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Abstract

The growth of e-commerce has been evident over the past years and for compa-
nies like Klarna that provides payment solutions, focusing on the purchase expe-
rience is more important than ever. With that goal in mind, more companies are
using machine learning methods and tools to make predictions and forecast fu-
ture outcomes, giving them a competitive advantage on the market. This thesis
aims to apply supervised machine learning techniques to predict customer con-
version, i.e. predict if a customer with a started shopping session will complete
the purchase. The purpose of the project is to also determine which supervised
learning algorithm performs the best when predicting customer conversion, with
regards to a set of model evaluation metrics. The classical classification method
Logistic Regression was tested, as well as the machine learning methods Support
vector Machine, Random forest and XGBoost. The metrics used to evaluate the
model performances were Precision, Recall, F1- and AUC-scores. Furthermore,
the SHapley Additive exPlanations approach was implemented for feature im-
portance and for interpreting tree-based models. The results showed that it is in
fact possible to predict customer conversion using machine learning. All mod-
els yielded good performance and the di↵erence in performance was relatively
small. XGBoost performed slightly better than the rest of the models.



Sammanfattning

Tillväxten av e-handel har varit tydlig de senaste åren och för företag som
Klarna, som erbjuder betalningslösningar, är det viktigare än n̊agonsin förr
att lägga stor fokus p̊a kundernas köpupplevelse. Som hjälp använder allt
fler företag maskininlärnings- metoder och verktyg för att prediktera och göra
framtidsprognoser, n̊agot som gör dem konkurrenskraftiga p̊a marknader. Syftet
med detta examensarbete är att tillämpa övervakad maskininlärning för att
prediktera kundkonvertering, med andra ord prediktera om en kund som p̊abörjat
en shoppingsession kommer att slutföra beställningen. Syftet med projektet
är även att avgöra vilken övervakad inlärningsalgoritm som presterar bäst vid
predikteringen, med avseende p̊a en uppsättning av valideringsmått. Den klas-
siska klassificeringsmetoden Logistisk Regression testades, s̊a väl som mask-
ininlärnings metoderna Stödvektormaskin, Random Forest och XGBoost. För
att validera modellerna användes Precision, Recall, F1- och AUC-scores. Dessu-
tom implementerades metoden SHapley Additive exPlanations för att företaget
enklare ska först̊a vikten av de olika variablerna och tolka de trädbaserade mod-
ellerna. Resultaten visade att det g̊ar att prediktera kundkonvertering med
hjälp av maskininlärning. Alla modeller p̊avisade bra resultat och skillnaden
i prestation var relativt liten. XGBoost presterade lite bättre än resterande
modeller.
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1 Introduction

In this chapter I go through the background of the thesis, the purpose of this
work and state the specific research questions that will be answered.

1.1 Background

Consumers are more often choosing to shop online, and the growth of e-commerce
focused companies has been major over the past years. Klarna, founded in 2005,
is a Swedish bank and company o↵ering payment solutions to merchants. Today,
Klarna is one of Europes biggest fintech companies and o↵ers their payment so-
lutions to merchants in 17 di↵erent countries. The company has over 90 million
global active users and 2 million transactions a day [1].

An essential factor in the company’s success is their focus on the purchase
experience. In order for a company like Klarna to increase sales and partner
with more merchants, they need to understand how their customers behave and
what drives purchase conversion. Ultimately, the majority of all business de-
cisions and strategies are made with the goal of boosting sales and becoming
more competitive on the market. A change in conversion rates directly a↵ects
the revenue for both Klarna and their merchants.

Meanwhile, machine learning is becoming a bigger and more important part
of e-commerce. The use of predictive models gives companies a competitive
advantage as they can forecast future outcomes in advance. The use of machine
learning makes it possible for e-commerce companies to personalize interactions
with their customers, leading to an overall better user experience. The goal is
often to increase purchase conversion and studies show significant increases in
conversion rates when adding machine learning to the mix [2].

A use case for machine learning within e-commerce is to predict the customers
conversion probability. Such predictions give valuable insight to the company
as they gain better understanding of the key factors driving conversion and
gives them a chance to make early interventions. Depending on the prediction
response, the company can take di↵erent strategic actions in order to increase
conversion rates. Separating the customers that will most likely convert, i.e
place an order, from the ones that will most likely not, open doors for person-
alizing the shopping flow for each type of customer.

As Klarna is widely used over the world, the purchase experience can look
di↵erent in each of their operating markets. Not only can the market play a
part in the purchase experience, other factors like the choice of e-store could
a↵ect the purchase flow due to di↵erent integrations. The company has over
the years developed many products, with Klarna Checkout being one of their
biggest. One of the screens in the Klarna checkout flow is the payment selector.
As indicated by the name, the payment selector screen lists the available pay-
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ment methods the customer can choose from. After selecting, or keeping the
pre-ticked payment method, the customer can choose to place the order or drop
out of the flow.

1.2 Purpose

The purpose of this thesis is to determine if it is possible to predict customer
conversion, i.e. predict if a customer with a started shopping session will con-
vert/place the order. Furthermore, the purpose is to investigate which algo-
rithm yields best performance results when predicting customer conversion. A
classical approach, Logistic regression, will be compared to the three machine
learning methods Support-vector Machines, Random Forest and XGBoost. The
algorithms will be compared based on the evaluation metrics F1 score, Macro
average, ROCAUC and PRAUC.

The research questions is as follows:

• Is it possible to predict if a customer starting a shopping session will
convert/place the order?

• Which Supervised learning algorithm performs best when predicting con-
version with regards to specific model evaluation metrics?

1.3 Limitations

As this project is done in collaboration and within a specific team at Klarna,
their team-specific vision and goal needs to be considered. To fit their vision,
limitations has to be made to the data and the project scope in general.

• The data is based on the Swedish market.

• The data is limited to shopping sessions made with the Klarna Checkout
product.

• The shopping session starts at the Payment Selector screen and ends when
a customer has either successfully placed an order or dropped out.

• The data contains events from 2020 only.

1.4 Thesis outline

The remaining parts of the thesis are structured as follows. Section 2 focuses
on introducing and explaining the relevant mathematical theory used in this
project. The mathematical concepts and algorithms are explained. The section
also includes the theory behind the Model evaluation metrics considered when
building the model and analyzing the results. Section 3 covers the methodology
used to carry out the project. This includes a description of how the data was
processed and how the hyperparameters were tuned. The results are presented
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in Section 4. A summary of the di↵erent models is presented, along with relevant
plots. In Section 5 the results are discussed and the thesis concluded, along with
some suggestions for future work.
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2 Theory

In this Theory section all the relevant mathematical concepts and algorithms
will be introduced and explained.

2.1 Supervised machine learning and Binary classification

In statistical learning, most of the problems either fall under supervised or un-
supervised learning. The former is the most common and will be used in this
project.

To gain an understanding of the concept supervised learning, we begin by look-
ing at the function

Y = f(X) + ✏ (1)

where f is a fixed function and the random irreducible error ✏ > 0 has mean
and variance E[✏] = 0 and V ar(✏) = �2 respectively [3].

The goal is, using an algorithm, to approximate the mapping function so that
for any future input data X the trained model can predict the associated output
target Y . As this thesis handles a qualitative response with two possible cate-
gories, the target variable is modelled as a binary random variable Yi taking on
the values Y 2 {0, 1}. The observed values of the target variable are denoted
by yi and furthermore yi = 1 if a customer converts after a started shopping
session while yi = 0 if the customer drops out before converting. The random
feature variable is denoted Xi 2 Rp and the observed equivalent feature vec-
tor is represented by xi = [xi1, xi2, · · · , xip]

T where i = 1, · · · , N and p is the
number of features. The model learns from historical data as every input has
a known labeled output and applies this knowledge to predict future events [3].
Combining these notations, we will in the coming sections express the observed
training dataset as D = {xi, yi}Ni=1, for a set of N observations.

As mentioned, other machine learning problems might fall under the framework
of unsupervised learning. In those cases, a predictor measurement is observed,
but no corresponding response. There is no training data available and the
model is required to learn by itself. Instead, the goal is to learn about the un-
derlying distribution of the data and unsupervised learning algorithms are often
categorized as clustering models [4].

2.2 Logistic Regression

Logistic Regression is a classical modeling approach and widely used for binary
classification. Its easy implementation and e�ciency when training often makes
it a go-to technique for binary classification and often used as a benchmark.
The logistic function is designed to model the posterior probabilities of the K
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classes via linear functions in x [5]. Again, as this is a binary classification prob-
lem, the model considers two classes. The posterior probability of a customer
belonging to class 1, given an observed feature vector xi where i = 1, · · · , N , is
given through a logistic function

P (Yi = 1 | Xi = xi) =
e�0+�>xi

1 + e�0+�>xi
(2)

where �0 and � = [�1,�2, · · · ,�p]
> are the model parameters, representing

the intercept and the coe�cient vector respectively [3]. The function curve is
S-shaped, taking on values between 0 and 1 as shown in the figure below [6]

Figure 1: The shape of the logistic function. Source of Figure: [6]

The logistic function is a derivation from the log-odds transformation of the
outcome variable which has a linear relationship with the predictor variables,
according to

log
P (Yi = 1 | Xi = xi)

1� P (Yi = 1 | Xi = xi)
= �0 + �>

xi (3)

As the regression coe�cients are unknown and need to be estimated, the model
is fit using the maximum likelihood method. After some algebraic manipulation
of Eq.(2), the probability can be rewritten as

P (Yi = 1 | Xi = xi) =
1

1 + e�(�0+�>xi)
(4)
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With binary classification and N observations, the log-likelihood function can
then be defined as

l(�0,�) =
NX

i=1

{yilogp(xi;�0,�) + (1� yi)log(1� p(xi;�0,�))}

=
NX

i=1

n
yi(�0 + �>

xi)� log(1 + e�0+�>xi)
o (5)

where l represents the negative log-loss function and the conditional probability
p(xi;�0,�) = P (Yi = 1 | Xi = xi;�0,�)

Let � = {�0,�} and assume xi includes the constans term 1 to accomodate
the intercept �0. To optimize the log-likelihood function above by maximiza-
tion, the derivatives are set to zero

@l(�)

@�
=

NX

i=1

xi(yi � p(xi;�)) = 0 (6)

This yields p+1 equations which are nonlinear in � and are solved by using the
Newton-Raphson algorithm [3]. The algorithm requires the second-derivative
which is computed according to

@2l(�)

@�@�> = �
NX

i=1

xix
>
i p(xi;�)(1� p(xi;�)) (7)

Then, starting at �old, a single Newton-Raphson update is given by

�new = �old � (
@2l(�)

@�@�> )�1 @l(�)

@�
(8)

The values of the �-vector are improved until a suitable stopping criteria is
reached. This could be when the dual gap is smaller than the predefined tol-
erance. In the case of no conversion, the value of the Maximum iterations
parameter decides when the iteration stops [7].

2.2.1 Regularization techniques

Regularization is a common way of controlling for and reducing overfitting in
a flexible way. An overfitted model is an overly complex model that tends to
perform well in reference to its initial dataset. This is problematic due to the
model’s inability to generalize and make good predictions on unseen data. Two
commonly used methods are L1- and L2- regularization and are also known as
LASSO and Ridge regression, respectively. The methods helps reduce the vari-
ance of the model, leading to a less overfitted model. A linear combination of
both L1- and L2 can also be used and referred to as elastic net [8].

6



In L1- regularization, or LASSO, the model is penalized by adding:

��L1

pX

j=1

|�j | (9)

to the negative log-loss function given in Eq. (5). Here, �L1 � 0 is the shrink-
age parameter and is also defined as �L1 = 1

C where C � 0. As the shrinkage
parameter grows, the regression coe�cients are shrunk towards zero. LASSO
also has the ability to shrink some coe�cients all the way down to zero and by
doing so, less important features can be removed entirely. L1- regularization
can therefore serve as a feature selection method [3].

The penalized negative log-loss function can now be written as follows

l(�0,�) =
nX

i=1

[yi(�0 + �>
xi)� log(1 + exp(�0 + �>

xi))]� �L1

pX

j=1

|�j | (10)

To estimate the coe�cients, second order Taylor expansion is used to maximize
the penalized function above. We denote the current coe�cient estimates as
�̂ = (�̂0, �̂) and let p̂(xi) = (xi; �̂0, �̂) and wi = p̂(xi)(1� p̂(xi)).

Second order Taylor expansion around the estimates yields the following quadratic
objective function

lQ(�0,�) = �1

2

nX

i=1

[wi(zi � �0 � �>
xi)

2 + C(�̂0, �̂)2]� �L1

pX

j=1

|�j | (11)

where zi = �̂0 + �̂>
xi +

yi�p̂(xi)
p̂(xi)(1�p̂(xi))

is the current working response and C a

constant independent of (�0,�).

By maximizing lQ(�0,�), a Newton-Raphson update of the coe�cients can be
obtained. This is a simple weighted least-squares problem, solved by a general-
ized Newton algorithm. A sequence of nested loops are created where, for each
decrement of �L1 , a quadratic approximation lQ is computed using the current
coe�cients. To find the coe�cients that maximizes Eq. (11), an inner loop
is created with the generalized Newton algorithm running on the optimization
problem [3].

L2- regularization, or Ridge, works in a similar way. The main di↵erence
between the two methods can be found in the penalty term as Ridge penalizes
using the sum of square given below

��L2

pX

j=1

�2
j (12)
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Unlike LASSO, the value of the coe�cients can never be shrunk to reach zero [3].

For this regularization technique, the penalized negative log-loss function can
be written as follows

l(�0,�) =
nX

i=1

[yi(�0 + �>
xi)� log(1 + exp(�0 + �>

xi))]� �L2

pX

j=1

�2
j (13)

Estimation of the coe�cients � = (�0,�) follows the same procedure as for L1-
regularization above, but now maximizing Eq. (13) instead.

Another regularization technique candidate is a linear combination of the two
previous presented. An Elastic net combines both penalty terms into one,
benefitting from the two methods. The following penalty term is used

��e

pX

j=1

↵�2
j + (1� ↵) |�j | (14)

where ↵ 2 [0, 1] is the ratio-variable giving more or less weight to either term.
Thus, ↵ = 0 would be equivalent to using LASSO regularization and ↵ = 1
would be the same as only using Ridge regularization [8].

Using this combination, the negative log-loss function is written as follows

l(�0,�) =
nX

i=1

[yi(�0+�>
xi)�log(1+exp(�0+�>

xi))]��e

pX

j=1

↵�2
j +(1�↵) |�j |

(15)
and once again, the procedure of estimating the coe�cients � = (�0,�) is the
same as for both previous regularization techniques [3].
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2.3 Support Vector Machine

Another, very common approach to binary classification is Support Vector Ma-
chine (SVM). The machine learning method has similarities to Logistic Regres-
sion and using both methods quite often yields the same results. SVM tend to
perform a bit better when the two classes are well separated [4]. To best grasp
the theory behind Support Vector Machine, the two other concepts Maximal
Margin Classifier and Support Vector Classifier will be introduced first.

2.3.1 Maximal Margin Classifier

Consider again a dataset D = {xi, yi}Ni=1 with N observations. To classify
these observations, a Maximal Margin Classifier uses a separating hyperplane.
A hyperplane in a p-dimensional space is a flat a�ne subspace of dimension
p� 1. The hyperplane in Rp is defined by

x
T
i � + �0 = 0 (16)

where � is a unit parameter vector, k�k = 1. In the case of binary classification,
with p = 2, the hyperplane is simply a line.

Using Eq. (16) above and letting f(x) = x
T
i � + �0, then f(x) > 0 for points

on one side of the hyperplane and f(x) < 0 for points on the other side. This
gives hold to the following equation

yi(x
T
i � + �0) � 0 (17)

for i = 1, · · · , N [3].

The figure below illustrates a separating hyperplane shown in black, distin-
guishing between two colour classes.
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Figure 2: Example of a hyperplane separating two colour classes. Source of
Figure: [4]

The idea behind Maximal Margin classifier is to find, among all separating
hyperplanes, the one that yields the biggest gap or margin between the two
classes. In the figure below the maximal margin hyperplane is manifested in a
solid line and the margin represented by the distance between the solid line and
either one of the dashed lines. The three points located on the dashed lines are
referred to as support vectors. The maximal margin hyperplane is dependent
solely on these observations. If the observations were to slightly move, the solid
line would be adjusted according to this move [4].

Figure 3: Example of a maximal margin hyperplane, shown in a solid line.
Source of Figure: [4]

The construction of a Maximal Margin Classifier gives the following constrained
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optimization problem
8
>>>>><

>>>>>:

maximize
�,�0

M

subject to k�k = 1

yi(xT
i � + �0) � M, 8i = 1, .., N

(18)

where the width of the margin is given by 2M = 2
k�k .

The optimization problem can be rewritten in the following way
8
><

>:

minimize
�,�0

k�k

subject to yi(xT
i � + �0) � 1, 8i = 1, .., N

(19)

after rescaling with M = 1
k�k [3].

2.3.2 Support Vector Classifier

In many cases, the existing data is not exactly separable and there is no per-
fect hyperplane that can be fit through the data. Another problem can occur
when the data is separable but noisy, causing one extra point to have dramatic
e↵ect on the maximal margin classifier. This sensitivity to single observations
indicates that there is a risk of overfitted data [9].

To deal with these problems, a Support Vector Classifier is introduced. Also
referred to as soft margin, this is a classifier that does not perfectly separate the
two classes but allows for some misclassified observations. This is done for the
greater good leading to a more robust model and better overall classification
results. The figure below shows two examples of how a support vector classifier
is fit to a small dataset, allowing for some observations to be misclassified.
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Figure 4: Two examples of a support vector classifier. The left shows observa-
tions on the wrong side of the margin and the right shows observations on the
wrong side of both the margin and the solid line hyperplane. Source of Figure:
[4]

Constructing a support vector classifier, the formulation of the problem given
in Eq. (18) needs to be modified to accommodate it. The optimization problem
can now be formulated as

8
>>>>>>>>><

>>>>>>>>>:

maximize
�,�0,⇠

M

subject to k�k = 1

yi(xT
i � + �0) � M(1� ⇠i)

⇠i � 0,
PN

i=1 ⇠i  C

(20)

where C is a tuning parameter and the bigger the value of C, the more tolerant
the classifier is to classification. It can be seen as if the equation is discounted
by a discount vector (1� ⇠i), indicating that the support vector classifier allow
some ”slacks”. The slack variables ⇠1, .., ⇠N indicates how much each observa-
tion is allowed to be on the wrong side of the margin.

Rescaling again yields the following rewritten optimization problem

8
>>>>><

>>>>>:

minimize
�,�0,⇠

1
2 k�k

2 + C
PN

i=1 ⇠i

subject to yi(xT
i � + �0) � 1� ⇠i

⇠i � 0,
PN

i=1 ⇠i  C

(21)
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This is solved by minimizing the Lagrange (primal) function below

LP =
1

2
k�k2 + C

NX

i=1

⇠i �
NX

i=1

↵i(yi(x
T
i � + �0)� (1� ⇠i))�

NX

i=1

µi⇠i (22)

with the positivity constraints ↵i, ⇠i, µi � 0 [3].

The minimization is done by setting the derivatives w.r.t �,�0, ⇠i to zero as
follows

NX

i=1

↵iyi = 0 (23)

� =
NX

i=1

↵iyixi (24)

↵i = C � µi (25)

Insertion of the equations above into Eq. (22) yields the Lagrangian dual ob-
jective function

LD =
NX

i=1

↵i �
1

2

NX

i=1

NX

j=1

↵i↵jyiyjx
T
i xj (26)

This function is furthermore maximized subject to
PN

i=1 ↵iyi = 0 and 0  ↵i 
C. Combined with the derivatives above, the Karush-Kuhn-Tucker conditions

↵i(yi(x
T
i � + �0)� (1� ⇠i) = 0 (27)

µi⇠i = 0 (28)

yi(x
T
i � + �0)� (1� ⇠i) � 0 (29)

for i = 1, ..N are used to solve both Lagrangian functions [3] [9].

As can be seen from Eq. (24), the solution for � has the form

�̂ =
NX

i=1

↵̂iyixi (30)

The coe�cients ↵̂i have the constraint ↵̂i > 0 for the observations where Eq.
(29) is exactly met. The observations are referred to as support vectors. Addi-
tional constraint falls on these observations as some of them lie on the margin
where ⇠i = 0 and thus, by Eq. (25) and Eq. (28) it can be seen that 0 < ↵̂i < C.
The rest lie inside the margin where ⇠i > 0 and thus, given by the same equa-
tions, ↵̂i = C.
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2.3.3 Support Vector Machine

When dealing with a non-linear decision boundary, the use of a any linear clas-
sifier will most likely yield poor performance. One way to solve this problem is
by enlarging the feature space. This can be done by including transformations,
e.g. quadratic or high-order polynomial functions of the predictors. Fitting a
support vector classifier in the enlarged space results in a non-linear decision
boundary in the original space. The concept of Support Vector Machine is built
on exactly this. With the use of kernels, it is a controlled and computationally
e�cient way to introduce non-linearities. The combination of a non-linear ker-
nel with a support vector classifier leads to what is known as a support vector
machine [9].

To fully grasp the concept, we start by expressing the transformation func-
tions as
h(xi) = (h1(xi), h2(xi), · · · , hm(xi)), i = 1, ...N .

Thus, the modified hyperplane is given by

f(x) = h(xi)
T� + �0 = 0 (31)

where � in the enlarged feature space is given by

� =
NX

i=1

↵iyih(xi) (32)

Following the same procedure as in Section 2.3.2, the Lagrange dual objective
function is written as

LD =
NX

i=1

↵i �
1

2

NX

i=1

NX

j=1

↵i↵jyiyj hh(xi), h(xj)i (33)

with h·, ·i defined as the inner product.

To solve the new optimization problem, a kernel function

K(x,x0) = hh(x), h(x0)i (34)

is used to compute the inner product in the transformed space and is a positive
(semi-) definite function. Using Eq. (30) again, the solution function can be
expressed as

f(x) =
NX

i=1

aiyiK(x,xi) + �0 (35)

The choice of a kernel function can vary and some commonly used ones are

-Radial basis: K(x,x0) = exp(�� kx� x
0k2)

-dth degree polynomial: K(x,x0) = (r + � hx,x0i)d

where � is a positive scale parameter, d is an integer and r is a constant [3].
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2.4 Tree-based concepts

2.4.1 Decision trees

Decision trees are supervised learning methods, used to split a dataset based
on di↵erent conditions. The idea is to split a feature space into J distinct and
non-overlapping regions: R1, R2, ..., RJ . Then, for all input observations that
falls into the same region, the same prediction response is made. This response
can be quantitative or qualitative, the former if a regression tree is used and
the latter if a classification tree is used. The goal of this project is to predict
whether or not a customer will convert and thus presenting a classification tree
with a qualitative response will be the focus forward. Therefore, for each test
observation that falls into a region Rj , we take a majority vote and assign it to
the most commonly occurring class in that region, according to

k(j) = argmaxkp̂jk (36)

where

p̂jk =
1

Nj

X

xi2Rj

I {yi = k} (37)

is the proportion of class k observations that are in region RJ [4].

An illustration of a simple classification tree is given in Fig. (5) below. The
tree has two internal nodes and three terminal nodes, which are the predictive
Yes/No outcomes and also referred to as leaves.

Figure 5: Example of a classification tree. Source of Figure: [10]

For binary splitting of the tree, a criterion needs to be chosen. Both Cross-
entropy and the Gini index are di↵erentiable and thus suitable for numerical
optimization. The Gini index will be used as a criteria and is defined by
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G =
KX

k=1

p̂jk(1� p̂jk) (38)

The index is a measure of node purity across the K classes. A node mainly
containing observations from one class will result in a small value of the Gini
index as all values of p̂jk will be close to zero or one [3].

Although classification trees are easy to understand there are also some down-
sides to using them. Two potential problems are the trees non-robustness and
their risk of overfitting if too many splits are made [4]. In order to improve tree
performance, classification trees can be aggregated many times using di↵erent
methods presented in the following sections.

2.4.2 Bootstrap and Bagging

The bootstrap method is a resampling technique and can be used to estimate sta-
tistical uncertainty or accuracy. In order to generate new samples from the orig-
inal population, the bootstrap method uses resampling with replacement. Con-
sidering again the training dataset D = {xi, yi}Ni=1, the bootstrapped method
will repeatedly draw random samples from the dataset, with replacement. Each
bootstrapped sample will obtain N observations and thus be the same size as the
original training dataset. Repeating this B times, we can measure the sample
mean for each of the B bootstrapped samples and estimate the overall standard
error of the means [3].

Bootstrap aggregation or bagging is a procedure built on the concept of boot-
strap, aiming to reduce the generally high variance of decision trees. The first
step of bagging is to generate B di↵erent bootstrapped training datasets, as
described above. The idea is to then grow a decision tree on each bootstrapped
set and for each tree the model is trained, we assess the prediction f⇤b(xi) for
an observation xi, where b = 1, · · · , B. All the predictions can then be averaged
in order to obtain the bagged prediction estimate

f̂bag(xi) =
1

B

BX

b=1

f̂⇤b(xi) (39)

To use this in a classification setting, as in this thesis, we grow a tree on each
bootstrapped training dataset and record the qualitative class response made
for each tree. We can then, as described in previous sections, take a majority
vote and obtain the overall prediction which is the most commonly occurred
class among the B di↵erent predictions [4].
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2.4.3 Random Forest

Although bagging aims to reduce variance of trees, a problem could arise if the
datasets contains one strong predictor along with some moderately strong pre-
dictors. Most of the bagged trees will make the same top split using the strong
predictor and thus end up looking similar. As the predictions will be highly
correlated, the goal of a large reduction in variance will not be fulfilled.

Random Forest is a remedy to this problem and is an improvement over bagged
trees. The method decorrelates the trees by only considering a sample of m ran-
dom predictors as split candidates at each split. Instead of choosing from a full
set of p predictors, each split can now only choose one of m random predictors.
To avoid ending up with the same options of m predictors, the method samples
m new random candidates at each split. For a classification tree the relation is
typically m =

p
p and the algorithm is described below [3].

Algorithm 1: Random Forest Algorithm for classification

1. For b = 1 to B;

(a) Draw a bootstrap sample D⇤ of size N from the training data by
sampling with replacement

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the
minimum node size nmin is reached.
i. Select m variables at random from the p variables
ii. Pick the best variable/split-point among the m
iii. Split the node into two daughter nodes

2. Output the ensemble of trees {Tb}B1 .
To make a prediction at a new point xi:
Let k̂b(xi) be the class prediction of the bth random-forest tree.

Then k̂Brf (xi) = majority vote
n
k̂b(xi)

oB

1

2.4.4 Boosting

Boosting is another technique used to improve the predictions made. Similar
to bagging, a boosting model is an ensemble of many trees. The di↵erence is
that in boosting the trees can not be built in parallel as they are instead grown
sequentially. Thus, the current tree learns from the previous fitted trees [4].

2.4.5 XGBoost

XGBoost, an abbreviation of eXtreme Gradient Boosting, is a powerful machine
learning algorithm. XGBoost includes regularization as part of the learning ob-
jective, helping to prevent overfitting and penalizes complexity. A factor behind
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the methods success is its scalability in all scenarios. The mathematics behind
XGBoost follows the general idea from existing theory on gradient boosting [11].

We consider a dataset with N samples and p features, D = {xi, yi}Ni=1. A
tree ensamble model uses K additive functions to predict the output

�(xi) =
KX

k=1

fk(xi), fk 2 S (40)

where S =
�
f(x) = wq(x)

 
(q : Rp ! T,w 2 Rm) is the regression trees’

space. Here, each fk(xi) corresponds to an independent tree structure q and
leaf weights w. T denotes the number of leaves in each tree and wi represents
the score for the ith leaf.

As mentioned, the models learning objective is regularized and consists of two
parts

L(�) =
X

i

l(yi,�(xi)) +
X

k

⌦(fk) (41)

where

⌦(f) = �T +
1

2
� kwk2 (42)

The first term is the convex loss function, l, measuring the di↵erence between the
prediction �(xi) and the target yi. The other part, ⌦, contains an additional
term and penalizes the complexity of the model and helps avoid overfitting.
Here, � and � are parameters that penalizes the number of leaves and the leaf
weights respectively.

Considering �(xi)(t) as the prediction of the ith tree at the tth iteration, a
term fk needs to be added in order to minimize the following objective

L(t) =
NX

i=1

l(yi,�(xi)
(t�1) + ft(xi)) + ⌦(ft) (43)

The ft that most improves the model is greedily added.

By using second-order Taylor approximation, we can optimize the objective
quickly in the general setting:

L(t) '
NX

i=1

[l(yi,�(xi)
(t�1) + gift(xi) +

1

2
hif

2
t (xi)] + ⌦(ft) (44)

with

gi =
@l(yi,�(xi)(t�1))

@�(xi)(t�1)
(45)
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and

hi =
@2l(yi,�(xi)(t�1))

@(�(xi)(t�1))2
(46)

as first and second order derivatives.

Removing the constant terms and expanding ⌦(ft) we obtain the following
objective, at step t

L̃(t) =
NX

i=1

gift(xi) +
1

2
hif

2
t (xi)] + �T +

1

2
�

TX

j=1

w2
j

=
TX

j=1

[(
X

i2Ij

gi)wj +
1

2
(
X

i2Ij

hi + �)w2
j ] + �T

(47)

with Ij = {i | q(xi) = j} defined as the set of instances belonging to leaf j where
j = 1, · · · , T and i = 1, · · · , N .

From this equation and a fixed structure q(x), the optimal weight w⇤
j of leaf

j can be computed by

w⇤
j = �

P
i2Ij

giP
i2Ij

hi + �
(48)

Finally, this equation can be used to obtain the corresponding optimal value

L̃(t)(q) = �1

2

TX

j=1

(
P

i2Ij
gi)2P

i2Ij
hi + �

+ �T (49)

The last equation measures how good a tree structure q(x) is. Ideally, all pos-
sible trees would be enumerated and the best one picked but this is impossible
in practice. Instead, the levels of a tree are optimized one at a time. A greedy
algorithm is used, which starts from a single leaf and iteratively adds branches
to the tree [12].
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2.5 Model evaluation

Evaluating the built models is a core part of the machine learning model process.
To ensure good accuracy, feedback from continuously evaluating the model is
crucial. It is also of importance when comparing di↵erent models to each other.
Multiple metrics can be used to evaluate the accuracy of a model and the choice
depends on the model type.

2.5.1 Confusion Matrix

A confusion matrix is a NxN matrix, with N in this case denoting the number
of possible response classes. The matrix can be visualized as a table containing
di↵erent combinations of the predicted class and actual class, similar to the
figure below [13].

Figure 6: Confusion matrix. Source of Figure: [14]

As this thesis consists of a binary classification with classes ”Conversion” and
”No Conversion”, the confusion matrix consists of a 2x2 matrix with outcomes:

- TP (True positive): The model predicts ”Conversion”, and the true class
is ”Conversion”.

- FP (False positive): The model predicts ”Conversion”, but the true class
is ”No Conversion”.

- TN (True negative): The model predicts ”No Conversion”, and the true
class is ”No Conversion”.

- FN (False negative): The model predicts ”No Conversion”, but the true
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class is ”Conversion”.

The matrix can be used to calculate more complex metrics, presented in the
coming sections, but also basic performance metrics as:

Accuracy =
TP + TN

TP + FP + FN + TN
(50)

and

Error rate =
FP + FN

TP + FP + FN + TN
(51)

Accuracy is best fit to be used for balanced data. In case of a highly imbalanced
dataset, all predictions could be made based on the majority class which would
yield a very high, but misleading, accuracy [15].

2.5.2 Precision-Recall Curve

Two additional metrics often used to measure performance are Precision and
Recall defined by

Precision =
TP

TP + FP
(52)

and

Recall =
TP

TP + FN
(53)

respectively.

Precision represents the proportion of predicted positive classes which were ac-
tually correct. In our case, this would answer the question: ”Among all ob-
servations predicted as ”Conversion”, how many were actually correct?. Recall
on the other hand measures the proportion of actual positive classes that was
predicted as positive. In our case, this would answer the question: ”Among all
actual ”Conversion” cases, how many did the model predict correctly as ”Con-
version”?.

Ideally one would like to maximize both Precision and Recall, but usually one
measure is prioritized over the other depending on the models use case. To fully
understand how the model is performing, Precision and Recall are examined
together in a Precision-Recall Curve. In contrast to the accuracy presented in
the above section, PR-curves works good with imbalanced data [16] [17]. An
example of a PR-curve is shown in the figure below.
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Figure 7: Example of a Precision-Recall curve of a Logistic regression model.
Source of Figure: [18]

The No skill line in a PR-curve changes as the class ratio of the dataset changes.
In the figure the no-skill is a horizontal line at y=0.5, i.e. the data is perfectly
balanced with a 50/50 class distribution. A model that performs along the
no-skill class performs as good as a random guess [19].

2.5.3 F1 Score

Built on Precision and Recall, F1 Score is another performance measure defined
by

F1 Score = 2⇥ Precision ⇤Recall

Precision+Recall
(54)

This score works in a way that it maintains a balance between both Preci-
sion and Recall and therefore if one of the measures are low the F1 Score will
also be low. It di↵ers from Accuracy in the sense that it works well for balancing
the two metrics when also dealing with an imbalanced dataset [16].

2.5.4 ROC: Receiver Operating Characteristics

Another alternative when evaluating models is examining the ROC -curve. The
curve is constructed by plotting the true positive rate against the false positive
rate for each possible threshold, where the rates are defined by
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True positive rate (TPR) =
TP

TP + FN
(55)

and

False positive rate (FPR) =
FP

FP + TN
(56)

From Eq. (55) above we see that the true positive rate is also known as the
Recall [16].

An example of a ROC-curve is shown in the figure below. Generally, the closer
a ROC curve is to the top left corner, the better the classifier.

Figure 8: Example of a ROC-curve of a Logistic regression model. Source of
Figure: [18]

The No skill line above is a diagonal from the bottom left corner (predict all
observations as negative) to the upper right corner (predict all observations as
positive). This is a classifier with no discriminative power between the two dif-
ferent classes. A model represented by points below this diagonal have worse
than no skill [19].

2.5.5 AUC: Area Under the Curve

One challenge that can arise when using ROC curves is to plot the curve of
multiple classifiers and compare them solely based on the form of the curves.
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Instead, the area under the ROC curve can be calculated and used for better
comparison. In the same way, the area under the PR curve can be calculated
and used. This yields one single score for a classifier model across all possible
thresholds. The AUC ranges in values between 0.0 to 1.0 where 1.0 is considered
a perfect classifier. The figure below shows four examples of ROC curves with
di↵erent AUC scores.

Figure 9: Four di↵erent ROC curves with their respective AUC scores. Source
of Figure: [20]

A drawback of only considering the AUC value is that the metric treats TPR
and FPR as equally important across all thresholds. The score alone provides
no information about how the curve looks like. A ROC curve which is skewed
towards the left could have the same AUC score as a curve skewed towards
the right, though their characteristics suggest they perform di↵erently. It is
therefore of importance to keep the misclassification cost in mind when using
this metric [21].

2.6 Cross validation

In order to avoid skewed results in the evaluation process, the machine learning
models need to be tested on unseen data. Testing on unseen data provides in-
formation about how well-generalized a classifier is. One way of doing this is by
Cross validation. In Cross validation, the data is divided into a training set, a
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test set and a validation set. The idea is to use the training set to fit the model,
the validation set for model selection by estimating the prediction error and find-
ing the best model and lastly the test set solely to evaluate the performance of
the best model. The test set is therefore held out until the final model is chosen.

One commonly used Cross validation method is K-Folds Cross validation. The
idea is to randomly divide the data into k folds, k equally small sets of the data.
One of the sets is treated as the validation set while the model is fit on the
remaining k � 1 sets of the data. Each time the validation set is predicted, the
prediction error of the fitted model is calculated and the process is repeated K
times. For each repetition, a di↵erent set is treated as the validation set.

An observation i is randomly assigned a partition to which it belongs and the
index of that partition is given by the mapping function  : {1, · · · , N} 7!
{1, · · · ,K}. Furthermore, let f̂�k(x) denote the function that was fit with the
kth set of the data excluded. Using this, the CV error is given by

CV =
1

N

NX

i=1

L(yi, f̂
�k(i)(xi)) (57)

where L(·) is the loss function.

The validation set is used as model selection with the aim of finding the best
model from a set of models f(x,↵), indexed by the tuning parameter ↵. We
denote the ↵th fitted model with the kth set of the data excluded as f̂�k(xi,↵).
The CV error is instead given by

CV =
1

N

NX

i=1

L(yi, f̂
�k(i)(xi,↵)) (58)

The goal is to find the optimal ↵̂ that minimizes the CV error above. This is
more commonly known as Hyperparameter tuning which is done in this project
and described in this thesis as part of the Methodology. After tuning and ob-
taining the best set of hyperparameters, the final model f(x, ↵̂) is chosen and
its performance is evaluated using the test set, as explained above [3].

To better illustrate this method, the figure below shows an example of how
K-fold CV works with K = 5.
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Figure 10: An illustration of the K-fold Cross validation approach with K=5.
Source of Figure: [22]

2.7 SHAP: SHapley Additive exPlanations for Feature

Importance

An important and valuable part of predictive modeling is being able to interpret
the built model. It helps when trying to understand how each feature impacts
the model and how the model can be improved. Some machine learning models,
like logistic regression, are easier to interpret than others but comes with the
cost of being less accurate. There is often a trade-o↵ between model complex-
ity and interpretability. As more complex, tree-based models are used in this
thesis oen can argue that there is a need for a good model interpretation method.

SHapley Additive exPlanations, SHAP, is a relatively new framework for inter-
preting the output of machine learning models. It was introduced by Lundberg
and Lee as a unified approach to interpreting model predictions and the method
is built on game theory [23]. SHAP provides multiple explainers depending on
the model built and the TreeExplainer is used in this thesis for interpreting
tree-based models. One of the strong sides of SHAP is its global interpretabil-
ity. The method has the ability to show the positive and negative correlation
for each feature with the target variable. Another benefit of using SHAP is
that it also has a good local interpretability. In contrast to traditional variable
importance methods, SHAP gives each observation in the dataset its own set of
SHAP values. Thus, the method can show why a particular observation led to
a certain prediction.

More specifically, the SHAP method is built on coalition game theory. The
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feature values are seen as players with importance values based on their con-
tribution to the total score. To make the mathematical theory behind SHAP
comprehensible, the method is simplified as follows:

We denote S as the subset of all features F, such that S ✓ F . Let v(S) be
the total importance value of the subset S. The idea is to train a model that
assigns an importance value to each feature i in the subset S. The importance
value can be seen as the resulting e↵ect on the model prediction from including
the feature i. The model is trained on all subsets and if a model is trained
including feature i, the value is denoted v(S [ {i}). If the feature i on the other
hand is dismissed from the model, the value will be denoted v(S) instead. The
marginal contribution of feature i can then be written as v(S[{i})�v(S). The
resulting e↵ect of excluding a feature i from a model is dependent on the other
existing features. Therefore, the di↵erence has to be computed for all possible
subsets S ✓ F \ {i} and the resulting SHAP values are the weighted average of
these di↵erences, given by

�i(N, v) =
1

N !

X

S✓N\{i}

|S|!(|N |� |S|� 1)! [v(S [ {i})� v(S)] (59)

Furthermore, SHAP has a fast implementation for tree-based models which
makes it convenient to use in this thesis [24].
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3 Methodology

In this chapter, the process of how the results are achieved is described. The
chapter also aims to make the work reproducible for others.

3.1 Data description

The data used in this project is provided by Klarna Bank AB. Due to the sensi-
tive nature of customer data I will not go into details about the variables used,
but rather give an overview of the data while clearly explaining how it was pro-
cessed.

The input data contains information about customers shopping sessions. As
mentioned in Section 2.3, the data was limited to the Swedish market and the
Klarna Checkout product. The shopping session has been defined to start when
the customer reaches the Payment Selector screen and ends when the customer
either completes the purchase or drops out. The full original dataset consisted
of 1M rows and 23, unprocessed, columns. Three types of variables were used:
categorical, numerical and booleans. The chosen variables include information
about both customer characteristics and about the specific attempted order.
After spending time learning about the data, the raw data was used to build
some relevant point-in-time variables using Redshift SQL.

The target variables indicate whether or not a customer that starts a shop-
ping session in the Klarna Checkout ends up converting/placing the order. A
positive class corresponds to ”Conversion” while a negative class corresponds to
”No conversion”.

3.1.1 Pre-processing

When putting together an initial dataset, the set can contain a bunch of un-
structured data. Prior to training a model, the input data needs to be cleaned
and processed. Di↵erent machine learning classifiers can handle di↵erent types
of input data, making it important to keep in mind that pre-processing can look
di↵erent for each method. As all variables in the dataset was thought through
and selected based on their relevance for the thesis, the focus was put on clean-
ing the data rows rather than removing columns and feature selection.

Before starting the pre-processing, the original dataset is split into train and
test data. This is done as the first step to prevent that information from the
test set ”leaks” into the training data. In such case, the model performance can
risk becoming biased. When splitting the data, the ratio is chosen and set to
80/20. After the split, the cleaning of the data is done on each separate set.

Pre-processing of numerical variables:
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• One part of data processing is deciding on how to handle missing data.
Some of the numerical variables contain null values. While some machine
learning methods can handle missing values themselves, others require the
null values to be deleted or imputed with some other value. One common
imputation that can be made is to replace the null values by the training
mean for that column. Some values can be missing by random, but other
null values can be dependent on other variables and have an impact on
the thesis. I chose to impute the missing values with the value �9999 and
will thus be able to distinguish these rows from the others. By doing so,
the potential impact or meaning of a missing value can be preserved.

• Based on statistic summary for all numerical variables, outliers are iden-
tified and removed. This is done in order to avoid misleading the training
process as machine learning algorithms are sensitive to the range and dis-
tribution of variables [25].

• As there is a big di↵erence in the range of values between the di↵erent
variables, all numerical variables need to be standardized. This is done
using a built in Standard Scaler function which sets the mean to zero and
scales to unit variance.

Pre-processing of categorical variables:

• The missing values in categorical columns can be handled di↵erently. One
approach is to replace them with the most frequent value in the that
column, an approach usually taken when an assumption is made that the
data is missing at random. Sometimes, just as for numerical data, the fact
that the value is missing can itself be valuable information. In this thesis,
all null values are imputed with a new category called ’Missing’ in order
to again preserve the meaning of a missing value.

• As the chosen machine learning models can not handle categorical in-
put data, all categorical columns have to be one-hot-encoded. One-hot-
encoding leads to an increase in the number of columns, as the distinct
categorical values are transformed into their own columns.

3.1.2 Balancing data

The initial dataset su↵ers from a class imbalance. The training target variable
shows that approximately 90% of the data belongs to the positive class, which
corresponds to an 1:10 imbalance ratio. In the case of class imbalance, classifiers
tend to make a biased learning model that gives high accuracy for the majority
class but undertrains for the minority class [26].

One way to get a more balanced classification dataset is to apply undersam-
pling on the majority class. A random undersampling was applied as the initial
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dataset was considered large enough to reduce from. The more balanced ratio
was set to 2:3. Training all machine learning models with the new class ratio
resulted in four additional models, which could all be compared to the models
with imbalanced class ratio.

3.2 Hyperparameter tuning

In the process of training a model, di↵erent machine learning algorithms con-
tain di↵erent hyperparameters to be tuned. As its challenging to know which
hyperparameters values to use in each algorithm, various grid search strategies
were implemented to obtain the most optimal hyperparameters.

For Logistic Regression and SVM, the sklearn method GridSearchCV was used.
The method performs an extensive search over parameters specified by the user.
The models are evaluated for each combination of parameters, using Cross val-
idation described in Section 2.6. Some sets of parameters are given by the user
while some are set to their default values. The method evaluates the models and
finds a set of optimal hyperparameters based on minimizing a loss function [22].
The loss function is predefined and was based on the PRAUC metrics described
in the previous section. In other words, the optimal set of hyperparameters
is the one that maximizes the PRAUC score and used in the final results to
compare with other models.

For the tree based machine learning models, the sklearn method Randomized-
SearchCV is used. In contrast to the grid search, a randomized search does not
test all parameter combinations sequentially as it would be computationally too
expensive. The user defines the number of di↵erent combinations to be tested,
while the method itself picks out the random combinations. The models are
again evaluated using Cross validation and based on the same metrics as in
GridSearchCV [22].

Below, the sets of hyperparameters for each learning method are presented with
a short description. Furthermore, the optimal hyperparameter values are rep-
resented in bold.

Logistic Regression

• Solver: [newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’]
The solver states which algorithm to use in the optimization problem.
The best choice can depend on the penalty chosen as well as the size of
the dataset. Two examples are ’sag’ and ’saga’ that works faster for large
datasets while ’liblinear’ works well for small datasets.

• Penalty: [‘l1’, ‘l2’, ‘elasticnet’]
This penalty specifies which type of regularization used. The di↵erent
choices were closer described in Section 2.2.1. Not all solvers are com-
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patible with all penalties. An example is the solver ’liblinear’ which only
supports ’l2’ as a penalty, or the choice of having no penalty at all.

• C: [0.001, 0.01, 0.1, 1, 10]
This parameter determines the strength of the regularization, described in
detail in Section 2.2.1. The smaller the C-value, the stronger the regular-
ization. The parameter is thus an inverse of the regularization parameter
�.

Support Vector Machine

• Kernel: [’linear’, ‘poly’, ‘rbf ’, ‘sigmoid’]
This parameter specifies which Kernel to use in the algorithm. An expla-
nation of a kernel was presented in Section 2.3.3 where the mathematical
formulas for ‘rbf’ and ‘poly’ were given.

• Gamma: [0.001, 0.01, 0.1, 1, 10, 100, 1000]
The Gamma parameter is a positive scale parameter for ‘rbf’, ‘poly’ and
‘sigmoid’.

• C: [100, 1000, 10000]
This is a regularization parameter. Again, the smaller the C-value, the
stronger the regularization.

Random Forest

• N-estimators: [50, 100, 150, 200]
Determines the number of trees in the forest. In section 2.4.3 this is
denoted as B. A higher number of trees yields better performance but
comes at the cost of slowing down the training process considerably.

• Max depth: [5, 10, 20, 40, 80, 160]
The maximum depth of each tree in the forest. A deeper tree can lead
to overfitting as they allow for more splitting and thus captures more
information about the data.

• Min samples split: [2, 5, 10, 15]
This parameter specifies the minimum number of samples required to split
an internal node. If the number of samples is less than the minimum set,
no split will be done and the internal node will turn into a leaf. Increasing
the value of this parameter can lead to underfitting as each tree has to
consider more samples at each node and thus become constrained.

• Min samples leaf: [1,2,4,6]
This determines the minimum number of samples required to be at a leaf
node. A split will only be made if it results in a child with fewer samples,
otherwise the split will be avoided and the node will turn into a leaf. The
same conclusion as to previous parameter, increasing the value of this
parameter can lead to underfitting.
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• Bootstrap: [’True’, ’False’]
A boolean parameter indicating whether or not to use Bootstrap samples
when building the trees. The concept behind Bootstrap was explained in
Section 2.4.2. If the value is set to False, the full dataset is used to build
each tree.

XGBoost

• N-estimators: [50, 100, 150, 200]
A Boosting model is an ensemble of many trees, as described in Section
2.4.4. N-estimators specifies the number of trees in the ensemble. Model
accuracy can grow with a larger number of trees, as predictions based
on a majority vote can become more reliable. However, this is not always
preferred as a large number of trees can be computationally too expensive.
Works in the same way as for Random Forest.

• Max depth: [3,5,7,9]
The maximum depth of each tree in the ensemble. Works in the same way
as for Random Forest.

• Learning rate: [0.01, 0.05, 0.1, 0.03]
As explained earlier, XGBoost is built on the concept of Gradient Boost-
ing where trees are added sequentially to the model. Specifying a low
learning rate makes it possible to slow down the learning in order to pre-
vent overfitting. If the learning rate however is too low, the model may
take significantly longer to train as the number of necessary iterations will
increase.

• Colsample-bytree: [0.5, 1]
The subsample ratio of features when constructing each tree. The default
value is set to 1, i.e. each tree uses all features available. It follows the
same idea as in Random Forest where we in Section 2.4.3 presented this
process as a way to remedy to correlated trees. This way of decorrelating
the trees can result in a large reduction of variance.
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4 Results

In the following section, the results of this project will be presented.

All models will be evaluated and compared to one another using the metrics
Precision, Recall, F1-Score, ROCAUC and PRAUC, all defined in Section 2.5.
Comparing one single metric alone comes with the risk of drawing incorrect
conclusions and thus all metrics will be considered.

As described in Section 3.2 about Hyperparameter Tuning, an extensive grid
search was implemented in this project to tune some hyperparameters for each
model. K-folds Cross validation was used as part of the validation process in
order to find the optimal set of parameters, with optimality being based on
maximizing the PRAUC score. The best combination of parameter values were
presented in that same section.

The performance results for each supervised learning model are summarized
in the table below.

Imbalanced data

Model Precision Recall F1 ROCAUC PRAUC
Logistic Regression 0.92 0.99 0.96 0.558 0.970
SVM 0.91 1.00 0.96 0.510 0.971
Random Forest 0.92 1.00 0.96 0.562 0.978
XGBoost 0.93 0.99 0.96 0.606 0.979

Balanced data

Model Precision Recall F1 ROCAUC PRAUC
Logistic Regression 0.94 0.94 0.94 0.665 0.970
SVM 0.94 0.95 0.94 0.644 0.969
Random Forest 0.95 0.95 0.95 0.685 0.978
XGBoost 0.95 0.94 0.94 0.706 0.979

Table 1: Model performance metrics

To visualize the results, the ROC-curves and Precision-Recall curves for all
models are plotted below. The metrics are plotted across a set of thresholds
between 0 and 1.
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Figure 11: ROC-curves for the Test set: data not balanced

Figure 12: ROC-curves for the Test set: data balanced
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Figure 13: PR-curves for the Test set, data not balanced

Figure 14: PR-curves for the Test set, data balanced
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To get the full picture of the model performances, the macro average metrics
are also presented. In addition to the True class, the macro average consid-
ers the performance if the problem was reversed and the goal was to predict
the False, minority class instead. For this project, the aim would thus change
into predicting if a customer with a started shopping session drops out. The
macro average is found computing the metrics for both classes and taking their
unweighted mean. The table below summarized the macro average Precision,
Recall and F1-score for all models.

Macro average: Imbalanced data

Model Precision Recall F1
Logistic Regression 0.77 0.56 0.58
SVM 0.82 0.51 0.50
Random Forest 0.87 0.56 0.59
XGBoost 0.82 0.61 0.65

Macro average: Balanced data

Model Precision Recall F1
Logistic Regression 0.67 0.67 0.67
SVM 0.66 0.64 0.65
Random Forest 0.70 0.69 0.69
XGBoost 0.68 0.71 0.69

Table 2: Macro average metrics
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Furthermore, a SHAP Feature Importance summary was plotted for the XG-
Boost trained model and is presented in the figure below. The y-axis contains
the names of the di↵erent features used when training the model. As mentioned
in Section 3.1, the nature of the customer data is sensitive and therefore the
y-axis label is cropped out from the figure below. Features with large absolute
Shapley values are considered valuable and important for predicting and in the
figure below the features are ordered by decreasing importance.

Figure 15: SHAP Feature importance summary plot for XGBoost trained model
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5 Discussion

In the following chapter the results will be analyzed and discussed. Furthermore,
suggestions for future work will be presented.

In order to best analyze and draw conclusions from the results in the previ-
ous chapter, it is of importance to keep the initial research question in mind.
The purpose of this project was to answer the two following research questions:

• Is it possible to predict if a customer starting a shopping session will
convert/place the order?

• Which Supervised learning algorithm performs best when predicting con-
version with regards to specific model evaluation metrics?

The yielded results showed that it was, in the setting of this project, in fact
possible to predict customer conversion with the use of Supervised machine
learning. All four models had very high scores in regards to both Precision and
Recall. As the F1-score is based on these two measures, the good results were
reflected in that performance metric as well. The high numbers could, to the
viewer, look too good to be true. It is thus important to keep some things in
mind when analyzing the results. The mean of the target class is in the training
data already very high. This means that, for the imbalanced data, the worst
case scenario would be to predict all observations to the positive class. The
Precision in that case would be equal to the mean of the target training set
and the Recall would be equal to 1. The models are built with an optimization
purpose and can thus only yield better results. The mean value can therefore
be seen as a benchmark.

Table (1) summarizes the five performance metrics for all models. The table
shows that all models are performing comparatively good and the di↵erences
in performance are minor. Separating the results into two groups, imbalanced
and balanced data, indicates that the XGBoost model outperforms the rest by a
small margin. This becomes more apparent in Fig (11)-(14)., as the ROC- and
PR-curves show that XGBoost is strictly performing better across all thresh-
olds. As the di↵erences are relatively small it is also of interest to compare the
macro average metric, to get another indication of which model can be favored
over the others. Table (2) also confirms that XGBoost outperforms the other
models with regards to the macro average metrics. This means that if the prob-
lem was reversed and we were to predict the False class, the XGBoost model
would again yield the best results.

Even though XGBoost seems to perform slightly better than the remaining mod-
els, one question arises: is it worth implementing? As all models are showing
good results, one could for example argue that the classical Logistic Regression
is to be preferred. It is computationally cheap and very intuitive. Tree based
models are more complex, computationally expensive and seen as ”black boxes”.
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Di�culties can also be found when trying to understand the underlying theory
of these complex models. This in itself could be enough to argue that it is not
worth implementing XGBoost over Logistic Regression if the improvement in
performance is minor. If a model would to be implemented by the company
forward, the decisioning regarding what model to chose is outside of this thesis
scope.

Furthermore, it is important to consider the misclassification cost when com-
paring. Reflecting on how the model will be used is essential when deciding
on what metric should be the main performance indicator. Should one prefer
a high Precision over a high Recall, or vice versa? If both measures are of
equal importance, the F1-score could be enough to compare the models to each
other. Depending on the end goal and the business actions that will be taken
based on the prediction, one metric could be prioritized over the other. If the
cost of misclassifying a session is considered devastating then the models ability
to separate ”Conversion” from ”No conversion” will be of highest importance.
That ability is best summarized in the ROC-curve together with the ROCAUC
score. Many times, businesses has an already known trade-o↵ balance between
consumer preference and revenue stream. Hence, using this trade-o↵, there is
a possibility to create a custom evaluation metric to compare di↵erent models.
This is further explained in one of the future suggestions below.

Lastly, the SHAP Feauture Importance was added to the result chapter and
showed in Fig (15). These results can be seen as internal results and beneficial
solely to the company. It allows them to better understand customer behaviour
and the weight of each variable on the predictions.

5.1 Future suggestions

If this project were to be further developed, one focus area could be expanding
the training dataset. First of all, more point in time variables can be built and
included in the data. The few point in time variables built in this thesis turned
out to be of high importance when predicting customer conversion. Building
more, similar variables could result in better predictions.

Secondly, the input variables were all handpicked based on available data and
experience. Another alternative to putting together a dataset is to simply use
all possible variables and let a feature selection tool instead decide on which
ones are relevant to include. An example of such a tool could be Recursive
Feature Elimination.

Furthermore, a deeper analysis on the misclassification cost could be made.
Quantifying the cost of making wrong predictions would help when deciding on
what evaluation metrics to prioritize over the other. The F1-score could then
for example be weighted according to that misclassifciation cost. This is a lot
of times referred to as ”Adjusted F1-score”, and defines a hybrid combination
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of Recall and Precision with di↵erent weights to either the former or the latter.
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