To implement the API, the data models were first replicated as subclasses
of pydantic.BaseModel. Then, the API endpoints could be easily
defined by writing functions annotated with the decorator @app.get().

The heartbeat endpoint was at first implemented by returning an empty
string. However, this made the HTTP response consist of an empty JSON
response as the body. To solve this, an instance of the Response class from
FastAPI was instead returned, which made the endpoint correctly respond with
an empty body. This change also resulted in better performance, since no
JSON encoder got involved.

The non-empty responses were annotated to use ORJSONResponse, an
optional extension to FastAPI for accelerating the encoding of the response,
which resulted in a few percent better performance during testing. Another
way performance was increased was to use asynchronous functions (async
def) instead of synchronous ones.

The final part was to tweak the Uvicorn server for optimal performance. A
major improvement was seen when disabling logging of requests. The amount
of workers (server processes in parallel) was tweaked to yield the maximum
performance on the server machine, resulting in 10 workers.

4.4.3.2 gRPC Server

The Python gRPC models were generated by issuing a command to the
grpc_tools package on the command line. Since Python does not have
a building stage, a way of automatically generating the gRPC models before

28 | Implementation and Execution of Benchmarks

executing the program was not found. The models had to be regenerated every
time changes were made.

Implementing the generated Inventory service was simple. A subclass of
a generated InventoryServicer class was defined. One method for each
RPC endpoint was then added, returning the corresponding model object.

To achieve concurrency, the gRPC server from the official package uses a
thread pool executor. However, this thread pool struggled to fully utilize the
CPU.

4.4.4 Rust
Rust [42] is a multi-paradigm, compiled, memory-safe language rising in
popularity. Code is compiled to a platform-specific standalone executable.

Both servers used version 1.69.0 of the Rust compiler, and were built
with frameworks that build upon the Tokio asynchronous runtime [43]. Tokio
serves as the foundation for building network applications and handles multi-
threading, synchronization, scheduling facilities, and more.

4.4.4.1 REST Server

For the JSON-based server, the web framework Axum was used alongside
the Serde serialization framework. The models were implemented as structs
and enums, using the #[derive()] procedural macro to implement the
serde::Serialize and serde::Deserialize traits. These traits
allow the Rust data structures to be serialized in a wide variety of formats,
JSON in this case. The Clone trait was also derived to easily create
multiple copies of structs to fill vectors with the vec![] macro. The
heartbeat endpoint was declared with an empty asynchronous function, and
the endpoints with data were declared with asynchronous functions that return
the JSON representation of the hardcoded responses.

4.4.4.2 gRPC Server

Unlike Java and Python, Rust does not have official gRPC or protobuf libraries.
Instead, community-developed implementations Tonic and Prost were used.
Using Prost required a separate installation of the official protoc protobuf
compiler, as it does not come bundled.

Building the protobuf definitions was handled by code in a separate crate
from the other code using the tonic_build crate. A build script was used,
so that the protobufs were recompiled every time the protobuf definitions

Implementation and Execution of Benchmarks | 29

changed. Using a separate crate for the generated protobuf models meant that
both the server and client implementations could depend on it, and guarantee
that both parts use the same version of the protobuf schema.

In the gRPC server implementation, the generated protobuf definitions
provided an Inventory trait for implementing a valid server that follows
the specification, along with all the data models, meaning no extra work was
needed to ensure that the server was following the specification.

4.5 Implementation of Client
The client was designed to spam an endpoint with requests of one type (REST
or gRPC) and size (referred to as ”XS”, ”S”, ”M”, or ”L”; see Table 4.2). When
the client runs, it counts how many requests were completed each second, and
reports the average request count per second across the test.

The client was written in Rust and uses some of the same libraries as the
Rust server. The gRPC-related code reuses the same code stubs generated by
the shared protobuf crate. The Tokio asynchronous runtime is also used in
the client. Tokio’s abstraction for handling parallel execution are called tasks,
which are similar to OS threads, but more lightweight [44]. In this section, the
word thread is used to describe parallel execution on the CPU, but refers to a
Tokio task.

Early in the implementation phase, the client used a single-threaded loop
for sending one request at a time. This was sufficient to verify functionality
of the servers, but not to saturate them with requests. This spamming
behaviour was parallelized to a multi-threaded solution, where each thread
spams requests sequentially. Such a thread will be referred to as a spammer
thread.

It was quickly discovered that the different servers performed very
differently based on how many client threads were used. A ”discovery phase”
was introduced, where the client exponentially increased the number of threads
to find an amount with optimal throughput. After the exponential increases, a
binary search-like approach continued the search for an optimal thread count.
However, this approach turned out to give very inconsistent results and rarely
found a ”better” amount of threads than the exponential search due to the
randomness involved in benchmarking. Because of this, the binary search-
like approach was dropped, leaving only the exponential search.

30 | Implementation and Execution of Benchmarks

Figure 4.3: Logical flow of a full test, simplified. Purple rectangles refer to
one benchmark round (Figure 4.4)

Figure 4.3 shows pseudo-code for how the client performs the discovery
phase and final benchmark. An example of the discovery phase can also be
seen in Figure 4.6 and Figure 4.7. Each iteration of the discovery phase was
set to run for 20 seconds, and the final test for 100 seconds. Every benchmark
began with a 1 second ”warmup” phase before measuring anything, so that all
spammer threads had time to reach maximum throughput. This made the client
find a reasonable number of spammer threads to use for each server without
spending too much time trying to find the ”perfect” number. The

Figure 4.4 shows pseudo-code for how a benchmark runs. It starts off by
taking note of the current time and calculating when to end the benchmark.
It then sets up an mpsc (multiple producer, single consumer) channel for
receiving messages. Next, the spammer threads are spawned.

A spammer is simply an infinite loop that sends requests sequentially. If
a response is successfully received, a message is passed to the main thread,
containing the timestamp (whole second) relative to the benchmark start when
the response was received. Spammer threads keep on running until cancelled

Implementation and Execution of Benchmarks | 31

Figure 4.4: Logical flow of one benchmark round, simplified. The blue
rectangle refers to several instances of spammer threads (Figure 4.5)

Figure 4.5: Logical flow of a spammer thread, simplified

32 | Implementation and Execution of Benchmarks

by the main loop at the end of the test. Pseudo-code for a spammer thread is
shown in Figure 4.5.

4.6 Execution of Benchmarks
Both the client and server computers were restarted. The minimal set of
programs required to run the tests were opened on the client computer: A
terminal for running the client software, a terminal for connecting to the
server via Secure Shell (SSH), a terminal for taking notes of the results, and
Windows’ Task Manager for monitoring CPU and Network usage. The 24
benchmarks were executed one by one by starting the corresponding server
program on the server, and running one benchmark for each message size,
while taking notes of the results.

Each benchmark started with a discovery phase where, starting from two
clients, the throughput was measured during 20 seconds. If a higher number
of clients yielded better results, the number of clients were doubled, and the
20-second test was repeated. This step was repeated until the average requests
per second started to flatten out. This behaviour is visualized in Figure 4.6 and
Figure 4.7.

When the optimal number of clients for maximal throughput was found,
the benchmark was run for 100 seconds. The benchmark produced an average
number of requests per second, which is the final result for that server and
message size.

Implementation and Execution of Benchmarks | 33

1 5 10 15 20
0

1,000

2,000

3,000

4,000

Time [s]

Th
ro

ug
hp

ut
[re

qu
es

ts
/s

] 2 threads
4 threads
8 threads
16 threads
32 threads
64 threads

Figure 4.6: Discovery of optimal client thread count against the Java gRPC
server with M-sized messages. Each line chart represents a 20-second
benchmark

2 4 8 16 32 64
0

1,000

2,000

3,000

4,000

1,344
1,703

2,293 2,386

3,145

2,514

Spammer threads

Av
g.

th
ro

ug
hp

ut
[re

qu
es

ts
/s

]

Figure 4.7: Average requests/s per thread count during discovery phase.
Aggregation of Figure 4.6. During this test, 32 was a clear sweet spot, and
was therefore used as the number of threads in the full 100-second test

34 | Implementation and Execution of Benchmarks

Results | 35

Chapter 5

Results

This chapter presents the results from the 24 benchmarks, split into 3 charts,
one for each of the programming language used on the server: Java, Python,
and Rust. Each chart has two halves, one for the REST benchmarks, and one
for the gRPC benchmarks. Each half of the charts have four bars, one for
each message size used in the response from the server. The bars represent
the average number of requests per second that the server was able to deliver
when under a load from an optimal number of clients. Section 4.6 describes
how the benchmarks were executed. All values are rounded to two significant
numbers. The full output of all tests is included in Appendix A.

XS S M L XS S M L
101

102

103

104

105

REST gRPC

4,700 4,000
1,700

240*

4,700 4,300 2,300
500*

Request type, Message size

Av
g.

th
ro

ug
hp

ut
[re

qu
es

ts
/s

] Java servers

Figure 5.1: Results benchmarks against Java servers. An asterisk (*) denotes
that the benchmark was capped by the 1 Gbit/s network bandwidth instead of
the server’s CPU

36 | Results

Figure 5.1 shows the results of the benchmarks against the REST server and
gRPC server implemented in the Java programming language. The request
throughput for both servers was measured to 4,700 requests/s for the XS
message size. The REST server achieved a throughput of 4,000 requests/s for
the S message size while the gRPC server reached 4,300 requests/s. For the
M message size, REST recorded 1,700 requests/s, and gRPC 2,300 requests/s.
Regarding the L message size, REST exhibited an average of 240 requests/s,
and gRPC 500 requests/s. Notably, for both servers, the L message size
benchmark was limited by the 1 Gbit/s network bandwidth.

XS S M L XS S M L
101

102

103

104

105

REST gRPC

5,700 3,100

66

5.8

2,000 1,900
630

130

Request type, Message size

Av
g.

th
ro

ug
hp

ut
[re

qu
es

ts
/s

] Python servers

Figure 5.2: Results benchmarks against Python servers

The results of the benchmarks against the Python servers, illustrated in
Figure 5.2, show that the throughput for the XS message size was measured
to 5,700 requests/s for the REST server while the gRPC server reached 2,000
requests/s. For the S message size, REST saw a throughput of 3,100 requests/s,
while gRPC demonstrated a throughput of 1,900 requests/s. For the M
message size, REST recorded 66 requests/s while gRPC demonstrated a higher
630 requests/s. The L message size also showed a great disparity where the
REST server had 5.8 requests/s while gRPC had 130 requests/s.

Results | 37

XS S M L XS S M L
101

102

103

104

105

REST gRPC

62,000 53,000

2,300*

230*

14,000 11,000
4,000

300

Request type, Message size

Av
g.

th
ro

ug
hp

ut
[re

qu
es

ts
/s

] Rust servers

Figure 5.3: Results benchmarks against Rust servers. An asterisk (*) denotes
that the benchmark was capped by the 1 Gbit/s network bandwidth instead of
the server’s CPU

Figure 5.3 presents the benchmarks against the Rust servers. It shows
a throughput of 62,000 requests/s for the REST server and 14,000 for the
gRPC server when sending XS messages. For S messages the REST server
and gRPC server had a throughput of 53,000 requests/s and 11,000 requests/s
respectively. For the M sized message, REST recorded 2,300 requests/s while
gRPC demonstrated 4,000 requests/s. Notably, the REST server’s benchmark
was capped by the 1 Gbit/s network bandwidth. For the L size messages,
the benchmark was once again capped for the REST server which resulted
in an 230 requests/s. For the same L message size, the gRPC server had 300
requests/s.

38 | Results

Analysis and Discussion | 39

Chapter 6

Analysis and Discussion

In this chapter, the results presented in Chapter 5 are analyzed and discussed.
Section 6.1 has a basic analysis of the results. Section 6.2 contains a discussion
of the findings, with comparison to expectations and other work. Section 6.3
analyzes the reliability of these results by addressing the validity threats
introduced in Section 3.5.

6.1 Analysis
A trend that can be seen across all three languages is that gRPC gets better and
better the bigger the response payload is. For Python and Rust, REST starts
off better at small payloads, but falls behind when the payload size increases.
For Java, the performance was already equal at small payloads, but REST still
falls behind when the payload size increases. At medium and large message
sizes, all gRPC servers outperformed their REST counterpart.

It is not certain, but fairly likely that the Rust and Java REST servers that
were capped by the network bandwidth would also reach lower throughput
than the corresponding gRPC server even if the bandwidth cap was raised.

In places where the throughput got capped by the network bandwidth, the
throughput can be seen as the inverse of the size of the encoded payload, seen
in Table 4.2. The large message took 56% less bytes of space when encoded
with protobufs compared to JSON, and the Java gRPC server managed 52%
more throughput than the REST server. The large messages were also 10 times
larger than the medium messages, and the Rust REST server managed 10 times
less throughput as a consequence.

40 | Analysis and Discussion

6.2 Discussion
The fact that REST performed better for the empty messages was expected. An
empty HTTP/1.1 response consists of only the status code and response body.
An empty gRPC request and response cycle contains more overhead data and
a small protobuf object that goes through the encoding and decoding steps.
Although an empty HTTP/2 response is smaller than an equivalent HTTP/1.1
response, the added complexity of gRPC makes it slower at empty or small
payloads.

Overall, the Java servers performed much worse than our expectations,
especially the REST server. In the continuous gRPC benchmarks [35], Java
tends to be among the best performing languages. Although those tests are run
in a very different environment and without Spring Boot, it was not expected
that Python would come so close to Java’s performance and even surpass in the
XS size REST test. We deem the most likely explanations for this unexpected
behavior could be inefficiencies in the Spring Boot framework, Java and/or
Spring Boot being sub-optimal to run on our server hardware, or oversights
and errors in our implementation or execution of the Java project.

From the literature studies presented in Section 2.3, certain similarities
can be seen in our and others’ results from similar research. Ruwan Fernando
performed similar benchmark tests over a REST API using JSON and a gRPC
endpoint [4]. Even though the test was done in C# as the programming
language, he found that for small payloads, the gRPC execution time was
barely performing better than REST, but for large payloads, gRPC clearly
performed better. Recep İnanç also did a similar study in Java using the Spring
framework and concluded that for smaller message payloads, REST had better
performance in terms of response time, but the results moved towards favoring
gRPC for larger payloads [5].

In this study, we examine request throughput for REST APIs and gRPC for
three different programming languages (Java, Python and Rust). The results
align well with the expectations set by the previous studies and literature
presented in Section 2.3. In this study, the connection is found that regardless
of programming language we see a consistent trend that gRPC performed
better than REST as the payload size increased.

Kumar et al. measured the time of making many sequential calls with
REST and gRPC in a microservice environment [36]. The results showed
that gRPC outperformed REST, indicating gRPC’s superiority. Their tests
only used payloads of 100 kB and above, which is above the M size messages
used in our tests. While specific details regarding programming languages and

Analysis and Discussion | 41

message composition were not provided, their findings support the notion that
gRPC can deliver better performance compared to REST in response time.

By measuring the maximum network throughput of REST APIs and gRPC
across different programming languages we provide valuable insights into
their scalability and performance expectations.

Overall, the results in any benchmark test should be taken with a grain of
salt. The best way to check which solution works best for a particular service
is to try different solutions in the same environment as the service. This is of
course not always possible, which is why the results in this thesis can serve as
a pointer towards what to expect.

6.3 Validity Analysis
This section analyses the four validity threats listed in Section 3.5, one
subsection for each validity thread.

6.3.1 Credibility
Credibility is to what degree the research can be trusted. The fact that
our benchmarking was conducted using an unrealistically assembled test
application and workload that does not reflect real-world usage, and the
choices of metrics, hardware and software used contributes to a lower
credibility of our research. Another dimension of this threat is how the
potential flaws and limitations our implementations of the client and server
affected the results.

6.3.2 Transferability
Transferability concerns to what extent our findings may be applicable in other
situations. As mentioned, the goal with the research study is to bring valuable
insight to make informed decisions regarding communication infrastructure
when developing and maintaining applications at scale. Although isolated
benchmark tests cannot fully generalize to real-life values, our results
serve as pointers, providing indications of performance characteristics and
expectations.

42 | Analysis and Discussion

6.3.3 Reliability
Reliability is the consistency of measurement values under the same
conditions. There are many factors in our development and benchmarking
process that could cause the results to differ under similar circumstances. The
major one is how the randomness in the discovery phase benchmarks could
result in varying choices of spammer threads when repeating the test against
the same server. This is the biggest factor that could lead to varying results.
Minor factors that can contribute to the variance are the CPU usage of other
programs on the server and network usage of other programs in the same
network. There is also the tiny factor of performance difference across CPUs
of the same model, but this difference is considered negligible in the scope of
this study.

However, the overall reliability is considered fairly high due to the isolated
and well-defined test environment.

6.3.4 Objectivity
Objectivity is that the researchers should not allow their own biases to affect
the study. There was a certain amount of bias in the selection of languages
and frameworks used. The languages were chosen based on familiarity and
previous experience. However, the study was conducted in three languages to
begin with in order to alleviate this bias from distorting the results. The choice
of frameworks was mostly based on perceived popularity when researching the
alternatives, but bias from familiarity and ease of use was also present.

Another aspect of objectivity is that different amounts of time were spent
to implement and optimize each server. For instance, the Python REST server
underwent some experimentation with various parameters and addons in order
to make it perform slightly better, while the Java REST server was left at the
minimum viable product state. Giving an ”equal” amount of optimization
effort for each server will always be subjective in some regards, but we
acknowledge that this bias was present.

There is also a possibility of bias when interpreting the results. This has
been mitigated by acknowledging the validity threats and not draw any strong
conclusions due to the research being qualitative.

Conclusions and Future Work | 43

Chapter 7

Conclusions and Future Work

The increasing demand for better and faster applications has led to increased
demand for more efficient communication systems. Today, a common
method for software systems to exchange information is with the use of APIs.
Many developers build APIs using JSON serialization over HTTP/1.1, but
there exists more complex applications where more efficient solutions are
needed. A large, performance-critical application that sends thousands of
internal messages per second could suffer from using an inefficient method
for inter-service communication. As complex applications face challenges of
scalability, performance and efficiency in their communication infrastructure,
conventional API implementations may not always fulfill these requirements.
RPC libraries such as gRPC are said to offer higher performance API calls, but
many still favor conventional design of APIs. Data that shows the potential
benefits of different alternatives can be helpful when deciding how to build
communication interfaces. The problem addressed in this thesis is that there
are few benchmarks showing the difference in request throughput between
conventional API calls and gRPC. The purpose of this report was to provide
benchmarks of the request throughput for conventional API calls and gRPC
calls in order to evaluate the differences and performance trade-offs. This was
done with the goal of providing a basis for making better decisions regarding
communication infrastructure between applications. The result of the report
is benchmarks comparing the protocols, presented in Chapter 5. Based on the
results obtained, this thesis addresses the problem by providing benchmarks
that compare request throughput between conventional API calls and gRPC.
The conclusions drawn from the results are listed in Section 7.1. Areas of
future work and suggestions on how to improve and extend this study are
suggested in Section 7.2.

44 | Conclusions and Future Work

7.1 Conclusions
The conclusions drawn from the research are:

• Using gRPC can increase request throughput when messages are not
tiny. To what extent this applies to any particular application requires
further testing.

• For straightforward or simple projects with low performance require-
ments, the selection of a network protocol for API calls becomes less
important. In such cases, conventional REST APIs might be favored,
due to their simplicity.

• When network bandwidth matters, using a more efficient data
compression procedure is better. This rule applies generally, and not
only to protobufs. One thing to consider is that compression can cost
more CPU usage. In the case of large gRPC payloads it can be an
improvement over JSON.

7.2 Future Work
Improvements to this study can be done by conducting tests in a more realistic
scenario, with for example database calls and business logic. This could
be performed in the form of a case study. Additionally, it could include
testing of different RPC libraries, and different programming languages in the
implementation of a service, to gain a more comprehensive overview of where
gains in performance can be seen. Another major aspect that this report did
not cover are requests with payload, such as POST requests. This would make
decoding of the encoding formats a part of the picture.

There are also several other parameters that could be tuned for a more
comprehensive comparison. Benchmarking more sizes of messages and
messages with different compositions of data (such as many strings, many
numbers, nested, flat) can highlight strengths and weaknesses of different
encoding algorithms. Other aspects of the network protocols can also be
adjusted. A growing number of HTTP servers support HTTP/2. Using
HTTP/2 on the REST servers will result in a more competitive benchmark.
Comparing gRPC streaming with Websockets or Server-sent events is also a
consideration.

Since this report only covered testing on a local network with low latency,
this study can be further improved by testing over a higher latency, for example

Conclusions and Future Work | 45

over a larger geographical distance over the Internet, and comparing the results.
Doing tests on cloud-based infrastructure is also of relevance, since it is a
common environment for today’s applications. This also enables the testing
to be done on more realistic hardware.

46 | Conclusions and Future Work

References | 47

References

[1] J. H, “gRPC vs. REST: How Does gRPC Compare with Traditional
REST APIs?” Nov. 2022. [Online]. Available: https://blog.dreamfactor
y.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
[Page 2.]

[2] S. Wettasinghe, “Everything you need to know about gRPC,” Oct. 2022.
[Online]. Available: https://medium.com/@swettasinghe23/everythin
g-you-need-to-know-about-grpc-ccd3637d145f [Page 2.]

[3] “gRPC.” [Online]. Available: https://grpc.io/ [Pages 2 and 13.]

[4] R. Fernando, “Evaluating Performance of REST vs. gRPC,” Apr. 2019.
[Online]. Available: https://medium.com/@EmperorRXF/evaluating-p
erformance-of-rest-vs-grpc-1b8bdf0b22da [Pages 2, 15, and 40.]

[5] R. İnanç, “Benchmarking — REST vs. gRPC,” Jan. 2021. [Online].
Available: https://medium.com/sahibinden-technology/benchmarking-r
est-vs-grpc-5d4b34360911 [Pages 2, 16, and 40.]

[6] Sanyog Kumar Singh, “gRPC vs. REST - Performance Test using
JMeter,” May 2022. [Online]. Available: https://www.dltlabs.com/blog
/grpc-vs-restperformance-test-usingjmeter-532131 [Page 2.]

[7] S. Spilka, “Cloud Pricing Models - Shedding light upon pricing
options.” [Online]. Available: https://www.exoscale.com/syslog/clou
d-pricing-models/ [Page 4.]

[8] K. Kunwar, “The Reason why JSON is so Popular,” Jul. 2020. [Online].
Available: https://www.prokurainnovations.com/json/ [Pages 7 and 10.]

[9] “SOA Source Book - What Is SOA?” [Online]. Available: https:
//collaboration.opengroup.org/projects/soa-book/pages.php?action=sho
w&ggid=1314 [Page 7.]

https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://medium.com/@swettasinghe23/everything-you-need-to-know-about-grpc-ccd3637d145f
https://medium.com/@swettasinghe23/everything-you-need-to-know-about-grpc-ccd3637d145f
https://grpc.io/
https://medium.com/@EmperorRXF/evaluating-performance-of-rest-vs-grpc-1b8bdf0b22da
https://medium.com/@EmperorRXF/evaluating-performance-of-rest-vs-grpc-1b8bdf0b22da
https://medium.com/sahibinden-technology/benchmarking-rest-vs-grpc-5d4b34360911
https://medium.com/sahibinden-technology/benchmarking-rest-vs-grpc-5d4b34360911
https://www.dltlabs.com/blog/grpc-vs-restperformance-test-usingjmeter-532131
https://www.dltlabs.com/blog/grpc-vs-restperformance-test-usingjmeter-532131
https://www.exoscale.com/syslog/cloud-pricing-models/
https://www.exoscale.com/syslog/cloud-pricing-models/
https://www.prokurainnovations.com/json/
https://collaboration.opengroup.org/projects/soa-book/pages.php?action=show&ggid=1314
https://collaboration.opengroup.org/projects/soa-book/pages.php?action=show&ggid=1314
https://collaboration.opengroup.org/projects/soa-book/pages.php?action=show&ggid=1314

48 | References

[10] C. Richardson, “What are microservices?” [Online]. Available:
http://microservices.io/index.html [Page 7.]

[11] Ethan J. Jackson, “The Dark Side of Microservices,” Feb. 2020.
[Online]. Available: https://dev.to/ethanjjackson/the-dark-side-of-mic
roservices-3pbd [Page 7.]

[12] M. Kolny, “Scaling up the Prime Video audio/video monitoring service
and reducing costs by 90%,” Mar. 2023, section: Video Streaming.
[Online]. Available: https://www.primevideotech.com/video-streaming
/scaling-up-the-prime-video-audio-video-monitoring-service-and-red
ucing-costs-by-90 [Page 8.]

[13] “Remote procedure call,” Jan. 2023, page Version ID: 1135050297.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Remot
e_procedure_call&oldid=1135050297 [Page 8.]

[14] “Introduction to gRPC,” Feb. 2023, section: docs. [Online]. Available:
https://grpc.io/docs/what-is-grpc/introduction/ [Pages 8 and 13.]

[15] “Apache Thrift - Home.” [Online]. Available: https://thrift.apache.org/
[Pages 8 and 16.]

[16] “fRPC Documentation.” [Online]. Available: https://frpc.io/introduction
[Page 8.]

[17] “DRPC - Storj Labs.” [Online]. Available: https://storj.github.io/drpc/
[Page 8.]

[18] “Go Micro,” Apr. 2023, original-date: 2015-01-13T23:30:18Z.
[Online]. Available: https://github.com/go-micro/go-micro [Page 8.]

[19] zeromicro, “go-zero.” [Online]. Available: https://go-zero.dev/ [Page 8.]

[20] “tRPC - Move Fast and Break Nothing. End-to-end typesafe APIs made
easy. | tRPC,” Sep. 2022. [Online]. Available: https://trpc.io/ [Page 8.]

[21] “An overview of HTTP - HTTP | MDN,” Mar. 2023. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
[Page 9.]

[22] “Evolution of HTTP - HTTP | MDN,” Apr. 2023. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HT
TP/Evolution_of_HTTP [Page 9.]

http://microservices.io/index.html
https://dev.to/ethanjjackson/the-dark-side-of-microservices-3pbd
https://dev.to/ethanjjackson/the-dark-side-of-microservices-3pbd
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=1135050297
https://en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=1135050297
https://grpc.io/docs/what-is-grpc/introduction/
https://thrift.apache.org/
https://frpc.io/introduction
https://storj.github.io/drpc/
https://github.com/go-micro/go-micro
https://go-zero.dev/
https://trpc.io/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

References | 49

[23] “Introduction to HTTP/2.” [Online]. Available: https://web.dev/perfor
mance-http2/ [Page 10.]

[24] “JSON.” [Online]. Available: https://www.json.org/json-en.html
[Page 10.]

[25] “Protocol Buffers.” [Online]. Available: https://protobuf.dev/ [Page 11.]

[26] “History.” [Online]. Available: https://protobuf.dev/history/ [Page 11.]

[27] “Language Guide (proto 3),” section: programming-guides. [Online].
Available: https://protobuf.dev/programming-guides/proto3/ [Page 11.]

[28] “Overview.” [Online]. Available: https://protobuf.dev/overview/
[Page 11.]

[29] “Wireshark · Go Deep.” [Online]. Available: https://www.wireshark.or
g/ [Page 11.]

[30] “Encoding,” section: programming-guides. [Online]. Available: https:
//protobuf.dev/programming-guides/encoding/ [Page 11.]

[31] “What is an API?” [Online]. Available: https://www.redhat.com/en/topi
cs/api/what-are-application-programming-interfaces [Page 12.]

[32] “gRPC website,” May 2023. [Online]. Available: https://github.com/g
rpc/grpc.io/blob/ee39b786fe68a32eb8e1b094f1b449543a2d30a2/static
/img/landing-2.svg [Pages xi and 14.]

[33] “Supported languages.” [Online]. Available: https://grpc.io/docs/langu
ages/ [Page 13.]

[34] “Benchmarking,” Jan. 2022, section: docs. [Online]. Available:
https://grpc.io/docs/guides/benchmarking/ [Page 15.]

[35] “gRPC Performance Multi-language on GKE (@upstream/master) -
Grafana.” [Online]. Available: https://grafana-dot-grpc-testing.appspot
.com/?orgId=1 [Pages xi, 15, and 40.]

[36] P. K. Kumar, R. Agarwal, R. Shivaprasad, D. Sitaram, and S. Kalam-
bur, “Performance Characterization of Communication Protocols in
Microservice Applications,” in 2021 International Conference on Smart
Applications, Communications and Networking (SmartNets), Sep. 2021.
doi: 10.1109/SmartNets50376.2021.9555425 pp. 1–5. [Pages 16
and 40.]

https://web.dev/performance-http2/
https://web.dev/performance-http2/
https://www.json.org/json-en.html
https://protobuf.dev/
https://protobuf.dev/history/
https://protobuf.dev/programming-guides/proto3/
https://protobuf.dev/overview/
https://www.wireshark.org/
https://www.wireshark.org/
https://protobuf.dev/programming-guides/encoding/
https://protobuf.dev/programming-guides/encoding/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://github.com/grpc/grpc.io/blob/ee39b786fe68a32eb8e1b094f1b449543a2d30a2/static/img/landing-2.svg
https://github.com/grpc/grpc.io/blob/ee39b786fe68a32eb8e1b094f1b449543a2d30a2/static/img/landing-2.svg
https://github.com/grpc/grpc.io/blob/ee39b786fe68a32eb8e1b094f1b449543a2d30a2/static/img/landing-2.svg
https://grpc.io/docs/languages/
https://grpc.io/docs/languages/
https://grpc.io/docs/guides/benchmarking/
https://grafana-dot-grpc-testing.appspot.com/?orgId=1
https://grafana-dot-grpc-testing.appspot.com/?orgId=1

50 | References

[37] W. M. K. Trochim, “Qualitative Validity.” [Online]. Available: https:
//conjointly.com/kb/qualitative-validity/ [Page 19.]

[38] “Java | Oracle.” [Online]. Available: https://www.java.com/en/
[Page 25.]

[39] “Spring.” [Online]. Available: https://spring.io/ [Page 26.]

[40] “Spring Boot.” [Online]. Available: https://spring.io/projects/spring-b
oot [Page 26.]

[41] “Welcome to Python.org,” May 2023. [Online]. Available: https:
//www.python.org/ [Page 27.]

[42] “Rust Programming Language.” [Online]. Available: https://www.rust-l
ang.org/ [Page 28.]

[43] “Tokio - An asynchronous Rust runtime.” [Online]. Available: https:
//tokio.rs/ [Page 28.]

[44] “tokio::task - Rust.” [Online]. Available: https://docs.rs/tokio/latest/tok
io/task/ [Page 29.]

https://conjointly.com/kb/qualitative-validity/
https://conjointly.com/kb/qualitative-validity/
https://www.java.com/en/
https://spring.io/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.python.org/
https://www.python.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://tokio.rs/
https://tokio.rs/
https://docs.rs/tokio/latest/tokio/task/
https://docs.rs/tokio/latest/tokio/task/

Appendix A: Full Results from Benchmark | 51

Appendix A

Full Results from Benchmark

Source code and all results can be found at
https://github.com/jonaro00/rest-vs-grpc.

A.1 Java REST Server, XS messages
Trying with 2 clients...
[1447, 2047, 2104, 2057, 2090, 2073, 2095, 2119, 2109, 2052, 2105, 2111,

2031, 2052, 2103, 2106, 2094, 2130, 2091, 2134] avg 2057.5↪→
Trying with 4 clients...
[3053, 3085, 3069, 3098, 3094, 3128, 3074, 3091, 3109, 3152, 3162, 3122,

3180, 3195, 3205, 3153, 3179, 3181, 3184, 3162] avg 3133.8↪→
Trying with 8 clients...
[4265, 4041, 4196, 4196, 4282, 4208, 4180, 4111, 4139, 4171, 4186, 4015,

4182, 4151, 4348, 4151, 4198, 4169, 4134, 4146] avg 4173.45↪→
Trying with 16 clients...
[4250, 4380, 4282, 4227, 4329, 4327, 4285, 4370, 4403, 4391, 4385, 4400,

4295, 4320, 4380, 4335, 4263, 4233, 4320, 4484] avg 4332.95↪→
Trying with 32 clients...
[4492, 4438, 4550, 4474, 4504, 4475, 4486, 4492, 4477, 4476, 4499, 4518,

4500, 4476, 4489, 4473, 4502, 4467, 4467, 4505] avg 4488↪→
Trying with 64 clients...
[4566, 4612, 4731, 4570, 4567, 4611, 4620, 4708, 4587, 4789, 4663, 4604,

4531, 4571, 4574, 4549, 4679, 4644, 4600, 4672] avg 4622.4↪→
Trying with 128 clients...
[4625, 4673, 4805, 4718, 4645, 4653, 4647, 4760, 4715, 4681, 4647, 4678,

4745, 4618, 4716, 4653, 4409, 4673, 4586, 4739] avg 4669.3↪→
Choosing 128 clients.
Running test with 128 clients...
[4721, 4655, 4684, 4708, 4743, 4755, 4667, 4695, 4628, 4645, 4679, 4713,

4662, 4705, 4651, 4690, 4730, 4712, 4752, 4719, 4643, 4700, 4727, 4643,
4658, 4716, 4702, 4663, 4723, 4592, 4665, 4758, 4770, 4710, 4531, 4685,
4609, 4674, 4707, 4650, 4682, 4684, 4653, 4660, 4732, 4637, 4693, 4641,
4640, 4679, 4635, 4731, 4669, 4611, 4719, 4684, 4739, 4689, 4650, 4714,
4644, 4678, 4814, 4721, 4562, 4716, 4663, 4710, 4734, 4745, 4690, 4709,
4743, 4706, 4737, 4693, 4653, 4616, 4635, 4688, 4737, 4622, 4660, 4655,
4714, 4639, 4621, 4763, 4708, 4619, 4661, 4767, 4770, 4623, 4625, 4686,
4659, 4706, 4595, 4724] avg 4683.93

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

https://github.com/jonaro00/rest-vs-grpc

52 | Appendix A: Full Results from Benchmark

A.2 Java REST Server, S messages
Trying with 2 clients...
[1622, 1642, 1609, 1616, 1577, 1627, 1606, 1626, 1610, 1554, 1583, 1630,

1669, 1657, 1584, 1637, 1654, 1637, 1646, 1529] avg 1615.75↪→
Trying with 4 clients...
[2458, 2452, 2497, 2468, 2544, 2471, 2457, 2439, 2478, 2449, 2509, 2437,

2492, 2504, 2486, 2464, 2444, 2457, 2444, 2436] avg 2469.3↪→
Trying with 8 clients...
[3077, 3086, 3053, 3157, 3074, 3060, 3055, 3104, 3096, 3099, 3136, 3188,

3096, 3101, 3140, 3104, 3123, 3175, 3118, 3133] avg 3108.75↪→
Trying with 16 clients...
[3550, 3554, 3605, 3538, 3482, 3541, 3547, 3553, 3573, 3481, 3439, 3547,

3521, 3546, 3573, 3593, 3540, 3560, 3506, 3551] avg 3540↪→
Trying with 32 clients...
[3666, 3767, 3761, 3758, 3706, 3792, 3773, 3789, 3849, 3787, 3761, 3787,

3762, 3812, 3769, 3819, 3842, 3752, 3783, 3782] avg 3775.85↪→
Trying with 64 clients...
[3842, 3867, 3811, 3884, 3852, 3804, 3869, 3904, 4025, 3891, 3936, 3836,

3862, 3870, 3903, 3849, 3863, 3829, 3880, 3892] avg 3873.45↪→
Trying with 128 clients...
[3947, 4032, 3979, 3813, 3983, 3939, 3765, 3971, 3791, 4011, 3995, 3954,

3921, 3922, 4063, 3985, 3972, 3958, 3992, 4035] avg 3951.4↪→
Trying with 256 clients...
[3969, 3891, 3959, 3920, 3976, 3946, 4118, 3990, 3930, 3970, 3927, 4064,

3988, 3955, 4084, 3955, 3928, 3900, 3987, 4029] avg 3974.3↪→
Choosing 256 clients.
Running test with 256 clients...
[4092, 3925, 3971, 4005, 3946, 3996, 3995, 3981, 4020, 3890, 3909, 3929,

4003, 4064, 3936, 3938, 3870, 3946, 4065, 4048, 4010, 4002, 3993, 4016,
4045, 3955, 4029, 4006, 3975, 4052, 4007, 3919, 3986, 4012, 4103, 3948,
3985, 4053, 4018, 4086, 3942, 3951, 3870, 3999, 4052, 4045, 4079, 4051,
4019, 3924, 3983, 3995, 3969, 3965, 3955, 3935, 4032, 3954, 3973, 3943,
3874, 3976, 3917, 3903, 4085, 3932, 4032, 4002, 3895, 3990, 4051, 3995,
3990, 3867, 3955, 4044, 3948, 3906, 3931, 4035, 4038, 4016, 3952, 3992,
3989, 3989, 4011, 3967, 4070, 3944, 3966, 4065, 4013, 3870, 4080, 4075,
4033, 3972, 3890, 3877] avg 3985.02

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.3 Java REST Server, M messages
Trying with 2 clients...
[782, 782, 794, 791, 775, 789, 784, 805, 799, 775, 799, 800, 794, 792, 786,

805, 805, 796, 801, 792] avg 792.3↪→
Trying with 4 clients...
[1185, 1193, 1224, 1233, 1218, 1228, 1208, 1209, 1249, 1199, 1219, 1245,

1209, 1234, 1211, 1218, 1213, 1201, 1228, 1202] avg 1216.3↪→
Trying with 8 clients...
[1407, 1404, 1412, 1424, 1426, 1410, 1431, 1431, 1415, 1401, 1447, 1394,

1394, 1447, 1404, 1420, 1439, 1418, 1403, 1422] avg 1417.45↪→
Trying with 16 clients...
[1619, 1612, 1602, 1624, 1607, 1609, 1631, 1570, 1629, 1622, 1586, 1542,

1626, 1616, 1616, 1646, 1629, 1618, 1636, 1630] avg 1613.5↪→
Trying with 32 clients...
[1668, 1680, 1688, 1669, 1686, 1661, 1667, 1682, 1687, 1680, 1685, 1667,

1689, 1697, 1680, 1674, 1697, 1656, 1687, 1693] avg 1679.65↪→
Trying with 64 clients...
[1643, 1747, 1706, 1723, 1707, 1731, 1708, 1703, 1727, 1731, 1704, 1728,

1733, 1709, 1730, 1724, 1710, 1716, 1704, 1708] avg 1714.6↪→
Trying with 128 clients...
[1745, 1705, 1729, 1763, 1732, 1732, 1712, 1744, 1759, 1740, 1749, 1767,

1749, 1716, 1738, 1737, 1752, 1751, 1754, 1758] avg 1741.6↪→
Choosing 128 clients.
Running test with 128 clients...

Appendix A: Full Results from Benchmark | 53

[1746, 1758, 1751, 1750, 1750, 1745, 1735, 1725, 1745, 1759, 1746, 1712,
1716, 1755, 1711, 1753, 1772, 1728, 1748, 1744, 1745, 1735, 1739, 1761,
1761, 1721, 1741, 1751, 1746, 1726, 1763, 1720, 1734, 1723, 1750, 1745,
1723, 1719, 1750, 1760, 1742, 1718, 1739, 1750, 1727, 1757, 1744, 1716,
1731, 1732, 1747, 1774, 1732, 1723, 1754, 1743, 1716, 1748, 1760, 1737,
1752, 1749, 1749, 1715, 1731, 1753, 1752, 1745, 1744, 1752, 1765, 1724,
1749, 1762, 1747, 1725, 1761, 1766, 1760, 1728, 1736, 1737, 1762, 1731,
1736, 1756, 1728, 1759, 1764, 1733, 1712, 1756, 1748, 1747, 1737, 1743,
1748, 1749, 1735, 1753] avg 1742.51

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.4 Java REST Server, L messages — capped
at 1 Gbit/s

Trying with 2 clients...
[136, 136, 139, 138, 139, 141, 140, 142, 139, 141, 140, 141, 141, 143, 140,

141, 142, 142, 139, 139] avg 139.95↪→
Trying with 4 clients...
[195, 204, 196, 196, 202, 208, 200, 194, 203, 199, 201, 200, 202, 198, 203,

204, 205, 203, 206, 204] avg 201.15↪→
Trying with 8 clients...
[229, 211, 218, 223, 229, 231, 220, 230, 226, 222, 227, 226, 223, 220, 229,

227, 220, 223, 225, 226] avg 224.25↪→
Trying with 16 clients...
[236, 238, 238, 234, 239, 236, 238, 234, 237, 235, 237, 232, 237, 232, 229,

238, 232, 235, 239, 231] avg 235.35↪→
Trying with 32 clients...
[240, 236, 237, 237, 237, 241, 236, 233, 240, 240, 236, 234, 236, 239, 238,

231, 240, 237, 237, 239] avg 237.2↪→
Choosing 32 clients.
Running test with 32 clients...
[237, 238, 233, 234, 242, 233, 239, 235, 240, 238, 238, 234, 241, 229, 236,

243, 233, 237, 241, 232, 240, 235, 235, 240, 236, 235, 236, 240, 230,
240, 238, 237, 237, 239, 235, 242, 230, 237, 242, 237, 234, 233, 237,
238, 240, 233, 240, 239, 235, 240, 232, 238, 239, 234, 243, 230, 233,
240, 235, 236, 239, 242, 233, 239, 235, 237, 232, 238, 241, 238, 234,
236, 238, 233, 237, 237, 239, 237, 237, 234, 238, 239, 233, 239, 233,
235, 236, 238, 237, 237, 238, 235, 240, 235, 239, 232, 240, 241, 232,
238] avg 236.74

↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.5 Java gRPC Server, XS messages
Trying with 2 clients...
[846, 2761, 2731, 2955, 2917, 2964, 2954, 2964, 3020, 3009, 2992, 2917, 3057,

2802, 2850, 2835, 2836, 2804, 2807, 2823] avg 2792.2↪→
Trying with 4 clients...
[4289, 4472, 4471, 4489, 4474, 4453, 4454, 4488, 4484, 4459, 4435, 4447,

4450, 4467, 4446, 4413, 4405, 4463, 4478, 4454] avg 4449.55↪→
Trying with 8 clients...
[5416, 5285, 5436, 5511, 5496, 5478, 5494, 5432, 5407, 5432, 5394, 5487,

5493, 5529, 5550, 5520, 5543, 5576, 5514, 5508] avg 5475.05↪→
Trying with 16 clients...
[3259, 3161, 5498, 5434, 5427, 5804, 5782, 5788, 5771, 5779, 5756, 5790,

5777, 5784, 5766, 5776, 5802, 5742, 5727, 5726] avg 5467.45↪→
Choosing 8 clients.
Running test with 8 clients...

54 | Appendix A: Full Results from Benchmark

[4857, 4863, 4900, 4901, 4882, 4888, 4904, 4874, 4909, 4912, 4851, 4871,
4906, 4899, 4695, 2911, 2994, 3049, 4876, 4852, 4833, 4839, 4857, 4854,
4885, 4929, 4909, 4906, 4898, 4905, 4835, 4661, 5542, 5519, 5529, 5523,
5529, 5523, 5558, 5538, 5534, 5543, 5558, 5559, 5545, 5554, 5561, 5556,
5547, 5587, 5545, 3612, 2822, 2955, 3228, 4849, 4706, 4229, 4722, 4842,
4891, 4893, 4888, 4886, 4880, 4883, 4876, 4876, 4879, 4850, 4827, 3351,
2903, 2815, 2819, 2924, 2719, 2810, 3095, 2996, 4506, 4751, 4897, 4873,
4898, 4851, 4848, 4893, 4843, 4858, 4890, 4883, 4896, 4879, 4879, 4876,
4888, 4870, 4894, 4851] avg 4685.05

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.6 Java gRPC Server, S messages
Trying with 2 clients...
[2526, 2542, 2545, 2523, 2548, 2537, 2522, 2543, 2575, 2550, 2553, 2538,

2563, 2555, 2563, 2554, 2563, 2579, 2561, 2563] avg 2550.15↪→
Trying with 4 clients...
[3434, 3577, 3541, 3535, 3601, 3533, 3557, 3524, 3526, 3558, 3552, 3544,

3546, 3516, 3517, 3528, 3496, 3467, 3533, 3512] avg 3529.85↪→
Trying with 8 clients...
[4389, 4243, 4369, 4340, 4351, 4361, 4375, 4359, 4347, 4347, 4364, 4367,

4351, 4348, 4357, 4380, 4361, 4374, 4379, 3765] avg 4326.35↪→
Trying with 16 clients...
[5780, 4192, 4833, 5742, 5720, 3396, 2752, 2740, 2774, 2739, 2743, 2749,

2701, 2737, 4203, 5740, 5749, 5751, 5763, 5739] avg 4227.15↪→
Choosing 8 clients.
Running test with 8 clients...
[4935, 4918, 4920, 4898, 4892, 4903, 4901, 2619, 2607, 2600, 2556, 2483,

2555, 4193, 4336, 4333, 4346, 4346, 4332, 4359, 4357, 4339, 4319, 4329,
4345, 4347, 4335, 4322, 4358, 4323, 4346, 4363, 4353, 4328, 4338, 4343,
4327, 4379, 4362, 4350, 4322, 4298, 4288, 4330, 4316, 4315, 4314, 4316,
4310, 4314, 4317, 3734, 4329, 3178, 4523, 4918, 4909, 4906, 4908, 4914,
4914, 4924, 4941, 4928, 4889, 4934, 4900, 4910, 4529, 4156, 4352, 4332,
4342, 4363, 4361, 4322, 4348, 4341, 4345, 4363, 4345, 4330, 4328, 4365,
4376, 4354, 4340, 4337, 4363, 4358, 4344, 4324, 4352, 4344, 4335, 4360,
4339, 4348, 4360, 4353] avg 4331.03

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.7 Java gRPC Server, M messages
Trying with 2 clients...
[1399, 1426, 1392, 1408, 1338, 1285, 1310, 1300, 1316, 1322, 1324, 1336,

1312, 1334, 1331, 1323, 1316, 1332, 1345, 1422] avg 1343.55↪→
Trying with 4 clients...
[1651, 1694, 1904, 1800, 1687, 1676, 1683, 1685, 1687, 1695, 1701, 1698,

1687, 1657, 1684, 1687, 1699, 1700, 1694, 1695] avg 1703.2↪→
Trying with 8 clients...
[2280, 1908, 2258, 2061, 2514, 2038, 2353, 2132, 2413, 2371, 2370, 2450,

2478, 2405, 2520, 2505, 2220, 2309, 2386, 1893] avg 2293.2↪→
Trying with 16 clients...
[2225, 2224, 2082, 2235, 2231, 2253, 2047, 2240, 2253, 2255, 2253, 2243,

2252, 2250, 2264, 1747, 3139, 3186, 3173, 3171] avg 2386.15↪→
Trying with 32 clients...
[3148, 3179, 3338, 3186, 2923, 3230, 2133, 3086, 3238, 3264, 3266, 3149,

3245, 3114, 3209, 3321, 3332, 3083, 3218, 3236] avg 3144.9↪→
Trying with 64 clients...
[2992, 3051, 2947, 3225, 3057, 2449, 2521, 2462, 2905, 2317, 2554, 2123,

2203, 2070, 2267, 2162, 2263, 2350, 2255, 2101] avg 2513.7↪→
Choosing 32 clients.
Running test with 32 clients...

Appendix A: Full Results from Benchmark | 55

[2308, 2339, 2328, 2366, 2401, 2360, 2314, 2358, 2390, 2339, 2325, 2232,
2340, 2355, 2359, 2375, 2321, 2334, 2394, 2395, 2265, 2252, 2309, 2224,
2280, 2270, 2345, 2307, 2377, 2405, 2360, 2390, 2365, 2386, 2299, 2284,
2267, 2393, 2348, 2398, 2244, 2292, 2377, 2281, 2392, 2319, 2339, 2223,
2233, 2247, 2334, 2280, 2323, 2363, 2384, 2354, 2256, 2334, 2334, 2397,
2340, 2292, 2331, 2355, 2373, 2299, 2404, 2328, 2345, 2350, 2363, 2389,
2267, 2303, 2364, 2260, 2284, 2380, 2356, 2341, 2369, 2221, 2281, 2392,
2268, 2303, 2374, 2351, 2281, 2362, 2262, 2271, 2372, 2243, 2353, 2356,
2181, 2392, 2296, 2384] avg 2327.99

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.8 Java gRPC Server, L messages —
capped at 1 Gbit/s

Trying with 2 clients...
[288, 293, 294, 294, 286, 294, 295, 294, 293, 287, 293, 292, 293, 293, 288,

295, 295, 296, 294, 289] avg 292.3↪→
Trying with 4 clients...
[441, 477, 510, 456, 470, 507, 471, 456, 460, 449, 487, 485, 473, 501, 501,

492, 460, 477, 478, 477] avg 476.4↪→
Trying with 8 clients...
[489, 477, 526, 525, 494, 528, 528, 521, 467, 486, 495, 508, 464, 449, 385,

510, 528, 528, 522, 487] avg 495.85↪→
Trying with 16 clients...
[392, 510, 526, 509, 520, 525, 504, 432, 481, 479, 410, 383, 488, 525, 469,

403, 390, 400, 446, 473] avg 463.25↪→
Choosing 8 clients.
Running test with 8 clients...
[464, 508, 492, 487, 508, 521, 477, 501, 480, 517, 526, 500, 449, 499, 491,

521, 524, 526, 516, 487, 497, 512, 475, 512, 512, 492, 510, 502, 525,
520, 517, 467, 496, 491, 511, 493, 484, 509, 478, 459, 498, 518, 448,
470, 460, 489, 494, 524, 452, 507, 505, 530, 526, 520, 508, 519, 504,
467, 500, 497, 496, 485, 514, 492, 461, 515, 528, 494, 471, 493, 461,
504, 493, 445, 502, 475, 436, 529, 500, 492, 501, 487, 463, 509, 527,
528, 526, 525, 519, 506, 497, 487, 462, 499, 522, 489, 429, 488, 525,
524] avg 496.91

↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.9 Python REST Server, XS messages
Trying with 2 clients...
[3056, 3137, 3111, 3178, 3130, 3175, 3167, 3171, 3158, 3154, 3135, 3141,

3184, 3127, 3158, 3179, 3175, 3177, 3175, 3139] avg 3151.35↪→
Trying with 4 clients...
[3960, 4039, 4045, 4049, 4046, 4051, 4048, 4048, 4041, 4052, 4043, 4040,

4045, 4050, 4050, 4055, 4050, 4050, 4044, 4034] avg 4042↪→
Trying with 8 clients...
[5274, 5163, 5272, 5265, 5269, 5264, 5262, 5271, 5264, 5267, 5270, 5269,

5273, 5271, 5272, 5270, 5276, 5268, 5259, 5265] avg 5263.2↪→
Trying with 16 clients...
[4998, 4988, 5017, 4869, 4661, 4663, 4664, 4658, 4662, 4669, 4658, 4658,

4672, 4739, 4736, 4734, 4731, 4737, 4726, 4719] avg 4747.95↪→
Choosing 8 clients.
Running test with 8 clients...
[5731, 5739, 5735, 5736, 5737, 5723, 5718, 5712, 5728, 5733, 5728, 5697,

5711, 5716, 5727, 5735, 5740, 5737, 5712, 5720, 5730, 5703, 5719, 5725,
5714, 5715, 5706, 5705, 5726, 5741, 5739, 5714, 5720, 5693, 5736, 5745,
5724, 5721, 5702, 5700, 5695, 5719, 5736, 5728, 5715, 5717, 5712, 5723,
5723, 5729, 5714, 5689, 5737, 5734, 5731, 5729, 5716, 5715, 5743, 5755,
5745, 5719, 5695, 5718, 5725, 5739, 5718, 5752, 5719, 5700, 5724, 5705,
5741, 5728, 5730, 5738, 5715, 5703, 5736, 5740, 5729, 5740, 5722, 5708,
5732, 5751, 5717, 5701, 5727, 5742, 5712, 5734, 5719, 5736, 5736, 5700,
5717, 5698, 5744, 5739] avg 5723.47

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

56 | Appendix A: Full Results from Benchmark

A.10 Python REST Server, S messages
Trying with 2 clients...
[1672, 1652, 1670, 1662, 1672, 1676, 1680, 1676, 1670, 1682, 1680, 1666,

1670, 1678, 1656, 1666, 1678, 1662, 1676, 1668] avg 1670.6↪→
Trying with 4 clients...
[2479, 2546, 2550, 2548, 2546, 2548, 2544, 2548, 2543, 2549, 2544, 2552,

2548, 2552, 2544, 2536, 2544, 2552, 2544, 2548] avg 2543.25↪→
Trying with 8 clients...
[2686, 2631, 2686, 2700, 2697, 2705, 2698, 2707, 2697, 2701, 2705, 2704,

2698, 2706, 2693, 2700, 2699, 2699, 2695, 2699] avg 2695.3↪→
Trying with 16 clients...
[2996, 2953, 2897, 2970, 2933, 2912, 2868, 2922, 2924, 2902, 2841, 2914,

2937, 2924, 2915, 2892, 2950, 2928, 2903, 2938] avg 2920.95↪→
Trying with 32 clients...
[3206, 3168, 3179, 3227, 3143, 3154, 3166, 3193, 3142, 3183, 3131, 3088,

3101, 3133, 3167, 3195, 3112, 3155, 3146, 3108] avg 3154.85↪→
Trying with 64 clients...
[3477, 3446, 3454, 3467, 3477, 3431, 3451, 3429, 3464, 3459, 3459, 3486,

3433, 3445, 3461, 3434, 3441, 3445, 3469, 3447] avg 3453.75↪→
Trying with 128 clients...
[3325, 3381, 3396, 3359, 3413, 3360, 3395, 3377, 3407, 3388, 3368, 3399,

3402, 3358, 3396, 3385, 3370, 3413, 3382, 3374] avg 3382.4↪→
Choosing 64 clients.
Running test with 64 clients...
[3093, 3119, 3119, 3113, 3120, 3101, 3119, 3073, 3115, 3109, 3122, 3108,

3114, 3114, 3115, 3081, 3075, 3070, 3066, 3072, 3059, 3068, 3069, 3082,
3095, 3124, 3140, 3109, 3093, 3118, 3125, 3119, 3105, 3134, 3107, 3113,
3105, 3086, 3092, 3104, 3121, 3121, 3096, 3114, 3123, 3129, 3124, 3114,
3115, 3120, 3105, 3115, 3156, 3159, 3114, 3094, 3106, 3123, 3096, 3072,
3070, 3074, 3065, 3081, 3062, 3086, 3089, 3093, 3108, 3113, 3098, 3103,
3117, 3109, 3111, 3103, 3113, 3111, 3108, 3096, 3110, 3121, 3080, 3086,
3062, 3058, 3078, 3078, 3061, 3059, 3065, 3060, 3091, 3063, 3105, 3116,
3070, 3079, 3081, 3079] avg 3098.94

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.11 Python REST Server, M messages
Trying with 2 clients...
[46, 43, 45, 45, 44, 46, 43, 45, 44, 45, 44, 45, 44, 44, 44, 46, 44, 45, 44,

44] avg 44.5↪→
Trying with 4 clients...
[65, 65, 66, 64, 67, 67, 65, 68, 64, 67, 66, 67, 64, 67, 66, 65, 68, 65, 66,

65] avg 65.85↪→
Trying with 8 clients...
[86, 83, 87, 85, 86, 85, 88, 84, 86, 84, 86, 85, 88, 84, 86, 88, 82, 87, 86,

83] avg 85.45↪→
Trying with 16 clients...
[87, 84, 86, 84, 88, 85, 90, 86, 83, 89, 86, 85, 87, 82, 87, 89, 80, 89, 89,

84] avg 86↪→
Choosing 16 clients.
Running test with 16 clients...
[66, 69, 65, 60, 67, 73, 68, 65, 61, 66, 73, 68, 59, 66, 67, 68, 72, 60, 67,

67, 67, 65, 67, 68, 66, 67, 63, 70, 67, 67, 66, 59, 74, 67, 67, 67, 59,
73, 68, 67, 58, 68, 66, 74, 66, 60, 67, 67, 73, 60, 67, 66, 68, 71, 61,
67, 67, 67, 66, 67, 66, 68, 65, 67, 67, 67, 67, 66, 66, 68, 67, 66, 60,
72, 68, 67, 66, 59, 67, 73, 67, 67, 59, 67, 73, 67, 59, 67, 68, 72, 67,
60, 67, 67, 73, 59, 68, 66, 68, 65] avg 66.45

↪→
↪→
↪→
↪→
↪→

Appendix A: Full Results from Benchmark | 57

A.12 Python REST Server, L messages
Trying with 2 clients...
[6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6] avg 5.75
Trying with 4 clients...
[12, 12, 11, 10, 11, 12, 11, 12, 10, 10, 12, 12, 12, 9, 11, 12, 12, 11, 10,

12] avg 11.2↪→
Trying with 8 clients...
[10, 11, 12, 12, 10, 12, 11, 10, 12, 12, 10, 12, 10, 12, 11, 10, 11, 11, 13,

11] avg 11.15↪→
Choosing 4 clients.
Running test with 4 clients...
[7, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6,

6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5,
6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6,
6, 5, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6,
5, 6, 6] avg 5.77

↪→
↪→
↪→
↪→

A.13 Python gRPC Server, XS messages
Trying with 2 clients...
[2189, 2216, 2204, 2189, 2147, 2132, 2143, 2047, 2050, 2055, 2057, 2061,

2059, 2059, 2052, 2062, 2058, 2056, 2058, 2052] avg 2097.3↪→
Trying with 4 clients...
[1873, 1859, 1920, 1967, 1972, 1911, 1963, 1938, 1973, 1939, 1887, 1949,

1966, 1932, 1831, 1969, 1903, 1983, 1962, 1971] avg 1933.4↪→
Choosing 2 clients.
Running test with 2 clients...
[2055, 1923, 2030, 2054, 2014, 2053, 2056, 2103, 2052, 2045, 2055, 2067,

2060, 2047, 2056, 1993, 1913, 2040, 2083, 2088, 2042, 2017, 1949, 1912,
2013, 1966, 1928, 2008, 2086, 2052, 2056, 2003, 2077, 2074, 2073, 2060,
2070, 1903, 1884, 1961, 2032, 2052, 2060, 2002, 2075, 2054, 2089, 2044,
1928, 1874, 1887, 1889, 1974, 2056, 2068, 2081, 2052, 2064, 2060, 2049,
2059, 2045, 2073, 2093, 1936, 2051, 2070, 2054, 2050, 2059, 2002, 1877,
1873, 1915, 1912, 1911, 1912, 1908, 2059, 2062, 2007, 2033, 1999, 1949,
1972, 1904, 1992, 2085, 2001, 2018, 2034, 2003, 2082, 1953, 1849, 1909,
1920, 1897, 1903, 1914] avg 2006.56

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.14 Python gRPC Server, S messages
Trying with 2 clients...
[1900, 1951, 1830, 1791, 1834, 1821, 1840, 1856, 1823, 1804, 1818, 1944,

1881, 1919, 1862, 1878, 1841, 1823, 1829, 1828] avg 1853.65↪→
Trying with 4 clients...
[1698, 1730, 1789, 1789, 1782, 1649, 1741, 1774, 1787, 1778, 1736, 1798,

1772, 1783, 1781, 1749, 1782, 1781, 1801, 1800] avg 1765↪→
Choosing 2 clients.
Running test with 2 clients...
[1902, 2013, 1869, 1991, 1995, 1996, 1866, 1871, 1853, 1927, 1921, 1814,

1807, 1809, 1800, 1813, 1819, 1816, 1822, 1834, 1826, 1823, 1828, 1829,
1882, 2005, 1995, 1967, 1864, 1835, 1806, 1827, 1930, 1902, 1983, 1992,
1991, 2005, 2005, 1962, 1974, 1975, 1969, 1820, 1876, 1994, 1870, 1873,
1799, 1850, 1886, 1941, 2006, 2019, 1912, 1828, 1823, 1823, 1831, 1818,
1808, 1822, 1833, 1842, 1823, 1822, 1832, 1827, 1830, 1839, 1973, 1852,
1827, 1906, 1818, 1810, 1815, 1813, 1823, 1821, 1815, 1813, 1824, 1829,
1827, 1829, 1835, 1825, 1825, 1810, 1807, 1817, 1832, 1830, 1978, 2006,
1815, 1844, 1865, 1831] avg 1872.75

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

58 | Appendix A: Full Results from Benchmark

A.15 Python gRPC Server, M messages
Trying with 2 clients...
[644, 654, 649, 647, 637, 629, 653, 638, 656, 642, 628, 652, 648, 648, 647,

626, 646, 653, 642, 643] avg 644.1↪→
Trying with 4 clients...
[675, 677, 672, 673, 476, 531, 673, 676, 676, 668, 642, 667, 666, 667, 661,

588, 618, 667, 666, 666] avg 645.25↪→
Choosing 4 clients.
Running test with 4 clients...
[541, 666, 664, 665, 664, 609, 662, 658, 661, 666, 636, 455, 497, 664, 662,

665, 666, 620, 638, 663, 663, 666, 664, 640, 664, 663, 658, 661, 476,
446, 456, 661, 663, 664, 666, 646, 629, 657, 657, 662, 664, 461, 657,
663, 668, 668, 663, 613, 663, 665, 665, 661, 520, 670, 666, 662, 664,
621, 432, 592, 670, 667, 662, 663, 540, 662, 662, 664, 663, 622, 587,
663, 662, 658, 665, 523, 632, 662, 664, 662, 660, 524, 665, 663, 662,
665, 605, 627, 666, 662, 661, 659, 634, 657, 664, 667, 662, 487, 648,
663] avg 633.76

↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.16 Python gRPC Server, L messages
Trying with 2 clients...
[129, 132, 129, 132, 126, 129, 128, 133, 131, 118, 130, 132, 127, 126, 116,

132, 132, 131, 127, 119] avg 127.95↪→
Trying with 4 clients...
[130, 130, 132, 132, 123, 115, 131, 134, 132, 132, 125, 131, 135, 130, 128,

108, 130, 133, 132, 130] avg 128.65↪→
Choosing 4 clients.
Running test with 4 clients...
[111, 130, 130, 131, 132, 105, 126, 130, 128, 131, 129, 102, 130, 131, 129,

132, 118, 109, 131, 129, 131, 130, 124, 131, 130, 130, 131, 119, 132,
131, 133, 132, 126, 104, 131, 131, 131, 131, 115, 111, 132, 131, 131,
131, 105, 132, 129, 130, 130, 132, 121, 133, 128, 131, 130, 116, 130,
130, 131, 130, 116, 132, 132, 129, 129, 122, 124, 129, 129, 129, 133,
125, 134, 130, 132, 130, 116, 131, 135, 130, 132, 115, 132, 131, 129,
130, 126, 131, 131, 129, 133, 133, 125, 129, 132, 131, 131, 127, 130,
132] avg 127.47

↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.17 Rust REST Server, XS messages
Trying with 2 clients...
[6107, 6220, 6115, 6383, 5619, 6441, 6200, 6161, 6328, 6091, 6252, 6595,

6230, 6171, 6189, 6575, 6295, 6248, 6479, 6228] avg 6246.35↪→
Trying with 4 clients...
[11267, 11331, 11246, 11195, 10913, 11216, 11212, 11482, 11177, 11064, 11173,

11064, 11328, 11116, 11398, 10716, 11021, 11313, 11133, 11265] avg
11181.5

↪→
↪→
Trying with 8 clients...
[21018, 19110, 19602, 19298, 19126, 19584, 19474, 19201, 19038, 18717, 19325,

19337, 19108, 17893, 18894, 19321, 19048, 18759, 19176, 18926] avg
19197.75

↪→
↪→
Trying with 16 clients...
[30976, 28584, 28687, 28551, 28590, 28602, 28600, 28588, 28550, 28577, 28615,

28571, 28514, 28577, 28431, 28337, 28526, 28616, 28604, 28588] avg
28684.2

↪→
↪→
Trying with 32 clients...
[47557, 46273, 45808, 45789, 45237, 46032, 45659, 45971, 44913, 45129, 45837,

45665, 45367, 45709, 45324, 46170, 45650, 45689, 46219, 46228] avg
45811.3

↪→
↪→
Trying with 64 clients...

Appendix A: Full Results from Benchmark | 59

[59114, 57978, 60337, 58239, 56322, 57670, 57659, 57820, 57402, 55502, 59420,
58399, 56260, 57711, 58782, 61693, 57190, 59044, 57003, 56732] avg
58013.85

↪→
↪→
Trying with 128 clients...
[65039, 64341, 66358, 62373, 65709, 66261, 65833, 66342, 63755, 63732, 64035,

66622, 65451, 67159, 66948, 65816, 64590, 65902, 63557, 63618] avg
65172.05

↪→
↪→
Trying with 256 clients...
[63522, 63922, 64065, 63554, 65225, 63586, 65389, 64243, 63578, 64503, 62964,

63663, 63826, 65628, 65321, 64989, 65360, 65538, 65245, 64613] avg
64436.7

↪→
↪→
Choosing 128 clients.
Running test with 128 clients...
[63300, 60927, 65508, 61139, 62694, 65039, 62290, 65502, 64430, 61606, 61257,

59209, 59202, 61023, 62689, 61861, 62248, 62412, 61548, 59306, 60196,
61153, 66405, 62885, 61220, 61261, 61087, 60631, 63404, 62984, 63555,
62735, 60650, 62156, 61316, 60187, 61202, 65255, 60535, 65925, 61597,
62671, 62667, 60422, 61084, 61694, 60475, 62093, 60970, 62481, 63094,
62336, 60482, 60847, 61973, 62764, 62093, 61445, 60137, 59684, 61158,
60625, 62826, 60871, 61750, 61260, 60465, 63517, 65165, 62227, 63250,
63543, 60740, 63319, 64185, 61202, 63735, 62032, 63481, 60986, 63661,
62145, 61334, 64439, 62285, 62559, 62373, 63815, 62761, 64190, 62719,
61638, 60690, 61660, 61731, 60405, 60578, 59712, 64326, 63557] avg
62118.56

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.18 Rust REST Server, S messages
Trying with 2 clients...
[5237, 5244, 5311, 5238, 5201, 5238, 5226, 5279, 5257, 5250, 5253, 5236,

5286, 5252, 5266, 5180, 5244, 5196, 5223, 5264] avg 5244.05↪→
Trying with 4 clients...
[10152, 10174, 10156, 10172, 10019, 10179, 10165, 10163, 10188, 10054, 10178,

10173, 10190, 10194, 10075, 10165, 10194, 10157, 10181, 10061] avg
10149.5

↪→
↪→
Trying with 8 clients...
[18994, 19293, 19278, 19226, 19253, 19146, 19168, 19310, 19283, 19296, 19106,

18689, 18938, 19238, 19277, 19318, 18873, 18975, 18924, 18845] avg
19121.5

↪→
↪→
Trying with 16 clients...
[29738, 26955, 26845, 25659, 28971, 30240, 27496, 26909, 26708, 27122, 27162,

27231, 27240, 27248, 26662, 26641, 26860, 27192, 27198, 27160] avg
27361.85

↪→
↪→
Trying with 32 clients...
[42836, 43336, 43539, 43821, 42815, 40643, 43912, 44453, 44202, 44403, 44608,

42548, 44310, 43940, 44900, 43341, 42475, 42518, 44316, 44461] avg
43568.85

↪→
↪→
Trying with 64 clients...
[54864, 51081, 53044, 53424, 53247, 53457, 52837, 52814, 52681, 53454, 53004,

53209, 52140, 53941, 53415, 52675, 50204, 51531, 53699, 54120] avg
52942.05

↪→
↪→
Trying with 128 clients...
[52887, 53098, 53649, 53939, 54056, 52212, 53917, 53794, 52826, 54759, 52690,

54740, 54121, 52895, 54193, 54732, 54614, 53778, 54207, 53974] avg
53754.05

↪→
↪→
Choosing 128 clients.
Running test with 128 clients...

60 | Appendix A: Full Results from Benchmark

[53836, 53012, 53444, 52366, 52706, 52790, 52957, 53595, 52142, 53310, 51742,
52194, 52817, 53176, 52586, 52014, 53706, 53471, 52941, 53678, 52510,
51808, 53667, 53683, 52849, 53231, 52750, 53159, 53896, 53217, 52421,
52430, 53799, 53039, 53659, 53905, 53236, 53162, 53624, 53766, 53032,
51260, 52454, 54107, 53352, 52888, 52803, 52787, 53468, 53254, 53500,
53284, 52168, 52640, 53044, 51522, 53232, 53391, 52468, 53040, 53277,
52459, 53663, 52833, 55163, 53078, 53234, 52894, 53176, 53737, 51563,
52596, 52906, 54293, 53563, 53409, 52537, 52800, 53219, 52226, 53618,
52553, 53319, 53852, 53540, 53216, 53556, 54150, 53514, 53242, 53644,
53280, 53243, 53840, 52767, 52407, 52528, 52419, 52996, 53875] avg
53081.73

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.19 Rust REST Server, M messages —
capped at 1 Gbit/s

Trying with 2 clients...
[1198, 1453, 1468, 1465, 1469, 1474, 1473, 1475, 1477, 1476, 1248, 1158,

1153, 1154, 1155, 1157, 1157, 1155, 1160, 1404] avg 1316.45↪→
Trying with 4 clients...
[1951, 2004, 2008, 2009, 2005, 2010, 1996, 2006, 2042, 2005, 2012, 2028,

2024, 2024, 2012, 2012, 2020, 2000, 2004, 1981] avg 2007.65↪→
Trying with 8 clients...
[2310, 2310, 2325, 2316, 2327, 2312, 2312, 2326, 2326, 2319, 2314, 2317,

2324, 2322, 2330, 2322, 2315, 2317, 2318, 2319] avg 2319.05↪→
Trying with 16 clients...
[2349, 2349, 2351, 2348, 2349, 2352, 2348, 2348, 2351, 2348, 2351, 2348,

2350, 2349, 2351, 2347, 2352, 2349, 2346, 2351] avg 2349.35↪→
Choosing 16 clients.
Running test with 16 clients...
[2349, 2351, 2346, 2351, 2350, 2349, 2349, 2349, 2351, 2349, 2351, 2349,

2345, 2351, 2351, 2348, 2350, 2351, 2349, 2348, 2349, 2349, 2349, 2350,
2349, 2350, 2350, 2350, 2349, 2349, 2348, 2351, 2349, 2348, 2351, 2348,
2350, 2351, 2349, 2349, 2349, 2351, 2347, 2350, 2350, 2348, 2351, 2348,
2351, 2348, 2352, 2346, 2350, 2350, 2350, 2350, 2346, 2351, 2350, 2348,
2349, 2350, 2349, 2351, 2349, 2350, 2348, 2350, 2348, 2348, 2352, 2348,
2349, 2350, 2351, 2348, 2349, 2351, 2348, 2349, 2350, 2348, 2351, 2350,
2348, 2348, 2350, 2351, 2350, 2347, 2350, 2350, 2350, 2350, 2348, 2351,
2348, 2348, 2352, 2348] avg 2349.36

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.20 Rust REST Server, L messages —
capped at 1 Gbit/s

Trying with 2 clients...
[110, 110, 110, 111, 111, 110, 111, 111, 111, 110, 111, 110, 111, 110, 111,

111, 110, 111, 111, 110] avg 110.55↪→
Trying with 4 clients...
[176, 182, 189, 189, 193, 186, 189, 189, 186, 187, 182, 185, 185, 185, 193,

181, 186, 190, 192, 188] avg 186.65↪→
Trying with 8 clients...
[224, 227, 222, 225, 226, 228, 226, 228, 229, 225, 224, 227, 223, 225, 226,

228, 226, 223, 223, 227] avg 225.6↪→
Trying with 16 clients...
[223, 232, 229, 231, 230, 224, 231, 223, 232, 228, 227, 228, 224, 228, 228,

225, 228, 228, 226, 227] avg 227.6↪→
Choosing 16 clients.
Running test with 16 clients...

Appendix A: Full Results from Benchmark | 61

[230, 226, 233, 232, 231, 230, 232, 233, 235, 231, 231, 232, 230, 232, 230,
232, 233, 231, 233, 231, 232, 229, 234, 230, 232, 231, 234, 228, 233,
227, 231, 227, 229, 231, 229, 229, 232, 228, 231, 227, 225, 228, 228,
228, 228, 229, 224, 229, 230, 231, 231, 226, 232, 226, 232, 226, 230,
230, 229, 232, 226, 223, 231, 222, 231, 226, 232, 226, 234, 231, 231,
232, 227, 231, 225, 231, 231, 229, 232, 227, 231, 228, 230, 230, 230,
227, 231, 227, 229, 228, 229, 224, 228, 229, 229, 225, 229, 230, 222,
228] avg 229.48

↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.21 Rust gRPC Server, XS messages
Trying with 2 clients...
[5111, 5108, 5111, 5114, 5013, 5114, 5122, 5118, 5111, 5060, 5099, 5085,

5129, 5133, 5032, 5113, 5138, 5119, 5112, 5059] avg 5100.05↪→
Trying with 4 clients...
[6307, 6589, 6809, 6853, 6578, 6550, 6392, 6497, 6130, 6803, 6492, 6169,

6382, 6622, 6714, 5889, 6804, 6859, 6793, 6796] avg 6551.4↪→
Trying with 8 clients...
[9398, 9357, 9365, 9358, 9381, 9335, 9401, 9357, 9373, 9380, 9338, 9342,

9324, 9355, 9316, 9288, 9298, 9331, 9352, 9314] avg 9348.15↪→
Trying with 16 clients...
[10164, 10709, 10814, 10705, 10777, 10706, 10645, 10690, 10682, 10722, 10734,

10766, 10735, 10688, 10759, 10751, 10761, 10666, 10665, 10767] avg
10695.3

↪→
↪→
Trying with 32 clients...
[11460, 10938, 11371, 11388, 11339, 11520, 11408, 11412, 11353, 11386, 11373,

11401, 11393, 11425, 11429, 11344, 11470, 11474, 11332, 11318] avg
11376.7

↪→
↪→
Trying with 64 clients...
[11821, 11627, 11891, 11720, 11824, 11651, 11806, 11865, 11749, 11633, 11736,

11819, 11705, 11716, 11748, 11780, 11766, 11655, 11809, 11850] avg
11758.55

↪→
↪→
Trying with 128 clients...
[11882, 12473, 12619, 12471, 12025, 12467, 12283, 12561, 12221, 12353, 12572,

12296, 12450, 12217, 12352, 12399, 12189, 12438, 12357, 12366] avg
12349.55

↪→
↪→
Trying with 256 clients...
[13189, 12754, 13328, 13422, 13205, 13178, 13374, 13166, 13125, 13244, 13362,

12996, 13250, 13307, 13207, 13154, 13054, 13162, 13218, 12909] avg
13180.2

↪→
↪→
Trying with 512 clients...
[13882, 13891, 14009, 13962, 13838, 13304, 14144, 14091, 13662, 13880, 14092,

13969, 13977, 13746, 13915, 13873, 13903, 14025, 13857, 13866] avg
13894.3

↪→
↪→
Trying with 1024 clients...
[13180, 13743, 13439, 14225, 13913, 13377, 14404, 13703, 13672, 14218, 13933,

13277, 13959, 13754, 13922, 12996, 14457, 13752, 14135, 13254] avg
13765.65

↪→
↪→
Choosing 512 clients.
Running test with 512 clients...
[13680, 13917, 14118, 14137, 14008, 13621, 13711, 13526, 13801, 14018, 13829,

13959, 13488, 13917, 13653, 13847, 13904, 13620, 13935, 13443, 13876,
13514, 13842, 13367, 13637, 14109, 13653, 13777, 13666, 13614, 13660,
13663, 13629, 13481, 13703, 13706, 13782, 13727, 13464, 13424, 13709,
13522, 13714, 13717, 13260, 13765, 13431, 13819, 13313, 13753, 13107,
13785, 13710, 13467, 13253, 13587, 13895, 13214, 13243, 13843, 13562,
13632, 13506, 13383, 13348, 13212, 13711, 13660, 13479, 13485, 13547,
13423, 13830, 13269, 13721, 13632, 13575, 13316, 13703, 13539, 13480,
13665, 13476, 13299, 13496, 13626, 13276, 13498, 13333, 13305, 13216,
13866, 13211, 13348, 13366, 13452, 13654, 13288, 13420, 13603] avg
13599.44

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

62 | Appendix A: Full Results from Benchmark

A.22 Rust gRPC Server, S messages
Trying with 2 clients...
[4535, 4362, 3871, 3953, 4437, 4143, 4383, 4420, 4378, 4096, 4301, 4057,

4144, 4437, 4174, 4447, 4343, 4521, 4223, 4177] avg 4270.1↪→
Trying with 4 clients...
[5637, 5672, 5735, 5778, 5737, 5832, 5638, 5666, 5844, 5737, 5635, 5823,

5686, 5780, 5656, 5634, 5649, 5667, 5604, 5647] avg 5702.85↪→
Trying with 8 clients...
[6968, 7000, 7029, 6966, 7025, 6994, 6951, 6956, 6960, 6954, 6964, 6966,

6986, 6942, 6969, 7005, 6989, 6921, 6983, 6916] avg 6972.2↪→
Trying with 16 clients...
[7373, 7508, 7605, 7481, 7601, 7663, 7564, 7507, 7655, 7518, 7563, 7532,

7570, 7608, 7604, 7776, 7617, 7517, 7605, 7612] avg 7573.95↪→
Trying with 32 clients...
[7736, 7737, 8073, 8128, 7877, 7994, 7947, 8021, 8034, 7958, 7999, 8190,

7970, 7998, 7944, 8015, 8066, 8247, 8071, 8032] avg 8001.85↪→
Trying with 64 clients...
[8410, 8391, 8428, 8329, 8400, 8472, 8450, 8622, 8312, 8400, 8564, 8402,

8479, 8460, 8498, 8534, 8535, 8358, 8435, 8441] avg 8446↪→
Trying with 128 clients...
[8830, 9207, 9371, 9163, 9088, 9244, 9259, 9095, 9259, 9085, 9178, 9435,

9540, 9339, 9173, 9373, 9310, 9333, 9424, 9362] avg 9253.4↪→
Trying with 256 clients...
[9698, 8994, 9407, 9645, 9854, 9380, 9794, 9596, 9405, 9523, 9300, 9815,

9605, 9551, 9405, 9433, 9239, 9040, 9258, 9586] avg 9476.4↪→
Trying with 512 clients...
[9868, 9876, 9825, 9771, 10779, 10495, 9875, 9831, 10003, 10018, 9210, 10116,

9848, 9875, 10117, 10514, 10052, 10048, 9923, 10138] avg 10009.1↪→
Trying with 1024 clients...
[10236, 10748, 11133, 11769, 11523, 11184, 10936, 11269, 11185, 10237, 11729,

10372, 10751, 11207, 10613, 11716, 11442, 10539, 11246, 11766] avg
11080.05

↪→
↪→
Trying with 2048 clients...
[9764, 10420, 11756, 11134, 12347, 11588, 11188, 11482, 11104, 10098, 12473,

11024, 10655, 11303, 12847, 10853, 10999, 10930, 10691, 11159] avg
11190.75

↪→
↪→
Choosing 2048 clients.
Running test with 2048 clients...
[12032, 11263, 11138, 12411, 10590, 12364, 10943, 11928, 11325, 10062, 10307,

10907, 11889, 11309, 9970, 11609, 11130, 10266, 10692, 11266, 11752,
10680, 11434, 12720, 11407, 10107, 12087, 12117, 10949, 11088, 11052,
10732, 10615, 11414, 12441, 11646, 10617, 10294, 10667, 10875, 11411,
10669, 12297, 11119, 11116, 11457, 10923, 12143, 10153, 11275, 10451,
12244, 10368, 11726, 10878, 10266, 11375, 11898, 12363, 10747, 10921,
11483, 11464, 11024, 10490, 10701, 11605, 12016, 10151, 11547, 11697,
11441, 9926, 9518, 11202, 10963, 10521, 11251, 11899, 10528, 11506,
11108, 10921, 10439, 12625, 9682, 11982, 11254, 11262, 12250, 10352,
10923, 10000, 11455, 11002, 11708, 11242, 11437, 10177, 9994] avg
11146.41

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.23 Rust gRPC Server, M messages
Trying with 2 clients...
[1885, 1882, 1849, 1882, 1867, 1853, 1913, 1914, 1897, 1894, 1889, 1885,

1882, 1840, 1891, 1890, 1895, 1893, 1911, 1892] avg 1885.2↪→
Trying with 4 clients...
[2292, 2386, 2403, 2382, 2351, 2328, 2408, 2418, 2428, 2408, 2352, 2439,

2351, 2382, 2402, 2338, 2390, 2389, 2368, 2408] avg 2381.15↪→
Trying with 8 clients...
[3006, 3018, 2999, 3006, 3000, 2978, 3009, 2998, 2975, 3003, 3030, 3005,

3018, 2989, 2998, 3005, 2999, 3012, 2987, 2959] avg 2999.7↪→
Trying with 16 clients...
[3179, 3277, 3332, 3346, 3320, 3277, 3262, 3256, 3323, 3289, 3281, 3305,

3280, 3255, 3281, 3249, 3269, 3257, 3299, 3279] avg 3280.8↪→

Appendix A: Full Results from Benchmark | 63

Trying with 32 clients...
[3513, 3315, 3564, 3553, 3412, 3491, 3529, 3494, 3488, 3556, 3466, 3525,

3437, 3449, 3456, 3558, 3433, 3545, 3516, 3526] avg 3491.3↪→
Trying with 64 clients...
[3682, 3620, 3852, 3694, 3548, 3654, 3504, 3602, 3701, 3612, 3501, 3593,

3766, 3692, 3756, 3467, 3647, 3661, 3690, 3840] avg 3654.1↪→
Trying with 128 clients...
[3792, 3719, 3859, 4110, 4125, 3939, 4201, 4090, 3903, 3883, 3695, 3975,

3898, 4166, 3882, 4034, 3947, 3797, 3974, 3794] avg 3939.15↪→
Trying with 256 clients...
[3966, 3784, 4356, 4105, 3880, 3994, 4126, 3945, 4030, 4326, 3947, 3784,

3960, 4223, 4269, 3920, 4016, 3904, 3941, 4117] avg 4029.65↪→
Trying with 512 clients...
[3745, 3585, 3821, 3600, 3826, 3468, 3899, 3807, 3874, 3862, 3700, 4162,

3796, 4035, 3668, 3870, 3637, 3642, 3861, 3851] avg 3785.45↪→
Choosing 256 clients.
Running test with 256 clients...
[3931, 3914, 4314, 3728, 4119, 3725, 4040, 3896, 3858, 3948, 4002, 3638,

4138, 3932, 4065, 3715, 4005, 4110, 3765, 4167, 4219, 3810, 3950, 3968,
4193, 4097, 3757, 3721, 3772, 3667, 4044, 4045, 3778, 4138, 3879, 3718,
3725, 3841, 3933, 3971, 4086, 3835, 3993, 3989, 4207, 4117, 3901, 4093,
3858, 4169, 4182, 4162, 4030, 3637, 4058, 4039, 4044, 4006, 3914, 3896,
3780, 3718, 3943, 3964, 3981, 3812, 3954, 3802, 3739, 3803, 4122, 4008,
3754, 4071, 3644, 4094, 4240, 4053, 3806, 3852, 3784, 3907, 4369, 4020,
3991, 4240, 3742, 3971, 4045, 4315, 4201, 4417, 4199, 3841, 4041, 3922,
3991, 3805, 4042, 4096] avg 3965.31

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

A.24 Rust gRPC Server, L messages
Trying with 2 clients...
[175, 175, 174, 175, 175, 174, 175, 174, 175, 175, 174, 174, 175, 174, 174,

175, 174, 174, 174, 175] avg 174.5↪→
Trying with 4 clients...
[247, 243, 247, 252, 258, 251, 253, 256, 249, 252, 252, 248, 251, 245, 253,

250, 258, 246, 251, 258] avg 251↪→
Trying with 8 clients...
[305, 299, 308, 303, 307, 304, 304, 306, 302, 300, 306, 297, 302, 303, 299,

303, 300, 303, 300, 300] avg 302.55↪→
Trying with 16 clients...
[291, 289, 291, 318, 295, 303, 301, 294, 322, 303, 285, 288, 324, 304, 313,

314, 309, 299, 303, 291] avg 301.85↪→
Choosing 8 clients.
Running test with 8 clients...
[305, 305, 303, 297, 310, 305, 298, 306, 307, 303, 306, 299, 304, 302, 302,

302, 307, 304, 300, 299, 302, 300, 298, 302, 297, 293, 304, 299, 297,
301, 301, 307, 303, 302, 305, 306, 299, 298, 305, 302, 306, 307, 295,
300, 304, 300, 304, 301, 306, 305, 297, 295, 305, 314, 295, 302, 300,
299, 309, 303, 300, 298, 302, 301, 297, 298, 302, 304, 301, 305, 297,
299, 302, 304, 301, 298, 296, 302, 302, 302, 301, 304, 306, 297, 302,
306, 305, 305, 300, 307, 305, 297, 292, 296, 300, 303, 297, 299, 296,
308] avg 301.69

↪→
↪→
↪→
↪→
↪→
↪→
↪→

64 | Appendix A: Full Results from Benchmark

TRITA-EECS-EX- 2023:437

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goal
	Research Methodology
	Target Audience
	Scope and Limitations
	Benefits, Ethics, and Sustainability
	Terminology
	Structure of the Thesis

	REST and gRPC
	Interservice Communication
	Explanation and Comparison of Relevant Concepts
	HTTP
	JSON
	Protocol Buffers
	API
	REST
	RPC and gRPC
	Differences in API Design

	Previous Work
	Continuous Benchmarks of gRPC
	Difference in Response Time

	Research Methodology
	Research Strategy
	Research Phases
	Research Methods
	Research Instruments
	Validity Threats

	Implementation and Execution of Benchmarks
	Overview
	Selection of Criteria and Environment
	Data Models and Message Size
	Implementation of Servers
	Languages and Frameworks
	Java
	REST Server
	gRPC Server

	Python
	REST Server
	gRPC Server

	Rust
	REST Server
	gRPC Server

	Implementation of Client
	Execution of Benchmarks

	Results
	Analysis and Discussion
	Analysis
	Discussion
	Validity Analysis
	Credibility
	Transferability
	Reliability
	Objectivity

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Full Results from Benchmark
	Java REST Server, XS messages
	Java REST Server, S messages
	Java REST Server, M messages
	Java REST Server, L messages — capped at 1 Gbit/s
	Java gRPC Server, XS messages
	Java gRPC Server, S messages
	Java gRPC Server, M messages
	Java gRPC Server, L messages — capped at 1 Gbit/s
	Python REST Server, XS messages
	Python REST Server, S messages
	Python REST Server, M messages
	Python REST Server, L messages
	Python gRPC Server, XS messages
	Python gRPC Server, S messages
	Python gRPC Server, M messages
	Python gRPC Server, L messages
	Rust REST Server, XS messages
	Rust REST Server, S messages
	Rust REST Server, M messages — capped at 1 Gbit/s
	Rust REST Server, L messages — capped at 1 Gbit/s
	Rust gRPC Server, XS messages
	Rust gRPC Server, S messages
	Rust gRPC Server, M messages
	Rust gRPC Server, L messages

