
 

 
 

Design and implementation of a sig-

naling system for a novel light-based 

bioprinter 

Design och implementering av ett signalsystem 

för en ny ljusbaserad bioprinter 

Osman Abdalla 

9/15/2023 

 
 
 
 
 
 
 

Examensarbete inom 
Ekonomi och elektroteknik 
Grundnivå, 15 hp 
Handledare på KTH: Aurora Rosato 
Examinator: Elias Said 
TRITA-CBH-GRU-2023:257 
 
KTH 
Skolan för kemi, bioteknologi och hälsa 
141 52 Huddinge, Sverige 





  

 
 

Abstract 

A 3D bioprinter employing light-based technology has been designed and con-

structed in an EU-funded research initiative known as BRIGHTER (Bioprinting by 

Light-Sheet Lithography). This initiative is a collaborative effort between institu-

tions and companies and aims to develop a technique for efficient and accurate 

production of engineered tissue. 

Presently, the bioprinter’s function is limited to 2D printing, with the lack of 3D 

printing capabilities.  

The problem addressed is the integration of two separate electronic systems within 

the bioprinter to control the laser beam’s trajectory for 3D printing. The goal of the 

project is to create functional software and simulation tools to control the hardware 

modules in a precise and synchronized manner, thereby enabling 3D printing. 

The outcome manifests as a software prototype, which successfully facilitates inter-

communication between the two electronic subsystems within the bioprinter, 

thereby enabling further progress on the bioprinter with 3D printing available. 

Nevertheless, the prototype requires thorough testing to determine its optimal op-

erational efficiency in terms of timing the movements for the various hardware 

modules. 

Keywords 

System integration, 3D bioprinter, hardware communication, microcontroller, Kanban, system ar-

chitecture diagram 

 





  

 
 

Sammanfattning 

En 3D-bioprinter som använder ljusbaserad teknik har designats och konstruerats i 

ett EU-finansierat forskningsinitiativ som kallas BRIGHTER (Bioprinting by Light-

Sheet Lithography). Detta initiativ är ett samarbete mellan institutioner och företag 

och syftar till att utveckla en teknik för effektiv och korrekt produktion av konstru-

erad vävnad.  

I dagsläget har bioprintern inte möjligheten för 3D-utskrift, utan är begränsad till 

2D-utskrift. 

Problemet som åtgärdas är integrationen av två separata elektroniska system inom 

bioprintern för att styra laserstrålens bana för 3D-utskrift. Målet med projektet är 

att skapa funktionell mjukvara och simuleringsverktyg för att styra hårdvarumodu-

lerna på ett exakt och synkroniserat sätt och därigenom möjliggöra 3D-utskrift. 

Resultatet av examensarbetet är en mjukvaruprototyp, som framgångsrikt möjlig-

gör interkommunikation mellan de två elektroniska systemen inom bioprintern och 

därigenom öppnar möjligheten för vidare arbete med 3D-utskrift tillgängligt. Pro-

totypen kräver dock noggranna tester för att fastställa dess optimala operativa ef-

fektivitet när det gäller koordinationen av hårdvarumodulernas rörelser. 

Nyckelord 

System integration, 3D bioskrivare, hårdvarukommunikation, mikrokontroller, Kanban, systemar-

kitekturdiagram 





 

 
 

Acknowledgments 

• I extend my sincere gratitude to my KTH supervisor, Aurora Rosato, for her 

invaluable guidance and unwavering patience throughout this endeavor. 

• Additionally, I am deeply appreciative of the collaborative efforts of the team 

members at both GUF and Mycronic, especially Pontus, Jakob, Jokubas, 

Levin, and my supervisor Gustaf Mårtensson. 

• Finally, I am profoundly thankful to my family, whose unwavering support 

and presence have been a constant source of strength throughout this trans-

formative journey. 

 

 

Stockholm, 09/23 

Osman Abdalla 

 





  

 
 

Table of contents 

 

1 Introduction .......................................................................................... 1 
1.1 Background ........................................................................................................ 1 
1.2 Problem statement ............................................................................................. 1 
1.3 Goals ................................................................................................................... 2 
1.4 Delimitations ....................................................................................................... 2 

2 Background .......................................................................................... 3 
2.1 3D bioprinting ..................................................................................................... 3 

2.1.1 Stereolithography .................................................................................. 4 

2.2 Software .............................................................................................................. 4 
2.2.1 G-code .................................................................................................. 4 

2.3 Hardware ............................................................................................................. 5 
2.3.1 Acousto-optic devices ........................................................................... 5 
2.3.2 Galvanometer scanners ........................................................................ 6 
2.3.3 Teensy .................................................................................................. 7 

2.4 Related work ....................................................................................................... 8 
2.4.1 IOT Based Smart Garbage alert system using Arduino UNO .............. 8 
2.4.2 Sun Tracking System ............................................................................ 8 
2.4.3 A Low-Cost Portable Smart Card Based Attendance System .............. 8 
2.4.4 Integration och Interoperabilitet vid utveckling av IT-system ................ 9 

3 Methodologies and methods ............................................................ 11 
3.1 Literature study and pre-study ....................................................................... 11 
3.2 Software development methodologies .......................................................... 11 

3.2.1 Agile .................................................................................................... 11 
3.2.2 Waterfall model ................................................................................... 12 

3.3 Hardware ........................................................................................................... 13 
3.3.1 AOD/AOM rack ................................................................................... 13 

3.4 Software ............................................................................................................ 14 
3.4.1 AOD/AOM software ............................................................................ 14 
3.4.2 GUI ...................................................................................................... 15 

3.5 Experimental design ........................................................................................ 15 
3.5.1 System architecture design ................................................................ 15 

3.6 Test environment ............................................................................................. 16 
3.7 Tools .................................................................................................................. 18 

3.7.1 Teensy development........................................................................... 18 
3.7.2 GUI development ................................................................................ 18 

4 Results and analysis.......................................................................... 19 
4.1 Preliminary study results ................................................................................ 19 
4.2 G-code integration ........................................................................................... 19 
4.3 Custom implementation .................................................................................. 21 
4.4 Test results ....................................................................................................... 23 
4.5 Analysis ............................................................................................................. 23 
4.6 Discussion ........................................................................................................ 24 
4.7 Social and economical aspect ........................................................................ 25 
4.8 Ethical aspect ................................................................................................... 26 
4.9 Environmental aspect ...................................................................................... 26 



 
 

5 Conclusions and future work ............................................................ 27 
5.1 Conclusions ..................................................................................................... 27 
5.2 Limitations ........................................................................................................ 27 
5.3 Future work ...................................................................................................... 28 

References ................................................................................................ 29 
 

 



 Introduction | 1 

 
 

1 Introduction 

This chapter describes the specific problem that this thesis addresses, discusses the 

context of the problem, outlines the goals of this thesis project, and outlines the 

structure of the thesis. 

1.1 Background 

In the scope of the EU-funded research initiative known as BRIGHTER (Bioprint-

ing by Light-Sheet Lithography), a novel 3D bioprinter employing light-based tech-

nology has been designed and constructed. This innovative approach incorporates 

acousto-optic manipulation of a laser beam in combination with a light-sensitive 

hydrogel. Collaboratively led by the Institute for Bioengineering of Catalonia 

(IBEC), Goethe University of Frankfurt (GUF), Technion Israel Institute of Tech-

nology (Technion), as well as industrial entities Cellendes and Mycronic, the 

BRIGHTER project aims to revolutionize bioprinting.  

The primary objective is to develop an advanced bioprinting technique capable of 

swiftly, accurately, and economically producing engineered tissue [1].  

This thesis project is executed in collaboration with two key contributors, Mycronic 

and GUF.  

1.2 Problem statement 

In the rapidly evolving field of bioprinting, where innovative techniques like light-

based technology hold promise for tissue engineering, there exists a challenge re-

lated to the integration and optimization of various components. As bioprinting 

evolves and becomes more complex, the effective coordination of hardware mod-

ules and software interfaces becomes crucial to achieving accurate, efficient, and 

economical tissue constructs. 

This thesis seeks to address the following key issues: 

• Integration of multiple hardware modules presents a challenge in terms of 

synchronization and communication. Developing a solution that coordinates 

these modules to work in harmony is essential for the successful execution of 

3D bioprinting tasks. 

• The development of a user-friendly graphical user interface (GUI) that facili-

tates precise control of the bioprinting hardware is a significant challenge. 

Designing an intuitive interface that enables researchers and technicians to 

interact seamlessly with the bioprinter for efficient experimentation and 

production is essential. 



2 | Introduction 

 
 

1.3 Goals 

The goal of this project is to develop a functioning prototype software GUI to con-

trol the laser-based bioprinting of cell-laden hydrogels, including simulation soft-

ware to provide optimized bioprinting strategy. This can be divided into the follow-

ing two sub-goals: 

1. The primary goal of the project is to design and implement a software solu-

tion to synchronise the signalling of three hardware modules (acousto-

optics, galvanometer scanner, stage motor) that control the movement of a 

laser beam in a light-based bioprinter. 

2. The secondary goal of the project is to design and implement an optimisa-

tion solution that will identify optimal optical dose parameters to create 

well-defined three-dimensional tissue structures in the bioprinter. 

1.4 Delimitations 

• Given the nature of the project, with the involved teams working in different 

geographical locations, the work will be done remotely without the bioprint-

er readily available for tests.  

• When the synchronization software solution is finished, testing will be done 

with specific 3D models for the sake of simplicity. 

• Printing an actual object will not be done unless there’s time. 

 

 

 



 Background | 3 

 
 

2 Background 

This chapter provides basic background information about 3D bioprinting and the 

bioprinting technique used by the bioprinter in this thesis. Additionally, this chap-

ter describes the different hardware modules that make up the bioprinter and soft-

ware used by it.  

2.1 3D bioprinting 

3D bioprinting, a derivative of 3D printing, involves the layer-by-layer assembly of 

living cells and biomaterials to construct synthetic structures mimicking authentic 

biological tissue [2]. Various bioprinting methods exist for crafting tissue, includ-

ing: 

1. Extrusion-based bioprinting 

2. Inkjet-based bioprinting 

3. Laser-based bioprinting 

Diverse options exist for bio-ink, the biomaterial employed in the fabrication pro-

cess. The selection of a suitable bio-ink hinges on the intended application, given 

that different bio-inks excel in specific areas due to their distinct advantages and 

limitations [3]. 

There are three main steps in 3D bioprinting: 

1. Pre-processing 

2. Processing 

3. Post-processing 

The initial phase is pre-processing, which encompasses computer-based object de-

sign and 3D printer setup. The subsequent phase is processing, involving the pre-

liminary preparation of bioink before commencing the printing procedure. The ul-

timate stage is focused on maturing the bio printed tissue [4]. 

The applications of 3D bioprinting span diverse domains including tissue engineer-

ing, regenerative medicine, 3D organ bioprinting with transplantation capabilities, 

drug development, and beyond [4].  



4 | Background 

 
 

Notably, the bioprinter developed within the BRIGHTER project employs laser-

based stereolithography [5]. 

2.1.1 Stereolithography 

Stereolithography is one of the available bioprinting methods, offering distinct ad-

vantages including high resolution and rapidity.  

In the context of this project, the bioprinter employs stereolithography through a 

light-induced reaction known as photopolymerization. This process involves the 

resin layer within a container being cured via laser light exposure, leading to the 

solidification of the material. The bioprinter employs two approaches: a top-down 

or a bottom-up process, referring to the position of the laser in relation to the vat 

[6]. Notably, BRIGHTER adopts an innovative top-down lithography approach, 

which differs from prevailing bottom-up, layer-by-layer bioprinting practices[1]. 

To craft a 3D tissue utilizing this technique, a designed 3D model is converted into 

series of 2D image slices. Each 2D image corresponds to a cross-sectional view of 

the 3D model, serving as input to initiate the fabrication process [4]. 

2.2 Software 

2.2.1 G-code 

Geometric code (G-code) functions as a programming language employed to oper-

ate Computer Numerical Control (CNC) machines and 3D printers. Effectively, it 

takes the form of a text file comprising G-code commands [7].  

Within a G-code file, individual lines encompass G-code commands. Each line ini-

tiates with a specific command followed by positional or coordinate values in the X, 

Y, and Z axes. Each G-code command serves a distinct purpose [7]. 

Common G-code commands are: 

• G00: Rapid positioning – Maximum travel speed from current position to 

specified position. 

• G01: Linear interpolation – Straight line movement at a certain speed repre-

sented by the letter F. 

• M00: Program stop. 



 

 
 

In addition to the X, Y, and Z coordinates that denote positions along different ax-

es, there exist other letters with distinct meanings, such as S or F, associated with 

the G01 command. The letter S, for instance, corresponds to spindle speed in CNC 

machines, while in the context of a 3D printer utilizing a laser, it signifies laser 

power. It's important to note that these letters can carry varying definitions de-

pending on the specific machine being used. For example, S symbolizes spindle 

speed in CNC machines, but it takes on the role of denoting laser power in a 3D 

printer equipped with a laser module [8]. 

2.3 Hardware 

2.3.1 Acousto-optic devices 

There are several different types of acousto-optic devices. Acousto-optics can be de-

fined as the interaction between sound waves and light waves in a transparent me-

dium. The difference between the acousto-optic modulator and the acousto-optic 

deflector that will be discussed is how the acoustic wave is modulated[9]. Modula-

tion of the incoming laser beam is achieved by propagating radiofrequency  (RF) 

signal into a transducer which converts the RF signal into acoustic waves, that are 

then propagated through the transparent medium which leads to changes in the 

refractive index of the material[10]. This process is illustrated in Fig. 1. 

 Figure 1. Acousto-optic device[5] 

 



6 | Background 

 
 

The Acousto-optic Modulator (AOM) allows modulation of the laser beam’s intensi-

ty at a very high frequency. To do this, the acoustic wave that is propagated through 

the transparent material is modulated by varying the amplitude[10]. 

The Acousto-optic Deflector (AOD) allows the sweeping of the modulated laser 

beam at a very high frequency. In the case of the AOD, the modulation is done by 

varying the frequency of the acoustic wave, diverging the angle of the beam along 

one axis[11].  

2.3.2 Galvanometer scanners 

A galvanometer scanner is an electro-optical component that uses a rotatable mir-

ror to position a laser beam with high precision. Galvanometer scanners have sev-

eral applications such as laser marking, micromachining, 3d printing and more[12]. 

A galvo system consists of three main components: the motor or galvanometer, 

mirror or mirrors, high-precision position detector and the servo which is the driv-

er board that controls the system[12]. 

They can come in different variations depending on the usage. There are single-axis 

scanners which can be either X-axis or Y-axis. The other option is dual-axis scan-

ners which would be XY-axis, providing two-dimensional scanning[13].  

 

 

 



 

 
 

Figure 2. Galvanometer scanner[14] 

  

 

2.3.3 Teensy 

The development hardware used in this project is Teensy 4.1, which is a develop-

ment board that uses a powerful microcontroller. There are a total of 55 input and 

output signal pins available for use. There are many internal units to handle com-

munication between the microprocessor and external devices or devices on the 

same circuit board, such as: 

• 8 Serial ports 

• 3 SPI 

• 3 I2C 

• 3 CAN operative 

• USB 

• Ethernet 

Teensy is commonly called an Arduino clone because its primary programming en-

vironment is Arduino’s integrated development environment (IDE) software with 

Teensyduino add-on.  



8 | Background 

 
 

There are other software alternatives depending on the operating system (OS) such 

as Visual Micro, PlatformIO and CircuitPython[15]. Other project members used 

and recommended PlatformIO, which is the only free IDE mentioned for use with 

VSCode. 

2.4 Related work 

This subsection briefly describes related works. Although these studies may not 

specifically involve the integration of pre-existing systems, the process of integrat-

ing two systems essentially mirrors the creation of a new one, albeit with reduced 

flexibility. 

2.4.1 IOT Based Smart Garbage alert system using Arduino UNO 

The scientific paper authored by N. Sathish Kumar, B. Vuayalakshmi, R. Jenifer 

Prarthana and A. Shankar [16],  addresses the construction of a smart garbage alert 

system. The system’s development involved the utilization of various hardware and 

software components, employing design methods such as block diagrams and flow 

charts for the systems.  

2.4.2 Sun Tracking System 

The scientific paper authored by Anish Sarla and Sai Charan Reddy Dandu [17], 

addresses the design and implementation of a sun tracking system. Same as in the 

work mentioned in 2.4.1, the system is portrayed using a block diagram to illustrate 

its components, and a flowchart is employed to explain the algorithm.  

The authors successfully developed a prototype tracking system that continuously 

tracks light rays to maximize solar energy production. 

2.4.3 A Low-Cost Portable Smart Card Based Attendance System 

The scientific paper authored by Vibin Mammen Vinod, Govindasamy Murugesan, 

V Mekala, S Thokaiandal, M Vishnudevi and S M Siddharth [18], addresses the de-

sign and implementation of a smart attendance system. This work also utilizes 

block diagrams and flowcharts. 

The utilization of block diagrams and flowcharts in this paper, as well as in the 

studies referenced in sections 2.4.1 and 2.4.2, appears to be a standard practice for 

the design and implementation of a system. 



 

 
 

2.4.4 Integration och Interoperabilitet vid utveckling av IT-system 

The scientific paper authored Mohammed AL-Hilfi and Emil Olovsson [19], ex-

plores how system developers can overcome complex issues when building new IT-

systems. They primarily focus on the technical and organizational interoperability 

of the integration process. 

In this paper, the authors describe the various phases of integrating an IT system, 

starting from its design to its actual launch. They emphasize the close relationship 

between integration and interoperability, which often depends on the system's spe-

cific requirements. It's crucial to have a deep understanding of the interfaces in-

volved and how the physical components of the system are connected. 

 

 

 

 

 

 

 

 





 Methodologies and methods | 11 

 
 

3 Methodologies and methods 

This chapter offers a thorough overview of the methodologies and the tools used in 

this thesis. It starts with a literature study and tool introduction, including software 

development methods. The experimental design and GUI integration are discussed, 

along with hardware and software components.  

3.1 Literature study and pre-study 

A comprehensive review of existing literature is conducted to establish a founda-

tional understanding of 3D bioprinting, as well as an exploration of the diverse bi-

oprinting methods currently available. Moreover, the objective is to identify similar 

works and the methodologies they employed. This literature study is performed by 

conducting searches for articles on Google Scholar. 

A substantial portion of the preliminary study involves comprehending the existing 

solution through discussions with various expert team members from both GUF 

and Mycronic, who are responsible for different aspects such as hardware, electron-

ics, software, and optics. While some documentation is accessible, it is important to 

note that certain information has become outdated due to a project hiatus. 

Concerning the Mycronic system, significant insights pertaining to prior work were 

extracted from the relevant work carried out in Ohanyan’s master thesis project [5]. 

3.2 Software development methodologies 

3.2.1 Agile 

Agile is a collective name for several software development methodologies. It was 

based on the manifesto where the authors valued: 

 

• Individuals and interactions over processes and tools. 

• Working software over comprehensive documentation. 

• Customer collaboration over contract negotiation. 

• Responding to change over following a plan. 

 

Many of these authors are also the creators of the different methodologies under 

the Agile name like SCRUM, Extreme programming (XP), Test-driven develop-

ment(TDD), Lean software development and more[20]. 



12 | Methodologies and methods 

 
 

3.2.1.1  Kanban 

Kanban, an iterative approach rooted in Agile and Lean principles, introduces a 

streamlined methodology. Analogous to sticky notes on a wall, a Kanban board 

serves as its digital counterpart for software development. The board is sectioned 

horizontally into groups that denote distinct project stages, and within these, task 

cards are positioned. These cards, each carrying varying priority levels, can be as-

signed to team members. As tasks progress, cards transition from left to right 

across the board, ultimately reaching completion. This visual framework enhances 

project comprehension and clarifies each team member's contribution within the 

broader context, facilitating a seamless progression from inception to conclusion. 

Kanban, alongside other Agile methods, contrasts with the linear waterfall model, 

which mandates the sequential completion of phases before progression. The Wa-

terfall model lacks flexibility, discouraging overlap between phases. Consequently, 

the waterfall model is unsuitable for this thesis. 

Given the project's geographical dispersion of teams, solo development, and adapt-

able workflow, Kanban emerged as the favored software development approach 

over other alternatives. 

 
Figure 3. Kanban board at one point of the project 

 

3.2.2 Waterfall model 

The waterfall model is generally considered the traditional development method 

where the project is divided into several phases such as: 



 

 
 

• Requirement analysis 

• Design 

• Implementation 

• Testing 

• Operation and maintenance 

Each phase must be completed before proceeding to the next, allowing for very lit-

tle flexibility and no overlap between phases, making it costly when requirements 

change in the later phases of a project[21]. 

3.3 Hardware 

3.3.1 AOD/AOM rack 

This module, as previously mentioned, is the optical hardware provided by My-

cronic in the Brighter project and must be integrated into the setup that GUF al-

ready has with the scanners and stages.  

Figure 4. Hardware overview of Mycronic system (Provided by Mycronic team members) 

Although AODs and AOMs are established devices within the field, the instance 

employed in this project is a specialized creation by Mycronic tailored specifically 



14 | Methodologies and methods 

 
 

for use in the bioprinter. Both the AOD and AOM have been assembled within a 

dedicated rack. This rack is maneuvered by 2.5V logic signals, which undergo con-

version into an internal Start of Sweep (SOS) signal, subsequently steering the logic 

of the modulator and deflector. The XINC and WINDOW shown in figure 4, repre-

sent SOS and XWIN signals and a custom cable was made to facilitate the connec-

tion between Teensy and the rack. 

The rack is complemented by an Ubuntu PC (Worksbrighter), which interfaces with 

various cables, as depicted in figure 4. Mycronic's provided software operates on 

this PC, serving the purpose of formatting a 3D model suitably and transferring 

pattern data that is utilized with each SOS signal. This operation is facilitated 

through the PCI-express connection, serving as the conduit between the hardware 

and the software components. 

3.4 Software 

3.4.1 AOD/AOM software 

As mentioned in 3.3.1, Mycronic has provided accompanying software with the 

AOD/AOM rack, encompassing scripts for various uses.  

There are two important signals needed by the AOD/AOM: 

1. XWIN 

2. SOS 

The AOD/AOM has its own internally simulated SOS signals for initialization pur-

poses. To change from the simulated ones to signals driven by an external source, a 

gating signal must be set high. A gating signal is usually used to allow or block 

transmission of a signal. In our case XWIN is that gating signal. When the XWIN 

signal is set to high by the Teensy, the AOD/AOM becomes receptive to SOS signals 

from an external source, in our case, the Teensy. 

Fig-

ure 5.  Timing diagram of XWIN and SOS signal 



 

 
 

Prior to the initiation of the printing process, a sequence of conversions is required 

for the 3D model. This conversion starts with the original .stl format, serving as a 

representation of the 3D model. Subsequently, the model undergoes slicing, seg-

menting it into distinct layers. Ultimately, it evolves into an .st file, a unique My-

cronic format tailored for pixel data representation. 

Once the .st file is generated, the AOD/AOM devices can be uploaded with pattern-

ing data. This data is then “sweeped out” with the SOS signal, which activates every 

time the connected pin on the Teensy undergoes a transition from low to high, trig-

gering the corresponding sweep. 

3.4.2 GUI 

GUF developed a GUI with several features such as controlling the stage and scan-

ners. The communication between the GUI and Teensy was done through serial 

communication. 

One functionality of the GUI that was relevant to the integration was the uploading 

and sending of the G-code file to the Teensy board. The G-code file is derived from 

a 3D model in a separate software application. Following its upload into the GUI, 

the G-code is subsequently transmitted through the serial port to the Teensy. Once 

this transmission is completed, the printing process can be initiated. 

The printing process at the beginning of this project was a function in the Teensy 

firmware which parsed G-code commands and based on those commands moved 

the stage and scanner to certain points. 

3.5 Experimental design 

3.5.1 System architecture design 

The system consists of a multitude of components, encompassing both hardware 

and software elements, with two pivotal players.  

The first is the Teensy, serving as the hardware core, responsible for transmitting 

signals to the hardware modules. The second is the GUI, acting as the software 

core, initiating the printing procedure by relaying commands to both the Teensy 

and Worksbrighter. 



16 | Methodologies and methods 

 
 

Figure 6. System architecture diagram of the two systems 

As shown in figure 6, the Teensy establishes physical connections with various 

hardware modules. The initiation of the printing process is facilitated by the GUI 

on a Windows PC. It's noteworthy that the operating system of the desktop, termed 

Worksbrighter, has Ubuntu, which is particularly significant due to its physical 

linkage to the AOD/AOM rack. 

The GUI cannot be run on Ubuntu and this was an issue that could be solved by 

two approaches: 

• Secure Shell (SSH) 

• Virtual Machine (VM) 

The first approach is a network protocol that is used for secure remote login, trans-

ferring files, and issuing remote commands[22]. 

The second approach is a VM which is a virtual computer where one can allocate 

the amount of RAM, CPU cores and diskspace[23]. A VM can run your preferred 

OS which makes running Windows possible on Worksrbrighter, allowing the use of 

the GUI. 

SSH emerged as the more pragmatic and fitting approach for this project due to the 

remote nature of development and constrained access to Worksbrighter throughout 

the thesis duration. This method additionally offers users enhanced versatility, 

permitting work from personal laptops, thereby not being restricted to Works-

brighter alone. 

3.6 Test environment 

For the test environment, the code in the firmware was written with the required 

layer count and SOS signals with the same 3D model in mind. This ensured the 



 

 
 

code worked as theorized, reducing the chances of errors, and ultimately improving 

the efficiency of the process. The layer count was 399, with a total of 886 SOS sig-

nals required for each layer. 

Timing for movement between the AOD/AOM, scanner and stage were set with a 

good amount of margin to make sure movements were done sequentially in X, Y 

and Z order. 

Testing of various features was done incrementally to ensure they individually 

worked as intended, before moving on to the testing of the complete synchroniza-

tion solution. 

An oscilloscope was primarily used to measure the signals coming from the Teensy 

microcontroller. It also checked if the AOD/AOM received the signal correctly. This 

was important because the rapid patterning made it difficult to see visually. 

 

Figure 7. Oscilloscope showing the SOS signals sent by the Teensy. 

In addition, a frequency counter was employed to count the SOS signals sent from 

the Teensy. This was done to confirm the count shown by the Mycronic software 

with the count from the frequency counter, which helped in the troubleshooting 

phase. 



18 | Methodologies and methods 

 
 

3.7 Tools 

3.7.1 Teensy development 

The primary development environment for the Teensy is Arduino IDE. This IDE is 

characterized by its beginner-friendly nature, featuring incorporated libraries and 

examples for communication with different protocols, controlling different dis-

plays, controlling different motors and more [24], [25]. 

Visual Studio Code (VS code) made by Microsoft was the source-code editor that 

was used in this project. It has a rich variety of extensions for different applica-

tions. A lot of languages come with built-in support like JavaScript, TypeScript, 

CSS and HTML but it also supports most major programming languages via its VS 

Code Marketplace where extensions can be installed for respective language[26]. 

The primary extension used with VS code is PlatformIO which is an IDE that sup-

ports several operating systems like Windows, Linux, and Mac. PlatformIO has ex-

tensive support for different boards, development platforms and frameworks, the 

board used in this project and the Arduino framework included[27]. 

VScode was chosen over Arduino IDE because, even though the latter is simpler to 

set up and work with for simpler projects. VScode has a lot of helpful features that 

helped with this project such as Live share and GitHub integration, making remote 

collaboration easier. It was also used and recommended by other teams that 

worked on this project. 

3.7.2 GUI development 

The GUI used a different environment for development called Visual Studio. Alt-

hough both share the same creator and almost identical names, they are used for 

different purposes. Visual Studio is an actual IDE which is more complete from the 

beginning in contrast to VS code which is highly customizable and dependent on 

extensions for different goals.[28] 

Development for the GUI was done with C# in Visual Studio, the native IDE for this 

language. Windows forms was used and it’s a UI framework used to create desktop 

applications. The primary extension used for this thesis was SSH.NET which was 

used to facilitate communication between the GUI and Worksbrighter.



 Results and analysis | 19 

 
 

4 Results and analysis 

This chapter showcases the results of the preliminary study where we collected 

comprehensive data about the two systems and developed the system architecture 

diagram. Additionally, it will introduce two solutions with their corresponding out-

comes. 

4.1 Preliminary study results 

Although the systems were physically interconnected, there was a lack of software 

communication between the GUF and Mycronic systems. The key questions that we 

addressed are: 

• What hardware is used? 

• What software is used? 

• What communication protocols are available? 

• What’s the current software solution? 

With these questions answered, a system architecture diagram was designed (as 

shown in figure 6). 

The first and second question helped provide a clearer overview of the hardware 

and software components being utilized. The third question identified existing 

communication protocols and potential integration options. The fourth question 

involved an analysis of the current codebase, including the Teensy firmware, GUI 

code, and the AOD/AOM software. 

4.2 G-code integration 

During the implementation process, the GUI played a central role in the system. 

The system was designed with the GUI as the starting point for all actions, connect-

ing all the different parts together. 

To add 3D patterning capabilities using the existing G-code solution, the 

AOD/AOM was integrated in both Teensy and the GUI. To control the Mycronic 

system, SSH connection was added. This allowed for commands to be sent from the 

GUI to control the AOD/AOM. SSH was then used to upload each 2D layer by send-

ing a specific character ('O') through a serial port from Teensy to the GUI. The GUI, 

upon receiving this character, then sent the necessary command through SSH to 

upload the upcoming layer using Worksbrighter.  



20 | Results and analysis 

 
 

Additionally, the Teensy microcontroller directly sent an SOS signal to control the 

AOD/AOM. Since the AOD/AOM managed the X-axis movement, an SOS signal 

was sent for each movement of the scanner, which governed the Y-axis movement. 

There were two issues with this approach, the first issue is how G-code pathing 

works. When looking at G-code files used, the coordinates were very random. For 

example, starting in the middle and then jumping to the top or bottom. This is 

probably for optimization purposes. This type of movement is not compatible with 

the Mycronic system since it’s only able to make a sweeping movement, basically 

diverging the angle of the laser beam along one axis. The other issue is how many 

scanner movements we get from the G-code file based on the amount of Y coordi-

nates parsed. This is an issue because of how the Mycronic system is expecting a 

certain amount of SOS signals for a 2D layer, which doesn’t correspond with the Y-

movements in the G-code. For every 2D layer uploaded there’s a specific amount of 

SOS signals to be sent to finish one layer. 

The flowchart shown in figure 8, shows the integration with the already existing 

codebase. Certain modifications were done to integrate the AOD/AOM such as 

modification of the scanner to only use one mirror instead of two, the serial com-

mands, the addition of SSH communication and SOS signal. 



 

 
 

 

Figure 8. Flowchart of one iteration in a continous loop of the G-code integration 

4.3 Custom implementation 

This implementation relies on a continuous loop that correlates with the layer 

count of the 3D model being utilized. The primary loop essentially represents the 

3D model. Nested within this primary loop is another loop for each 2D layer, based 

on the repetitive X and Y movement until exposure is finished and it’s time for an-

other layer. 



22 | Results and analysis 

 
 

Furthermore, this implementation offered the advantage of adjusting the number 

of SOS signals and synchronizing them with the appropriate scanner movements, 

thereby streamlining the integration process. This strategy also made testing easier 

by allowing simple adjustments to essential parameters like SOS signal count and 

layers.  

Figure 9. Flowchart of the custom implementation 

The biggest difference between this implementation and the G-code integration, 

other than the absence of G-code coordinates, was the addition of the XWIN signal. 

Previously, the XWIN signal was internally set in the AOD/AOM firmware, contra-

ry to normal practices by other Mycronic machines.  

The XWIN signal must be set high before the printing process begins to allow for 

SOS signals to be received by the AOD/AOM, and then set back to low when print-

ing is finished. 



 

 
 

Apart from this, features such as SSH communication, sending SOS signal, Serial 

commands, and the modified scanner function were inherited from the G-code in-

tegration. 

4.4 Test results 

Following several rounds of testing the custom implementation, it was determined 

that a delay of approximately 3 seconds was essential before sending SOS signals. 

This delay was attributed to the time required for a pattern to be uploaded and for 

the AOD/AOM to be prepared to receive SOS signals.  

The duration during which an SOS signal remained in the HIGH state was modified 

from 100 microseconds to 1 microsecond. Additionally, the delay between every 

SOS signal, originally set at 150 microseconds, was subsequently decreased to 20 

microseconds.  

It is noteworthy to highlight that the scanner's Y-axis movement and the stage's Z-

axis movement were not subjected to testing during the completion of the integra-

tion process. Consequently, the timing parameters for these movements retain a 

considerable margin and are yet to be fine-tuned for optimization. 

The conducted testing revealed the successful establishment of a communication 

flow between the GUF system (GUI and Teensy) and the Mycronic system 

(AOD/AOM and Worksbrighter). As a result of this integration, the exposure of 

numerous layers was successfully executed in the software. 

4.5 Analysis 

The primary goal of this thesis was the design and implementation of a synchroni-

zation solution between the hardware modules in the systems. Before development 

began, there was no communication between the GUF and Mycronic systems.  

Rather than continuing with the initial G-code solution, which was considered un-

feasible, the choice was made to completely redevelop the printing process func-

tion. Limited by time constraints, although there were initial attempts to explore 

alternative G-code generation methods compatible with the Mycronic system, it 

was ultimately determined that a quick, custom solution had the potential to fulfill 

the goals of this thesis. 

It's possible to suggest that adopting an alternative agile methodology emphasizing 

greater teamwork and more frequent meetings could have facilitated the early de-

tection of the incompatibility of the G-code integration. This, in turn, could have 

conserved valuable time in attaining the objectives outlined in section 1.3. Such an 



24 | Results and analysis 

 
 

approach might guard against tunnel vision by getting essential feedback and hear-

ing different perspectives. However, the chosen method was deemed more suitable 

considering the nature of this project. 

With the custom implementation, communication between the systems was estab-

lished and streamlined. However, achieving the best performance requires more 

testing than expected. Most tests were conducted without involving the scanner 

and the stage responsible for Y-axis and Z-axis movement. As a result, the timing 

parameters are not finely tuned for optimal performance, but rather with some 

margin. Limited accessibility to the bioprinter at GUF hindered testing, rendering 

it ineffective within the time constraints of this thesis’s conclusion.  

Commencement of comprehensive testing occurred concurrently with the initiation 

of a secondary bioprinter's construction at Mycronic. However, since this second-

ary bioprinter was still under construction, it lacked most of the hardware modules, 

thereby imposing constraints on certain testing aspects. Nonetheless, the availabil-

ity of Worksbrighter, AOD/AOM and Teensy facilitated substantial advancements 

in the testing process. 

Based on the goals set in section 1.3, the results were deemed satisfactory, though 

not fully comprehensive. The primary goal was attained and can be further en-

hanced through additional testing. However, the achievement of the secondary goal 

hinged upon the fulfillment of the primary objective which was accomplished by 

the conclusion of this thesis. 

4.6 Discussion 

The utility of the chosen Kanban method as a solo developer lay in its ability to 

provide a structured approach while still offering adaptability. Task visualization 

was facilitated through usage of distinct cards representing diverse activities such 

as the addition and testing of various features, leading to distinct waypoints that 

led to the desired result. 

In contrast to several other software development methodologies that mandate fre-

quent meetings, the meetings in this project were irregular, influenced by partici-

pant availability and organized on an as-needed basis. Opting for Kanban was apt 

given its exemption from formal meeting requirements, one reason for its known 

flexibility. 

The first software prototype, the G-code integration discussed in section 4.2, ena-

bled communication between the two systems. However, it wasn’t entirely flawless, 

but a general idea of the implementation was established. This approach also 

brought to light certain problems and disadvantages related to the parsing of G-



 

 
 

code itself. Despite identifying these issues later in the project, the G-code integra-

tion had components that were thoroughly tested, such as SSH communication, se-

rial communication, and a general idea of the code flow. This made the develop-

ment of the custom implementation relatively quick within the short timeframe 

that was available. 

4.7 Social and economical aspect 

The selection and implementation of the chosen design were executed with a meas-

ure of consideration for the project's economic and social implications. Notably, the 

central system orchestrating the interlinking of the two systems, the GUI, exhibited 

a prominent issue. As briefly outlined in section 3.6.2, the GUI's development was 

native to the Windows OS, thereby prompting the identification of a predicament 

and corresponding solutions, as elaborated in section 3.3.1.  

Among the two presented solutions, opting for an SSH connection to Worksbright-

er emerged as the more economically viable alternative. This rationale stems from 

the cost comparison between implementing an SSH connection and the procure-

ment of licenses for both VM and Windows. 

The SSH implementation is considered “free” in the sense that it doesn’t cost any 

money. However, the cost in this context pertains to the time expended for devel-

opment. On the other hand, purchasing licenses for VM and Windows involves fi-

nancial expenditure, although it may not demand as extensive practical effort. 

Ultimately, the decision was made to proceed with the implementation of an SSH 

connection for a variety of reasons: 

• The time required for developing the SSH connection was not long enough 

to justify the adoption of the alternative choice involving running the GUI 

directly on Worksbrighter. 

• The long-term benefit of a user-friendly GUI utilization outweighed the po-

tential convenience of running a VM with Windows on Worksbrighter from 

the user’s standpoint. 

The second point constituted the central core in the development of the GUI. Em-

phasizing a user-centric approach, where critical operations occur seamlessly, re-

sulted in a GUI accessible to all, requiring minimal guidance and expertise for its 

utilization. Also, potentially increasing effectivity and productivity with lesser per-

sonnel needed for its usage. 



26 | Results and analysis 

 
 

4.8 Ethical aspect 

Considering the bioprinter's intended use for human tissue printing, it's essential 

to address privacy and data integrity concerns. Initially, the G-code method trans-

ferred data from a text file to the GUI and then to the Teensy microcontroller. 

While the initial solution didn’t necessarily need internet connectivity, the resulting 

integration uses SSH and doesn't need internet either if Worksbrighter and the 

GUI-connected computer share the same network. Additionally, no extensive data 

transfer occurs; Worksbrighter holds the complex patterning data, which are hard-

er to decipher than a text file, and the GUI only instructs the uploading process. 

4.9 Environmental aspect 

The process of integration may have reached completion; however, it has not yet 

attained full optimization. To effectively account for the environmental aspects in-

herent in this integration, the attainment of a fully optimized system necessitates 

precise synchronization of timing intervals between the movement of the three 

hardware modules. As stipulated in section 4.4, additional experimentation is ob-

ligatory to expedite the printing process, thereby potentially resulting in dimin-

ished electricity consumption. 

 

 

 

 

 

 

 

 



 Conclusions and future work | 27 

 
 

5 Conclusions and future work 

5.1 Conclusions 

In conclusion, this thesis delves into the realm of 3D bioprinting with the goal of 

integrating two electronic systems. This integration is achieved through the design 

and implementation of a software solution, which synchronizes the signaling of 

three hardware modules. 

The results demonstrate the successful establishment of a signaling system, which 

streamlines communication between the two systems and enables 3D capabilities 

as a result. This achievement paves the way for further progress on the project, as 

the integration stands as a crucial milestone for the project. 

However, the testing phase incurred greater time investment and engagement than 

initially anticipated. Consequently, additional testing is imperative to achieve op-

timal performance. This also implies that the secondary goal was not met and re-

quires attention for future development. Efficient advancement of the project might 

require dedicated personnel and increased collaboration among teams. 

While the primary focus of this thesis is on bioprinting, it's important to note that 

the methods and methodologies employed here are not necessarily restricted solely 

to bioprinting. Instead, they possess a broader applicability and can prove valuable 

in the integration of electronic systems in a more general sense. 

The same set of questions outlined in section 4.1 can indeed be applied to various 

electronic systems, including both hardware and software components, when de-

signing and implementing prototype solutions. These questions provide a valuable 

framework for considering critical aspects and requirements that are relevant 

across different domains of electronic system development. 

5.2 Limitations 

The primary constraint was the limited availability to the completed system at GUF 

in Germany. Given the complexity of the setup involving an array of hardware and 

software components, substantial testing occurred only toward the conclusion of 

this thesis, specifically to observe the interaction between the GUF software and the 

Mycronic software. During this phase, certain problems were identified that re-

quired resolution by Mycronic experts for further progress. These issues wouldn’t 

have been evident through used tools like the oscilloscope and frequency counter. 



28 | Conclusions and future work 

 
 

5.3 Future work 

The clear next steps involve first optimizing the laser beam movement based on 

testing timing across hardware modules. Then, the secondary goal of this thesis, 

which is to identify optical dose parameters to create well-defined 3D tissue struc-

tures in the bioprinter, remains to be addressed and achieved. 

 

 

 



 References | 29 

 
 

References 

[1] “Brighter – Bioprinting by Light-Sheet Lithography.” https://brighterproject.eu/ (accessed Nov. 17, 2022). 

[2] I. T. Ozbolat, “Bioprinting scale-up tissue and organ constructs for transplantation,” Trends Biotechnol., vol. 33, no. 7, 

pp. 395–400, Jul. 2015, doi: 10.1016/j.tibtech.2015.04.005. (accessed Sep. 04, 2023) 

[3] S. Vanaei, M. S. Parizi, S. Vanaei, F. Salemizadehparizi, and H. R. Vanaei, “An Overview on Materials and Techniques in 

3D Bioprinting Toward Biomedical Application,” Eng. Regen., vol. 2, pp. 1–18, Jan. 2021, doi: 

10.1016/j.engreg.2020.12.001. (accessed Sep. 04, 2023) 

[4] A. M. Bejoy et al., “An insight on advances and applications of 3d bioprinting: A review,” Bioprinting, vol. 24, p. 

e00176, Dec. 2021, doi: 10.1016/j.bprint.2021.e00176. (accessed Sep. 04, 2023) 

[5] R. Ohanyan, “A novel dynamic acousto-optic lithographic patterning technique for bioprinting,” p. 66. 

[6] M. Pagac et al., “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future 

Trends of 3D Printing,” Polymers, vol. 13, no. 4, Art. no. 4, Jan. 2021, doi: 10.3390/polym13040598. (accessed Sep. 04, 

2023) 

[7] A. C. Brown and D. de Beer, “Development of a stereolithography (STL) slicing and G-code generation algorithm for an 

entry level 3-D printer,” in 2013 Africon, Sep. 2013, pp. 1–5. doi: 10.1109/AFRCON.2013.6757836. (accessed Sep. 04, 

2023) 

[8] “G-Code Formatting Reference.” https://tormach.com/g-code-formatting-reference (accessed Apr. 05, 2023). 

[9] “IntroductionAO.pdf.” Accessed: Aug. 23, 2023. [Online]. Available: 

https://www.optoscience.com/maker/gooch/pdf/IntroductionAO.pdf 

[10] R. Mesleh and A. AL-Olaimat, “Acousto-Optical Modulators for Free Space Optical Wireless Communication Systems,” 

J. Opt. Commun. Netw., vol. 10, no. 5, pp. 515–522, May 2018, doi: 10.1364/JOCN.10.000515. (accessed Sep. 04, 2023) 

[11] G. R. B. E. Römer and P. Bechtold, “Electro-optic and Acousto-optic Laser Beam Scanners,” Phys. Procedia, vol. 56, pp. 

29–39, 2014, doi: 10.1016/j.phpro.2014.08.092. (accessed Sep. 04, 2023) 

[12] “Galvanometer Scanners | Scanlab.” https://www.scanlab.de/en/service/glossary/galvanometer-scanners (accessed 

Dec. 02, 2022). 

[13] “Dual-Axis Galvanometer Scan Head Systems, ±22.5° Scan Angle.” https://www.thorlabs.com (accessed Dec. 12, 2022). 

[14] “01_dynAXIS_galvanometer scanner.pdf.” Accessed: Dec. 02, 2022. [Online]. Available: 

https://www.scanlab.de/sites/default/files/2020-07/01_dynAXIS_galvanometer%20scanner.pdf 

[15] “Teensy® 4.1.” https://www.pjrc.com/store/teensy41.html#communication (accessed Dec. 12, 2022). 

[16] N. S. Kumar, B. Vuayalakshmi, R. J. Prarthana, and A. Shankar, “IOT based smart garbage alert system using Arduino 

UNO,” in 2016 IEEE Region 10 Conference (TENCON), Singapore: IEEE, Nov. 2016, pp. 1028–1034. doi: 

10.1109/TENCON.2016.7848162. (accessed Sep. 04, 2023) 

[17] S. C. R. Dandu and A. Sarla, Sun Tracking System. 2022. Accessed: Sep. 04, 2023. [Online]. Available: 

https://urn.kb.se/resolve?urn=urn:nbn:se:bth-23262 

[18] V. M. Vinod, G. Murugesan, V. Mekala, S. Thokaiandal, M. Vishnudevi, and S. M. Siddharth, “A Low-Cost Portable 

Smart Card Based Attendance System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1012, no. 1, p. 012046, Jan. 2021, doi: 

10.1088/1757-899X/1012/1/012046. (accessed Sep. 04, 2023) 

[19] M. AL-Hilfi and E. Olovsson, Integration &amp;amp; Interoperabilitet vid utveckling av IT-system. 2017. Accessed: 

Sep. 04, 2023. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64992  

[20] “Manifesto for Agile Software Development.” https://agilemanifesto.org/ (accessed Dec. 21, 2022). 

[21] A. A. A. Adenowo and B. A. Adenowo, “Software Engineering Methodologies: A Review of the Waterfall Model and Ob-

ject-Oriented Approach,” vol. 4, no. 7, 2013. (accessed Sep. 04, 2023). 

[22] “What is the Secure Shell (SSH) Protocol? | SSH Academy.” https://www.ssh.com/academy/ssh/protocol (accessed 

May 02, 2023). 

[23] “What is a Virtual Machine? | VMware Glossary,” VMware. https://www.vmware.com/topics/glossary/content/virtual-

machine.html (accessed May 02, 2023). 

[24] “Built-in Examples | Arduino Documentation.” https://docs.arduino.cc/built-in-examples/ (accessed Dec. 15, 2022). 

[25] “Libraries - Arduino Reference.” https://www.arduino.cc/reference/en/libraries/ (accessed Dec. 15, 2022). 

[26] “Language Support in Visual Studio Code.” https://code.visualstudio.com/docs/languages/overview (accessed Dec. 15, 

2022). 

[27] “PlatformIOIDE— PlatformIO v6.1 documentation.” https://docs.platformio.org/en/stable/integration/ide/pioide.html 

(accessed Dec. 15, 2022). 



30 | References 

 
 

[28] “Visual Studio: IDE and Code Editor for Software Developers and Teams,” Visual Studio. 

https://visualstudio.microsoft.com (accessed Aug. 18, 2023). 
 


