KTH ROYAL INSTITUTE
OF TECHNOLOGY
ug?ﬁ Y
FKTHE

% VETENSKAP
28 OCH KONST 2%

Mo

Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Keeping an Indefinitely Growing
Audit Log

MANS ANDERSSON

Stockholm, Sweden, 2022

Keeping an Indefinitely Growing
Audit Log

MANS ANDERSSON

Degree Programme in Computer Science and Engineering
Date: December 1, 2022

Supervisor: Hongyu Jin
Examiner: Panos Papadimitratos
School of Electrical Engineering and Computer Science
Host company: PrimeKey Solutions AB
Swedish title: En kontinuerligt vaxande audit log

© 2022 Mans Andersson

Abstract |i

Abstract

An audit log enables us to discover malfeasance in a system and to understand
a security breach after it has happened. An audit log is meant to preserve
information about important events in a system in a non-repudiable manner.
Naturally, the audit log is often a target for malicious actors trying to cover the
traces of an attack. The most common type of attack would be to try to remove
or modify entries which contain information about some events in the system
that a malicious actor does not want anyone to know about.

In this thesis, the state-of-the-art research on secure logging is presented
together with a design for a new logging system. The new design has superior
properties in terms of both security and functionality compared to the current
EJBCA implementation. The design is based on a combination of two well-
cited logging schemes presented in the literature.

Our design is an audit log built on a Merkle tree structure which enables
efficient integrity proofs, flexible auditing schemes, efficient queries and
exporting capabilities. On top of the Merkle tree structue, an FssAgg
(Forward secure sequential Aggregate) MAC (Message Authentication Code)
is introduced which strengthens the resistance to truncation-attacks and
provides more options for auditing schemes.

A proof-of-concept implementation was created and performance was
measured to show that the combination of the Merkle tree log and the
FssAgg MAC does not significantly reduce the performance compared to the
individual schemes, while offering better security. The logging system design
and the proof-of-concept implementation presented in this project will serve
as a starting point for PrimeKey when developing a new audit log for EJBCA.

Keywords

Cryptography, Audit Log, Tamper-evident, Merkle tree

ii | Abstract

Sammanfattning | iii

Sammanfattning

En granskningslogg ér viktig eftersom den ger oss mojligheten att uppticka
misstdnkt aktivitet i ett system. Granskningsloggen ger ocksd mdjligheten
att undersoka och forstd ett sidkerhetsintring efter att det har intriffat. En
attackerare som komprometterar ett system har ofta granskningsloggen som
mal, eftersom de ofta vill dolja sina spar.

I denna rapport presenteras en litteraturstudie av nuvarande forskning
pa sikra loggingsystem samt en design av ett nytt loggingsystem. Det nya
loggingsystemet har bittre sdkerhetsegentskaper och funktionalitet jamfort
med den nuvarande implementationen i EJBCA. Designen bygger pd en
kombination av tvé vilciterade forskningsartiklar.

Vér design ér en granskningslogg baserad pa en Merkle trad-struktur som
mojliggor effektiva bevis av loggens integritet, flexibel granskning, effektiv
sOkning och exportfunktionalitet. Forutom Merkle trad-strukturen bestar
den nya loggen dven av en FssAgg (Forward secure sequential Aggregate)
MAC (Message Authentication Code) som forstiarker loggens motstdnd mot
trunkeringsattacker och mojliggor fler sitt att granska loggen.

En prototypimplementation skapades och prestandamétningar genomfor-
des som visar att kombinationen av Merkle trid-loggen och FssAgg MAC:en
inte forsamrar loggens prestanda jimfort med de individuella logglosningarna,
trots att starkare sikerhet uppnds. Designen av det nya loggingsystemet samt
prototypimplementationen kommer att utgora en grund for PrimeKeys arbete
med att implementera en ny audit log i EJBCA.

Nyckelord
Kryptografi, Granskningslogg, Manipuleringsupptidckbarhet, Merkle trid

iv | Sammanfattning

Acknowledgments | v

Acknowledgments

I would like to thank Professor Panos Papadimitratos and Hongyu Jin Ph.D. at
NSS Group at KTH Royal Insitute of Technology for being supportive during
this project and helping me achieve the necessary academic quality of the
report.

I would also like to thank all the people at Keyfactor (formerly PrimeKey)
for providing the idea for this project, for letting me do this project at the
company, and for being supportive and helpful all the way. A special thanks to
Mike Agrenius Kushner for supervising the project and always being helpful.

A big thank you to my fellow students and great friends Joakim Loxdal,
Eric Vickstrom, Oscar Almqvist and Kalle Meurman for input and support.

Stockholm, December 2022
Mans Andersson

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background 1
1.1.1 PKI 1

1.1.2 AuditLog 2

1.2 Problem 3
1.2.1 Original Problem and Definition 3

1.3 Purpose 4
1.4 Goals 4
1.5 Delimitations 5
1.6 Structure of the Thesis 5
2 Background 7
2.1 Schneier-Kelsey Log 7
2.2 Logerypt. e e 9
2.3 A Log with an Aggregate Signature 11
2.3.1 Scheme and Algorithms 11

2.3.2 Security and Performance 13

24 MerkleTreeLog 13
24.1 LogStructure 15

2.4.2 Proof Construction 16

2.4.3 Auditing, Verification and Gossiping 18

244 Performance 19

2.4.5 Merkle Aggregation 20

2.4.6 Safe Deletion, Pruning and Exporting 22

247 Summary 22

2.5 Certificate Transparency 23
2.6 Summary e e e 24

viii | Contents

3 Methodology
3.1 Identifying the Problem and Requirements
3.2 Literature Review o L
33 SystemDesign o oo
3.4 Implementation,

4 Existing Solution
4.1 Integrity Protection
42 Clustering e
4.3 Implementation and Performance
4.4 Areas of Improvement

5 Analysis and Requirements
5.1 Threat Analysis
5.2 Security Requirements oL
5.2.1 Entity Authentication
5.2.2 Tamper-evident
5.3 Functional Requirements
5.3.1 Writable from Multiple Sources Concurrently
5.3.2 Scalability 0oL
533 Pruning

6 Our Log System Design
6.1 LoggerDesign.
6.2 Infrequent Auditor Design
6.3 CANodeDesign
6.4 Frequent Auditor Design
6.5 Secruity Analysis oL
6.5.1 Adversarial Model
6.5.2 Logger
6.53 CANode,
6.5.4 Logger, Frequent Auditors and Clients

7 Implementation
7.1 Performance

8 Discussion, conclusions and future work

References

27
27
27
27
28

29
29
30
31
32

35
35
36
36
36
36
36
37
37

39
40
42
44
45
46
46
47
47
48

49
50

57

61

List of Figures | ix

List of Figures

2.1
2.2
2.3
24

4.1

6.1

7.1

7.2

7.3

7.4

A simplified view of the Schneier-Kelsey log scheme
A version 2 history (3 added events)
A version 6 history (7 added events)
A pruned tree that can be used as an incremental proof

between the two versions L.

An overview of how the current EJBCA system works when
runinacluster L L L L L.

An overview of how the new logging system works incorpo-
rated with EJBCA. In the example the log is at commitment 4,
since five entries have beenadded.

Plot of the average time required to add new entries to the log
for different logger setups and signature algorithms
The time required to verify an FssAgg MAC depending on the
number of entries it protects. Plotted with confidence intervals
onalogscale x-axis.
The time required produce a Merkle membership proof for one
entry for different sized logs. Plotted with confidence intervals
onalogscale x-axis.
The time required to verify a Merkle membership proof for
one entry for different sized logs. Plotted with confidence
intervals on a log scale x-axis.

x | List of Figures

List of Tables | xi

List of Tables

2.1 Comparison of logging schemes 25

xii | List of acronyms and abbreviations

List of acronyms and abbreviations

API Application Programming Interface
CA Certificate Authority

CPU Central Processing Unit

CRL Certificate Revocation List

CT Certificate Transparency

DB Database

EC Elliptic Curve

ECDSA Elliptic Curve Digital Signature Algorithm
EJIBCA Enterprise Java Beans Certificate Authority

FIFO First In First Out

FssAgg Forward secure sequential Aggregate
GDPR General Data Protection Regulation
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol

IBE Identity Based Encryption

IBS Identity Based Signature

LGPL Lesser General GNU Public License
MAC Message Authentication Code

MMT Maximum Merge Delay

OCSP Online Certificate Status Protocol
PKI Public Key Infrastructure

RSA Rivest—Shamir—Adleman

SCT Signed Certificate Timestamp
SHA-256 Secure Hashing Algorithm, 256-Bits
TLS Transport Layer Security

WORM Write-Once Read-Many

Introduction | 1

Chapter 1

Introduction

The audit log is important, not only to be able to keep track of what is
happening in a system but also to be able to discover suspicious activity and
to learn more about a security breach after it has happened. This means that
an attacker whose main objective is some other part of the system often has
the audit log as their first target [1], to hide their tracks. For that reason, many
different secure logging schemes have been proposed over the years, each with
different properties, strengths and weaknesses.

In this thesis, we focus on a software called EJBCA (Enterprise Java Beans
Certificate Authority) [2] which is an open-source CA (Certificate Authority)
software maintained by a company called PrimeKey. It has an audit log that
serves multiple purposes. It enables the CA to prove that they have performed
a certain action, such as certificate issuance, and when it happened. It should
also provide non-repudiation; if the CA has issued a certificate, the audit log
should make it impossible for the CA to deny that issuance.

1.1 Background

1.1.1 PKI

Information encryption and authentication is used by organizations all over the
world, all the time. Organizations often use a PKI (Public Key Infrastructure)
to manage keys, identities and certificates, thereby making encryption
manageable. Asymmetric encryption is a common form of encryption which
involves a pair of keys, a public and a private key [3]. The public key, as the
name suggests, is made public and anyone can use it to encrypt a message.
But only the one holding the private key (secret key), which was generated

2| Introduction

together with the public key, can decrypt that message. The private key can
also be used to sign information, making it possible to validate the identity of
the sender of the signed information. In the 1990s, PKIs emerged and were
used to create digital certificates which connect an identity with a public key.
The certificates can be seen as the passports or driver’s licenses of the digital
world [3]. The most publicly known PKI is the Web PKI where TLS server
certificates helps facilitate trust for a user when visiting web pages. But PKIs
can be used for many circumstances. For instance, digital certificates are used
by car manufacturers to give vehicles identities [4][5].

The primary role of a CA in a PKI is to handle certificate issuance and
revocation. The CA often requires the entity requesting a certificate to prove
its identity in some way. In the case of the Web PKI, certificates connect public
keys with domain names. In that case, the CA often requires that the entity
requesting a certificate for a certain domain prove that they own the domain by
adding an entry in the DNS (Domain Name System) for that domain [6]. CAs
have their own certificates and are often placed in a hierarchy where an initial
trusted CA delegates responsibility to another CA that is at a lower position
in the hierarchy. This hierarchy can have multiple levels. When verifying the
certificate of a CA, a root CA will eventually be reached. The root CA is at
the top of the hierarchy and its certificate is self-signed [3]. The client often
has a list of trusted root CAs; in the case of the Web PKI, a list of certificates
for root CAs is included with the operating system [7].

It is worth mentioning that background of PKI and EJBCA is helpful for
understanding the use case of the audit log. However, the audit log design
presented in chapter 6 could be used with any system that requires secure
logging, such as access logging for a physical premise, even though it was
designed to suit the needs of EJBCA.

1.1.2 Audit Log

The most important security property of an audit log is integrity. The integrity
of alog is compromised if log entries are modified, removed or reordered. This
implies that a secure audit log should be strictly append-only, i.e. entries can
only be added at the end of the log.

A log is tamper-evident [8] if it is possible to cryptographically prove
whether the integrity of the log was compromised or not. An even stronger
assumption is a tamper-resistant log on tamper-resistant hardware such as
a WORM (Write-Once Read-Many) storage [9]. Without special purpose
hardware, a tamper-resistant log is impossible. This is due to the fact that

Introduction | 3

standard storage hardware enables both reading and writing, and it is possible
for an attacker to modify the storage, regardless of the logging scheme. In
this thesis, we aim at designing a tamper-evident log while tamper-resistant
hardware is out of scope.

Integrity-compromise, thus tampering, of the log can only be detected
through some verification process performed on the log. Therefore it is not
only important that the log is tamper-evident but also that there are flexible
and efficient ways to verify the integrity of the log.

1.2 Problem

The current audit log system of EJBCA is based on a table structure with
signatures for the log entries and sequence numbers to give an ordering
of entries. Auditing and searching in the log is slow and inconvenient.
Performing searches in the audit log occupies the database, which makes the
CA software unable to perform other tasks, that is not ideal. A security flaw
of the current audit log is that it is impossible to detect when entries have been
removed from the tail-end of the log. This is known as a truncation-attack
[10]. In other words, the log is not tamper-evident.
Our design aims to address the following requirements:

* Entity authentication - only trusted entities should be allowed to write
new entries to the log.

* Tamper-evident - log tampering should be detectable, including
modification, deletion or reordering of log entries.

* Scalability - the log should be searchable in an efficient way and
insertions should be efficient, and remain so for growing log size.

* Pruning - it should be possible to prune away and export parts of the
log in a way that does not cause issues with verification.

The requirements are expanded upon in chapter 5.

1.2.1 Original Problem and Definition

The purpose of the project is to propose a logging system to satisfy the
requirements. The new design should be evaluated based on the requirements
and a proof-of-concept implementation should be created.

4 | Introduction

1.3 Purpose

From the point of view of PrimeKey, the project should serve as an inspiration
and a starting point for implementing a new and improved logging system for
EJBCA. Some EJBCA customers have complained about the audit log, mostly
in regards to slow searching and slow verification. Therefore it is reasonable,
from a business standpoint, for PrimeKey to upgrade the audit log.

From the author’s point of view, this project offers an opportunity to
learn more about security, cryptography and software engineering. Designing
a tamper-evident and efficient, scalable log system is interesting both from
an engineering and an academic point of view since the problem combines
aspects of cryptography, security and system design.

1.4 Goals

The goals that this project tries to achieve are as follows:

1. Provide a literature review presenting the most important research done
on the topic of secure logging.

2. Describe how the audit log currently works within EJBCA to provide
insight into why a new system is needed and what is important to
improve for the new system.

3. Clearly describe the most important requirements for the new log
system.

4. Propose a design for a new audit log system based on the discoveries
from the previous goals.

5. Evaluate how well the new log system satisfies the requirements.

6. Provide a proof-of-concept implementation to serve as a basis for future
development.

7. Measure performance of different log operations on the proof-of-
concept implementation to evaluate the viability of the design.

Introduction | 5

1.5 Delimitations

It was made clear from the start that PrimeKey did not expect a full
implementation of a new audit log system within EJBCA. Their hope was to
have a report serving as an inspiration for a future implementation. The main
focus would be to provide a theoretical background on secure logging and a
theoretical design for a new and improved logging system. A proof-of-concept
implementation was said to be considered a nice bonus but not a necessity.

* The project does not involve any analysis of legal requirements placed
on audit logs based on data protection and privacy laws.

* No special-purpose hardware was considered. The new logging system
was assumed to be running on standard computer hardware with read-
write storage.

* The topics of data redundancy and backups are not explored in this
project. The main focus regarding log design is to have a log that is
tamper-evident, i.e. tampering is detectable. An attacker could also be
seeking to destroy the log, without covering their tracks, by deleting all
entries or a large portion of the entries. Protection against this type of
attack could be achieved by having redundancy of the log data.

* Encryption functionality is not considered a requirement for the new
log design. The current EJBCA audit log has integrity protection
functionality, but not encryption.

1.6 Structure of the Thesis

Chapter 2 presents the literature review of the state-of-the-art research on
secure logging. Chapter 3 describes the methodology used in this project.
Chapter 4 is an analysis of the current EJBCA audit log system and chapter
5 presents the requirements identified for the new logging system. Chapter 6
describes the design of the new logging system. Chapter 7 describes the proof-
of-concept implementation and presents performance metrics. The report ends
with chapter 8 which summarizes the project and discusses future work.

6 | Introduction

Background |7

Chapter 2

Background

Research on cryptoraphic schemes for securing logs is presented in this
chapter. Different schemes have different techniques for securing the integrity
of the log and also different data structures for storing the log entries. Some
logging schemes in the literature are more powerful than others but in general
they all offer different trade-offs in terms of security and performance for log
entry insertion and integrity validation.

The potential benefits of blockchain technology for secure logging [11]
and for PKIs [12][13] have been explored in the literature. The strength of
blockchain technology emerges in distributed settings. Since the EJBCA audit
log is not distributed, blockchain technology does not provide benefits and is
therefore not explored further in this chapter.

2.1 Schneier-Kelsey Log

In 1999, Schneier and Kelsey presented a logging system [14] that allows
logging to occur on an untrusted machine while occasionally being transferred
to a trusted machine. For example, the untrusted device could be some
sort of smart card that logs events describing its usage. The card itself is
not considered to be tamper-resistant to guarantee that an attacker could not
alter its contents. The goal of the log design presented by Schneier and
Kelsey is that an attacker should not be able to read the content of the log
(confidentiality) and if the attacker alters or deletes some part of the log
it should be detectable once the untrusted logger interacts with the trusted
machine. In other words, it should also be tamper-evident.

This is achieved by using a symmetric encryption key which evolves
through a hash function with every new log entry. The trusted machine and the

8| Background

untrusted logger agree on the initial key. With every new log entry, the logger
removes the previous key from memory after it has created the new key with
the hash function. This key is used both for encryption of the log content and
for the MAC (Message Authentication Code) for each log entry. The result is
that an attacker can not read an old log entry since it is impossible to recreate
any of the old keys. This is thanks to the trap-door characteristic of the hash
function.

For the same reason it is also impossible for the attacker to alter an old
log entry without being detectable by the trusted machine. We assume a
cryptographically secure hash function, such as SHA-256. For the MAC,
an HMAC (Hash-based Message Authentication Code) could be used which
retains the security of the underlying hash function [15].

Each log entry also contains a hash chain field. This contains a hash of
the concatenation of the previous hash chain entry and the new log entry data.
The result is that if an attacker deletes an old entry or changes the ordering of
entries, it will be detectable by the trusted machine. The MAC of an entry is
created using the hash chain field as input. This is done since the hash chain
field encapsulates information about the entry’s position in the log and the log
entry data.

One major flaw of the design is the vulnerability to so-called truncation-
attacks [10]. If an attacker deletes a continuous set of tail-end log entries, it
would actually not be detectable by a verifier. Since only entries from the tail-
end of the log are removed, the hash chain would still be valid. However, if
the attacker truncates a log entry that has been seen by the trusted machine or
a verifier at an earlier point in time, the attack would be detectable. After a
truncation-attack has been performed and a new log entry is added, the attack
will also be detectable since the wrong symmetric key will be used at the wrong
position in the log. But if an attacker has been able to compromise the logger
and remove events from the end of the log, it is also likely that the attacker
could prevent new events from being added.

Background |9

By, (Dj1) Y1 Zj A;

Ey4,(Dj) Y; Zj Ajp

Figure 2.1: A simplified view of the Schneier-Kelsey log scheme

Figure 2.1 demonstrates how the logging scheme works. A; is the
symmetric key used to protect the j:th entry and D) is the content of the j:th log
entry. D; is encrypted using an encryption function £ with the symmetric key
A;. Y is the hash chain field which makes deletion and reordering detectable.
Z protects the integrity of the entry with a MAC function, also using A; as the
key.

Due to the usage of symmetric encryption keys, it becomes problematic
to delegate verification and read permissions. A verifier (which is different
from the trusted machine) could verify that the hash chain is correct, but that
does not guarantee that the log has not been tampered with. An attacker could
have, for example, edited a log entry and then recomputed the hash chain. This
means that a verifier would always need to interact with the trusted machine to
verify entries. If the trusted machine wants to give another machine the rights
to truly verify the log on its own, it would have to share the initial encryption
key. That means that the newly trusted entity could use this power to alter the
log in an undetectable way.

2.2 Logcrypt

In 2005 Holt et al. expanded on the work of Schneier-Kelsey and proposed
a logging scheme called Logcrypt [16]. They start off by introducing a
simplified version of the logging system presented by Schneier and Kelsey.
It is pointed out that it is not necessary to encrypt the log entry data. For
certain applications, it is important that the log is tamper-evident but the actual
contents of the log entries are not considered to be confidential. As a natural
next step, the authors introduce the idea of using asymmetric encryption for
the log.

10 | Background

Through the use of asymmetric encryption, one of the potential flaws of
the Schneier-Kelsey log [14] is fixed. By using a signature instead of a MAC,
it makes it possible to delegate the task of auditing/verifying the log to any
entity without compromising the security of the log. This is done by using
meta entries in the log that records the next n public keys for the n upcoming
log entries. After a private key has been used to sign a specific log entry that
private key is permanently deleted, which means that an attacker cannot alter
the entry. This system can be used with any signature scheme. The fact that
the public keys need to be recorded in the log is a downside since it consumes
space.

As a remedy to the issue of public keys taking up space in the log, the
authors propose using Identity Based Encryption (IBE) [17]. IBE makes it
possible to derive public keys based on arbitrary bit strings. So for the logs
you could simply use the string "5" to generate the public key for the fifth entry
of the log, thus eliminating the need for storing all public keys in the log. IBE
schemes require a master public and private key that are used in the process of
generating the identity-based public keys and their corresponding private keys.
The idea is to generate such a master key pair for the coming n entries, store
the public master key in the log, generate the private key to be used for each of
the n entries and finally remove the master private key. This means that meta
entries are still required but are a lot smaller since only one key needs to be
stored per n entries.

The authors recognize the problem of truncation-attacks (tail-end deletion
of log entries) and propose a solution that they call metronome entries. It
means that a special metronome type entry is added to the log at a certain
time interval. If an attacker truncates the log and removes one of the existing
metronome entries that would be detectable by a verifier. If the attacker
truncates the log but not far enough that a metronome entry gets removed, they
have two options. They could allow the next metronome entry to get appended
to the log. In that case, it will be detectable by a verifier since that entry will
not have used the expected private key for its signature. The private key that
was meant to be used for that log entry has already been used and removed
from the system. The attacker could also prevent the metronome entry from
being added to the log, but that would also be detectable by a verifier.

There are a few downsides to this approach. During the time between
metronome entries, a truncation-attack would not be detectable. For that
reason, you would want to keep the time interval between metronome entries
as short as possible. On the other hand, all metronome entries consume both
space and computation power. For this reason you would want to keep the

Background | 11

interval between metronome entries as long as possible.

Logcrypt expands on the Schneier-Kelsey log by creating a log that is
publicly verifiable and has a protection against truncation-attacks. Both of
these improvements add an overhead to the log which consumes extra space.

2.3 A Log with an Aggregate Signature

In 2009 Ma and Tsudik presented a log design which achieves forward-
secure stream integrity [10], meaning that any tampering (deletion, alteration,
insertion, reordering) of pre-compromise log entries will be detectable. The
difference compared to previous logging systems is that their design also
protects against truncation-attacks, without the need for metronome entries.

This is possible through the use of a technique called FssAgg authentica-
tion, proposed by the same authors in 2007 [18]. The idea of the scheme is
that a single signature or MAC verifies the entire log. The scheme consists of
the following four algorithms:

» FssAgg.Kg Generates the initial encryption key(s) required for the
scheme.

* FssAgg.Asig Creates an aggregate signature and updates the current
key. Takes in a new log entry to be signed, the aggregate signature up
until this point and the current key. Returns the new aggregate signature
and the updated private key. The update of the key and the update of
the aggregate signature is performed in the same algorithm to provide
stronger security guarantees.

* FssAgg.Aver Takes in an aggregate signature, the secret key, and an
ordered collection of log entries. Returns a boolean indicating whether
the signature correctly matches the log entries and the public key.

2.3.1 Scheme and Algorithms

Ma and Tsudik present two versions of the FssAgg scheme, one privately
verifiable and one publicly verifiable. The main benefit of the publicly
verifiable scheme is that it gives the ability to delegate verification of the log to
non-trusted entities. The privately verifiable scheme requires that the verifier
is trusted (or semi-trusted if multiple signatures are used). The benefit of
using the privately verifiable scheme is that it is much more computationally
efficient. Moreover, the public key used to verify the publicly verifiable

12| Background

FssAgg signature has a size that grows linearly with the number of key
evolvements. For the system design (which is presented in chapter 6) it is more
reasonable to use the privately verifiable scheme, which will be described in
the coming paragraphs.

The scheme assumes the following cryptographic primitives:

e F' - a collision-resistant hashing algorithm for k-bit strings, F'
{0,1}* — {0,1}*

* H - a collision-resistant hashing algorithm for arbitrary length strings,
H:{0,1}* — {0,1}*

e h-asecure MAC function h : {0, 1}* x {0,1}* — {0, 1} that, on input
of a k-bit key x and an arbitrary length message M outputs a ¢-bit MAC

Let 0 ; be the aggregate MAC verifying messages 0, ..., ¢. The algorithms
are described as follows:

* FssAgg.Kg: Generate an initial k-bit secret symmetric key skq (the
FssAgg scheme is independent of the symmetric encryption algorithm
used)

* FssAgg.Asig: A new message M, is received. The logger has an
aggregate MAC 0 ,_;. First an individual MAC for M; is created:
o; = h(sk;, M;). Next, o; is folded into the aggregate MAC through
the following operation: o(; = H(0;||00,—1). The individual MAC o;
is removed and the previous aggregate MAC oy ;_; is replaced by the
new one, 0 ;. Next the key update algorithm, FssAgg.Upd is executed.

* FssAgg.Upd: The key is updated through the hash function, sk;,; =
F(sk;). The previous key, sk;, is deleted from memory which is crucial
for the security of the logging scheme.

* FssAgg.Aver: To verify an aggregate MAC o ;, you need the initial key
sko and the messages M, ..., M;. Since the verifier has the initial key
sk it can recreate all keys sky, ..., sk; (the hash function used to update
the key is known). After that, the verifier tries to recreate the aggregate
MAC through the same steps used in FssAgg.Asig. The result is of ;.
If 0§, = 00, it means that the MAC is valid. If they do not match, it
signals that some form of tampering has occurred.

Background | 13

2.3.2 Security and Performance

The most important benefit of applying the FssAgg scheme to a log is making
truncation-attacks detectable. In contrast to previously described schemes
using a hash chain, the single aggregate MAC makes all forms of tampering
detectable, including truncation.

Another benefit of the scheme is that very little resources are required by
the logger. The logger only needs to store one aggregate signature and one
secret key, a very small overhead compared to other logging systems. Updating
the aggregate MAC is also fast, only requiring a constant number of operations.
Verifying the log to detect tampering has O(n) time complexity. In order to
verify the integrity of the log, a verifier needs to verify the entire log.

The authors suggest combining the FssAgg scheme with MACs or
signatures for individual log entries as well. This makes it possible to verify
the integrity of a single entry while avoiding the time-consuming process
of verifying the FssAgg MAC. It also makes it possible to detect where the
integrity compromise has occurred. A failed FssAgg MAC verification only
shows that the log integrity has been compromised somewhere.

The FssAgg approach achieves forward-security. Once an entry has been
added and the FssAgg MAC has been updated, any tampering with that entry
will invalidate the FssAgg MAC, thus making the tampering detectable. No
guarantees can be made about log entries added after the logger has been
compromised, since the attacker could modify the entries before they reach
the log.

2.4 Merkle Tree Log

In 2009 Crosby and Wallach approached the problem of secure logging from
a different angle compared to previous research [8]. They argue that you can
only discover suspicious activity by actually doing audits on the log, which is
of course true. Therefore they take the approach of optimizing the efficiency
of verification. This is achieved by making it possible for the logger to create
time and space-efficient proofs of correct behavior.

This is possible thanks to a data structure called a Merkle tree [19]. A
Merkle tree is a binary tree where the leaves are hashes of some data blocks (in
this case, log entries). The parent of two nodes is the hash of the concatenation
of the two children’s hashes. The result is that a change in a leaf node
propagates all the way up to the root of the tree. However, some parts of the
tree are left unchanged.

14| Background

There are three types of entities considered to be relevant in this logging
system. The logger itself that is untrusted, clients and auditors. Clients append
events to the log. Auditors challenge the logger by asking for proofs, trying to
make sure that the logger stays honest.

The logging system consists of the five following algorithms:

H.ADD(X) < C}. A client may send and event X to the logger and the
logger returns C; to the client. C; is called a commitment and is the root
hash of the Merkle tree after adding X, signed by the logger. The index
J means that X was added as the j:th commitment which means that X
was the j:th entry of the log.

* HINCR.GEN(C?, ;) <— P. The logger creates an incremental proof P
which is meant to prove that the events X, X5, ... X; that are fixed by C}
are consistent with (equal to) X7, X}, ...X] which are fixed by C;. (C;,
is a later commitment than C}, j > 1.)

* HMEMBERSHIP.GEN(i, C;) < (P, X;). The logger creates a proof
of membership for the event ¢ from commitment C;, (j > i). Also
returns the event itself, X.

* PINCR.VF(C;, C;) « {T,L}. The logger checks whether the
incremental proof P claiming to show consistency between C; and C
is valid or not.

 PMEMBERSHIP.VF(i, C; , X|) <— {T,L1}. The logger checks
whether the membership proof P proves that X is fixed as the i:th entry
in the commitment Cj.

The first three algorithms are run by the logger on its history tree (Merkle
tree) when requested to do so by auditors or clients. The last two algorithms
are run by clients and auditors to validate proofs that they have received from
the logger.

The purpose of an incremental proof is to show that the new commitment,
Cj;, is consistent with C;, a commitment seen previously. In a traditional
logging scheme with a hash chain (like Schneier-Kelsey) incremental proofs
may require a lot of storage space. The equivalent of C; and C; in a hash
chain-based log would be the hash chain field and the signature/MAC for the
1:th and j:th log entries, (¢ < 7). An incremental proof between these for a
hash chain log would require every log entry between them to be included in

Background | 15

the proof, otherwise the hash chain cannot be verified. If ¢ << 7, this could
be very costly.

With the Merkle tree-based log, proofs do not need to include every event
between the commitments to show that they make consistent claims about the
past. The idea is that you need to show that you can reach the root hash of C;
from the root hash of C; without changing the hashes of the events that should
be equal for both commitments, events 1,2, ..., 7. The proof is a tree that can
be pruned to avoid including all the intermediate hashes. The fact that these
proofs are secure is based on the assumption that a collision-resistant hash
function (like SHA-256) is used.

The second type of proof is called a membership proof. The incremental
proofs are great to show that the logger is making consistent claims about the
past, but without membership proofs you couldn’t actually be sure that the
logger is adding new events the way that it is supposed to. Membership proofs
are not only used to verify that new events have been added correctly but they
can also be used to confirm that old events are still stored correctly by the
logger. The membership proof generator algorithm takes in an event index ¢
and a commitment C;, (¢ < j). A membership proof is returned together with
the actual event X;. If C} is trusted to be a valid commitment (thanks to earlier
incremental proofs), the membership proof (if valid) proves that X is the ¢:th
element of the log fixed by commitment C';. The membership proof needs to
include a path to the leaf node for X; to prove its location but can prune away
many of the other nodes in the tree.

2.4.1 Log Structure

So how is the Merkle tree actually used to create the log? A tree of depth d
is initialized and the resulting log can store 2¢ entries. The log entries are the
leaves of the tree and new entries are added from left to right. If the log gets
full it can have its capacity increased in a straightforward way. When the log
becomes full the height can be increased to d + 1 by making the previous root
node the left child of the new root node, effectively doubling the capacity of
the log. The authors call their construct a history tree to differentiate from
the more general Merkle tree data structure that can be used in many different
ways.

Thanks to the nature of the Merkle tree, the root node encapsulates
information about every log entry added so far. A parent in a Merkle tree
is the hash value created by concatenating the hashes of the two children and
running that through the hash function again. Since a tree is filled from left

16 | Background

to right there will be some nodes that are empty. When a concatenation is
performed with one of these, an empty string is used instead.

2.4.2 Proof Construction

In figure 2.2 we see a version 2 (three log entries added so far) history tree.
Internal nodes are represented as I where ¢ is the index and r is the row
number. The row number is counted down-up so the leaf nodes are at row
0. An interior node I} has the left child I ' and right child I ;:217_1.

Figure 2.3 shows a new version, version 6, of the history tree. Comparing
figure 2.2 and 2.3 we see that both internal and leaf nodes they are suffixed by
one or two ticks (*). This notation is used to show that we do not know at this
point if these two history trees make consistent claims about past events. For
example, we do not know if X!, = X/, but if the log is behaving correctly they
should be equal. In figure 2.2 and 2.3 the circled nodes show which nodes are
needed to be able to compute the root hash.

Figure 2.4 shows how an incremental proof between version 2 and version
6 can be created. Only the hashes that are circled in the figure are included
in the proof. The intuition is that based on the pruned tree in the figure you
can compute both the root hash of the version 2 history tree and the version 6
history tree. To recompute the version 2 tree, you can take the pruned tree from
figure 2.4 and ignore X5 and the entire right sub-tree. Then you can recompute
the version 6 root hash by actually using all the hashes included in the proof.
If both of these hashes match the commitments you have seen for version 2
and version 6 the proof is valid and it is confirmed that X = X[/, X| = XY
and X} = X/. This would show that the logger is behaving correctly.

Background |17

/\

4

Figure 2.2: A version 2 history (3 added events)

103

102 I42

9.9,

Figure 2.3: A version 6 history (7 added events)

What is worth noting is that the proof didn’t need to include all the entries
between version 2 and version 6. X;, X5, X, and X5 are omitted from the
proof. The idea is that parts of the tree that are the same for both commitments
can be pruned and replaced by stubs (nodes further up the tree). The example
in figure 2.4 is small but one can imagine an example when two commitments
C; and C} are separated by millions of events. In that case, the benefits in
terms of both time and space efficiency become very clear.

The size of the incremental proof is logarithmic to the number of log
entries, loga(n). Membership proofs follow the same concept and also require

18 | Background

/\

N \,
T 66 ./ -

Figure 2.4: A pruned tree that can be used as an incremental proof between
the two versions

logs(n) nodes in the proof. The time required to construct the proofs is also
loga(n).

2.4.3 Auditing, Verification and Gossiping

There are many potential auditing schemes to use together with the history
tree logger, which is one of the major strengths of the design. Clients who add
a new entry to the log could request a membership proof in conjunction with
the adding of the entry. This would make it possible for the clients to detect
logger misbehavior very quickly.

It would be possible for an attacker to modify old entries without
recomputing the hashes, making the Merkle tree still appear correct. There
is no way around the fact that you need to look at a specific entry to be certain
that it has not been tampered with, no matter what logging scheme you use.
(If you do not have special purpose write-only storage hardware.) To mitigate
this it would be wise for auditors to randomly request membership proofs for
older events. Another approach is to combine membership proofs with search
queries. For example, if a user makes a query (more on queries in section
2.4.5) for all entries added during a certain week, they could thereafter request
membership proofs for them to verify that the entries in the query result are
valid.

Clients and auditors could also share the information received from the
logger with each other through something called a gossip protocol. The
purpose of this is to stop an attacker that is controlling the logger from

Background | 19

performing a split-world attack. A split-world attack is when the logger makes
inconsistent claims about its state to different clients/auditors. The purpose
of this type of attack could, for example, be to fool a specific client without
alerting auditors.

The topic of gossip protocols is explored further in [20]. They look for
efficient gossip protocols in the Web PKI Certificate Transparency contexct.
Their initial idea is for web clients and web servers to share the most
recent commitment that they know of with each other. When an entity
sees a commitment that is newer than the newest one they have seen so far,
they request an incremental proof and if it is valid they update their stored
commitment with the newest one.

If an inconsistency is discovered between commitments it is possible that
some sort of split-world attack could be happening and warning messages can
be sent to auditors and other entities interested in potential logger misbehavior.

To reduce the need for requesting incremental proofs from the logger, it is
suggested gossiping not only the most recent commitment but the two most
recent commitments and an incremental proof that proves their consistency. If
a client gossips C,, C and P, , (where P, ; is an incremental proof connecting
C; and (), it is possible that the receiver of the message can update their
most recent commitment stored without having to contact the logger. This
will happen if the receiver stores C, and the message with C, and Cj, includes
a valid incremental proof. In that case the receiver can update their most recent
known trusted commitment to Cj, without contacting the logger.

This sort of protocol is relevant for the CT [21] (Certificate Transparency)
context because the commitments are not updated very often. A new leaf node
is not created for every new log entry, instead there is a guarantee that an
SCT (signed certificate timestamp) will be included in the CT log within one
MMD (maximum merge delay), which is 24 hours. If new commitments of
the log were more frequent, the benefits of gossiping incremental proofs would
decrease. The reason why CT logs do not create new leaves for every new log
entry is to increase the throughput performance of the log.

2.4.4 Performance

The authors of the Merkle tree log paper [8] also created a prototype
implementation for their log using C++ and Python 2.5.2. In their benchmarks,
they discovered that their implementation could insert 1 750 entries per second
in the log; the measurements were made using a total of 4 million inserts.
The system running the benchmarks was equipped with an Intel Core 2 Duo

20 | Background

2.4GHz CPU and 4GB of RAM, but the implementation is single-threaded, so
the second CPU core was not utilized. The bottleneck was identified to be the
signing of commitments. 1024-bit DSA signatures were used. It is claimed
that if commitment generation, commitment signing and audit requests are
handled by separate CPU cores, the log can insert 38 000 events per second.

Since the generation and signing of commitments are the most time
inefficient steps of the entry insertion it is suggested that the logger could
avoid creating a new commitment for every entry. The logger would then delay
returning the commitment for a new insertion and return a later commitment
to optimize throughput. The client could then receive a commitment C; when
it would have received C; (i < j) if a commitment was created for every entry.
The client could still request a membership proof the same way as before,
using C; instead of C;. This approach improves the performance of the log,
but if the client is dependent on receiving a membership before continuing
some process, it will harm the performance of the client.

2.4.5 Merkle Aggregation

The paper [8] also shows how it is possible to allow for efficient searching in
the history tree through a technique they call Merkle aggregation. The tree
structure allows for logy(n) time access to an arbitrary entry. The idea of
Merkle aggregation is to mark nodes with certain properties and propagate
that property upwards through the internal nodes in the tree.

For example, certain entries could be flagged as "important". In that case,
the parent of that node will also be flagged as important and the process will
continue all the way up to the root of the tree, marking all internal nodes
that are ascendants of the important leaf node as important as well. When
making a query for important entries, one would start at the root of the tree
and follow all paths that are marked as important downwards in the tree to
find the important leaf nodes. If important nodes are rare, this will allow for
very efficient searching compared to a table-based log structure. In a table,
you always need to look at every entry to make sure that you have found all
important entries. But with Merkle aggregation, the search could be very quick
if, for example, only one node in the entire tree is marked as important. This
means that the best case search has a time complexity of O(loga(n)). In the
worst case (where every log entry matches the query), every node in the tree
would need to be traversed in the search process. There is a total of 2 - n nodes
in the tree, which means that the worst case search is O(n), the same as in a
table-based log.

Background | 21

The logger can return not only the leaf nodes matching the query but also
the tree containing the paths leading to those nodes. The parts of the full
history tree that does not contain matching events would be pruned away and
left with stubs. This makes it possible for the client to verify that it has actually
received all the events matching the query. This is done by checking that the
stubs are unflagged and seeing that the root node corresponds to a trusted
commitment.

The example with the important flag is a simple boolean property.
However, the Merkle aggregation concept can be used for other types of
attributes as well. The authors define a query attribute as a three-tuple
containing the type of the attribute, the function used to aggregate the
attributes of the children, and a deterministic function that defines how to
retrieve the attribute from the entry data. The tuple is denoted by (7, ®,I")
In the example with the important flag we have 7 = Boolean, & = OR (a
parent is flagged as important if one or both of the children are) and I'(z) =
z.isFlagged(). Another example would be entries containing transaction
values and using MAX as an aggregation function. This would allow for
queries to find all entries with a transaction that exceeds a certain monetary
value.

The system is very flexible. To allow for arbitrary keyword searching, one
way would be to use bloom filters. The bloom filter would be aggregated with
the OR function. This comes with the trade-off where using larger bloom
filters requires more space overhead but using smaller bloom filters results in
more false positives and slower queries.

Nodes in the history tree have attribute annotation data connected to them
to make Merkle aggregation possible. To make attributes tamper-evident just
like the log contents, a second hash value is introduced for each node. This
hash value is created by hashing the concatenation of the node’s hash and its
attribute annotation data. This way, attributes gets fixed and propagated up the
tree the same way that the log data does.

The introduction of Merkle aggregation requires some small changes to the
logging algorithms described previously. It also introduces overhead in terms
of space and the amount of overhead depends on the number of searchable
attributes. It does, however, enable efficient searching compared to traditional
table-based logs.

22 | Background

2.4.6 Safe Deletion, Pruning and Exporting

Queries can also be used to perform deletions in a way that is safe. A proof can
be generated to show that only log entries matching the deletion query were
removed. Stubs are left where entries have been deleted. In the new pruned
history tree, it will not be possible to generate incremental or membership
proofs involving commitments that were deleted. I.e., if entry X; was deleted,
you can no longer generate proofs involving C;. But proofs not involving
deleted entries will stay valid.

Safe deletion can be combined with a preceding query to enable exporting
of a subset of log entries. Events older than a certain date could be exported
and removed in order to save space on the machine where the logger is running.
Thanks to the safe deletion functionality, you could also prune events on
criteria other than age without causing issues with auditing. For example,
you might want to remove all entries made by a certain client that is no longer
relevant. With a hash chain-based solution, this would not be possible since it
would cause problems when trying to verify the hash chain.

Since the result of a query can include a pruned history tree leading to the
results of the query, the query result is a history tree with the same capabilities
as the full history tree. This means that an exported section of the tree that is
removed from the logger can later be verified in the same way as the original
log.

2.4.7 Summary

In the logging systems described in older research papers, the goal is to achieve
forward security. This means that pre-compromise records can not be modified
in an undetectable manner. The history tree-based approach tries to reach
something stronger by making it difficult for the logger to tamper even with
post-compromise records. In a scenario where the attacker has full control
over the logging machine but the logger is constantly being challenged to prove
its honest behavior the attacker who has compromised the logger will have a
hard time performing undetected tampering. The best bet for the attacker is to
fork the log by tampering with the log while trying to show a facade of correct
behavior to clients and auditors demanding proofs. This becomes increasingly
difficult with time and with a large number of honest clients and auditors.
The history tree with the Merkle aggregation technique provides great
benefits compared to the table + hash chain-based designs presented in
previous sections. The history tree enables efficient auditing, efficient
querying and flexible capabilities for pruning and exporting entries. The trade-

Background | 23

off is that adding new entries to the logger is slower. Inserting a new entry to
the history tree requires O(logs(n)) time compared to O(1) time for a table-
based log. The tree-based structure also requires some additional storage
overhead which is the tree consisting of 2 - n nodes.

2.5 Certificate Transparency

RFC 9162 [21] published in December of 2021 describes version 2.0 of the
Certificate Transparency system. The CT system is heavily influenced by the
Merkle tree log[8] which was described in section 2.4. The purpose of the CT
system is to make it possible to notice if a CA has "gone rogue" and started to
issue faulty certificates like in the case of the DigiNotar hack in 2011 [22]. CT
is a logging system where all TLS server certificates used in the Web PKI are
logged. When a CA requests to add a certificate to a CT log, an SCT (Signed
Certificate Timestamp) is returned from the CT log to the CA. The SCT is
added to the certificate as a token. Both Safari and Chrome browsers require a
minimum of 2 SCTs to consider a certificate valid [23]. The CT log promises
to add the certificate to the log within one MMT (Maximum Merge Delay),
which is normally 24 hours. Many certificates are bundled together in leaves
of the Merkle tree-based CT log. The original Merkle tree log presented in [§]
assumes that each new log entry corresponds to a new leaf in the Merkle tree.
The reason CT bundles entries together is to increase throughput.

CT generally serves a different purpose than Certificate Revocation Lists
(CRL). The purpose of CRLs is to check if a certificate has been revoked. A
certificate would be revoked if the entity to whom the certificate is issued to
misbehaves in some way. E.g. if the entity loses control of their private key
they would ask for the certificate to be revoked to avoid any abuse. CT on
the other hand is used to detect misbehavior of the CAs themselves. There
are monitors that are always checking the logs to discover malfeasance. For
example, this makes it possible for a company like Google to quickly notice
if a CA has issued a certificate for one of Google’s domains when it shouldn’t
have done so. This allows breaches like the one in the DigiNotar hack to be
discovered quickly.

The Online Certificate Status Protocol (OCSP) is in most cases used to
check the revocation status of certificates, just like CRLs. However, in some
circumstances the previously mentioned SCTs are retrieved by using OCSP
instead of having the SCTs embedded in the certificate itself. This can be
useful if the CA wants to be able to deliver the certificate before receiving the
SCT from the CT log. [24]

24 | Background

2.6 Summary

Table 2.1 shows a comparison of the different logging schemes presented in
this chapter. Other than the Merkle tree log, the other papers do not explicitly
mention membership or incremental proofs. If one would like to prove the
position and integrity of log entry 7 in a hash chain-based log, one would need
to verify the hash chain from the start of the log until entry ¢, which is why the
time complexity is O(3).

For the equivalent of an incremental proof proving the consistency of C;
and C} for a hash chain-based log, you would need to verify the hash chain
between entries ¢ and j, resulting in a time complexity of O(j —). For
the FssAgg log it would be possible for an auditor to perform a verification
equivalent to an incremental proof if they store an FssAgg MAC/signature
previously received from the logger and use it to compute a later FssAgg
MAC/signature. This also results in a time complexity of O(j — 7).

The Merkle tree-based log is not inherently resistant to truncation-attacks.
The security of the log depends on there being honest clients and auditors
continuously requesting proofs. If auditors and clients are compromised or
inactive in their requesting and verification of proofs, it would be possible
for an attacker that has compromised the logger to truncate the log for
commitments that clients or auditors are not verifying in an honest manner.

A\

| R —

Background | 25

26 | Background

Methodology | 27

Chapter 3

Methodology

3.1 Identifying the Problem and Requirements

An important task was to figure out and specify the requirements of the
new logging system. Discussions with PrimeKey were an important part of
figuring out what EJBCA customers are not happy with regarding the audit
log. Reading the EJBCA documentation [25] and exploring the existing
EJBCA audit log were also important steps in understanding the current
implementation. The result of this process is a summary of the current audit
log solution in chapter 4 and a specification of requirements in chapter 5.

3.2 Literature Review

To be able to propose a new system design, it was important to learn about
the current state-of-the-art research on secure logging. During the time of
the literature review, the requirements for the new log system were taken into
consideration in order to identify the research papers with solutions matching
the requirements. The state-of-the-art research is summarized in chapter 2
where the papers that are the most relevant for the solution are described in
detail.

3.3 System Design

A system design was proposed based on the information retrieved in the
literature review to satisfy the requirements as well as possible. Not only
the functionality of the log is described but also the behavior of the clients

28 | Methodology

and auditors interacting with the log. A scenario based on a real use case for
EJBCA (passport certificates) is used as an inspiration for the design since it
is a scenario with a high emphasis on security and multiple entities interacting
with the log. The log design is evaluated based on the requirements. The
design is described in chapter 6.

3.4 Implementation

A proof-of-concept implementation was made to serve as an example for how
the log, clients and auditors could be implemented. The implementation also
made it possible to run performance metrics to see how the log performs
compared to the individual logging schemes that this design is based on. The
implementation and the performance metrics are presented in chapter 7.

Existing Solution | 29

Chapter 4

Existing Solution

EJBCA is an open-source PKI software that is available under an LGPL
(Lesser GNU General Public License) license [2]. The enterprise edition
of EJBCA is available under a paid subscription model. EJBCA allows for
certificate lifecycle management and a flexible way of setting up a PKI for the
user’s needs. An example of this is a PKI set up to allow for encrypted emails
within an organization. But the PKI set up with EJBCA could also be used
on a larger scale, such as national passport systems where physical passports
have corresponding digital certificates.

The main purpose of the audit log in EJBCA is to preserve information
about important events that have happened in the PKI. There is also a system
log that logs all possible kinds of events with less emphasis on security.
Examples of important events are "Certificate issued", "Certificate Profile
edited" and "Administrator accessed resource" [26].

Another property of the audit log is to provide non-repudiation. If a CA
has issued a certificate, undeniable proof of that action should be available in
the audit log. For a malicious actor (insider or outsider), the audit log is a
valuable target. An attacker could want to hide the traces of some action that
has been performed by a CA.

4.1 Integrity Protection

EJBCA Enterprise Edition offers integrity protection to increase the security
of the log. The CA creates a signature for a log entry using its private key
before adding the entry to the log. One of the fields in the log entry is
a sequence number which is a number that a CA node increments by one
for every log entry it adds to the audit log [27]. The combination of the

30 | Existing Solution

signature and the sequence number creates a total ordering of log entries.
This means that if a log entry is modified, deleted or entries are reordered,
the tampering will be detectable by an auditor that tries to verify the log.
However, there is a caveat. If a malicious actor deletes entries from the end
of the log, the tampering will not be detectable since the action will not cause
any visible problems with the sequence numbers. In other words, the current
implementation is vulnerable to truncation-attacks.

If the malicious actor deletes log entries that has already been seen by
a verifier the tampering will be detectable. The CA nodes keep their most
recently written sequence number in memory, so if a CA node adds new
entries after a malicious truncation-attack has been performed, the tampering
will become detectable. If a CA node goes offline, it will read its most
recently written sequence number from the audit log table in the database.
This combination means that an undetectable truncation-attack is a possibility.

When audit log entries are fetched from the database, their individual
signatures are automatically checked, but the sequence numbers are not. This
means that modifications of log entries are detectable when database queries
of audit log entries are made. To check sequence numbers which allow for
detection of reordering and deletion of log entries, a special tool included with
EJBCA EE needs to be used.

This tool has an "all-or-nothing" approach which means that it checks that
sequence numbers are correct for every entry in the audit log table when it is
run. This is something that is causing issues for EJBCA customers with very
large audit logs since verification of all sequence numbers takes a long time.

4.2 Clustering

If the PKI is used at a small scale, there will probably be only one CA node
handling the issuance of certificates and other actions. In some cases, high
levels of throughput for CA actions are necessary. In that case, multiple
CA nodes are run in a cluster where each CA node has its own database
instance. These database instances are continuously synchronized to provide a
consistent view for all CA nodes. The public/private key pair used for signing
audit log entries (when integrity protection is enabled) can be either unique
for each CA node or the same keypair can be used by all of them. Unique key
pairs offers greater security but requires configuring the nodes so that they can
verify signatures that they did not create themselves.

Existing Solution | 31

Database tables

Requests auditlogrecorddata

Load
balancer

Figure 4.1: An overview of how the current EJBCA system works when run
in a cluster

In figure 4.1 we see EIBCA run in a cluster with three CA nodes. CA nodes
share the load of incoming requests. Each node has its own database that they
communicate with. The databases continuously synchronize to be consistent
with each other.

4.3 Implementation and Performance

EJBCA is implemented in Java and supports integration with multiple SQL
databases such as MariaDB and MySQL [28]. When the CA performs an
action that is required to be logged as an event in the audit log, atomic
transactions are used. The result is an "all-or-nothing" effect where the action
is only performed if the entry can be added to the audit log and the entry is
only added to the audit log if the action is performed.

In the current implementation, the audit log is a table in the database used
by the CA. The columns of the "auditrecorddata" table are:

1. pk: Primary Key, uniquely identifies the row in the table
2. additional details: Event specific message with additional information

3. auth-token: Identifies the administrator or internal module that caused
the event

4. customld: Identifier used in log messages, commonly the certificate
authority an event was related to

5. eventStatus: Either success or failure describing if the event that
generated the log entry was executed successfully

32 | Existing Solution

6.
7.

10.

11.

12.

13.

14.

15.

eventType: The type of audit log event that occurred

module: The internal EJBCA module the event was generated from.
This is useful for categorizing events. Examples of modules are:
ADMINWEB (shows that the event was generated by an action in
the admin web GUI) and CERTIFICATE (shows that the event was
generated by the certificate issuance and handling module).

. nodeld: The ID of the CA node which generated the event

. rowProtection: The signature of the log event (only used when integrity

protection is activated)

rowVersion: A column showing how many times a row has been edited.
This column is present in all tables but is not relevant for the audit log
table since rows should never be modified.

searchDetaill: Detail used in log messages, commonly the serial
number of the certificate

searchDetail2: Detail used in log messages, commonly the username
an event was related to

sequenceNumber: The incremental number for the event (separate for
each EJBCA node)

service: The service the event originates from, can be either EJBCA or
CORE. CORE means that the event was generated from software in the
core project which is shared among multiple PrimeKey products.

timeStamp: The time in milliseconds since epoch that the event occured

When making queries in the database, a CA node becomes occupied with
the task of performing the query. This is not great since it decreases the
throughput capabilities of the CA. For very large audit logs, query requests
can also time out, simply because there are too many entries to search through.

4.4 Areas of Improvement

The existing EJBCA implementation has some flaws that customers have
complained about. The process of verifying the integrity of the log is slow,
and the only available verification method requires verification of the entire

Existing Solution | 33

log. Seaching in the log is also inefficient and can cause the CA node to time
out and prevent it from performing other action.

Customers have also asked for exportation capabilities where a part of
the log is exported to save space, while preserving the ability to verify the
integrity of both the original log and the exported part of the log. A new
log design should aim to satisfy these wishes from customers and improve
security, especially regarding the vulnerability to truncation attacks.

34 | Existing Solution

Analysis and Requirements | 35

Chapter 5

Analysis and Requirements

It was decided early on that the new log design would have the logger as
a separate machine in the system, decoupled from the CA nodes and their
database. Effectively this means that the "auditrecorddata" table (described in
section 4.3) is removed from the database and the logger is a separate entity in
the system. This makes reasoning about security easier. It also provides the
benefit that queries to the log could happen without disrupting the operation
of one of the CA nodes. In practice, the audit log may be on the same machine
as one of the CA nodes, but it would be a separate process.

5.1 Threat Analysis

The ultimate goal of the audit log design is to make it append-only and that
any kind of tampering with old events is detectable. Spoofing in order to add
entries to the log without permission is a potential threat, but it is probably not
a big one, and it is not difficult to solve.

The main threat that is considered is an attacker compromising the logger.
If an attacker has gained access to the logger, their primary goal is probably to
hide some malicious activity. For example, they might have issued a certificate
but they want to hide any tracks that could trace back to the performed action.
Note that this attacker could be an insider. Nobody should be allowed to delete
or edit log entries, no matter what privileges they have.

An audit log is never better than its latest audit. Tampering cannot be
detected unless some auditor actually examines the log. This means that the
more often audits happen, and the more extensive they are, the better. A
possible scenario is that the attacker doesn’t care about being discovered and
just deletes the entire log or a large part of it. There are two potential remedies

36 | Analysis and Requirements

to this. One is special-purpose append-only hardware, but that is outside the
scope of this work. The other is some form of redundancy of the data. The
simple option would be backups of the log done at regular intervals, stored on
other machines (the more the better). The focus of this project is to achieve
the tamper-evident property, to make tampering detectable. The topic of log
data redundancy is not explored further.

5.2 Security Requirements

5.2.1 Entity Authentication

The logger needs to check where incoming entries are coming from. Only
known CA nodes should be allowed to add new entries to the log.

5.2.2 Tamper-evident

It should be detectable if an attacker were to remove, alter or reorder existing
log entries. Both integrity and authenticity are important for the audit log.
This is achieved through the use of signatures and sequence numbers in the
existing audit log implementation.

The log system should be Truncation-attack resistant. The current
EJBCA audit log implementation and the Schneier-Kelsey logs [14] are both
vulnerable to truncation-attacks, that is when an attacker deletes a continuous
subset of tail-end log messages in an undetectable way. For a log to be
considered tamper-evident it should be resistant to truncation-attacks.

5.3 Functional Requirements

5.3.1 Writable from Multiple Sources Concurrently

This is a requirement from PrimeKey and it is more dependent on the
implementation itself rather than the design of the log. To solve this, the
logger would need to be able to handle requests to add new entries from
multiple sources concurrently. The procedure of actually updating the data
structure containing the log data would not need to support parallelism for
this requirement to be considered fulfilled.

Analysis and Requirements | 37

5.3.2 Scalability

The new log design should make it possible to perform search queries in a
more efficient way than previously. While still providing good throughput
performance in terms of entry insertions. In the current table-based log,
searching is always O(n).

5.3.3 Pruning

It should be possible to prune the log, for example by deleting old events and
exporting them. In the current solution, log entries that have been exported
cannot be verified later. The new solution should have this capability.

38 | Analysis and Requirements

Our Log System Design |39

Chapter 6

Our Log System Design

The new log solution is based on the Merkle tree log presented in section
2.4 with an addition of an FssAgg MAC as they are presented in section 2.3
to further improve security. The Merkle tree-based log has many benefits
compared to the current EJBCA audit log. It gives PrimeKey customers a lot
more flexibility in choosing their own way of performing audits, both internal
and external. It also enables more efficient searches thanks to the Merkle
aggregation technique described in section 2.4.5.

When designing the logging system, inspiration was taken from a real-
world use case where EJBCA is used by a company to provide a passport
service on behalf of a government agency [29]. Based on this setup, there are
three different types of entities interacting with the log.

The clients are the CA nodes that are adding entries to the log for the
auditable actions it performs, such as issuing a certificate.

The second entity type is frequent auditors which has active communica-
tion with the logger to request proofs at a high frequency to force the logger to
prove its correct behavior. This type of auditor is likely run by the company
internally to detect intrusions or insider misbehavior.

Finally, there are infrequent auditors which is an entity outside the
company which does not have an active connection to the logger but instead
performs audits more rarely, maybe at random times. In the passport scenario,
this would be the government agency that wants to see the company is behaving
correctly and also wants proof that the log has not been tampered with.

The expected use case is that the EJBCA customer is running the CA, the
logger itself and also has at least one frequent auditor set up. Potentially there
are also infrequent auditors, run by other third-party entities. Most of the
reasoning about security is based on this use case. However, the log design

40 | Our Log System Design

is flexible and can be used in other scenarios. For example, there could be
use cases where the logger itself is run by some other entity than the EJIBCA
customer.

6.1 Logger Design

The logger itself works a lot like the Merkle tree-based log described in [8]
and 2.4.

Some of the functional requirements are satisfied by the design of the
Merkle tree log:

* Scalability. Thanks to the Merkle aggregation technique, searching can
be done more efficiently than in a table based log, with a better time
complexity in the best case, as shown in table 2.1. Log entry insertion

is O(loga(n)).

* Pruning. The Merkle tree structure makes pruning easy and flexible.
In the current solution, the only possible pruning would be to remove
a certain number of the oldest events. Anything more advanced would
cause verification problems. With the Merkle tree, you can prune and
export based on any query and create a proof that only entries matching
that query were removed. The exported part of the log is also verifiable
in the same way as the main log.

Only verified CA nodes should be allowed to add entries to the log. The
logger needs to verify the identity of the client who sends the entry. This can
easily be achieved due to the fact that the CA nodes sign each individual log
entry. This is how it works in the current implementation and that signature
will remain. This means that the logger needs to check that the log entry
received has a valid signature from the CA node that sent it. This satisfies
the entity authentication requirement.

In terms of being tamper-evident, the Merkle tree log shows the strongest
properties out of all the log designs examined in this project. As opposed to
the forward security property of other log designs, the Merkle tree log makes
it difficult for an attacker that has compromised the logger to perform any
tampering undetected. This is based on the assumption that there are honest
clients and auditors requesting proofs. The addition of the FssAgg MAC in
this design makes undetected tampering even more difficult for an attacker to
achieve. The FssAgg MAC can make tampering detectable even if someone

Our Log System Design | 41

who controls the clients, frequent auditors and logger tries to truncate the log.
More on threats in section 6.5.

In the passport scenario described previously, there are frequent auditors,
CA clients and the logger itself, all run by the same organization. There is an
infrequent auditor who wants to check the audit log for malfeasance on more
rare occasions.

In this scenario, if the organization makes a mistake that would cause them
to lose their government assignment, they might be tempted to roll back the
log and hide that the event has occurred. Since the organization controls the
logger, the frequent auditors and the clients, the organization can tamper with
the log. They could delete entries from tail-end of the log and recompute
a previous commitment. As long as this commitment does not pre-date the
commitment most previously seen by the government auditor, the tampering
will not be detectable.

Therefore FssAgg MAC [18] is introduced to further increase the tamper-
evident strength of the log.

If the FssAgg MAC is used to verify all log entries, many of the benefits
of the efficient proofs enabled by the Merkle tree structure are lost. Verifying
an FssAgg MAC protecting n log entries requires O(n) time. Therefore the
FssAgg MAC is used to protect only the tail-end of the log. This gives the best
of both worlds: the efficient proofs of the Merkle tree log and protection from
truncation-attacks from the FssAgg MAC.

Figure 6.1 gives an overview of the full system. The behavior of the
different entities shown in the figure are described in more detail in the
upcoming sections.

42| Our Log System Design

Current
1
system CA
Requests
Load
balancer

Logger

Frequent
auditor

Infrequent
auditor

Xo XXy X3Xy |
FssAgg MAC §
A

|

Figure 6.1: An overview of how the new logging system works incorporated
with EJBCA. In the example the log is at commitment 4, since five entries
have been added.

6.2 Infrequent Auditor Design

In the scenario with the infrequent government auditor, the benefit from the
FssAgg MAC comes from protecting the tail-end of the log during the time in-
between the audits. When there is an FssAgg MAC authenticating the entries
at the end of the log it means that even when the frequent auditors, clients and
logger are under the control of the same entity, they cannot truncate the log
without invalidating the FssAgg MAC.

The trusted infrequent auditor needs to agree with the logger on an initial
secret key. If there are multiple third-party auditors they may have separate
FssAgg MACs or share the same one. Having separate MACs is more secure

Our Log System Design |43

but requires more overhead.

The fact that the FssAgg MAC protects from truncation assumes that the
logger was behaving correctly when the event that the attacker wants to hide
occurred. For example, if an attacker compromises the logger, they could save
a snapshot of the FssAgg MAC. This would make it possible to roll back the
log to a previous state in an undetectable way.

The following scheme is used to initialize an FssAgg MAC:

1. The logger generates a symmetric key and sends it to the trusted
infrequent auditor(s).

2. The logger creates a meta entry stating that a new FssAgg MAC has been
generated, generates the initial FssAgg MAC based on the meta entry
and the initial key. The key is then evolved through the hash function
and the initial secret key is deleted from the logger.

When a new entry arrives, the logger runs the FssAgg.Asig algorithm as
described in 2.3. The first time the infrequent auditor wants to verify the
log, say at commitment C; (¢ + 1 entries have been added) it will run the
FssAgg.Aver algorithm to check that the FssAgg MAC is correct with respect
to entries 0, ..., 7 and the initial secret key sky. The infrequent auditor will
remember the FssAgg MAC, o0y ; and the latest signed Merkle root hash C},
which is also sent from the logger.

When it is time for the next audit, the infrequent auditor will make a request
to the logger and receive oy ; and C, 7 > ¢ The logger will provide an
incremental proof connecting C; and C;. This will allow the auditor to verify
that the current version of the log is consistent with the version of the log
that was seen during the last audit. The auditor will also verify o ;. When
recreating o ;, the auditor will start from oq; which was stored from the last
audit.

This approach of reusing previously verified FssAgg MAC:s at the side of
infrequent auditor saves time and is reasonable since the purpose of the FssAgg
MAC is to show that there has been no truncation of entries from the end of the
log. If the incremental proof and the FssAgg MAC are both valid, this shows
that the log is consistent with what was seen previously and no truncation has
occurred. The time complexity of the auditis O(logz(n)+(j—1)). The process
repeats for all upcoming audits from the third-party infrequent auditor.

The fact that it is possible to verify a new FssAgg MAC based on a
previously computed and verified FssAgg MAC is not something that is
mentioned in the original FssAgg paper [10]. The authors likely assumed that

44 | Our Log System Design

there wouldn’t be any reason to use this approach since it does not verify the
integrity of the entire log. But, when incremental and membership proofs are
available it is more efficient to reuse previous computations, since the purpose
of the FssAgg MAC is to protect the latest entries in the log.

6.3 CA Node Design

The logger will be separated from the rest of the CA system, which is different
from the old solution. Since the audit log now runs separately, it becomes
difficult to guarantee atomicity of actions. In the old solution, there is an
"all-or-nothing" approach. For example, when a new certificate is issued it is
guaranteed the corresponding event is added to the audit log. This is achieved
by using atomic database transactions. If there is a problem that stops the event
from being written to the audit log, the entire transaction is aborted and the
certificate wouldn’t get issued. This is easy with the old solution since it all
happens within the same database.

With the new design, a different approach is suggested (the log algorithms
are described in section 2.4):

1. The CA node gets a request to issue a certificate, creates the audit log
entry X and sends it to the logger by using the function H.ADD(X).

2. The CA node receives a commitment, C, from the logger. The CA
node remembers this commitment. If the CA doesn’t receive such a
commitment within a specified time limit, the entire process is aborted.

3. The CA node requests a membership proof for event k£ on commitment
C} from the logger, HMEMBERSHIP.GEN(k, C)) < (P, X;). The
entire process is aborted if this request times out or if the proof is invalid.
The CA node confirms both the proof and that the log entry data received
together with the proof is identical to what the client originally sent.

4. The CA nodes requests an incremental proof from a previously
remembered commitment C; to Cj, HINCR.GEN(C}, C}). The entire
process is aborted if this proof is invalid or the request times out. If the
proof is valid, C}, replaces C} as the last known commitment for this CA
node.

5. The CA node has confirmed correct behavior from the logger and
proceeds to release the certificate.

Our Log System Design |45

6. The CA node gossips the new commitment C} to known frequent
auditors.

The process above shows that the CA nodes serve both as clients and
auditors of the logger. When the CA nodes adds a new event to the logger,
it confirms that the entry has been added properly by requesting and verifying
a membership proof. But the CA node also performs additional auditing by
requesting an incremental proof from the commitment it received the last time
it added an entry to the log. This way, the CA node confirms that the current
state of the logger is consistent with the commitment it received the last time
the CA client added an entry to the log.

For the event of issuing a new certificate, it is critical that the event is added
to the audit log. Otherwise, there is a risk of unknown rogue certificates out in
the wild wreaking havoc. For other events, it is not as critical that the event has
to be added to the audit log to allow the action to be performed. Therefore it
may not be worth it to wait for confirmation from the logger before performing
the action. In some cases, it may even be crucial that you can perform the
action even if the logger is unavailable for some reason. An example of this is
certificate revocations.

6.4 Frequent Auditor Design

The CA clients already serve the dual role of being both clients and auditors,
but dedicated frequent auditors (at least one) are needed to prevent split-world
attacks and to detect tampering with old events.

It is possible for an attacker controlling the log to change the data of a
log entry without making changes to the hashes in the tree. This means
that it would seem that the log is behaving correctly when only considering
incremental proofs. The only way to detect such tampering is to actually look
at the log entry itself. Tampering will be detectable in two ways, the signature
for the individual entry created by the CA will be invalid, and the hash of the
entry itself, which is present in the Merkle tree, will not be correct.

To be able to detect this kind of tampering the frequent auditor randomly
selects an entry, using a uniform random distribution, and requests a
membership proof for this entry. If the most recent known commit is C,, a
random event from O to m will be chosen. If the membership proof is valid the
entry has not been tampered with. The more often these random membership
proofs are requested, the more likely it becomes to detect tampering. But to
avoid overloading the logger, they should be requested at a set time interval.

46 | Our Log System Design

The best interval could be discovered through experimentation; it can differ
between setups.

The second task of the frequent auditor is to request incremental proofs
based on gossip from CA clients. The CA clients send new commitments
that they receive from the logger to the frequent auditors. If the commitment
received by the frequent auditor is newer than the most recent commitment it
has seen, the frequent auditor requests an incremental proof between its most
recent known commitment and the newly received commitment. The purpose
of this scheme is to prevent a split-world attack where a malicious logger shows
inconsistent information to different clients and auditors.

All the auditing that has been discussed so far is about detecting the
tampering on the log and misbehavior by the logger. It is also likely that the
infrequent auditor will be examining the log entry data itself, not only verifying
that it has not been tampered with. The exact rules of what events are allowed
or considered suspicious differ widely from application to application. The
main focus of this project is to create a log that is tamper-evident, therefore
the topic of log entry inspection will not be explored further.

6.5 Secruity Analysis

The security of the log is based on the combination of having honest clients
and frequent auditors challenging the logger for proofs and the FssAgg which
provides stable forward-security.

6.5.1 Adversarial Model

From the perspective of the organization that is running the CA, there are
internal and external attackers that could compromise one or more parts of
the audit log system. The internal and the external attacker would share the
same goal; to hide traces of some events.

The third-party infrequent auditor sees the entire organization as untrusted.
If the audit log system is compromised it does not matter to the infrequent
auditor if it is an internal or an external attacker performing the attack. The
FssAgg MAC makes sure that the log is forward-secure from the perspective
of the infrequent auditor. All entries created before the log is compromised
is protected by the FssAgg MAC, even the entries that are new since the last
audit.

Our Log System Design |47

6.5.2 Logger

If the logger itself is compromised, there is not much that the attacker can do
if there are honest frequent auditors and honest clients demanding proofs from
the logger.

The likely scenario would be that an attacker creates a certificate via one of
the clients i.e. the CA nodes (perhaps with the help of an insider) and tries to
hide information about its existence from other auditors and clients. It would
still be necessary to show the correct membership proof to the CA node which
created the certificate, otherwise the certificate cannot be created in the first
place.

This is an example of a split-world attack where one CA node gets
information about the certificate, but that information is hidden from other
entities. Due to the fact that CA clients gossip their recently seen commitments
to known frequent auditors, this kind of attack will be detected, assuming there
is a frequent auditor running and ready to receive gossip. In other words, if
the compromised logger sends commitments that are not consistent with each
other to different clients (CA nodes), this will get detected if there is at least
one honest frequent auditor that the CA nodes can gossip to.

However, if the logger and the frequent auditors are compromised, an
undetected split-world attack would be possible. In this case one CA node
can issue a certificate while the information of this does not reach any other
entity. Gossiping is required to prevent split-world attacks.

6.5.3 CA Node

If a CA node gets compromised in such a way that the attacker is actually
able to alter the execution flow of the program the security of the CA breaks
down. For example the attacker could bypass the requirement that the CA
node receives a valid membership proof and a valid incremental proof for
a certificate creation event from the logger before actually releasing the
certificate.

One way to prevent this would be to force the commitment from the logger
to be included as a part of the certificate. But that would mean that the audit
log would have to be accessible by not just CA nodes but also users of the
certificate in order to verify the commitment. The audit log is not meant
to be a public log in that way. Instead something like the public Certificate
Transparency logs could be used to achieve that goal.

Even though this type of attack would compromise the security of the CA
as a whole, the audit log itself would still be tamper-evident and append-only.

48 | Our Log System Design

6.5.4 Logger, Frequent Auditors and Clients

This is the special scenario described earlier where an organization could
try to hide misbehavior by changing the behavior of everything they control
internally. Without the FssAgg MAC this type of compromise would allow
for undetectable truncation of the log. But due to the presence of the FssAgg
MAC, truncation is detectable by an outside infrequent auditor even if the
logger, frequent auditors and clients are all dishonest.

If old FssAgg MAC data is properly removed after each evolvement, after-
the-fact undetectable tampering is impossible. If the organization plans to
perform some illegal action beforehand, they could alter the logger to save
previous states of the FssAgg MAC allowing them to roll back the log to a
previous state in an undetectable manner.

Implementation | 49

Chapter 7

Implementation

A proof-of-concept prototype of the design presented in chapter 6 was created
to show how the logging system can work in practice and to give PrimeKey
a basis for implementing the proposed logging system in EJBCA. The
implementation was created using Node.js [30] and is available on Gitthub!.
A fork of the npm package merkletreejs> [31] is used to provide the Merkle
tree functionality for the logger. The fork was created for this project since the
default merkletreejs implementation for adding a leaf to the tree unnecessarily
recomputed all the hashes in the tree, even though only O(logz(n)) hash
computations are necessary. The FssAgg MAC was implemented using
hash and HMAC functions from the standard Node.js libraries crypto [32]
and crypto-js [33]. Signed log commitments are also implemented. A
commitment consists of the Merkle tree root hash, the current index when
the commitment was created (showing how many entries had been added at
that point) and a signature. The signing of commitments is only enabled if you
provide a private key object to the constructor when creating a log object.
The repository contains not only a proof-of-concept implementation of
the log but also an implementation of an HTTP server which can be used to
initialize and interact with the log. The server exposes the following API:

/addEntry

/getProofByIndex

/getProofByEntry

/addEntryAndGetProof

I'https://github.com/mans-andersson/Merkle-FssAgg-log
2 https://github.com/mans-andersson/merkletreejs

https://github.com/mans-andersson/Merkle-FssAgg-log
https://github.com/mans-andersson/merkletreejs

50 | Implementation

e /getEntry

* /getEntries

* /getCommitment

e /initializeFssAggMAC

* /getFssAggMAC

In the system design presented in chapter 6 above, the most commonly used
endpoint by clients wouldbe /addEntry and /addEnt ryAndGetProof.
A third-party infrequent auditor would use /initializeFssAggMAC to
start a new FssAgg MAC and would use /getFssAggMAC when it is
time for an audit. The use of a HTTP server is one way to fulfill the
functional requirement that the log should be writable from multiple sources
concurrently. In this case, the HTTP server would have a queue that accepts
requests from different CA nodes concurrently. Then the elements are taken
from the queue in a FIFO manner and added to the log.

7.1 Performance

Some performance metrics were created to show the performance of different
actions in the logging system and to see how the combination of the Merkle
tree log and the FssAgg log compare to their standalone schemes. The tests
were run on a system equipped with a 3.1 GHz Dual-Core Intel Core i5 CPU
and 8 GB RAM; the implementation is single-threaded.

Implementation | 51

1.0

0.8 1

°
o
|

N

0.2 ///

0.0 1

Time in ms

o
S
|

00 05 1.0 15 2.0 25 30 35 4.0
entries le6

—— FssAgg only
Merkle tree without sighing
—— Merkle tree without signing + FssAgg
—— Merkle tree + DSA 1024-bit
Merkle tree + DSA 1024-bit + FssAgg
—— Merkle tree + RSA 1024-bit + FssAgg
Merkle tree + RSA 2048-bit + FssAgg
Merkle tree + ECDSA 163-bit + FssAgg
Merkle tree + ECDSA 233-bit + FssAgg
Merkle tree + ECDSA 233-bit

Figure 7.1: Plot of the average time required to add new entries to the log for
different logger setups and signature algorithms

Figure 7.1 shows a comparison of the average time required to add a new
log entry for different logger setups and log sizes. Combining the Merkle tree
based logging with the FssAgg scheme only slightly decreases the throughput
performance of the logger, while providing significant security benefits. This
result corresponds to the theory since updating the FssAgg MAC requires
a small constant number of operations, no matter the size of the log. The
time required to update the Merkle tree is O(logs(n)), as confirmed by the
measurements.

The complete log design, that is presented in chapter 6, includes the

52 | Implementation

Merkle tree structure, FssAgg and commitment signing. The figure shows
a comparison of different signature algorithms. Commitment signing is the
most time-demanding operation performed by the logger. The same discovery
was made in the original Merkle tree log paper [8].

According to the most recent NIST (National Institute of Standards and
Technology) recommendations [34], a minimum key size of 2048-bit and 224-
bit are considered safe until 2030 for RSA (Rivest-Shamir—Adleman) and EC
(Elliptic Curve), respectively. Based on the metrics, ECDSA (Elliptic Curve
Digital Signature Algorithm) 233-bit is the best choice since it offers good
security and good throughput performance.

The purpose of commitment signing is to make it possible for clients and
auditors to verify that a commitment received was in fact created by the logger.
Therefore, it is possible for the logger to change signature scheme during its
lifetime. As long as clients and auditors are aware of the change and when
it takes place, it is not an issue. For that reason, it would be unnecessary to
use an excessively large key size, since log throughput performance would be
negatively impacted.

When adding 4 million log entries to the log with ECDSA 233-bit
signatures the throughput is 1420 entries per second when FssAgg MAC is
enabled compared to 1500 entries per second when FssAgg MAC is disabled.
Throughput decreases by 5.3% when FssAgg is enabled.

Implementation | 53

80000

60000 +

= 40000

Time in ms

20000 -

01 @ * -

102 10° 104 10° 106
entries

Figure 7.2: The time required to verify an FssAgg MAC depending on the
number of entries it protects. Plotted with confidence intervals on a log scale
X-axis.

Figure 7.2 shows the time required to verify an FssAgg MAC plotted on
a log scale x-axis. As expected, time increases linearly with the number of
entries protected by the FssAgg MAC. This can be bad for big logs but, as
previously mentioned, the main purpose of the FssAgg MAC is to provide
stronger protection against truncation-attacks. Therefore the auditor verifying
the FssAgg MAC does not need to verify it for all entries every time, only for
the entries not seen since the last audit.

54 | Implementation

0.0035 4§
0.0030 1§
%]
1S
£
g
E 0.0025 A
0.0020 -
0.0015 i i ‘ i
10? 103 104 10° 10°
entries

Figure 7.3: The time required produce a Merkle membership proof for one
entry for different sized logs. Plotted with confidence intervals on a log scale
X-axis.

Implementation | 55

0.45

0.40

0.35 1

Time in ms
o©
w
o

0.254

0.20 1

102 103 104 10° 106
entries

Figure 7.4: The time required to verify a Merkle membership proof for one
entry for different sized logs. Plotted with confidence intervals on a log scale
X-axis.

Figures 7.3 and 7.4 show the time required to generate and verify Merkle
membership proofs. As expected, the time required grows logarithmically
with the number of log entries.

Verifying the Merkle tree proofs is a lot faster than verifying FssAgg
MACs. But they grant different security properties, and having both gives the
user of the log flexibility in how they want to perform audits and verification.

56 | Implementation

Discussion, conclusions and future work | 57

Chapter 8

Discussion, conclusions and fu-
ture work

This project has resulted in a log design and a proof-of-concept implemen-
tation based on the current state-of-the-art secure logging research and an
analysis of the current EJBCA audit log. The goal from the start was to provide
a basis of knowledge to start from when implementing the next-generation
audit log for EJBCA. The solution and the evaluation show that it is possible
to create a new logging system that is more secure and functionally superior
to the current logging system in EJBCA. The design is based on an analysis of
the current EJBCA solution and the research literature.

Merkle tree-based logging is in use today for tamper-evident logging. Most
notably for the web PKI:s Certificate Transparency system. The Merkle tree
log design shows that a log based on a Merkle tree provides both strong
security properties thanks to efficient proofs and efficient searching courtesy
of the Merkle aggregation technique.

Adding the FssAgg MAC to the logging design provides additional
security to the log without sacrificing log throughput, as was shown from the
performance metrics from the proof-of-concept implementation.

The choice of using the Merkle tree design for the log provides many
benefits but has the downside of making the most used log operation, adding
entries, slower compared to table-based solutions. Adding an entry is an
O(logz2(n)) operation in the Merkle tree, compared to O(1) in a table.
Performance and throughput has not been the main focus of this project. It is
possible that the log system design proposed is not efficient enough for EJBCA
customers that have PKIs under very heavy load.

In general, it is always a trade-off that a system with increased security

58 | Discussion, conclusions and future work

will have worse performance. One option would be to provide a setting in
EJBCA to use either the less secure table based-log or the new log design,
with superior security properties. Another option for future work would be to
explore the possibility of having a sharded log where there would be multiple
Merkle tree-based logs at the same time. The logs could share the log entries
between them, thus enabling a higher throughput for adding new entries. The
downside of such an approach would be that querying and verification would
become more complex. It could also make the log less secure.

Encryption of log entry data was not in the scope of this project since
confidentiality is not a requirement for the EJBCA audit log. However, it is
possible that some EJBCA customer could want encryption capabilities for
audit log contents for some special scenario. Furthermore, if the log solution
presented in this project would be used for other applications, encryption could
be useful. Since the new log has verification capabilities for third-party actors,
for example government agencies, there are possible scenarios where the audit
log could be susceptible to GDPR regulationns. In that case, confidentiality
could be an important aspect. Extending the log solution presented in this
project with encryption capabilities is possible, e.g. the log entry could be
encrypted before being sent to the logger. The topic of having confidentiality
functionality as a part of the log itself is something that could be explored in
future work.

PrimeKey will pursue the goal of creating a new logging system with
this project as a starting point. The work presented in this project is mostly
theoretical and focused on security. It is likely that when creating the new
EJBCA audit log implementation, trade-offs will need to be made regarding
security, performance and the complexity of the design. Using a Merkle tree
for the log has large benefits in terms of efficient and flexible auditing. The
vulnerability to truncation-attacks is the major security flaw of the current
audit log implementation and the FssAgg MAC is a good way to make
truncation-attacks detectable.

The proposed solution for the new audit log design is more complex
than what is currently used in EJBCA. If the new design is implemented it
could result in a slight increase in power consumption when new auditable
events occur, compared to the previous design. PKI is a small part of the
cybersecurity space, which in turn is just one part of the bigger information
technology sector. Therefore it is extremely unlikely that the implementationn
of the log design proposed in this report would have any significant impact on
the ecological environment.

From a societal viewpoint, the log design can increase the trust in CAs and

Discussion, conclusions and future work | 59

therefore PKIs, which is a positive for society since the purpose of a PKI is to
facilitate security, integrity and trust.

I have achieved all the goals set out at the start of this project and in the
process I have learned a lot about cryptoraphy, Merkle trees, secure logging
and computer security in general.

60 | Discussion, conclusions and future work

References | 61

References

[6]

Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs.
Tech. rep. Citeseer, 1997.

EJBCA - The Open Source CA. en-US. URL: https://www.ejbca
.org/ (visited on 05/16/2022).

What is PKI? A Public Key Infrastructure Definitive Guide. en-US. URL:
https://www.keyfactor.com/resources/what-is—-pk

i/ (visited on 05/17/2022).

Mohammad Khodaei and Panos Papadimitratos. “Scalable Resilient
Vehicle-Centric Certificate Revocation List Distribution in Vehicular
Communication Systems”. In: IEEE Transactions on Mobile Comput-
ing (IEEE TMC) 20.7 (July 2021), pp. 2473-2489.

Mohammad Khodaei, Hongyu Jin, and Panos Papadimitratos. “SEC-
MACE: Scalable and Robust Identity and Credential Management
Infrastructure in Vehicular Communication Systems”. In: IEEE Trans-
actions on Intelligent Transportation Systems (IEEE T-ITS) 19.5 (May
2018), pp. 1430-1444.

GoDaddy - Verify domain ownership (DNS or HTML) for my SSL
certificate. en. URL: https://ca.godaddy.com/help/ver
ify-domain—-ownership-dns—or—-html-for-my—-ssl-ce
rtificate—-"7452 (visited on 05/17/2022).

Who your browser trusts, and how to control it. URL: https://exp
editedsecurity.com/blog/control-the-ssl-cas-yo
ur-browser—trusts/ (visited on 05/22/2022).

Scott A Crosby and Dan S Wallach. “Efficient data structures for
tamper-evident logging.” In: USENIX Security Symposium. 2009,
pp- 317-334.

Radu Sion. “Strong worm”. In: The 28th International Conference on
Distributed Computing Systems. IEEE. 2008, pp. 69-76.

https://www.ejbca.org/
https://www.ejbca.org/
https://www.keyfactor.com/resources/what-is-pki/
https://www.keyfactor.com/resources/what-is-pki/
https://ca.godaddy.com/help/verify-domain-ownership-dns-or-html-for-my-ssl-certificate-7452
https://ca.godaddy.com/help/verify-domain-ownership-dns-or-html-for-my-ssl-certificate-7452
https://ca.godaddy.com/help/verify-domain-ownership-dns-or-html-for-my-ssl-certificate-7452
https://expeditedsecurity.com/blog/control-the-ssl-cas-your-browser-trusts/
https://expeditedsecurity.com/blog/control-the-ssl-cas-your-browser-trusts/
https://expeditedsecurity.com/blog/control-the-ssl-cas-your-browser-trusts/

62 | References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Di Ma and Gene Tsudik. “A new approach to secure logging”. In: ACM
Transactions on Storage (TOS) 5.1 (2009), pp. 1-21.

Benedikt Putz, Florian Menges, and Giinther Pernul. “A secure and
auditable logging infrastructure based on a permissioned blockchain™.
In: Computers & Security 87 (2019), p. 101602.

Alfonso de la Rocha and Panos Papadimitratos. “Blockchain-based
Public Key Infrastructure for Inter-Domain Secure Routing”. In: IFIP
WG 11.4 Workshop on Open Problems in Network Security (IFIP
iNetSec). Rome, Italy, May 2017.

Bastian Fredriksson. A distributed public key infrastructure for the web
backed by a blockchain. 2017.

Bruce Schneier and John Kelsey. “Secure audit logs to support
computer forensics”. In: ACM Transactions on Information and System
Security (TISSEC) 2.2 (1999), pp. 159-176.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying hash func-
tions for message authentication”. In: Annual international cryptology
conference. Springer. 1996, pp. 1-15.

Jason E Holt and Kent E Seamons. “Logcrypt: forward security and

public verification for secure audit logs”. In: Cryptology ePrint Archive
(2005).

Adi Shamir. “Identity-based cryptosystems and signature schemes”. In:
Workshop on the theory and application of cryptographic techniques.
Springer. 1984, pp. 47-53.

Di Ma and Gene Tsudik. “Forward-secure sequential aggregate
authentication”. In: IEEE Symposium on Security and Privacy (SP’07).
IEEE. 2007, pp. 86-91.

Ralph C Merkle. “A digital signature based on a conventional
encryption function”. In: Conference on the theory and application of
cryptographic techniques. Springer. 1987, pp. 369-378.

Laurent Chuat et al. “Efficient gossip protocols for verifying the con-
sistency of certificate logs”. In: IEEE Conference on Communications
and Network Security (CNS). IEEE. 2015, pp. 415-423.

Ben Laurie et al. Certificate Transparency Version 2.0. Request for
Comments RFC 9162. Num Pages: 53. Internet Engineering Task
Force, Dec. 2021. por: 10.17487/RFC9162. URL: https://dat
atracker.ietf.org/doc/rfc9162 (visited on 05/19/2022).

https://doi.org/10.17487/RFC9162
https://datatracker.ietf.org/doc/rfc9162
https://datatracker.ietf.org/doc/rfc9162

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

References |63

Josephine Wolff. “How a 2011 Hack You’ve Never Heard of Changed
the Internet’s Infrastructure”. In: Slate (Dec. 2016). 1ssn: 1091-2339.
URL: https://slate.com/technology/2016/12/how—-th
e-2011-hack-of-diginotar—-changed-the—-internets
—infrastructure.html (visited on 05/19/2022).

How CT Works : Certificate Transparency. URL: https : / / cer
tificate . transparency . dev / howctworks/ (visited on

05/20/2022).

How to Enable Certificate Transparency (CT) | DigiCert.com. URL: ht
tps://www.digicert.com/fag/certificate-transpa
rency/enabling—ct.htm (visited on 11/29/2022).

EJBCA Documentation. URL: https://doc.primekey.com/ej
beca (visited on 05/18/2022).

EJBCA Audit Logging. URL: https://doc.primekey.com/e’
bca6l52/ejbca-operations/ejbca-concept—-guide/1
ogging/ejbca-audit—-1logging (visited on 05/19/2022).

Integrity Protected Security Audit Log. URL: https://doc.prime
key.com/ejbca6152/ejbca—-operations/ejbca—-conce
pt—-guide/logging/view—-log-options/integrity—-pr
otected-security—audit-1log (visited on 05/19/2022).

Creating the Database - EJBCA - Documentation Space. URL: http
s://download. primekey . se/docs/EJBCA-Enterpr
ise/latest /Creating_the_Database . html (visited on
06/08/2022).

Issuing elD Certificates and Signing ePassports. URL: https://do
c.primekey.com/ejbca/solution—-areas/issuing-e
id-certificates—and-signing-epassports (visited on

05/19/2022).

Node.js. Node.js. en. URL: https://nodejs.org/en/ (visited on
05/20/2022).

Miguel Mota. MerkleTree.js. original-date: 2017-07-22T07:25:267.
May 2022. urL: https://github.com/miguelmota/merk
letreejs (visited on 05/20/2022).

Crypto | Node.js v18.2.0 Documentation. URL: https://nodejs.o
rg/api/crypto.html (visited on 05/20/2022).

https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://certificate.transparency.dev/howctworks/
https://certificate.transparency.dev/howctworks/
https://www.digicert.com/faq/certificate-transparency/enabling-ct.htm
https://www.digicert.com/faq/certificate-transparency/enabling-ct.htm
https://www.digicert.com/faq/certificate-transparency/enabling-ct.htm
https://doc.primekey.com/ejbca
https://doc.primekey.com/ejbca
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/ejbca-audit-logging
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/ejbca-audit-logging
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/ejbca-audit-logging
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/view-log-options/integrity-protected-security-audit-log
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/view-log-options/integrity-protected-security-audit-log
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/view-log-options/integrity-protected-security-audit-log
https://doc.primekey.com/ejbca6152/ejbca-operations/ejbca-concept-guide/logging/view-log-options/integrity-protected-security-audit-log
https://download.primekey.se/docs/EJBCA-Enterprise/latest/Creating_the_Database.html
https://download.primekey.se/docs/EJBCA-Enterprise/latest/Creating_the_Database.html
https://download.primekey.se/docs/EJBCA-Enterprise/latest/Creating_the_Database.html
https://doc.primekey.com/ejbca/solution-areas/issuing-eid-certificates-and-signing-epassports
https://doc.primekey.com/ejbca/solution-areas/issuing-eid-certificates-and-signing-epassports
https://doc.primekey.com/ejbca/solution-areas/issuing-eid-certificates-and-signing-epassports
https://nodejs.org/en/
https://github.com/miguelmota/merkletreejs
https://github.com/miguelmota/merkletreejs
https://nodejs.org/api/crypto.html
https://nodejs.org/api/crypto.html

64 | References

[33] crypto-js. en. URL: https://www.npmjs.com/package/cryp
to- s (visited on 05/20/2022).

[34] Elaine Barker. Recommendation for Key Management Part 1: General.
en. Tech. rep. NIST SP 800-57pt1r4. National Institute of Standards and
Technology, Jan. 2016, NIST SP 800-57ptlr4. por: 10.6028/NIST

.SP.800-57ptlr4.urL: https://nvlpubs.nist.gov/ni
stpubs/SpecialPublications/NIST.SP.800-57ptlr4
.pdf (visited on 07/04/2022).

https://www.npmjs.com/package/crypto-js
https://www.npmjs.com/package/crypto-js
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

TRITA-EECS-EX-2022:926

www.kth.se

	Introduction
	Background
	PKI
	Audit Log

	Problem
	Original Problem and Definition

	Purpose
	Goals
	Delimitations
	Structure of the Thesis

	Background
	Schneier-Kelsey Log
	Logcrypt
	A Log with an Aggregate Signature
	Scheme and Algorithms
	Security and Performance

	Merkle Tree Log
	Log Structure
	Proof Construction
	Auditing, Verification and Gossiping
	Performance
	Merkle Aggregation
	Safe Deletion, Pruning and Exporting
	Summary

	Certificate Transparency
	Summary

	Methodology
	Identifying the Problem and Requirements
	Literature Review
	System Design
	Implementation

	Existing Solution
	Integrity Protection
	Clustering
	Implementation and Performance
	Areas of Improvement

	Analysis and Requirements
	Threat Analysis
	Security Requirements
	Entity Authentication
	Tamper-evident

	Functional Requirements
	Writable from Multiple Sources Concurrently
	Scalability
	Pruning

	Our Log System Design
	Logger Design
	Infrequent Auditor Design
	CA Node Design
	Frequent Auditor Design
	Secruity Analysis
	Adversarial Model
	Logger
	CA Node
	Logger, Frequent Auditors and Clients

	Implementation
	Performance

	Discussion, conclusions and future work
	References

