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Abstract

Large deviations for stochastic approximations is a well-studied field that yields conver-
gence properties for many useful algorithms in statistics, machine learning and statistical
physics. In this article, we prove, under certain assumptions, a large deviation principle for
a stochastic approximation with state-dependent Markovian noise and with decreasing step
size. Common algorithms that satisfy these conditions include stochastic gradient descent,
persistent contrastive divergence and the Wang-Landau algorithm. The proof is based on
the weak convergence approach to the theory of large deviations and uses a representation
formula to rewrite the problem into a stochastic control problem. The resulting rate function
is an action potential over a local rate function that is the Fenchel-Legendre transform of a
limiting Hamiltonian.

1 Introduction

Stochastic approximations with state-dependent noise provide a rich and useful family of stochas-
tic recursive algorithms. It includes many popular learning algorithms in statistics, machine
learning, and statistical physics. Examples include stochastic gradient descent, persistent con-
trastive divergence, reinforcement learning, adaptive Markov Chain Monte-Carlo and extended
ensemble algorithms. The theory of stochastic approximations originates from the work of Rob-
bins and Monro in the 1950s, see [18] and Kiefer-Wolfowitz[15], and has been thoroughly devel-
oped ever since. Monographs covering many of the fundamental results of the theory include
[2, 7, 16].

The basic stochastic approximation algorithm with state-dependent noise considers a stochas-
tic process {Xk}k∈N on a probability space (Ω,F , P ), with an associated noise sequence {Yk}k∈N.
The process {Xk}k∈N is assumed to satisfy the recursion,

Xk+1 = Xk + εkg(Xk, Yk+1), k ≥ 0,

where X0 = x0 ∈ Rd1 , Y0 = y0 ∈ Rd2 , g : Rd1 × Rd2 → Rd1 , and {εk} is a sequence of step-sizes.
The noise sequence {Yk}k∈N is state-dependent in such a way that

P (Yk+1 ∈ A|Xk, Yk) = ρXk(Yk, A), A ∈ B(Rd2),

with ρx(y, ·) being a probability measure on the Borel sets of Rd2 , for any x ∈ Rd1 and y ∈ Rd2 .
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In this paper, we study the behaviour of the algorithm close to a point of convergence. The
ODE method is a well-established method for studying convergence of stochastic approximations,
which states that, for large k, the stochastic approximation essentially follows a limit ODE. The
ODE method can be briefly explained as follows. By assuming that, for each x ∈ Rd1 , the
transition kernel admits a unique invariant distribution πx we may rewrite the recursion as

Xk+1 −Xk

εk
= ḡ(Xk) + [g(Xk, Yk+1)− ḡ(Xk)],

where ḡ(x) =
∫
g(x, y)πx(dy). Under appropriate conditions for small εk and large k, the effect

of the noise g(Xk, Yk+1) − ḡ(Xk) will be small and the algorithm will approximately follow the
solution to the limit ODE

ẋ(t) = ḡ(x(t)).

Consequently, points of convergence for the stochastic approximation may be described as the
forward limit set of the limit ODE. Due to the inherent randomness of the stochastic approx-
imation algorithm, it may, with a small probability, deviate from a neighbourhood of a point
of convergence. Large deviations theory provides insights into the rate at which the algorithm
deviates from such a neighbourhood and characterizes the most likely trajectories along which
such deviations occur.

In popular language, we may say that as the stochastic approximation algorithm approaches
a point of convergence it is learning, while as it starts to deviate from a point of convergence it
is forgetting. The large deviations principle characterizes the rate at which the algorithm forgets
and how the forgetting occurs.

A simple and useful method to exclude the possibility of divergence of a stochastic approx-
imation algorithm, is to project the updates on a compact set C, by considering the projected
recursion

Xk+1 = projC [Xk + εkg(Xk, Yk+1)] , k ≥ 0,

with projC denoting the projection onto C. However, in this paper we primarily study the
behaviour of the algorithm close to a point of convergence and will therefore not be concerned
with projected algorithms.

The existing literature on large deviations for stochastic approximations studies, on the one
hand, the setting with fixed step size, where εk = ε > 0, does not depend on k, and on the other
hand the setting of decreasing step size, where εk → 0 as k →∞. For fixed step size the theory
was first developed by Freidlin, see [12, 13], for dynamical systems in continuous time with noise
that does not depend on the state. The results were generalized by Iscoe, Ney and Nummelin,
see [14], who consider Markov-additive processes in continuous and discrete time. The most
general results are obtained by Dupuis, see [8], for discrete time systems by providing results for
state-dependent noise. The results rely on the existence of an appropriate limiting Hamiltonian
and the rate function is given by an action functional where the local rate function is the Fenchel-
Legendre transform of the limiting Hamiltonian. See Section 4.1 for additional details on the
development of large deviations principles for stochastic approximations with constant step size.

For stochastic approximations with decreasing step size the first results are obtained by
Kushner [17] who considers step size sequences of the form εn = (n+1)−ρ, ρ ∈ (0, 1], and update
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functions g(x, y) = b(x) + y, with b(·) Lipschitz continuous and {Yn} a sequence of iid centered
Gaussian variables. Kushner assumes the existence of an appropriate limiting time-dependent
Hamiltonian and identifies the appropriate scaling sequence. A generalization is provided by
Dupuis and Kushner [11] who consider step size sequences where εn ≥ 0,

∑
n εn = ∞, εn → 0,

update functions of the form g(x, y) = b̄(x) + b(x, y), and E[b(x, Yn)] = 0. They assume further
that the noise sequence satisfies Yn = (Ỹn, Ŷn), where {Ỹn} and {Ŷn} are mutually independent,
{Ỹn} is stationary and bounded and {Ŷn} is stationary centered Gaussian process with summable
correlation function. Moreover, b(x, Yn) = b1(x, Ỹn) + b0(x)Ŷn, where b1(·, ỹ), b0 and b̄ are
uniformly (in ỹ, x) Lipschitz and bounded.

In the existing literature, the large deviations principle is obtained by identifying a Hamilto-
nian H(x, α), that sometimes can be interpreted as a limiting log-moment generating function
and defining the local rate function L(x, β) as the convex conjugate of H(x, α). A problem
with this approach is that the Hamiltonian is implicitly defined as a limit and its relation to
the underlying dynamics such as the transition kernel ρx(y, dz) can only be established in some
special cases. In this paper, the results of Dupuis and Kushner, see [11], for a decreasing step
size sequence, are generalized to include state-dependent noise and the local rate function is
expressed in terms of the family of transition kernels. In addition, the conditions are somewhat
more general as the update function g need not be bounded in x. We also remark that from a
technical point of view, the setting of fixed step size, is somewhat easier and analogous results
can be obtained with minor modification of the weak-convergence techniques used in this paper.
However, due to space considerations we do not pursue the results for fixed step size in this
paper.

2 Stochastic approximation

In this section, the stochastic approximation algorithm will be introduced and the notation and
assumptions are stated. Some preliminaries on Laplace principles and a heuristic derivation of
the rate function is also be provided.

2.1 Notation

The following notation will be used. Let N = {1, 2, . . . }, N0 = {0, 1, 2, . . .} and {εk}k∈N0

.
= {1/k}

denote the sequence of step-sizes (learning rate) of our stochastic approximation algorithm.
Define the intermediate times t0 = 0, tn =

∑n
k=1 εk, and let m(t) = max{n : tn ≤ t} be the

maximum number of iterations that occurs before time t. Note that m(tn) = n. The space
C([0, T ] : Rd) consists of Rd-valued continuous functions defined on [0, T ] and Cx([0, T ] : Rd) is
the subspace of continuous functions starting at x at time 0. The space C([0, T ] : Rd) is equipped
with the sup norm ‖f‖∞ = sups,t∈[0,T ] ‖f(s) − f(t)‖ for f ∈ C([0, T ] : Rd), where ‖ · ‖ is the
Euclidean norm on Rd. For x, y ∈ Rd, their inner product is denoted 〈x, y〉. Given a Polish space
X , with Borel σ-algebra B(X ), the space of probability measures on X is denoted by P(X ),
equipped with the topology of weak convergence. For θ ∈ P(X ), the relative entropy R(·‖θ) is a
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map from P(X ) into the extended real numbers, defined by

R(γ‖θ) .
=

{∫
X

(
log dγ

dθ

)
dγ, γ � θ,

+∞, otherwise

We refer to R(γ‖θ) as the relative entropy of γ with respect to θ. Let X and Y be Polish spaces,
σ(dy|x) a stochastic kernel on Y given X , and θ ∈ P(X ). Then θ⊗σ is defined to be the unique
probability measure on (X ×Y,B(X ×Y)) with the property that for A ∈ B(X ) and B ∈ B(Y),

θ ⊗ σ(A×B)
.
=

∫
A×B

θ(dx)σ(dy|x) =

∫
A
σ(B|x)θ(dx).

The formula is summarized by the notation θ⊗σ(dx×dy) = θ(dx)⊗σ(dy|x). Given a transition
kernel p(x, dy) on X and k ∈ N, let p(1)(x, dy) = p(x, dy) and, for k ≥ 1, p(k)(x, dy) denote the
k-step transition probability function defined recursively by

p(k+1)(x,A) =

∫
X
p(y,A)p(k)(x, dy), A ∈ B(X ).

Given µ ∈ P(X ), let A(µ)
.
= {γ ∈ P(X × X ) : [γ]1 = [γ]2 = µ} , where [γ]1 and [γ]2 denote the

first and second marginals of γ.

2.2 The model

Let (Ω,F , P ) be a probability space. Consider a stochastic approximation algorithm {Xk}n∈N0

of the Robbins-Munro type, with state-dependent noise sequence {Yk}k∈N, starting from X0 and
satisfying the recursion,

Xk+1 = Xk + εk+1g(Xk, Yk+1), k ≥ 0,

where g : Rd1×Rd2 → Rd1 , and {Yn}n∈N0 starting from Y0, and, for every k ∈ N0 and A ∈ B(Rd2)

P (Yk+1 ∈ A|Xk, Yk) = ρXk(Yk, A)

with ρx(y, ·) ∈ P(Rd2) for any x ∈ Rd1 and y ∈ Rd2 .
We are interested in analyzing the asymptotic behavior of the stochastic approximation

{Xn}n∈N for large values of n. Therefore, for each n ∈ N and x0 ∈ Rd1 , define a process
{Xn

k }k≥n that follows the same recursive iterations but starts from the n-th step recursion. To
be more precise, let Xn

n = x0 and for k ≥ n

Xn
k+1 = Xn

k + εn+k+1g(Xn
k , Yn+k+1). (2.1)

We consider a family of continuous interpolations of {Xn
k }k≥n: for each n, Xn = {Xn(t) : t ∈

[0, T ]} is given by Xn(tn+k − tn) = Xn
n+k for k = 0, 1, . . . , and for intermediate time points t,

Xn(t) is defined by a piece-wise linear interpolation. Note that, for each n, Xn ∈ Cx0([0, T ] :
Rd1).
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2.3 Large deviations

In this section the definition of a Laplace principle is stated, which in the setting of a Polish
space is equivalent to a large deviation principle (LDP) for a general class of random objects,
including those considered in this paper. For general background on large deviation theory and
the connection between the large deviation principle and the Laplace principle, see [4, Chapter
1]. Due to the equivalence of the large deviations principle and the Laplace principle, we will
use the terminology of LDP and Laplace principle interchangeably throughout the paper.

A function I : X → [0,∞] is called a rate function on X if, for each M < ∞, the level set
{x ∈ X : I(x) ≤M} is a compact subset of X .

Definition 2.1 (Laplace principle) Let I be a rate function on X . The sequence {Xn} is said
to satisfy the Laplace principle on X with rate function I and scaling sequence {βn} if βn →∞
as n→∞, and for all bounded continuous functions F : X → R,

lim
n→∞

1

βn
logEe−βnF (Xn) = − inf

x∈X
[F (x) + I(x)].

The term Laplace principle upper bound refers to the validity of

lim sup
n→∞

1

βn
logEe−βnF (Xn) ≤ − inf

x∈X
[F (x) + I(x)],

for all bounded continuous functions F , while the term Laplace principle lower bound refers to
the validity of

lim inf
n→∞

1

βn
logEe−βnF (Xn) ≥ − inf

x∈X
[F (x) + I(x)],

for all bounded continuous functions F .

Henceforth, when there is no ambiguity, we will refer to these only as upper and lower bounds,
dropping the term “Laplace principle”.

2.4 Assumptions

Recall that {Xn} ⊂ Cx0([0, T ] : Rd1) is the family of continuous interpolations of the stochastic
approximation {Xn

k }k≥n. We end this section by listing the assumptions we use in this paper to
establish an LDP for {Xn}.

Assumption 2.2

(A.1) The function g is a measurable function, and for any z ∈ Rd2, x 7→ g(x, z) is Lipschitz
continuous.

(A.2) The transition kernel ρx(y, dz) is of the form ρx(y, dz) = ηx(y, z)λ(dz), for some reference
measure λ ∈ P(Rd2). Moreover, x 7→ ηx(y, z) is uniformly continuous, in (z, y), and for
any x, (y, z) 7→ ηx(y, z) is continuous.
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(A.3) The function

Λ(x, α, y) = log

∫
exp{〈α, g(x, z)〉}ρx(y, dz),

is continuous in (x, α), uniformly in y.

(A.4) For every compact set K, there is a constant C(K), such that for all y, z ∈ Rd2

sup
x,w∈K

ηx(y, z)

ηw(y, z)
< C(K).

(A.5) For any x ∈ Rd1, ρx(y, dz) satisfies the Feller property: for any {yn}n∈N ⊂ Rd2 and y ∈ Rd2

such that yn → y, ρx(yn, dz) converges weakly to ρx(y, dz).

(A.6) For any x ∈ Rd1, there exist positive integers l0 and n0 such that for all y and w,

∞∑
i=l0

1

2i
ρ(i)
x (y, dz)�

∞∑
j=n0

1

2j
ρ(j)
x (w, dz),

where ρ(i)
x denotes the i-step transition probability.

(A.7) For every α ∈ Rd2,

sup
x∈Rd1

sup
y∈Rd2

(
log

∫
Rd2

e〈α,g(x,z)〉ρx(y, dz)

)
<∞.

sup
x∈Rd1

sup
y∈Rd2

(
log

∫
Rd2

e〈α,z〉ρx(y, dz)

)
<∞.

(A.8) The sequence {εk}k∈N satisfies εk > 0 for each k ≥ 1, limk→∞ εk = 0 and
∑

k εk =∞. Let
{βn}

.
= {m(tn + T )− n} and suppose that the function hn : [0, T ]→ (0,∞), given by,

hn(t) = βnεn+i−1, for t ∈ [tn+i−1 − tn, tn+i − tn], i ∈ {1, . . . , βn},

converges uniformly on [0, T ] to some limit h.

Assumption (A.1) is a standard assumption for the existence and uniqueness of a classical so-
lution to an ordinary differential equation; Assumptions (A.2) and (A.5) guarantee the existence
of an invariant probability measure for ρx(y, dz); Assumption (A.6) ensures that the invariant
probability measure is unique and the Markov chain with transition probability ρx(y, dz) is er-
godic. For each x ∈ Rd1 , we let πx denote this unique invariant measure for ρx. Assumption (A.7)
is used to guarantee that the updates have finite exponential moments. Lastly, (A.8) is needed
to prove convergence of the stochastic approximation algorithm and the limit function h may
be interpreted as an asymptotic time-scale of the process {Xn}. For example, with εk = 1/k, a
straightforward calculation shows that the limit function is given by h(t) = e−t(eT − 1).
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2.4.1 Form of the rate function

Before stating the Laplace principle for the sequence {Xn}, a heuristic calculation that suggests
the correct form of the rate function is provided. The heuristic calculation contains several non-
rigorous approximations and is only intended to give the reader a first suggestion of the form of
the rate function. For simplicity we only consider a specific step-size sequence given by εk = 1/k,
k ≥ 1.

Recall first that the empirical measure of an ergodic Markov chain with transition probability
ρ(y, dz) satisfies a LDP with scaling sequence {n} and rate function given by

J0(µ) = inf
γ∈A(µ)

R(γ||µ⊗ ρ), (2.2)

where A(µ) is defined in Section 2.1, see, e.g., [9, Ch. 8]. Taking a bounded continuous function
g on Rd2 the contraction principle, applied to the map µ 7→

∫
g(y)µ(dy), implies that the sample

average 1
n

∑n
i=1 g(Yi) satisfies a LDP with rate function,

L0(β) = inf{J0(µ) :

∫
g(y)µ(dy) = β} = inf

µ

{
inf

γ∈A(µ)
R(γ||µ⊗ ρ) :

∫
g(y)µ(dy) = β

}
.

By incorporating a time variable the continuous linear interpolation of 1
n

∑[nt]
i=1 g(Yi) satisfies a

LDP on C0([0, T ] : Rd) with rate function

J1(ϕ) =

∫ T

0
L0(ϕ̇(t))dt.

Consider now the stochastic approximation with fixed step-sizes where εk = 1/n for all
k = 1, . . . , n. Take ϕ in C([0, T ] : Rd) and consider the probability that the trajectory of Xn

resides in a ball of radius σ > 0 around ϕ. In this case Xn may be approximated over a small
interval [s, s+ δ] of length δ > 0 by,

Xn(s+ δ)−Xn(s) ≈ 1

n

bn(s+δ)c∑
i=bnsc

g(Xn(s), Yi) ≈
1

n

bn(s+δ)c∑
i=bnsc

g(ϕ(s), Yi),

where Yi is a Markov chain with transition probability ρϕ(s)(y, dz). Applying the Laplace prin-
ciple for the sample average the increment Xn(s+ δ)−Xn(s) satisfies a Laplace principle with
rate function

δL(ϕ(s), β).

where

L(x, β)
.
= inf

µ

{
inf

γ∈A(µ)
R(γ||µ⊗ ρx) : β =

∫
g(x, z)µ(dz)

}
. (2.3)

By pasting together the local approximations over small intervals Xn satisfies a Laplace principle
on C([0, T ];Rd) with rate function

J2(ϕ) =

∫ T

0
L (ϕ(s), ϕ̇(s)) ds.
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Indeed,

− 1

n
logP{Xn(·) ≈ ϕ(·)|} ≈ − 1

n
logP

{
Xn(jδ) ≈ ϕ(jδ) for all 1 ≤ j ≤ bT

δ
c
}

≈ − 1

n
logP

{
Xn((j + 1)δ)−Xn(jδ) ≈ δϕ̇(jδ) for all 0 ≤ j ≤ T

δ
− 1

}

≈ − 1

n
log

bT
δ
c−1∏

j=0

P {Xn((j + 1)δ)−Xn(jδ) ∈ δϕ̇(jδ) | Xn(jδ)}

≈ − 1

n
log

bT
δ
c−1∏

j=0

exp {−nδL (ϕ(jδ), ϕ̇(jδ))}

≈
bT
δ
c−1∑

j=0

δL(ϕ(jδ), ϕ̇(jδ))

≈
∫ T

0
L (ϕ(s), ϕ̇(s)) ds.

Consider now {Xn} with decreasing step-size {εn} as defined in Section 2.2. Take as the
scaling sequence in the LDP the sequence {βn} = {m(tn+T )−n} and define hn(t) as in ((A.8)).

In this case the decreasing step-sizes corresponds to a change of time scale and the rate of
change of Xn over a small interval [s, s+ δ] of length δ > 0 may be approximated by

Xn(s+ δ)−Xn(s)

δ
≈ 1

δ

m(tn+s+δ)−n∑
i=m(tn+s)−n+1

εn+i−1g(ϕ(s), Yi)

≈ 1

δ

 ∑m(tn+s+δ)−n
i=m(tn+s)−n+1 εn+i−1

m(tn + s+ δ)−m(tn + s)

 m(tn+s+δ)−n∑
i=m(tn+s)−n+1

g(ϕ(s), Yi)


≈ 1

m(tn + s+ δ)−m(tn + s)

 m(tn+s+δ)−n∑
i=m(tn+s)−n+1

g(ϕ(s), Yi)

 ,

for which a LDP holds as in (2.3). Using a similar argument as in the case of fixed step sizes it
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follows that

− 1

βn
logP{Xn(·) ≈ ϕ(·)} ≈ − 1

βn
logP

{
Xn(jδ) ≈ ϕ(jδ) for all 1 ≤ j ≤ bT

δ
c
}

≈ − 1

βn
logP

{
Xn((j + 1)δ)−Xn(jδ) ≈ δϕ̇(jδ) for all 0 ≤ j ≤ T

δ
− 1

}

≈ − 1

βn
log

bT
δ
c−1∏

j=0

P

{
Xn((j + 1)δ)−Xn(jδ)

δ
≈ ϕ̇(jδ) | Xn(jδ)

}

≈ 1

βn

bT
δ
c−1∑

j=0

(m(tn + (j + 1)δ)−m(tn + jδ))L (ϕ(jδ), ϕ̇(jδ))

≈ 1

βn

bT
δ
c−1∑

j=0

m(tn+(j+1)δ)−n∑
i=m(tn+jδ)−n+1

L(ϕ(τni ), ϕ̇(τni ))


≈ 1

βn

βn∑
i=1

1

εn+i−1
L(ϕ(τni ), ϕ̇(τni ))εn+i−1

≈
βn∑
i=1

1

hn(τni )
L(ϕ(τni ), ϕ̇(τni ))εn+i−1

≈
∫ T

0

1

h(s)
L (ϕ(s), ϕ̇(s)) ds.

The above calculation indicates that the appropriate rate function in the LDP for Xn, the
piecewise linear interpolation of the stochastic approximation, is given by

I(ϕ) =

∫ T

0

1

h(t)
L(ϕ(t), ϕ̇(t))dt,

where h(t) = (eT − 1)e−t is the limit of hn(t).

3 Statement of Main Results

The goal of this paper is to establish the LDP for the sequence of Xn = {Xn(t) : t ∈ [0, T ]},
the linear interpolations of {Xn

k }k≥n starting from Xn
n = x0 ∈ Rd1 . To this end, we define the

function I : Cx0([0, T ] : Rdx) as,

I(ϕ) =

{∫ T
0

1
h(t)L(ϕ(t), ϕ̇(t))dt, ϕ ∈ ACx0([0, T ] : Rd1),

+∞, otherwise,
(3.1)

with the local rate function L as in (2.3). Note that we suppress the dependence on the choice of
starting point x0 in the notation. The following Laplace princple is the main result of the paper,
where I plays the role of the large deviation rate function.
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Theorem 3.1 (Laplace principle) Let Xn = {Xn(t) : t ∈ [0, T ]} be the continuous interpola-
tions of {Xn

k }k≥n given by (2.1) and take L as in (2.3). Under Assumptions (A.1)-(A.8), I is a
rate function, and {Xn}n∈N satisfies a Laplace principle with scaling sequence βn = m(tn+T )−n
and rate function I.

The proof of Theorem 3.1 relies on the weak convergence approach to large deviations, presented
in the monographs [9, 4]. In particular it is divided into proving the upper bound,

lim inf
n→∞

− 1

βn
logE

[
e−βnF (Xn)

]
≥ inf

ϕ
{F (ϕ) + I(ϕ)} ,

and the lower bound,

lim sup
n→∞

− 1

βn
logE

[
e−βnF (Xn)

]
≤ inf

ϕ
{F (ϕ) + I(ϕ)} ,

where the infima are over ϕ ∈ ACx0([0, T ] : Rd1) and F is an arbitrary bounded continuous
function. The proofs of the two bounds are given in Sections 6 and 7, respectively, and rely on
the following representation formula that is a straightforward modification of Theorem 4.5 in [4].

Proposition 3.2 Fix n ∈ N and let {Xn(t) : t ∈ [0, T ]} be the continuous interpolations of
{Xn

k }k≥n given by (2.1), and Xn
n = x. For any bounded continuous function F : C([0, T ] :

Rd1)→ R,

− 1

βn
logEe−βnF (Xn) = inf

{µ̄ni }
E

[
F (X̄n) +

1

βn

βn+n∑
i=n+1

R(µ̄ni (·)‖ρX̄n
i−1

(Ȳ n
i−1, ·))

]
, (3.2)

where {µ̄ni }i∈{n+1,...,βn+n} is a collection of random probability measures satisfying the following
two conditions:

1. µ̄ni is measurable with respect to the σ-algebra Fni−1, where Fnn = {∅,Ω} and for i ∈ {n +
1, . . . , βn + n}, Fni = σ{Ȳ n

n , . . . , Ȳ
n
i };

2. the conditional distribution of Ȳ n
i , given Fni−1, is µ̄

n
i .

Moreover, {X̄n
k }k≥n are defined by (2.1) with {Yk} replaced by {Ȳ n

k }, and {X̄n(t) : t ∈ [0, T ]} is
the continuous interpolations of {X̄n

k }k≥n.

Proof. Observe that {Xn(t) : t ∈ [0, T ]} are determined by {x,Xn
n+1, . . . , X

n
m(tn+T )}, which de-

pends only on the state-dependent noise {Yn, . . . , Ym(tn+T )−1} via the recursive formula. There-
fore, the variational formula in [4, Proposition 2.3] combined with the chain rule for relative
entropy [4, Theorem 2.6], with βn = m(tn + T )− n and base measure

ρ
xβn0

(y0, dy1)ρ
xβn1

(y1, dy2)× · · · × ρ
xβnβn−1

(yβn−1, dyβn),

gives the claimed result.
Let us briefly outline the main ideas of the proof. For the upper bound, for any ε > 0,

from the representation formula we can choose a sequence of ε-optimal controls µ̄n = {µ̄ni }
βn+n
n+1 .

10
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This sequence in turn defines a controlled process X̄n = {X̄n(t) : t ∈ [0, T ]}. To prove the
upper bound, in Lemma 6.2 we show tightness of both the controls and the controlled process,
and identify the limit (X̄, µ̄) along a convergent subsequence of {(X̄n, µ̄n)}. In particular we
identify the limit ODE for X̄, the limit of the controlled processes. With these results, the
proof of the upper bound follows from fairly standard arguments involving Fatou’s lemma, lower
semi-continuity of relative entropy and the chain rule; see Section 6 for the complete details.

The difficult part of proving Theorem 3.1 is in proving the lower bound. Whereas for the
upper bound we can use the definition of the infimum in (3.2) to obtain a suitable sequence of
controls, for the lower bound we must explicitly construct a sequence of nearly-optimal controls
ν̄n = {ν̄ni }

βn+n
i=n+1. This is carried out in Section 7.1. The first step is to show that for any trajectory

ξ such that I(ξ) < ∞, for any ε > 0, there is a piece-wise linear ξ∗ such that ||ξ∗ − ξ||∞ < ε
and I(ξ∗) ≤ I(ξ) + ε (see Lemma 7.3). Such trajectories, along with transition kernels that are
nearly-optimal for the local rate function L—see Lemma 7.2—are used to construct the sequence
of controls ν̄n for each n. Moreover, in Lemma 7.4 we show tightness of the sequence {ν̄n}n.

With suitable controls ν̄n identified, we obtain an upper bound of the right-hand side of the
representation formula (3.2). It remains to show, that asymptotically in n, this upper bound
is in turn bounded from above by infρ{F (ρ) + I(ρ)}. This is achieved in Section 7 through a
series of approximations. An essential ingredient in the proof of the lower bound is to divide
[0, T ] into subintervals, each containing a given number of time points tnj associated with the
controlled process arising from the ν̄nj s. We use (local) ergodicity to show that, as the number
of such time points in each subinterval grows, the controlled process converges and identify the
corresponding limit process (7.9). Next, we show that as the number of intervals grows, this
limit process converges to the trajectory ξ of interest. In Section 7 these approximations are
combined to obtain the lower bound.

3.1 Alternative representations of the local rate function

Note that, for each x ∈ Rd, Jx defined as in (2.2) with ρ(y, dz) replaced by ρx(y, dz) is the rate
function associated with the empirical measure of a Markov chain with transition probability
ρx(y, dz). An alternative representation of Jx(µ), due to Donsker and Varadhan [6], is given by

sup
u>0

∫
log

(
u(y)

ρxu(y)

)
µ(dy), (3.3)

where the supremum is taken over strictly positive continuous functions u and ρxu(y) =
∫
u(z)ρx(y, dz).

Another representation of Jx is provided by Dinwood and Ney, see [5] Lemma 3.1. For
bounded Lipschitz functions, f , let T xf be the operator, on the space of bounded measurable
functions with the uniform metric, given by

T xf (u)(y) = ef(y)ρxu(y).

With rf (x) the spectral radius of T xf they prove that Jx(µ) can be represented as

sup
f

{∫
f(y)µ(dy)− rf (x)

}
, (3.4)

11
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where the supremum is taken over bounded Lipschitz functions. Consequently, the local rate
function in (2.3) can be written as,

L(x, β) = inf
µ

{
Jx(µ) : β =

∫
g(x, z)µ(dz)

}
,

where Jx(µ) is given by any of the expressions (2.2), (3.3) or (3.4).

3.2 The limiting Hamiltonian

Consider the Hamiltonian H given as the Fenchel-Legendre transform of the local rate function
L in (2.3). That is,

H(x, α) = sup
β
{α, β〉 − L(x, β)}.

Next, the Laplace principle for the empirical measure of a Markov chain and standard results
from convex analysis will be used to show that H(x, α) can be interpreted as a limiting log-
moment generating function associated with the transition probability ρx(y, dz). We have the
following result.

Proposition 3.3 Suppose (A.5)-(A.7) of Assumption 2.2 holds. Take x ∈ Rd, let {Yi} be a
Markov chain with transition kernel ρx and Jx be defined as in (2.2), with ρ replaced by ρx.
Then,

H(x, α) = lim
n

1

n
logE

[
exp

{
n∑
i=1

〈α, g(x, Yi)〉

}]
, α ∈ Rd. (3.5)

Proof. By (A.5) and (A.6) in Assumption 2.2 it follows that the empirical measure of {Yi}
satisfies a Laplace principle on P(Rd2) with rate function Jx, see [3, Theorem 6.6]. For every
bounded and measurable function f the linear functional µ 7→

∫
fdµ, defined on P(Rd2), is

bounded and continuous. For each x ∈ Rd1 , by the Laplace principle for the empirical measure
of {Yi}, the map f 7→ Ĥ(x, f) given by the limit,

Ĥ(x, f) = lim
n

1

n
logE

[
exp

{
n∑
i=1

f(Yi)

}]

= lim
n

1

n
logE

[
exp

{
−n

〈
−f, 1

n

n∑
i=1

δYi

〉}]
,

is well defined on the set of bounded measurable functions. Moreover, Ĥ(x, f) may be identified
as the Fenchel-Legendre transform of Jx,

Ĥ(x, f) = sup
µ
{〈f, µ〉 − Jx(µ)}.

By Assumption 2.2 (A.7), the function Ĥ(x, ·) may be extended to the, possibly unbounded, func-
tion 〈α, g(x, ·)〉. Indeed, the function 〈α, g(x, ·)〉 may be approximated from below by bounded

12
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measurable functions and the dominated convergence theorem can be applied since,

sup
n

1

n
logE

[
exp

{
n∑
i=1

〈α, g(x, Yi)〉

}]

= sup
n

1

n
logE

[
exp

{
n−1∑
i=1

〈α, g(x, Yi)〉

}
E [exp {〈α, g(x, Yn)〉} | Yn−1, . . . , Y1]

]

= sup
n

1

n
logE

[
exp

{
n−1∑
i=1

〈α, g(x, Yi)〉

}∫
exp {〈α, g(x, yn)〉} ρx(Yn−1, dyn)

]

≤ sup
n

1

n
log

(
K · E

[
exp

{
n−1∑
i=1

〈α, g(x, Yi)〉

}])
≤ K <∞,

where K = supx∈Rd1 supy∈K log
∫
K e
〈α,g(x,z)〉ρx(y, dz). It remains to show that

H(x, α) = Ĥ(x, 〈α, g(x, ·)〉),

is the Fenchel-Legendre transform of L, which is proved using a rather standard argument from
convex analysis. Let us show that L(x, β) = supα{〈α, β〉 − Ĥ(x, 〈α, g(x, ·)〉)}. Consider the set

Γx = {(r, s) ⊂ R× Rd1 : r ≥ Jx(µ),

∫
g(x, y)µ(dy) = s, some µ ∈ P(Rd2)}.

Note that Γx is convex for each x. By taking a normal of the form (1, λβ) to the tangent plane
of Γx at (L(x, β), β) it follows that

〈(1, λβ), (r, s)− (L(x, β), β)〉 ≥ 0, (r, s) ∈ Γx.

Moreover, the sup in
sup
α

inf
(r,s)∈Γx

{〈(1,−α), (r, s)− (L(x, β), β))〉},

is attained at −α = λβ . Therefore, we have on one hand that

sup
α

inf
(r,s)∈Γx

{〈(1,−α), (r, s)− (L(x, β), β))〉} = inf
(r,s)∈Γ

{〈(1, λβ), (r, s)− (L(x, β), β))〉} ≥ 0.

On the other hand, for all α,

inf
(r,s)∈Γx

{〈(1,−α), (r, s)− (L(x, β), β))〉} ≤ 0.

Therefore,

sup
α

inf
(r,s)∈Γx

{〈(1,−α), (r, s)− (L(x, β), β))〉} = inf
(r,s)∈Γx

{〈(1, λβ), (r, s)− (L(x, β), β))〉} = 0,

13
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which is equivalent to

L(x, β) = sup
α

inf
(r,s)∈Γx

{r − 〈α, s− β〉}

= sup
α
{〈α, β〉+ inf

(r,s)∈Γx
{r − 〈α, s〉}}

= sup
α
{〈α, β〉+ inf

µ
{Jx(µ)− 〈α,

∫
g(x, y)µ(dy)〉}}

= sup
α
{〈α, β〉 − sup

µ
{
∫
〈α, g(x, y)〉µ(dy)− Jx(µ)}}

= sup
α
{〈α, β〉 − Ĥ(x, 〈α, g(x, ·)〉)}.

This completes the proof.

Remark 3.4 Using the representation (3.5) of the limiting Hamiltonian, it follows that the time-
dependent limiting Hamiltonian, which is the Fenchel-Legendre transform of the time-dependent
local rate function L(t, x, β) = 1

h(t)L(x, β) is given by,

H(t, x, α) = sup
β

{
{α, β〉 − 1

h(t)
L(x, β)

}
=

1

h(t)
sup
β
{〈αh(t), β〉 − L(x, β)}

=
1

h(t)
H (x, αh(t)) .

3.3 Continuity of the local rate function

In this section we prove that, under Assumption 2.2, the local rate function L in (2.3) is contin-
uous and every point where it is finite.

Lemma 3.5 Suppose (A.1),(A.2),(A.5) and (A.7) hold. For any (x1, β1) ∈ Rd1 ×Rd1 such that
L(x1, β1) <∞, L is continuous at (x1, β1).

Proof. Let H be the limiting Hamiltonian given by (3.5). By Proposition 3.3, L(x, ·) is equal to
the Legendre-Fenchel transform of H(x, ·). In [14] the authors show that α 7→ H(x, α) is convex
and smooth; see also Section 4.3 in [8]. To prove the continuity of L at (x, β), by the arguments
used in [4, Lemma 4.16 (f)], it suffices to show the continuity of H(x, α) in (x, α).

To prove that (x, α) 7→ H(x, α) is continuous it is sufficient to show that the family {Hn}n∈N
with

Hn(x, α) =
1

n
logE

[
exp

{
n∑
i=1

〈α, g(x, Yi)〉

}]
, (x, α) ∈ Rd1 × Rd1 ,

is equicontinuous.

14
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By Assumption (A.2), for each ε1 > 0 there exists δ1 > 0 such that |x1 − x2| < δ1 and
|α1 − α2| < δ1 implies that

−ε1 ≤ Λ(x1, α1, y)− Λ(x2, α2, y) ≤ ε1, y ∈ K.

By exponentiating each expression in the last display and selecting ε1 sufficiently small there is,
for each ε > 0, a δ > 0 such that |x1 − x2| < δ and |α1 − α2| < δ implies that,

1− ε ≤
∫

exp{〈α1, g(x1, z)〉}ρx1(y, dz)∫
exp{〈α2, g(x2, z)〉}ρx2(y, dz)

≤ 1 + ε, y ∈ K.

Repeatedly applying the inequalities in the previous display yields

(1− ε)n
∫
· · ·
∫
e〈α2,g(x2,y1)〉+···+〈α2,g(x2,yn)〉ρx2(y0, dy1) · · · ρx2(yn−1, dyn)

≤
∫
· · ·
∫
e〈α1,g(x1,y1)〉+···+〈α1,g(x1,yn)〉ρx1(y0, dy1) · · · ρx1(yn−1, dyn)

≤ (1 + ε)n
∫
· · ·
∫
e〈α2,g(x2,y1)〉+···+〈α2,g(x2,yn)〉ρx2(y0, dy1) · · · ρx2(yn−1, dyn).

Applying 1
n log and rearranging the inequalities we obtain,

log(1− ε) ≤ Hn(x1, α1)−Hn(x2, α2) ≤ log(1 + ε).

This proves that {Hn}n∈N is equicontinuous and completes the proof.

4 Related work for constant and decreasing step size

The literature on large deviations for recursive algorithms of the form (2.1) studies, on the
one hand, the setting with constant step size, where εn = ε > 0, does not depend on n, and
consequently tn = εn and m(t) = bnεc. In this setting, large deviations principles for the piece-
wise linearly interpolated process Xε(t) of {Xε

n} with interpolation time ε, are obtained as ε→ 0.
The associated rate function takes the form of an action functional,

I(ϕ) =

∫ T

0
L(ϕ(t), ϕ̇(t))ds,

if ϕ is an absolutely continuous function, and I(ϕ) = ∞, otherwise, where L is a local rate
function.

On the other hand, in the setting with decreasing step size, where εn → 0 as n → ∞,
large deviations principles are obtained for the process {Xn} defined in (2.1). In this case, with
βn

.
= m(tn + T ) − n the limiting time scale is h(t) = limn h

n(t), where hn(t) = βnεn+k−1 for
t ∈ [tn+k−1.tn, tn+k − tn), k ∈ {1, . . . , βn}, and the rate function takes the form

I(ϕ) =

∫ T

0

1

h(t)
L(ϕ(t), ϕ̇(t))ds.
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The main difference between the constant and decreasing step size settings is the inclusion
of the limiting time scale h(t) in the rate function. Note, however, that for some choices of εn,
such as εn = (n+ 1)−α, for α ∈ (0, 1), the limiting time scale h(t) may be constant and equal to
1.

In the existing literature, the large deviations principle is obtained by identifying a Hamilto-
nian H(x, α), that sometimes can be interpreted as a limiting log-moment generating function
and defining the local rate function L(x, β) as the convex conjugate of H(x, α). A problem with
this approach is that the Hamiltonian is defined as a limit and its relation to the underlying
dynamics such as the transition kernel ρx(y, dz) can only be established in some special cases.

4.1 Large deviations for constant step size

The large deviations theory for stochastic approximation with constant step size originates from
the work of Freidlin [12, 13] who studies dynamical systems in continuous time, of the form,

ẋε(t) = b(xε(t), ξ(t/ε)), xε(0) = x, (4.1)

over a finite time interval, [0, T ], where the function b is bounded, with bounded derivatives,
{ξ(t), t ≥ 0} is bounded and ε → 0. Freidlin assumes that there is a limiting Hamiltonian
H(x, α) such that for arbitrary step functions ϕ and α from [0, T ] to Rd1 , the following limit
exists

lim
ε→0

ε logE

[
exp

{
1

ε

∫ T

0
〈α(t), b(ϕ(t), ξ(t/ε))〉dt

}]
=

∫ T

0
H(ϕ(t), α(t))dt. (4.2)

With L as the convex conjugate of H Freidlin proves a large deviations principle on Cx0,T = {ϕ ∈
C([0, T ];Rd1), ϕ(0) = x} for {xε} as ε→ 0, with rate function given by

I(ϕ) =

∫ T

0
L(ϕ(t), ϕ̇(t))ds,

if ϕ is absolutely continuous and I(ϕ) =∞, otherwise. When {ξ(t) t ≥ 0} is a finite state Markov
chain, Freidlin identifies the limiting Hamiltonian as the largest eigenvalue of a tilted intensity
matrix.

Iscoe, Ney and Nummelin [14] generalize the results of Freidlin by considering large deviations
principles for Markov-additive processes in both continuous time and discrete time. In the
discrete time setting, which relates more closely to the results of this paper, they consider a
process of the form (Yn, Xn) where

P ((Yn, Xn −Xn−1) ∈ A× Γ | (Yn−1, Xn−1) = (y, x)) = P ((Yn, Xn −Xn−1) ∈ A× Γ |Yn−1 = y).

That is, equations of the form (2.1) where g(x, y) = g(y), does not depend on x. They assume that
there exists a probability measure ν on E×Rd1 , an integer m0, and real numbers 0 < a ≤ b <∞
such that

aν(A× Γ) ≤ Pm0(A× Γ) ≤ bν(A× Γ),
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for all x ∈ E, A ∈ E , Γ ∈ Rd1 . With P̂ (α) = P̂ (y,A;α) =
∫

exp{〈α, x〉}P (y,A×dx) they derive a
large deviations principle, and more detailed asymtotics, for Pn(y,A×nF ) = P ((Yn, Xn−X0) ∈
A× nF |Y0 = y). In particular, it follows from Lemma 3.1 (ii) in [14] that

lim
n→∞

1

n
log P̂n(y,A;α) = log λ(α), α ∈ D.

Dupuis [8] further develops the large deviations results for discrete systems of the form (2.1)
with constant step size, using a milder conditions on the limiting Hamiltonian. More specifically,
in Section 4.3 of his paper, Dupuis considers the model (2.1) with εn = ε and g(x, y) bounded
and uniformly (in y) Lipschitz continuous in x, and measurable in y. He proves a large deviations
principle with rate function I under the following assumptions. The process Yn is sampled from
a transition kernel ρXn(y, ·) with density ηXn(y, ·) with respect to a common reference measure
λ(dz) such that, for a given compact set F1,

1. There are 0 < a ≤ A <∞ such that for all x ∈ F1, and all y, z, a ≤ ηx(y, z) ≤ A, and

2. ηx(y, z) is Lipschitz continuous in x, uniformly in y, z, for x ∈ F1.

4.2 Large deviations for decreasing step size

Large deviations principles for the case of decreasing step size is not as well developed. The first
results are obtained by Kushner [17] who considers (2.1), with εn = (n + 1)−ρ, ρ ∈ (0, 1], and
g(x, y)) = b(x) + y, with b(·) Lipschitz continuous and {Yn} a sequence of iid centered Gaussian
variables. The discrete time and time-changed analogue of (4.2) is given by

lim
n→∞

λn logE

exp


N−1∑
i=0

〈
α(i∆),

m(tn+(i+1)∆)−1∑
j=m(tn+i∆)

εj(b(x) + Yj)/λn

〉
 =

∫ T

0
H(t, x, α(t))dt,

where T = N∆, ∆ > 0, α is constant on intervals [i∆, (i + 1)∆). Kushner identifies the
appropriate normalising sequence,

λn =

m(tn+T )∑
j=n

ε2
j ,

which can be shown to be asymptotically proportional to 1/βn with βn as in Assumption 2.2
((A.8)), and proves a large deviations principle with rate function

I(ϕ) =

∫ T

0
L(t, ϕ(t), ϕ̇(t))ds,

where the local rate function L(t, ϕ(t), ϕ̇(t)) is the convex conjugate of H.
Dupuis and Kushner [11] develop the theory further by considering recursions of the form

(2.1) with g(x, y) = b̄(x)+b(x, y), εn ≥ 0,
∑

n εn =∞, εn → 0 and E[b(x, Yn)] = 0. They assume
further that Yn = (Ỹn, Ŷn), where {Ỹn} and {Ŷn} are mutually independent, {Ỹn} is stationary
and bounded and {Ŷn} is stationary centered Gaussian process with summable correlation func-
tion. Moreover, b(x, Yn) = b1(x, Ỹn) + b0(x)Ŷn, where b1(·, ỹ), b0 and b̄ are uniformly (in ỹ, x)
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Lipschitz and bounded. Note that, in contrast to our setting, in [11] it is not assumed that the
distribution of the noise Yn+1 may depend on the state Xn. It is assumed that there exists a
continuous function h1 such that

lim
δ→0

lim
n→∞

εmn(t+δ)

εn
= h1(t),

Further, the existence of a limiting Hamiltonian is assumed in [11]. That is, there is a continuous
function H(t, x, α) with α 7→ H(t, x, α) continuously differentiable for each t, x such that the
following limit exists,

lim
δ→0

lim
n→∞

λn logE

exp


T/δ−1∑
i=0

〈
α(iδ)εmn(iδ),

m((i+1)δ)−1∑
j=m(iδ)

b(ψ(iδ), Yj)

〉
 =

∫ T

0
H(t, x, α(t))dt.

A particular example studied in [11] is when {Yn,−∞ < n <∞} is bounded and stationary and
there is a continuous Ĥ0(·, ·) with α 7→ Ĥ0(α, x) continuously differentiable for each x such that

lim
N→∞

1

N
logE

exp


〈
α,

N−1∑
j=0

b(ψ, Yj)

〉


= lim
N→∞

1

N
logE0

exp


〈
α,

N−1∑
j=0

b(ψ, Yj)

〉


= Ĥ0(α,ψ),

where the convergence is uniform in the conditioning data. Note that the limiting Hamiltonian
established in Proposition 3.3 provides an analogous representation in the setting where the
distribution of the noise may be state dependent.

5 Applications

In this section we present applications to learning algorithms in statistics, machine learning and
statistical physics that can be stated as stochastic approximations satisfying Assumption 2.2.

5.1 Stochastic gradients

Consider minimizing a function G(x) =
∑M

m=1Gm(x), by stochastic gradient descent (SGD).
Let us assume that x 7→ ∇Gm(x) is bounded and Lipschitz continuous for all m ∈ {1, . . . ,M}.
Consider a standard SGD algorithm; in the kth iteration an index Yk+1 is selected uniformly at
random on {1, . . . ,M} and updated according to

Xn+1 = Xn − εn+1∇GYn+1(Xn).

Consequently, {Xn} satisfies the stochastic approximation (2.1) where {Yk} is an iid sequence,
ρx(y, ·) = ρ(·) is the uniform distribution on the integers {1, . . . ,M}, and g(x,m) = −∇Gm(x).
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Assumption 2.2 is automatically satisfied by the assumptions on∇Gm, λ as the counting measure
and since ρx(y,m) does not depend on x, y.

By Theorem 3.1 the continuous interpolations of {Xn
k } given by (2.1) satisfies a Laplace

principle with rate function I given by (3.1) where the local rate function L is given by (2.3).
Since, ρx(y,m) = ρ(m) = 1/M does not depend on x, y the local rate function simplifies to

L(x, β) = inf
µ

{
R(µ‖ρ) : β = −

M∑
m=1

∇Gm(x)µ(m)

}
= sup

α
{〈α, β〉 − H̄(x, α)},

where

H̄(x, α) = log

(
1

M

M∑
m=1

exp {−〈α,∇Gm(x)〉}

)
.

A concrete example arises in maximum likelihood estimation of a logistic regression with data
{(ξm, υm)}Mm=1 where ξm are explanatory variables and υm labels in {−1, 1} and φ represents a
feature function. Then the negative log-likelihood to be minimized is given by

G(x) =

M∑
m=1

− log sigm
(
υmx

Tφ(ξm)
)

where sigm(t) = (1 + e−t)−1 is the sigmoid function and

∇Gm(x) = υmφ(ξm)
(
1− sigm(υmx

Tφ(ξm)
)
,

which is bounded and Lipschitz continuous in x, for all m ∈ {1, . . . ,M}.
More general stochastic gradients appear in the minimization of functions of the form Ḡ(x) =∫

G(x, y)γ(dy) for some distribution γ. With {Yn} iid with distribution γ the algorithm

Xn+1 = Xn − εn+1∇xG(Xn, Yn+1),

can be used to minimize Ḡ. If ∇xG(x, y) is bounded and Lipschitz continuous in x, then As-
sumption 2.2 is satisfied and the Laplace principle holds with local rate function

L(x, β) = inf
µ

{
R(µ‖γ) : β = −

∫
∇xG(x, y)µ(dy)

}
= sup

α
{〈α, β〉 − H̄(x, α)},

where

H̄(x, α) = log

(∫
exp {−〈α,∇xG(x, y)〉} γ(dy)

)
.

5.2 Persistent contrastive divergence

Consider parametrized a probability density of the form

p(v, h|x) = exp {−E(v, h;x) + F (x)} ,
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where x denotes the parameters. We assume that v represents observed (visible) variables, h
represents unobserved (hidden) variables, E is referred to as the energy and F as the free energy,

F (x) = − log

∫
exp{−E(v, h;x)}λ(dv, dh).

Given independent observations v(1), . . . , v(M) from p(v|x) =
∫
p(v, h|x)λ(dh) the parameters

x may be estimated by minimizing the negative log-likelihood, which is proportional to:

− logL(x) = − 1

m

M∑
m=1

log p(v(m)|x).

A gradient descent algorithm would require knowledge of the gradient

−∇x logL(x) = − 1

m

M∑
m=1

∇x
∫

exp
{
−E(v(m), h;x) + F (x)

}
λ(dh)

p(v(m)|x)

=
1

m

M∑
m=1

∫ (
∇xE(v(m), h;x)−∇xF (x)

)
p(v(m), h|x)λ(dh)

p(v(m)|x)

=
1

m

M∑
m=1

[∫
∇xE(v(m), h;x)p(h|v(m), x)λ(dh)−∇xF (x)

]

=
1

m

M∑
m=1

[∫
∇xE(v(m), h;x)p(h|v(m), x)λ(dh)−

∫
∇xE(v, h;x)p(v, h|x)λ(dv, dh)

]
, (5.1)

which may be intractable. Simplifying model assumptions may assist in computing the first term
explicitly as illustrated in some of the examples below. In the general case we may write

p(h|v, x) = exp {−E(v, h;x) + FH(v, x)} ,

where
FH(v, x) = − log

∫
exp {−E(v, h;x)}λ(dh).

To approximate the gradient in (5.1) we may construct Markov kernels, ρ(m,1)
x (y(1), dz(1)) and

ρ
(2)
x (y(2), dz(2)), where y(1) = h, y(2) = (v, h) and ρ

(m,1)
x (y(1), dz(1)) has invariant distribu-

tion p(h|v(m), x) and ρ
(2)
x (y(2), dz(2)) has invariant distribution p(v, h|x). We sample Yn+1 =

(Y
(1)
n+1, Y

(2)
n+1) by drawing an index m at random and drawing Y (1)

n+1 from ρ
(m,1)
Xn

(Y
(1)
n , dz(1)) and

Y
(2)
n+1 from ρ

(2)
Xn

(Y
(2)
n , dz(2)) independently of each other and updating

Xn+1 = Xn − εn+1

(
∇xE(v(m), Y

(1)
n+1;Xn)−∇xE(Y

(2)
n+1;Xn)

)
.

This can be identified as the stochastic recursion (2.1) with

ρx(y, dz) =
1

m

M∑
m=1

ρ(m,1)
x (y(1), dz(1))ρ(2)

x (y(2), dz(2)),

20



September 21, 2023

and
g(x, y) = ∇xE(v(m), y(1);x)−∇xE(y(2);x).

Example 5.1 In Restricted Boltzmann Machines (RBMs) v and h are binary with x = (W, bV , bH)
where W is a matrix and bV , bH vectors and

E(v, h;W, bV , bH) = −vTWh− vT bV − hT bH ,

which implies that the components of h are conditionally independent given v with success prob-
ability p(hj = 1|v, x) = sigm(vTWej + eTj bH) and the first term in (5.1) reduces to

1

m

M∑
m=1

∑
h

[
∇WijE(v(m), h;W, bV , bH)

]
p(h|v(m),W, bV , bH)

=
1

m

M∑
m=1

∑
h

−v(m)
i hjsigm(vTWej + eTj bH)hj sigm(−(vTWej + eTj bH))1−hj

= − 1

m

M∑
m=1

v
(m)
i sigm(vTWej + eTj bH).

The second term is given by the expectation E[ViHj ] under the joint distribution p(v, h|x). Let
ρx((v0, h0), (v1, h1)) denote a stochastic kernel with p(v, h|x) as its invariant distribution and
approximate E[ViHj ] by its expectation under ρx((v0, h0), ·), where ρx((v0, h0), ·) may be taken
as the block-Gibbs sampler

ρx((v0, h0), (v1, h1)) = p(h1|v0, x)p(v1|h1, x)

=

dH∏
j=1

sigm(vT0 Wej + eTj bH)h1j sigm(−(vT0 Wej + eTj bH))1−h1j

×
dV∏
i=1

sigm(eTi Wh1 + eTi bV )v1isigm(−(eTi Wh1 + eT1 bV ))1−v1i .

The persistent contrastive divergence algorithm for estimating the parameters is then given
by (2.1) where Yn+1 = (vn+1, hn+1) is sampled from ρXn(Yn, ·) and

g(x, y) =
1

m

M∑
m=1

[∫
∇xE(v(m), h;x)p(h|v(m), x)λ(dh)−∇xE(y;x)

]
.

It is straightforward to verify Assumption 2.2, since sigm is bounded and continuous and the
state space {0, 1}dV × {0, 1}dH is finite.

Example 5.2 Consider an exponential family with E(v, h;x) = E(v;x) = xTφ(v)−log c(v), that
does not depend on hidden variables and is linear in the parameters x. Then ∇xE(v(m);x) =
φ(v(m)) whereas ∇xF (x) = E[φ(V )] where the expectation is taken under p(v|x) and may be
intractable. Thus, g(x, y) becomes

g(x, y) =
1

m

M∑
m=1

φ(v(m))−
∫
φ(v)p(v|x)λ(dv).
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5.3 The Wang-Landau Algorithm

The Wang-Landau algorithm for general state spaces includes many popular multicanonical
Monte Carlo methods, such as simulated tempering. Let {(Yi,Bi, λi)}di=1 be measure spaces
with λi being σ-finite for each i. Let Y = ∪di=1Yi × {i}, be the union space equipped with the
σ-field B generated by the sets {(Ai, i) : i ∈ {1, . . . , d}, Ai ∈ Bi} and define the measure λ on
B by λ(A, i) = λi(A)I{A ∈ Bi}. Given non-negative integrable functions fi, i = 1 . . . , d, let
x(i) =

∫
Yi fi(y)λi(dy)/Z, where Z =

∑d
i=1

∫
Yi fi(y)λi(dy). Assuming that x(i) > 0 for each

i = 1, . . . , d, the aim is to sample from π on B given by

π(dy, i) ∝ fi(y)

x(i)
I{y ∈ Yi}λi(dy),

and to estimate the normalizing constants x(i). Let ρx((y, i), (dz, j)) be a Markov kernel with
invariant density π. The original algorithm considers the case where π is uniform in i, whereas
the general case considered here is due to [1]. The basic for of the Wang-Landau algorithm
initiates (Y0, I0) ∈ Y, φ0 ∈ (0,∞)d and x0 = φ0/

∑d
i=1 φ0(i). At each k ≥ 0, given (Yk, Ik), φk

and xk, sample (Yk+1, Ik+1) from ρxk((Yk, Ik), ·) and update

φk+1(i) = φk(i)(1 + εkI{Ik+1 = i}), i = 1, . . . , d,

xk+1(i) =
φk+1(i)∑d
j=1 φk+1(j)

.

TheWang-Landau algorithm is a stochastic approximation with update function g(φ, (z, j)) =
φ+ φ(j)ej , where ej is the unit-vector in the jth coordinate.

Example 5.3 (Multicanonical Monte Carlo) Let Σ be a finite state space, e.g. {−1, 1}N ,
and E : Σ→ R an energy function and consider the Gibbs distribution with density π̄ proportional
to exp{−E(σ)}. A collection of energy levels −∞ ≤ E0 < · · · < Ed ≤ ∞ induces a partition
Yi = {σ ∈ Σ : Ei−1 < E(σ) ≤ Ei}. With x(i) = π̄(Yi), fi(y) = E(y) and λi = λ samples from
the measure π(dy, i) may be obtained to estimate x(i).

Example 5.4 (Estimation of free energy differences) Let Σ be a finite state space, e.g.
{−1, 1}N , and E : Σ×Ω→ R an energy function parametrized by a finite set Ω (for example tem-
peratures) and consider the Gibbs distribution with density pΣ,Ω proportional to exp{−E(σ, ω)}.
The conditional density of the state given the parameter ω is given by pΣ|Ω(σ|ω) = exp{−E(σ, ω)+
F (ω)}, where F (ω) = − log

∑
σ exp{−E(σ, ω)} is the free energy. Consider the problem of es-

timating free energy differences. That is, fix ω1 ∈ Ω and consider estimating F (ω) − F (ω1) for
ω ∈ Ω. By enumerating Ω = {ωi}di=1, letting Yi = Σ× Ω, λi be counting measure on Σ× Ω and
fi(σ, ω) = exp{−E(σ, ωi)}I{ω = ωi} it follows that

− log(x(i)/x(1)) = log
∑
σ

exp{−E(σ, ω1)} − log
∑
σ

exp{−E(σ, ωi)} = F (ωi)− F (ω1).

Since, − log(x(i)/x(1)) may be estimated by − log(φk(i)/φk(1)) where φk is generated by the
Wang-Landau algorithm, the free energy differences may be estimated accordingly.
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6 Laplace upper bound

In this section we take the first step towards proving Theorem 3.1, by proving the Laplace
principle upper bound.

Theorem 6.1 Assume (A.1)-(A.8). With I defined as in (3.1), for any bounded, continuous
function F : C([0, T ] : Rd1)→ R,

lim inf
n→∞

− 1

βn
logE

[
e−βnF (Xn)

]
≥ inf

ϕ
(F (ϕ) + I(ϕ)) , (6.1)

where the infimum is over ϕ ∈ ACx0([0, T ] : Rd).

From the representation formula (3.2), for fixed n and arbitrary (fixed) ε > 0, it is possible
to choose a sequence of controls {µ̄n} such that

− 1

βn
logE

[
e−βnF (Xn)

]
+ ε ≥ E

[
F (X̄n) +

1

βn

βn+n∑
i=n+1

R(µ̄ni (·)||ρX̄n
i−1

(Ȳ n
i−1, ·))

]
. (6.2)

We augment the controls to also keep track of the time dependence of the µ̄ni s: for a Borel set A
and t ∈ [tn, tn + T ], define µ̄n(A|t) by

µ̄n(A|t) = µ̄ni (A), for i such that t ∈ [τni , τ
n
i+1),

where τni = tn+i − tn. The controlled measures µ̄n can now be defined as

µ̄n(A× C) =

∫
C

1

hn(t)
µ̄n(A|t)dt,

where
hn(t) = βnεn+i−1,

with i ∈ {n+ 1, . . . , βn + n} such that t ∈ [τni , τ
n
i+1). Lastly, we define a collection of sequences

of measures, involving the controlled process X̄n, the controlled noise Ȳ n and the noise distri-
bution ρ, that will play a role in the convergence analysis of the controlled process X̄n and the
corresponding controls µ̄n: for A,B ⊂ Rd2 , C ⊂ [0, T ] Borel sets,

λn(A×B × C) =

∫
C

1

hn(t)
λn(A×B|t)dt, λn(A×B|t) = δȲ ni−1

(A)µ̄ni (B),

γn(A×B × C) =

∫
C

1

hn(t)
γn(A×B|t)dt, γn(A×B|t) = δȲ ni−1

(A)ρX̄n
i−1

(Ȳ n
i−1, B).

In each definition, i is such that t ∈ [τni , τ
n
i+1). From the definitions of µ̄n and λn, we have that

µ̄n(A × C) = λn(Rd2 × A × C). The following lemma establishes the necessary tightness and
characterises the limits of subsequences of the sequences of measures defined above.
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Lemma 6.2 Assume (A.1)-(A.8) hold. Then {X̄n}, {µ̄n}, {λ̄n} and {γn} are tight sequences,
and for every subsequence of {X̄n, µ̄n} there exists a further subsequence that converges to (X̄, µ̄),
which satisfies the following relations:

µ̄(A× C) =

∫
C

1

h(t)
µ̄(A|t)dt, (6.3)

X̄(t) = x+

∫ t

0

∫
Rd
g(X̄(s), y)µ̄(dy|s)ds. (6.4)

Furthermore, any limit point λ and γ of a convergent subsequence of {λn} and {γn}, respectively,
will have the following properties,

λ(A×B × C) =

∫
C

1

h(t)
λ(A×B|t)dt,

γ(A×B × C) =

∫
C

1

h(t)

(∫
A
ρX̄(t)(x,B)µ̄(dx|t)

)
dt,

for some stochastic kernel λ(dy × dz|t), and

λ(A× Rd2 × C) = λ(Rd2 ×A× C) = µ̄(A× C) =

∫
C

1

h(t)
µ̄(A|t)dt.

Before giving the proof of Lemma 6.2, we show how the result allows us to prove the upper
bound (6.1).
Proof of Theorem 6.1. As a first step, we use the chain rule to decompose the relative
entropy term on the right-hand side of (6.2),

R(µ̄ni (·)||ρX̄n
i−1

(Ȳ n
i−1, ·)) = R(δȲ ni−1

(·)||δȲ ni−1
(·)) +R(µ̄ni (·)||ρX̄n

i−1
(Ȳ n
i−1, ·))

= R(δȲ ni−1
(dy)µ̄ni (dz)||δȲ ni−1

(dy)ρX̄n
i−1

(y, dz))

= R(λn(dy × dz|t)||γn(dy × dz|t)). (6.5)

By tightness, we can pick a subsequence, also labelled by n for notational convenience, along
which all the measures involved converge. Along this subsequence we also have the following
lower bound:

lim inf
n→∞

− 1

βn
E
[
e−βnF (Xn)

]
+ ε ≥ lim inf

n→∞
E

[
F (X̄n) +

1

βn

βn+n−1∑
i=n

R(µ̄ni (·)||ρX̄n
i

(Ȳ n
i , ·))

]
= lim inf

n→∞
E
[
F (X̄n) +R(λn(dy × dz × dt)||γn(dy × dz × dt))

]
(6.6)

≥ E
[
F (X̄) +R(λ(dx× dy × dt)||γ(dx× dy × dt))

]
. (6.7)

In the first step in the last display, the equality (6.6), we use the decomposition (6.5) combined
with the definition of hn and the fact that the measures λn(·|t), γn(·|t) are constant over the
intervals [τni , τ

n
i+1). In the second step, the inequality (6.7), we combine Lemma 6.2 with Fatou’s
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lemma and the lower semi-continuity of relative entropy (see, e.g., [9, 4]). Next, we use the chain
rule once more combined with the structure of the measures λ and γ,

E
[
F (X̄) +R(λ(dy × dz × dt)||γ(dy × dz × dt))

]
= E

[
F (X̄) +

∫ T

0

1

h(t)
R(λ(dy × dz|t)||µ̄(dy|t)ρX̄(t)(y, dz|t))dt

]
.

The relative entropy term on the right-hand side can be bounded from below by the local rate
function L in (2.3):

E

[
F (X̄) +

∫ T

0

1

h(t)
R(λ(dy × dz|t)||µ̄(dy|t)ρX̄(t)(y, dz|t))dt

]
≥ E

[
F (X̄) +

∫ T

0

1

h(t)
L(X̄(t), ˙̄X(t))dt

]
≥ inf

ϕ
{F (ϕ) +

∫ T

0

1

h(t)
L(ϕ(t), ϕ̇(t))dt},

where the infiumum is over ϕ ∈ ACx0([0, T ] : Rd1). The integral on the right-hand side is
precisely how the rate function I was defined in Theorem 3.1 and combining the inequalities
leads to the

lim inf
n→∞

− 1

βn
E
[
e−βnF (X̄n)

]
+ ε ≥ inf

ϕ
{F (ϕ) + I(ϕ)} .

Since ε was chosen arbitrarily, this shows how the upper bound (6.1) for the subsequence used.
A standard argument by contradiction extends the upper bound to hold for the full sequence,
which shows how the Laplace principle upper bound follows from Lemma 6.2.
Proof of Lemma 6.2. Because we can always choose the controls {µ̄ni } such that the expecta-
tion of the sum of the relative entropies, appearing in (3.2), tightness of {X̄n} and {µ̄n} follows
from Theorem 7.8, which also gives the characterisation of the limit points as in (6.4)-(6.3). From
the definition of the controlled process, tightness of {µ̄n}n implies tightness of {δȲ ni }

βn+n
i=n , as a

sequence in n. This in turn gives tightness of {λn}. The tightness of {γn} is obtained by the
tightness of {X̄n} and {δȲ ni }

βn+n
i=n together with the uniform continuity of ρx(y, dz).

To characterise limit points λ of subsequences of {λn}, by Lemma 3.3.1 in [9] and the uniform
convergence of hn we have the decomposition λ(dy× dz× dt) = (h(t))−1λ(dy× dz|t)dt, for some
stochastic kernel λ(dy × dz|t). Moreover, note that λn(Rd2 × A× C) = µ̄n(A× C) implies that
λ(Rd2×A×C) = µ̄(A×C). For the marginal obtained when integrating out the second variable,
we use arguments similar to those used in proving Lemma 6.12 in [4]. Take {fm} as a countable
collection of bounded continuous functions that is also a separating class on Rd2 . We will prove
that, for any ε > 0 and all t ∈ [0, T ], as n→∞,

P

(∣∣∣∣∣∣∣∣∫ t

0

∫
1

hn(s)
fm(y)µ̄n(dy|s)ds−

∫ t

0

∫
1

hn(s)
fm(y)λn(dy × Rd2 |s)ds

∣∣∣∣∣∣∣∣ > ε

)
→ 0. (6.8)

Suppose this limit holds. Because the collection of sets of the form [0, t], for t ∈ [0, T ], is a
separating class of [0, T ], (6.8) combined with Fatou’s lemma ensures that w.p. 1 the limit of λn

will satisfy λ(A× Rd2 × C) = µ̄(A× C).
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To prove (6.8), define Km = ‖fm‖∞. Suppose n is such that βn > 4Km/ε–since βn → ∞
as n → ∞, this is possible. Using the definitions of µ̄n and λn, and an application of Markov’s
inequality we have

P

(∣∣∣∣∣∣∣∣∫ t

0

∫
1

hn(s)
fm(y)µ̄n(dy|s)ds−

∫ t

0

∫
1

hn(s)
fm(y)λn(dy × Rd2 |s)ds

∣∣∣∣∣∣∣∣ > ε

)

= P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

βn

m(tn+t)∑
i=n+1

∫
fm(y)µ̄ni (dy)− 1

βn

m(tn+t)−1∑
i=n

fm(Ȳ n
i )

∣∣∣∣∣∣
∣∣∣∣∣∣ > ε


≤ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

βn

m(tn+t)∑
i=n+1

∫
fm(y)µ̄ni (dy)− 1

βn

m(tn+t)∑
i=n+1

fm(Ȳ n
i )

∣∣∣∣∣∣
∣∣∣∣∣∣ > ε

2


+ P

(∣∣∣∣∣∣∣∣ 1

βn

(
fm(Ȳ n

m(tn+t))− fm(Ȳ n
n )
)∣∣∣∣∣∣∣∣ > ε

2

)

≤ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

βn

m(tn+t)∑
i=n+1

(∫
fm(y)µ̄ni (dy)− fm(Ȳ n

i )

)∣∣∣∣∣∣
∣∣∣∣∣∣ > ε

2


≤ 4

ε2
E

 1

β2
n

m(tn+t)∑
i,j=n+1

∆n
m,i∆

n
m,j

 ,
where we have defined

∆n
m,i =

∫
fm(y)µ̄ni (dy)− fm(Ȳ n

i ).

The term P
(∣∣∣∣∣∣ 1

βn

(
fm(Ȳ n

m(tn+t))− fm(Ȳ n
n )
)∣∣∣∣∣∣ > ε

2

)
= 0 since 1

βn

(
fm(Ȳ n

m(tn+t))− fm(Ȳ n
n )
)
<

ε
4Km

2‖fm‖ = ε
2 . The sequence {∆n

m,i} is a martingale difference sequence with respect to the

filtration Fni = σ
(

(X̄n
j , Ȳ

n
j ) : j < i

)
. Therefore, the off-diagonal terms in the sum have expected

value 0: for i > j,

E
[
∆n
m,i∆

n
m,j

]
= E

[
E
[
∆n
m,i∆

n
m,j |Fni−1

]]
= E

[
E
[
∆n
m,i|Fni−1

]
∆n
m,j

]
= 0.

Combined with the previous inequalities this leads to the upper bound

P

(∣∣∣∣∣∣∣∣∫ t

0

∫
1

hn(s)
fm(y)µ̄n(dy|s)ds−

∫ t

0

∫
1

hn(s)
fm(y)λn(dy × Rd2 |s)ds

∣∣∣∣∣∣∣∣ > ε

)

≤ 4

ε2
E

 1

β2
n

m(tn+t)∑
i=n+1

(
∆n
m,i

)2
≤ 4

ε2
E

[
1

β2
n

βn+n∑
i=n+1

(2Km)2

]

≤ 16K2
m

ε2βn
.
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We can make this arbitrarily small by choosing n large enough, which proves (6.8).
In order to show the claimed form for γ we use a strategy similar to the one used for λ. Take

{fm} to now be a countable separating class on Rd2 ×Rd2 of bounded continuous functions. We
define a sequence of measures {ηn} by

ηn(A×B × C) =

∫
C

1

h(t)
ηn(A×B|t)dt, ηn(A×B|t) =

∫
A
ρX̄n

i−1
(y,B)µ̄ni−1(dy).

From the convergence of µ̄n and the continuity of ρ, ηn converges to γ. To finish the proof we
therefore show that γn must have the same limit as ηn, by proving that, for arbitrary ε > 0,

P

(∣∣∣∣∣∣∣∣∫ t

0

∫ ∫
1

hn(s)
fm(y, z)ηn(dy × dz|s)ds−

∫ t

0

∫ ∫
1

hn(s)
fm(y, z)γn(dy × dz|s)ds

∣∣∣∣∣∣∣∣ > ε

)
→ 0.

Similar to before, take Km = ‖fm‖∞. Then,

P

(∣∣∣∣∣∣∣∣∫ t

0

∫ ∫
1

hn(s)
fm(y, z)ηn(dy × dz|s)ds−

∫ t

0

∫ ∫
1

hn(s)
fm(y, z)γn(dy × dz|s)ds

∣∣∣∣∣∣∣∣ > ε

)

= P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

βn

m(tn+t)∑
i=n+1

∫ ∫
fm(y, z)ρX̄n

i−1
(y, dz)µ̄ni−1(dy)− 1

βn

m(tn+t)∑
i=n+1

∫
fm(Ȳ n

i−1, z)ρX̄n
i−1

(Ȳ n
i−1, dz)

∣∣∣∣∣∣
∣∣∣∣∣∣ > ε


= P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

βn

m(tn+t)∑
i=n+1

(∫ ∫
fm(y, z)ρX̄n

i−1
(y, dz)µ̄ni−1(dy)−

∫
fm(Ȳ n

i−1, z)ρX̄n
i−1

(Ȳ n
i−1, dz)

)∣∣∣∣∣∣
∣∣∣∣∣∣ > ε


≤ 1

ε2
E

 1

β2
n

m(tn+t)−1∑
i,j=n

∆̃n
m,i∆̃

n
m,j

 ,
where

∆̃n
m,i =

∫ ∫
fm(y, z)ρX̄n

i
(y, dz)µ̄ni (dy)−

∫
fm(Ȳ n

i , z)ρX̄n
i

(Ȳ n
i , dz).

Similar to the convergence analysis for λn, {∆̃n
m,i} forms a martingale difference sequence with

respect to the filtration Fnj . The off-diagonal terms thus disappear from the sum,

E

 1

β2
n

m(tn+t)−1∑
i,j=n

∆̃n
m,i∆̃

n
m,j

 = E

 1

β2
n

m(tn+t)−1∑
i=n

(
∆̃n
m,i

)2

 ,
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and we obtain the upper bound

P

(∣∣∣∣∣∣∣∣∫ t

0

∫ ∫
1

hn(s)
fm(y, z)η̄n(dy × dz|s)ds−

∫ t

0

∫ ∫
1

hn(s)
fm(y, z)γn(dy × dz|s)ds

∣∣∣∣∣∣∣∣ > ε

)

≤ 1

ε2
E

 1

β2
n

m(tn+t)−1∑
i=n

(
∆̃n
m,i

)2


≤ 1

ε2
E

[
1

β2
n

βn+n−1∑
i=n

(2Km)2

]

=
4K2

m

ε2βn
.

We can choose n large enough to make this as small as desired. Since ε was taking arbitrarily,
this proves the claimed convergence. Having already established that ηn → γ, this also shows
that γn → γ.

7 Laplace lower bound

In this section we prove the Laplace principle lower bound, which amounts to the following.

Theorem 7.1 Assume (A.1)-(A.8). With I defined as in (3.1), for any bounded, continuous
function F : C([0, T ] : Rd1)→ R,

lim sup
n→∞

− 1

βn
logE

[
e−βnF (Xn)

]
≤ inf

ϕ
(F (ϕ) + I(ϕ)) , (7.1)

where the infimum is over ϕ ∈ ACx0([0, T ] : Rd1).

Together with the upper bound (6.1), this proves the limit in Theorem 3.1. The proof of the
upper bound, given in Section 6, is aided by the fact that by definition of the infimum, we can
choose a sequence of controls satisfying (6.2). Proving the lower bound (7.1) is considerably
more involved as we must now explicitly construct a sequence of nearly optimal controls.

7.1 Construction and tightness of nearly-optimal controls

In this section we construct, for each n, a sequence of nearly-optimal controls to be used in
proving the lower bound. As a first step, we show that the local rate function L defined in (2.3),
is continuous (Lemma 3.5), and that for any (x, β) such that L(x, β) < ∞, there exists nearly-
optimal transition kernels with respect to the infimum in the definition of L(x, β) (Lemma 7.2).
Next, in Lemma 7.3 we show that for any function ζ ∈ C([0, 1] : Rd) such that I(ζ) < ∞, for
any ε > 0 we can find a piece-wise linear function, with a finite number of pieces, that is ε-close
to ζ both in sup-norm and in evaluating I.

Recall that πx is the unique invariant measure of ρx. The following result is a direct conse-
quence of the definition of L and results in [4].
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Lemma 7.2 Suppose (A.2), (A.5) and (A.6) hold. For any (x, β) ∈ Rd1 × Rd1 such that
L(x, β) <∞ and ε > 0, there exists a probability measure νx,β(dy) such that

inf
γ∈A(νx,β)

R(γ‖νx,β ⊗ ρx(·, ·)) ≤ L(x, β) + ε and β =

∫
g(x, y)νx,β(dy).

Moreover, for any δ > 0, define a probability measure µx,β,δ .
= (1−δ/2)νx,β +(δ/2)πx. There ex-

ists a transition kernel qx,β,δ(y, dz) such that µx,β,δ is the unique invariant measure of qx,β,δ(y, dz)
and the associated Markov chain is ergodic. In addition,

R(µx,β,δ ⊗ qx,β,δ(·, ·)‖µx,β,δ ⊗ ρx(·, ·)) ≤ inf
γ∈A[νx,β ]

R(γ‖νx,β ⊗ ρx) ≤ L(x, β) + ε.

Proof. Under (A.1)-(A.7), the existence of νx,β follows from the definition of L(x, β) in terms
of an infimum. The existence of µx,β,δ and qx,β,δ follow from Lemma 6.17 in [4].

In proving the lower bound Theorem 7.1, we may assume infϕ{F (ϕ)+I(ϕ)} <∞, as otherwise
the bound is trivially true. By the definition of the infimum, for any ε > 0, there is ζ ∈
C([0, 1];Rd1) such that

F (ζ) + I(ζ) ≤ inf
ϕ
{F (ϕ) + I(ϕ)}+ ε.

Recall that F is bounded and I is of the form

I(ζ) =

∫ T

0

1

h(t)
L(ζ(t), ζ̇(t))dt.

We can therefore assume that L(ζ(t), ζ̇(t)) <∞ for all t ∈ [0, T ]. Moreover, the following lemma
states that we can focus on ζ that are piece-wise linear with finitely many pieces.

Lemma 7.3 Assume (A.2),(A.5),(A.6) and (A.7). For ζ ∈ C([0, 1];Rd1) satisfying I(ζ) < ∞,
for any ε > 0, there exists a ζ∗ ∈ C([0, 1] : Rd1) that is piece-wise linear with finitely many pieces,
such that ‖ζ∗ − ζ‖∞ < ε and

I(ζ∗) =

∫ T

0

1

h(t)
L(ζ∗(t), ζ̇∗(t))dt ≤

∫ T

0

1

h(t)
L(ζ(t), ζ̇(t))dt+ ε = I(ζ) + ε.

Proof. The proof relies on parts of several different results from [4]. First, since (x, β) 7→ L(x, β)
is continuous by Lemma 3.5, it suffices—see the argument used for Part (e) of Lemma 4.21 in
[4]—to show that, for the given ε > 0, there is a ζ∗1 ∈ C([0, T ] : Rd1) such that {ζ̇∗1 (t) : t ∈ [0, T ]
is bounded, ‖ζ − ζ∗1‖∞ < ε, and

I(ζ∗) ≤ I(ζ) + ε.

The existence of such an ζ is the topic of Lemma 4.17 in [4]. The same arguments as used in the
proof of that result applies also in the setting considered here, if we can show that L is uniformly
superlinear in β (see Section 2.1). Recall that H is the Lengendre-Fenchel transform of L. The
uniform superlinearity of L then holds if,

sup
x∈Rd1

sup
α∈Rd1 :‖α‖=M

H(x, α) <∞, (7.2)
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for every M < ∞; see [4, Lemma 4.14(c)] for why this bound ensures the superlinearity of L.
Combining these arguments, to prove the existence of ζ∗1 with the properties described above, it
is enough to prove (7.2).

To show (7.2), we recall the alternative representation from Proposition 3.3,

H(x, α)
.
= lim

n→∞

1

n
log

(∫
· · ·
∫
e〈α,g(x,y1)〉+···+〈α,g(x,yn)〉ρx(y0, dy1) · · · ρx(yn−1, dyn)

)
.

Moreover, Assumption (A.7) ensures that, for every α ∈ Rd1 ,

Ĉα = sup
x

sup
y

(
log

∫
Rd2

e〈α,g(x,z)〉ρx(y, dz)

)
<∞.

Combining the two, we have that, for any α ∈ Rd1 ,

H(x, α) ≤ Ĉα <∞.

In addition, for any x, y, the function

α 7→ log

∫
Rd2

e〈α,g(x,z)〉ρx(y, dz)

is convex. Because the supremum of a collection of convex functions is also convex, it holds that
α 7→ Ĉα is a convex function, with finite values for all α ∈ Rd1 . Therefore, Ĉα is continuous in
α, due to it being convex and finite-valued for any α, and we have

sup
x∈Rd1

sup
α∈Rd1 :‖α‖=M

H(x, α) ≤ sup
α∈Rd1 :‖α‖=M

log(Ĉα) <∞,

for every M <∞.
This shows (7.2), which ensures the uniform superlinearity of L, and in turn the existence of

an ζ∗1 ∈ C([0, T ] : Rd1) such that {ζ̇∗1 (t) : t ∈ [0, T ]} is bounded, ‖ζ−ζ∗1‖ < ε, and (ζ∗1 ) ≤ I(ζ)+ε.
Using the continuity of L, a function ζ∗ with the claimed properties can then be obtained as a
piece-wise linear approximation of ζ∗1 .

With Lemmas 3.5, 7.2 and 7.3 established, we are now ready to construct the (nearly-optimal)
controls that will play a central role in the proof of the lower bound Theorem 7.1. A crucial part
of the construction of the controls is to split up the interval {n, n+1, . . . , n+βn} into ` segments.
Let `,m ∈ N where for any ` ≤ βn, m is the largest integer such that `m ≤ βn. The idea is that,
for fixed `, we can freeze the state dependence of the noise sequence and therefore be able to use
an ergodic argument in the convergence. Furthermore define the times τ `k, k = 0, 1, . . . , ` as

τ `k = lim
n→∞

bn+ k
l
βnc∑

i=n

εi,

the corresponding times for the ` intervals. From the definition we have τ `0 = 0 and τ `` = T .
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The controls will be defined in terms of the transition probabilities obtained in Lemma 7.2.
Set X̄n

n = x0, Ȳ n
n = y0, and recall that ζ(0) = x0. Given δ > 0, for j = n, . . . , n + m − 1, we

define ν̂nj as

ν̂nj (dz) =

{
ρζ∗(0)(Ȳ

n
j−1, dz) j < n+ l0,

qζ
∗(0),ζ̇∗(0),δ(Ȳ n

j−1, dz) j ≥ n+ l0,

where l0 is the constant in the transitivity condition (A.6). The ν̂nj s define a controlled sequence
{Ȳ n

j }j in that the conditional distribution of Ȳ n
j given Fnj−1 is ν̂nj . These controlled measures are

such that for the first l0 variables Ȳ n
n , . . . , Ȳ

n
n+l0−1, the conditional distribution is the same as the

noise distribution with fixed x-argument, and for the remaining variables, Ȳ n
n+l0

, . . . , Ȳ n
n+m−1,

the conditional distribution is the transition kernel of Lemma 7.2 associated with the triplet
(ζ(0), ζ̇(0), δ).

Next, with m and l fixed according to the above, for each k ∈ N, 1 ≤ k ≤ l, for j =
n+ km+ 1, . . . , n+ km+m, we define

ν̂nj (dz) =

{
ρζ∗(τ`k)(Ȳ

n
j−1, dz) j < n+ km+ l0 + 1,

qζ
∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n

j−1, dz), j ≥ n+ km+ l0 + 1,

where the conditional distribution of each Ȳ n
j given Fnj−1 is again ν̂nj , and we use the notation

tnj = tj − tn. Lastly, for j = n+ `m+ 1, . . . , n+ βn, we set

ν̂nj (dz) = ρX̄n
j−1

(Ȳ n
j−1, dz),

where the controlled process X̄n is defined as

X̄n
j = X̄n

j−1 + εjg(X̄n
j−1, Ȳ

n
j ), j = n, . . . , n+ βn.

To make sure that the controlled process X̄n
i is not too far away from path ζ∗(t) we define the

stopping index în as

în = inf
{
i ≤ n : ‖X̄n

i − ζ∗(tni )‖ > 1
}
∧ (βn + n),

and the stopping time Ŝn as

Ŝn =
în∑
i=n

εi.

Observe that since X̄n
n = ζ(0) = x, we have that în > n and Ŝn > 0. Now we define the controls

ν̄n as

ν̄nj =

{
ν̂nj (dz) j < în,

ρX̄n
j−1

(Ȳ n
j−1, dz).

This defines the controls, that is the conditional distributions {ν̄nj }j for the noise, and the
corresponding controlled process X̄n = {X̄n

j }j . To have a control in continuous time instead, we
define ν̄n(A|t) = ν̄ni (A) for t ∈ [ti−1 − ti, ti − tn] and the measure ν̄n ∈ P(Rd2 × [0, T ]) by

ν̄n(A×B) =

∫
B

1

hn(t)
ν̄n(A|t)dt.
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Note that throughout the paper, unless where there is a need to emphasise it, we suppress the
dependence on δ in the control sequence {ν̄nj } in the notation.

As a step towards proving the lower bound, we prove tightness of the control sequence {ν̄n}n.
Lemma 7.4 Under (A.1)-(A.7), the control sequence {ν̄n}n is tight.

Proof. The proof will be the same as Lemma 4.11 in [4] and proposition 5.3.2 in [10]. We require
that

sup
n
E

[
1

βn

βn+n−1∑
i=n

R(ν̄ni+1(·)||ρX̄n
i+1

(Ȳ n
i , ·))

]
<∞,

which we prove in Lemma 7.7. It is sufficient to prove that ν̄n satisfies the uniform integrability
property

lim
C→∞

lim sup
n

E

[∫ T

0

∫
Rd2

∫
‖z‖>C

‖z‖ν̄n(dy × dt)

]
= 0.

The proof uses the inequality ab ≤ eσa + 1
σ (b log(b)− b+ 1) with a = ‖ζ‖ and b =

dν̄ni (·)
dρX̃ni

(Ỹ ni ,·)
. For

t ∈ [0, T ], and fixed C and n, we have,∫
‖z‖>C

‖z‖dν̄ni (dz)

=

∫
‖z‖>C

‖z‖ dν̄ni (z)

dρX̄n
i

(Ȳ n
i , z)

ρX̄n
i

(Ȳ n
i , dz)

≤
∫
‖z‖>C

eσ‖z‖ρX̄n
i

(Ȳ n
i , dz)

+
1

σ

∫
‖z‖>C

(
dνni (z)

dρX̄n
i

(Ȳ n
i , z)

log

(
dν̄ni (z)

dρX̄n
i

(Ȳ n
i , z)

)
− dν̄ni (z)

dρX̄n
i

(Ȳ n
i , z)

+ 1

)
ρX̄n

i
(Ȳ n
i , dz)

≤
∫
‖z‖>C

eσ‖z‖ρX̄n
i

(Ȳ n
i , dz) +

1

σ
R(ν̄ni (·)||ρX̄n

i
(Ȳ n
i , ·))

≤ e−σC sup
x

sup
y

∫
e2σ‖z‖ρx(y, dz) +

1

σ
R(ν̄ni (·)||ρX̄n

i
(Ȳ n
i , ·)),

where in the last step we have used Assumption (A.7) to guarantee that the first term is finite.
Moreover, (7.5) ensures that the second term is bounded in n. Using this bound yields

E

[∫ T

0

∫
Rd2

∫
‖z‖>C

‖z‖νn(dy × dt)

]

≤ E

[
βn+n−1∑
i=n

∫
ti,ti+1

1

hn(t)
e−σC sup

x
sup
y

∫
e2σ‖z‖ρx(y, dz) +

1

hn(t)

1

σ
R(ν̃ni (·)||ρX̃n

i
(Ỹ n
i , ·))dt

]

=≤ e−σC sup
x

sup
y

∫
e2σ‖z‖ρx(y, dz) +

1

σ
E

[
1

βn

n+βn−1∑
i=n

R(ν̃ni (·)||ρX̃n
i

(Ỹ n
i , ·))

]
.

The first term does not depend on n and the second is by Lemma 7.7 bounded. Now sending
C →∞ and then σ →∞ yields the uniform integrability and also the tightness.
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7.2 Convergence of controls and controlled processes

A key step in the weak convergence approach is to show convergence of the controls and associated
controlled processes, and to identify the limit objects and their properties. In this section we
carry out such an analysis for the pairs (ν̄n, X̄n).

Take ε > 0 and for the function ζ∗ from Lemma 7.3, consider the associated measures
{νζ∗(t),ζ̇∗(t) : t ∈ [0, T ]} from Lemma 7.2; throughout the section we suppress the dependence on
ε. The following theorem is the main result of the section.

Theorem 7.5 Fix ε > 0 and ζ∗ according to the above. Under (A.1)-(A.8), for every subse-
quence of {(ν̄n, X̄n)}, there exists a further subsequence that converges weakly to (ν̄, ζ∗), where
ν̄ satisfies

ν̄(A×B) =

∫
B

1

h(t)
ν̄(A|t)dt,

and ν̄(A|t) = νζ
∗(t),ζ̇∗(t).

The proof relies on showing that the limit X̄ of X̄n satisfies

X̄(t) = x+

∫ t

0

∫
Rd2

g(X̄(s), y)ν̄(dy|s)ds,

and that, by construction of the νζ∗(t),ζ̇∗(t)-measures, ζ∗ satisfies the ODE

ζ∗(t) =

∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds.

That this ODE has a unique solution is shown in Lemma A.2 in the Appendix.
We begin with an ancillary result, which will be used to prove tightness of the controlled

processes X̄n for generic controlled measures with bounded relative entropy with respect to ρ
along the controlled process (Theorem 7.8). The proof of the following result is the same as for
Lemma 6.16(b) in [4]; we omit the details.

Lemma 7.6 Let l0 be the constant in the transitivity condition (A.6). If a Borel set A has the
property that ρl0x (y,A) > 0 for some x, y, then πx(A) > 0.

Using Lemma 7.6, we now prove that the expected running cost associated with the controlled
measures {ν̄n}n is bounded.

Lemma 7.7 Under (A.2), (A.4), (A.5), (A.6) and (A.7), with ν̄n = {ν̄nj }
βn+n
j=n+1 defined as in

Section 7.1,

sup
n
E

[
1

βn

βn+n−1∑
i=n

R(ν̄ni+1(·)||ρX̄n
i+1

(Ȳ n
i , ·))

]
<∞.
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Proof. First observe that for i ≥ în we have that

R(ν̄ni+1(·)||ρX̄n
i

(Ȳ n
i , ·)) = 0.

The proof below is carried out for indices j < în. For each n, with ` and m as in Section 7.1,
from the definition of the ν̄nj s we have

1

βn

βn+n−1∑
i=n

R
(
ν̄ni+1(·)‖ρX̄n

i+1
(Ȳ n
i , ·)

)
=

1

βn

`−1∑
k=0

m∑
j=1

R
(
ν̄nn+km+j(·)‖ρX̄n

n+km+j−1
(Ȳ n
n+km+j−1, ·)

)
.

Using the definition of relative entropy, for each k and j in the relevant ranges, we can re-write
the relative entropy-term on the right-hand side of the last display as

R
(
ν̄nn+km+j(·)‖ρX̄n

n+km+j
(Ȳ n
n+km+j−1, ·)

)
= R

(
ν̄nn+km+j(·)‖ρζ(τ`k)(Ȳ

n
km+j−1, ·)

)
+

∫
Rd2

(
log

dρζ(τ`k)(Ȳ
n
n+km+j−1, y)

dρX̄n
km+j

(Ȳ n
n+km+j−1, y)

)
ν̄nn+km+j(dy).

(7.3)

Note also that R
(
ν̄nn+km+j−1(·)‖ρζ(τ`k)(Ȳ

n
km+j−1, ·)

)
= 0 for j ≤ l0.

Take δ > 0. For any k ∈ {1, . . . , `}, consider the integral∫
Rd2

R
(
qζ(τ

`
k),ζ̇(τ`k),δ(y, ·)‖ρζ(τ`k(y, ·)

)
µζ(τ

`
k),ζ̇(τ`k),δ(dy).

We will show that, as m→∞, which corresponds to the limit n→∞, this integral approximates

1

m

m∑
j=l0+1

R
(
qζ(τ

`
k),ζ̇(τ`k),δ(Ȳ n

km+j−1, ·)‖ρζ(τ`k)(Ȳ
n
km+j−1, ·)

)
,

that is the first part in the alternative representation of the running cost (7.3). To show this, we
use arguments similar to those used in the proof of Proposition 6.15 in [4]. First, from Lemma
7.2,

E

 1

m

m∑
j=l0+1

R
(
qζ(τ

`
k),ζ̇(τ`k),δ(Ȳ n

km+j−1, ·)‖ρζ(τ`k)(Ȳ
n
km+j−1, ·)

)
=

∫
Rd2

R
(
qζ(τ

`
k),ζ̇(τ`k),δ(y, ·)‖ρζ(τ`k(y, ·)

)
µζ(τ

`
k),ζ̇(τ`k),δ(dy)

≤ L(ζ∗(tnn+km), ζ̇∗(tnn+km)) + ε,

and from the properties of ζ∗ this is finite. From this, the non-negativity of the relative entropy,
and the properties of the µζ∗(τ`k),ζ̇∗(τ`k),δ-measures, and associated Markov chains, the L1-ergodic
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theorem implies the convergence

lim
m→∞

E

∣∣∣∣∣∣ 1

m

m∑
j=l0+1

R
(
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
km+j−1, ·)‖ρζ∗(τ`k)(Ȳ

n
km+j−1, ·)

)
−
∫
R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(y, ·)‖ρζ∗(τ`k)(y, ·)
)
µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)

∣∣∣∣] = 0.

From this convergence, it follows that, for any yk,

Eyk

∣∣∣∣∣∣ 1

m

m∑
j=l0+1

R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(Ȳ n
km+j−1, ·)‖ρζ∗(τ`k)(Ȳ

n
km+j−1, ·)

)
−
∫
R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(y, ·)‖ρζ∗(τ`k)(y, ·)
)
µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)

∣∣∣∣] ,
converges in probability to 0, as m → ∞. This is turn ensures that, for any k ∈ {1, . . . , `},
there is a further subsequence of {m}—we abuse notation and denote this subsequence by {m}
as well—and a Borel set Φk such that µζ∗(τ`k),ζ̇∗(τ`k),δ(Φk) = 1, and for any Ȳ n

n+km+l0
= yk ∈ Φk,

lim
m→∞

Eyk

∣∣∣∣∣∣ 1

m

m∑
j=l0+1

R
(
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
km+j−1, ·)‖ρζ∗(τ`k)(Ȳ

n
km+j−1, ·)

)
−
∫
R
(
qζ

∗(τ`k),ζ̇∗(τ`k),δ(y, ·)‖ρζ∗(τ`k)(y, ·)
)
µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)

∣∣∣∣] = 0.

We now show that Ȳ n
n+km+l0

∈ Φk w.p. 1. Because µζ∗(τ`k),ζ̇∗(τ`k),δ(Φk) = 1 and πζ∗(τ`k) <<

µζ
∗(tnkm),ζ̇∗(tnkm),δ, it holds that πζ∗(τ`k)(Φ

c
k) = 0. Lemma 7.6 then implies that ρl0

ζ∗(τ`k)
(y,Φc

k) = 0.
This, combined with the fact that we only consider a finite number ` terms, gives the convergence

lim
m→∞

max
k∈{1,...,`}

E

∣∣∣∣∣∣ 1

m

m−1∑
j=l0

R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(Ȳ n
km+j , ·)‖ρζ∗(τ`k

(Ȳ n
km+j , ·)

)
−
∫
R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(y, ·)‖ρζ∗(τ`k
(y, ·)

)
µζ

∗(τ`k),ζ̇∗(τ`k)(dy)

∣∣∣∣] = 0.

It follows that

sup
m
E

 1

m

m−1∑
j=0

R
(
qζ

∗(τ`k),ζ̇(τ`k),δ(Ȳ n
km+j , ·)‖ρζ∗(τ`k)(Ȳ

n
km+j , ·)

) <∞.
Next, we consider the second term in (7.3),∫

Rd2

(
log

dρζ∗(τ`k)(Ȳ
n
n+km+j−1, y)

dρX̄n
km+j

(Ȳ n
n+km+j−1, y)

)
ν̄nn+km+j(dy). (7.4)
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Since km + j < în and by the continuity of ζ∗, there exists a compact set K such that

ζ∗(τ lk), X̄
n
km+j ∈ K. By Assumption (A.4), there exists a C such that log

dρ
ζ∗(τ`

k
)
(y,z)

dρX̄n
km+j

(y,z) ≤ C,

for all n. This ensures that (7.4) is bounded.

In the process of proving Theorem 7.5, we will work with a generic sequence of control
measures {ν̃n}, and associated controlled processes X̃n. That is, we have a sequence of measures
ν̃ni ∈ P(Rd2) and define the corresponding controlled process {X̃n

k }k≥n as before: X̃n
n = x and

X̃n
k+1 = X̃n

k + εkg(X̃n
k , Ỹ

n
k ),

where ν̃nk is the conditional distribution for Ỹ n
k given σ

(
Ỹ n
n , . . . , Ỹ

n
i−1

)
. Similar to before, we

take X̃n ∈ C([0, T ] : Rdx) as the linear interpolation with breakpoints X̃n(tn+k − tn) = X̃n
k . We

also abuse notation a bit and define ν̃ ∈ P(Rd2 × [0, T ]) as

ν̃n(A×B) =

∫
B

1

hn(t)
ν̃n(A|t)dt,

where ν̃n(A|t) = ν̃ni (A) when t ∈ [tn+i−1 − tn, tn+i − tn).
The assumption we will make on the ν̃ni s is that they satisfy the condition of bounded expected

running cost,

sup
n
E

[
1

βn

βn+n−1∑
i=n

R(ν̃ni (·)||ρX̃n
i

(Ỹ n
i , ·))

]
<∞. (7.5)

Because of Lemma 7.7, we know that results that hold under this condition will also apply to
our specific choice of controlled measures ν̄n, defined in Section 7.1.

The main step towards proving Theorem 7.5 is to prove a version of it with such a generic
sequence of controls.

Theorem 7.8 Under (A.1)-(A.8), for every subsequence of {(ν̃n, X̃n)} where {ν̃n} satisfies
(7.5), there exists a further subsequence that converges weakly to (ν̃, X̃). Furthermore, there
exists a stochastic kernel ν̃(dy|t) such that

ν̃(A×B) =

∫
B
ν̃(A|t) 1

h(t)
dt,

and X̃ satisfies

X̃(t) = x+

∫ t

0

∫
Rd2

g(X̃(s), y)ν̃(dy|s)ds. (7.6)

Note that the form of the limit measure ν̃ is a direct consequence of Lemma 3.3.1 in [9] and the
uniform convergence hn → h, ensured by (A.8). We also have that since Ŝn takes values in the
compact set [0, T ], there is a subsequence that converges to Ŝ ∈ [0, T ]. The proof of Theorem
7.8 is presented in Section 8. Theorem 7.5 follows from this result if we can show that the limit
point for the appropriate subsequences of the specific choice of control measures in Section 7.1
have the claimed form. We will prove this in two steps, the strategy being to first send m to
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infinity, and find the corresponding limit point x̄` of X̄n. Recall that from how we chose m and
`, for fix `, taking n to infinity also means taking m to infinity, and vice versa. Moreover, note
that we here suppress the dependence on δ and ε. Next, we send ` to infinity and δ to 0, and
show that the corresponding limit for the x̄` is ζ, as claimed. That is, we show the following
convergence results:

X̄n m→∞−−−−−−−→
Lemma 7.9

x̄`
δ→0, `→∞−−−−−−−−→
Lemma 7.10

ζ.

We start with the first part: using Theorem 7.8 we characterise the limit point x̄` and prove that
X̄n → x̄` in probability as m→∞.

Lemma 7.9 Under (A.1)-(A.8), for any δ > 0, ` ∈ N, {X̄n}n is tight. Moreover, the convergent
subsequences of {X̄n} converge to x̄` in probability, as m→∞, where x̄` satisfies

x̄`(t) = x0 +

k−1∑
i=0

∫ τ`i+1

τ`i

∫
Rd2

g(x̄`(s), y)µζ
∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds

+

∫ t

τ`k

∫
Rd2

g(x̄`(s), y)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy)ds,

for t ∈ [τ `k, τ
`
k+1) and t ≤ Ŝn.

Proof.
For j ∈ {n+km+1, . . . , n+(k+1)m} and k ∈ {0, . . . , `−1}, consider t ∈ [tnj−1, t

n
j ). Because

we will consider the limit as m→∞, to emphasise the dependence on m in the ν̄nj s, we define

γm(dz|t) = ν̄nj (dz) =

{
ρζ∗(τ`k)(Ȳ

n
j−1, dz), n+ km+ 1 ≤ j ≤ n+ km+ l0,

qζ
∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n

j−1, dz), n+ km+ l0 + 1 ≤ j ≤ n+ (k + 1)m− 1.

Moreover, for j ∈ {n+ `m+ 1, . . . , n+ βn}, i.e., when t ∈ [tn`m, T ) or t ≥ Ŝn, we set

γm(dz|t) = ρX̄n
j−1

(Ȳ n
j−1, dz).

For notational brevity and clarity, we also define

γm(A×B)
.
=

∫
B
γm(A|t)dt,

and
γ(A×B)

.
=

∫
B
γ(A|t)dt, γ(A|t) = µζ

∗(τ`k),ζ̇∗(τ`k),δ(A), t ≤ Ŝ.

where t and k are as above. For t > Ŝ we set γ(A|t) = limm→∞ γ
m(A|t). Note that γm and

γm(·|t) are playing the roles of ν̄n and ν̄n(·|t). Combining Lemma 7.7 and Theorem 7.8, with
these definitions of γm and γ, it is enough to show that γm converges weakly to γ w. p. 1.

To prove the convergence of γm, consider any bounded and uniformly continuous function
f : Rd2 × [0, T ]→ R. By the Portmanteau theorem, it is enough to prove that∫

Rd2×[0,T ]
f(y, t)γm(dydt),
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converges, as m→∞, to ∫
Rd2×[0,T ]

f(y, t)γ(dydt).

Since γm(dy|t)→ γ(dy|t) by definition for t > Ŝ the only interesting case is for the interval [0, Ŝ].
Below the proof is constructed with Ŝ = T . The case with Ŝ < T would be the same but over a
shorter time interval. From the definition of γm we have∫

Rd2×[0,T ]
f(y, t)γm(dydt) =

`−1∑
k=0

n+(k+1)m∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)γm(dy|t)dt

+

∫ T

tnn+`m

∫
Rd2

f(y, t)γm(dy|t)dt.

As a first step, for each k ∈ {0, 1, . . . , `− 1}, we now consider the difference
n+(k+1)m∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)γm(dy|t)dt−
∫
Rd2×[τ`k,τ

`
k+1)

f(y, t)γ(dydt). (7.7)

In preparation for studying (7.7) in the limit m→∞, we make the following definitions.

Ck1 (m) =

n+km+l0∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(x, t)ρX̄n
j−1

(Ȳ n
j−1, dx)dt,

Ck2 (m) =

n+(k+1)m∑
j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

f(x, t)qζ
∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n

j−1, dx)dt

−
n+(k+1)m∑

j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

f
(
x, tnj−1

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dx)dt,

Ck3 (m) =

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f
(
x, tnj−1

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dx)

−
n+(k+1)m∑

j=n+km+l0+1

εj

∫
Rd2

∫
Rd2

f(x, tnj−1)qζ
∗(τ`k),ζ̇∗(τ`k),δ(y, dx)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy),

Ck4 (m) =

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f(y, tnj−1)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy)

−
∫

[τ`k,τ
`
k+1]

∫
Rd2

f(y, t)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy)dt.

With these definitions, we now rewrite
∑n+(k+1)m

j=n+km+1

∫ tnj
tnj−1

∫
Rd2 f(y, t)γm(dy|t)dt in terms of Cki (m),

i = 1, . . . , 4, and
∫
Rd2×[tnn+km,t

n
n+(k+1)m

) f(y, t)γ(dydt). First, we split the sum over j into two
terms according to l0:
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n+(k+1)m∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)γm(dy|t)dt

=

n+(k+1)m∑
j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)qζ
∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n

j−1, dy)dt+ Ck1 (m).

Next, for each interval [tnj−1, t
n
j ), we freeze the time-variable t inside f(y, t) at tnj−1:

n+(k+1)m∑
j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)qζ
∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n

j−1, dy)dt+ Ck1 (m)

=

n+(k+1)m∑
j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

f
(
y, tnj−1

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dy)dt+ Ck1 (m) + Ck2 (m)

=

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f
(
y, tnj−1

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dy) + Ck1 (m) + Ck2 (m),

where in the second step we have used that there is integral over the time variable now amounts
to tnj − tnj−1 = εj . As a next step, by averaging over the controlled variable Ȳ n

j−1, we can write
the last display as

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f
(
y, tnj−1

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dy) + Ck1 (m) + Ck2 (m)

=

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

∫
Rd2

f(y, tnj−1)qζ
∗(τ`k),ζ̇∗(τ`k),δ(y, dz)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)

+ Ck1 (m) + Ck2 (m) + Ck3 (m).

Because µζ∗(τ`k),ζ̇∗(τ`k),δ is invariant for qζ∗(τ`k),ζ̇∗(τ`k),δ, we have∫
Rd2

∫
Rd2

f(y, tnj−1)qζ
∗(τ`k),ζ̇∗(τ`k),δ(y, dz)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy) =

∫
Rd2

f(y, tnj−1)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy).

Moreover, from the definition of Ck4 (m), we have

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f(y, tnj−1)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy) =

∫ τ`k+1

τ`k

∫
Rd2

f(y, tnj−1)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy)dt+ Ck4 (m)

Combining the steps above, and the definition of γ, we can express the difference (7.7) as

n+(k+1)m∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)γm(dy|t)dt−
∫
Rd2

∫ τ`k+1

τ`k

f(y, t)γ(dydt) =

4∑
i=1

Cki (m).
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We now consider the Cki (m)-terms, for a fixed k ∈ {0, 1, . . . , `− 1}, as we let m go to infinity.
For Ck1 (m), because f is bounded, the sum only contains a finite number of terms, and

tnn+km+l0 − t
n
n+km+1 → 0, m→∞,

we have that Ck1 (m)→ 0.
For Ck2 (m), we can write this term as

Ck2 (m) =

n+(k+1)m∑
j=n+km+l0+1

∫ tnj

tnj−1

∫
Rd2

(
f(y, t)− f(y, tnj−1)

)
qζ

∗(τ`k),ζ̇∗(τ`k),δ(Ȳ n
j−1, dx)dt.

Using the uniform continuity of f , these terms can be made arbitrarily small.
Next, for Ck3 (m), we use an argument similar to what is used in the proof of Lemma 7.7.
For Ck4 (m), we utilise Riemann integrability of the function f̂ : [0, T ]→ R defined by

t 7→ f̂(t) =

∫
Rd2

f(y, t)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy).

Noting that tnn+(k+1)m → τ `k+1 and tnn+km+l0+1 → τ `k,

n+(k+1)m∑
j=n+km+l0+1

εj

∫
Rd2

f(y, tnj−1)µζ
∗(τ`k),ζ̇∗(τ`k),δ(dy),

is a Riemann sum and converges to
∫ τ`k+1

τ`k
f̂(t)dt as m→∞. Thus Ck4 (m)→ 0 as m→∞.

We have established that, for each k ∈ {0, . . . , ` − 1},
∑4

i=1C
k
i (m) → 0, as m → ∞. It

follows that
`−1∑
k=0

4∑
i=1

Cki (m)→ 0, m→∞.

By extension, as m→∞,

`−1∑
k=0

n+(k+1)m∑
j=n+km+1

∫ tnj

tnj−1

∫
Rd2

f(y, t)γm(dy|t)dt→
`−1∑
k=0

∫ τ`k+1

τ`k

∫
Rd2

f(y, t)γ(dy|t)dt

=

∫ T

0

∫
Rd2

f(y, t)γ(dydt).

It remains to consider the term ∫ T

tnn+`m

∫
Rd2

f(y, t)γm(dy|t)dt, (7.8)

in the limit as m→∞. Since f is bounded, γm(·|t) is a probability measure for each t ∈ [0, T ],
and tnn+`m → τ `` = T as m→∞, we have that (7.8) vanishes in this limit. Thus, we have shown
that, w. p. 1, for arbitrary bounded and uniformly continuous f : Rd2 × [0, T ]→ R,∫

Rd2×[0,T ]
f(y, t)γm(dydt)→

∫
Rd2×[0,T ]

f(y, t)γ(dydt), m→∞.
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That is, w. p. 1 we have the weak convergence γm → γ, as m → ∞. This completes the proof.

The next step is to prove the convergence of x̄` when taking δ → 0 and `→∞, in that order.
We have the following result.

Lemma 7.10 Assume (A.1)-(A.8) hold and let {x̄`} be the process defined in Lemma 7.9. Then,
{x̄`} converges to ζ∗, on the time interval [0, Ŝ], in the limit as δ → 0 and `→∞.

Before proving Lemma 7.10, we show the integrability of g(x, ·) with respect to πx, for each
x ∈ Rd1 , which is used in the proof.

Lemma 7.11 Under (A.1)-(A.8), for any x ∈ Rd1, the function y 7→ g(x, y) is integrable with
respect to πx.

Proof. Since 1 + x ≤ ex for all x ∈ R, from (A.7) we have that for all x, α ∈ Rd1 and y ∈ Rd2 ,

1 +

∫
Rd2
〈α, g(x, z)〉ρx(y, dz) ≤ sup

y

∫
Rd2

e〈α,g(x,z)〉ρx(y, dz) <∞.

By taking α as the unit vectors ei, for every i = 1, . . . , d1, in the last display, the upper bound
implies the finiteness of every component of

sup
y

∫
Rd2

g(x, z)ρx(y, dz).

Moreover, since πxρx = πx, we have,∫
Rd2

g(x, z)πx(dz) =

∫
Rd2

(∫
Rd2

g(x, z)ρx(y, dz)

)
πx(dy).

Therefore, every component of the left integral is finite, which proves the claim.
Before the proof of Lemma 7.10 we prove that if the process x̄l converges to ζ∗ on [0, Ŝ], then

it also converges to ζ∗ on [0, T ]

Corollary 7.12 Assume that x̄l converges to ζ∗ on [0, Ŝ], then Ŝ = T .

Proof. Assume that Ŝ < T . By the convergence of x̄l we have that ‖x̄`(Ŝ) − ζ∗(Ŝ)‖ can be
made arbitrarily small for small enough δ and large enough ` . ζ∗ is continuous by definition and
by Theroem 7.8 x̄` is continuous on the whole interval [0, T ]. From the definition of Ŝ we have
that

lim
t→Ŝ+

|ξ`(t)− ζ∗(t)‖ ≥ 1.

But this contradicts the continuity of ζ∗ and x` and we conclude that Ŝ = T .
We now move to the proof of Lemma 7.10. The proof uses arguments similar to those used in

Section 8 to prove Theorem 7.8. Specifically, we employ arguments similar to those used in the
proof of Lemma 8.4. For simplicity the proof is done with Ŝ = T , the proof in the case Ŝ < T is
the same but on on a smaller interval.
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Proof of Lemma 7.10. As already noted, by construction of the νζ∗(t),ζ̇∗(t)-measures, for all
t ∈ [0, T ], ζ∗ satisfies

ζ∗(t) = x0 +

∫ t

0

∫
Rd2

g(ζ∗(s), y)νζ
∗(t),ζ̇∗(t)(dy)ds,

and Lemma A.2 ensures that the solution is unique. To show the claimed convergence, we
consider the difference between x̄` and ζ∗:

‖x̄` − ζ∗‖∞ = sup
t∈[0,T ]

‖x̄`(t)− ζ∗(t)‖

= sup
t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

−
∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds

∥∥∥∥
≤ sup

t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

−
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds−
∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
+ sup
t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

−
∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds

∥∥∥∥
We now treat the two suprema in the upper bound separately, and start by considering a fixed
but arbitrary t ∈ [0, T ]. For the terms inside the first supremum, for any i ∈ {0, 1, . . . , k − 1},
we have the upper bound∥∥∥∥∥

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds−
∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥
≤

∥∥∥∥∥
∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds−
∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ τ`i+1

τ`i

∫ (
g(ζ∗(τ `i ), y)− g(ζ∗(s), y)

)
µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ τ`i+1

τ`i

∫ (
g(ζ∗(τ `i ), y)− g(ζ∗(s), y)

)
νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥ .
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Similarly, for the term involving integrals from τ `k to t,∥∥∥∥∥
∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds−
∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
≤

∥∥∥∥∥
∫ t

τ`k

∫
g(ζ∗(τ `k), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds−
∫ t

τ`k

∫
g(ζ∗(τ `k), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

τ`k

∫ (
g(ζ∗(τ `k), y)−

∫ t

τ`k

∫
g(ζ∗(s), y)

)
µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

τ`k

∫ (
g(ζ∗(τ `k), y)−

∫ t

τ`k

∫
g(ζ∗(s), y)

)
νζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

∥∥∥∥∥
From the definitions of µζ∗(τ`i ),ζ̇∗(τ`i ),δ and νζ∗(τ`k),ζ̇∗(τ`k),δ, we have that∥∥∥∥∥

∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds−
∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥
= |τ `i+1 − τ `i |

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)−
∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)

∥∥∥∥
= |τ `i+1 − τ `i |

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥
The integral inside the norm is finite by Lemma 7.11.

Next, by the uniform Lipschitz property for g, we have∥∥∥∥∥
∫ τ`i+1

τ`i

∫ (
g(ζ∗(τ `i ), y)− g(ζ∗(s), y)

)
µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds

∥∥∥∥∥
≤ Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds.

In precisely the same way we have∥∥∥∥∥
∫ τ`i+1

τ`i

∫ (
g(ζ∗(τ `i ), y)− g(ζ∗(s), y)

)
νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥
≤ Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds.

Combining these inequalities yields the upper bound,∥∥∥∥∥
∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds−
∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

∥∥∥∥∥
≤ (τ `i+1 − τ `i )

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥+ 2Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds.
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We can use the same arguments as above once more to obtain an upper bound for the term
involving integrals from τ `k to t:∥∥∥∥∥

∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds−
∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
≤ (t− τ `k)

δ

2

∥∥∥∥∫ g(ζ∗(τ `k), y)πζ∗(τ`k)(dy)− ζ̇∗(τ `k)

∥∥∥∥+ 2Lg

∫ t

τ`k

‖ζ∗(s)− ζ∗(τ `k)‖ds.

Combining the upper bounds yields

sup
t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

−
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds−
∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
≤ sup

t∈[0,T ]

{
k−1∑
i=1

(
(τ `i+1 − τ `i )

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥+ 2Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds

)

+ (t− τ `k)
δ

2

∥∥∥∥∫ g(ζ∗(τ `k), y)πζ∗(τ`k)(dy)− ζ̇∗(τ `k)

∥∥∥∥+ 2Lg

∫ t

τ`k

‖ζ∗(s)− ζ∗(τ `k)‖ds

}
,

where the value for k depends on t.
To deal with the supremum over t, we note that increasing t will only add more non-negative

terms, and the terms corresponding to time-differences will be maximal for t = T . This results
in k = l and we have

sup
t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)µζ

∗(τ`i ),ζ̇∗(τ`i ),δ(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)µζ

∗(τ`k),ζ̇∗(τ`k),δ(dy)ds

−
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds−
∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
≤

`−1∑
i=1

(
(τ `i+1 − τ `i )

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥+ 2Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds

)
,

where we have also used that τ `` = T .
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For the second supremum, we split it according to

sup
t∈[0,T ]

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds+

∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

−
∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds

∥∥∥∥
≤ sup

t∈[0,T ]

{∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds−
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

+

∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds−
∫ t

τ`k

∫
g(ζ∗(τ `k), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
+

∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds+

∫ t

τ`k

∫
g(ζ∗(τ `k), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

−
∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds

∥∥∥∥}
Similar to before, we start by treating the terms inside the supremum to obtain suitable upper
bounds. In this direction the second norm-term is the easiest to treat. From the definitions of
the νζ∗(τ`i ),ζ̇∗(τ`i )-measures and the properties of ζ∗,∥∥∥∥∥

k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds+

∫ t

τ`k

∫
g(ζ∗(τ `k), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

−
∫ t

0

∫
g(ζ∗(s), y)νζ

∗(s),ζ̇∗(s)(dy)ds

∥∥∥∥
=

∥∥∥∥∥
k−1∑
i=0

(τ `i+1 − τ `i )ζ̇∗(τ `i ) + (t− τ `k)ζ̇∗(τ `k)− ζ∗(t)

∥∥∥∥∥ .
This term will converge to 0 uniformly in t as l grows, due to the properties of ζ∗ (see Lemma
7.3).
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For the other term inside the supremum, we have the upper bound∥∥∥∥∥
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(s), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds−
k−1∑
i=0

∫ τ`i+1

τ`i

∫
g(ζ∗(τ `i ), y)νζ

∗(τ`i ),ζ̇∗(τ`i )(dy)ds

+

∫ t

τ`k

∫
g(ζ∗(s), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds−
∫ t

τ`k

∫
g(ζ∗(τ `k), y)νζ

∗(τ`k),ζ̇∗(τ`k)(dy)ds

∥∥∥∥∥
≤

k−1∑
i=0

∫ τ`i+1

τ`i

∫ ∥∥∥g(ζ∗(s), y)− g(ζ∗(τ `i ), y)
∥∥∥ νζ∗(τ`i ),ζ̇∗(τ`i )(dy)ds

+

∫ t

τ`k

∫ ∥∥∥g(ζ∗(s), y)− g(ζ∗(τ `k), y)
∥∥∥ νζ∗(τ`i ),ζ̇∗(τ`i )(dy)ds

≤
k−1∑
i=0

Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds+ Lg

∫ t

τ`k

‖g(ζ∗(s))− g(ζ∗(τ `k))‖ds.

Similar to before, we see that the supremum is achieved at t = T , and thus k = `. Together with
the preceding calculations this yields the upper bound

‖x̄` − ζ∗‖∞ = sup
t∈[0,T ]

‖x̄`(t)− ζ∗(t)‖

≤
`−1∑
i=1

(
(τ `i+1 − τ `i )

δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥
+3Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds

)
.

Note that for any `, by sending δ to 0, we have

`−1∑
i=1

(τ `i+1 − τ `i )
δ

2

∥∥∥∥∫ g(ζ∗(τ `i ), y)πζ∗(τ`i )(dy)− ζ̇∗(τ `i )

∥∥∥∥→ 0.

Next, by the uniform continuity of ζ∗, for ` large enough, we have that for any δ > 0,

max
i∈{0,`−1}

sup
s∈[τ`i+1,τ

`
i ]

‖ζ∗(s)− ζ∗(τ `i )‖ < δ.

Using this we get

`−1∑
i=1

3Lg

∫ τ`i+1

τ`i

‖ζ∗(s)− ζ∗(τ `i )‖ds <
`−1∑
i=1

3δLg(τ
`
i+1 − τ `i ) = 3δLgT,

which can be made arbitrarily small.
We can now show that the second term in Equation 7.3 is negligible.
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Lemma 7.13 Under (A.1)-(A.7), we have the following convergence

lim sup
`→∞

lim sup
δ→0

lim sup
m→∞

E

 1

n

`−1∑
k=0

m−1∑
j=0

∫ (
log

dρζ(τ`k)(Ȳ
n
km+j , ·)

dρX̄n
km+j

(Ȳ n
km+j , ·)

)
qζ(τ

`
k),ζ̇(τ`k),δ(Ȳ n

km+j , dy)

 = 0.

Proof. Recall that ρx(y, dz) = ηx(y, z)λ(dz) where ηx(y, z) is continuous in x, uniformly in y, z,
this implies that

log
dρx(y, ·)
dρw(y, ·)

= log
ηx(y, ·)
ηw(y, ·)

→ 0 as x→ w.

It suffice to prove that {X̄n
km} and converges to ζ(τ `k). This is true by Lemmas 7.9 and 7.10.

With the continuity of F , the above lemma and Lemma 7.9, we find that for any ε, δ > 0.

lim sup
m→∞

− 1

βn
logEe−βnF (Xn)

≤ lim sup
m→∞

E

F (X̄n) +
1

m`

`−1∑
k=0

m−1∑
j=0

R
(
νnkm+j+1(·)‖ρX̄n

km+j
(Ȳ n
km+j , ·)

)
≤ lim sup

m→∞
E

F (X̄n) +
1

m`

`−1∑
k=0

m−1∑
j=l0

R
(
qζ(τ

`
k),ζ̇(τ`k),δ(Ȳ n

n+km+j , ·)‖ρζ(τ`k(Ȳ n
km+j , ·)

)
≤ E

[
F (X̂`) +

1

`

`−1∑
k=0

∫
R
(
qζ(τ

`
k),ζ̇(τ`k),δ(y, ·)‖ρζ(τ`k)(y, ·)

)
µζ(τ

`
k),ζ̇(τ`k),δ(dy)

]
.

Notice that from Lemma 7.2,

E

[∫
R
(
qζ(τ

`
k), ˙ζ,δ(τ`k)(y, ·)‖ρζ(τ`k)(y, ·)

)
µζ(τ

`
k),ζ̇(τ`k),δ(dy)

]
= E

[
R
(
µζ(τ

`
k),ζ̇(τ`k),δ ⊗ qζ(τ`k),ζ̇(τ`k),δ(·, ·)‖µζ(τ`k),ζ̇(τ`k),δ ⊗ ρζ(τ`k)(·, ·)

)]
≤ E

[
L
(
ζ(τ `k), ζ̇(τ `k)

)]
+ ε.

Thus,

lim sup
m→∞

− 1

βn
logEe−βnF (Xn) ≤ E

[
F (X̂`) +

1

`

`−1∑
k=0

L
(
ζ(τ `k), ζ̇(τ `k)

)]
+ ε.

This we will now rewrite as a Riemann sum

1

`

`−1∑
k=0

L
(
ζ(τ `k), ζ̇(τ `k)

)
=

`−1∑
k=0

1

`(τ `k+1 − τ `k)
L
(
ζ(τ `k), ζ̇(τ `k)

)
(τ `k+1 − τ `k).
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The term 1
`(τ`k+1−τ`k)

is bounded from above by 1
h(τ`k+1)

`(τ `k+1 − τ `k) = lim
n→∞

bn+ k+1
`
βnc∑

i=bn+ k
`
βnc

εi` = lim
n→∞

bn+ k+1
`
βnc∑

i=bn+ k
`
βnc

εiβn
`

βn

≥ lim
n→∞

εbn+ k+1
`
βncβn = h(τ `k+1).

Lastly, since δ is arbitrary, F is continuous, ζ is piecewise linear with finitely many pieces (Lemma
7.3) and the use of Lemma 7.10, we find

lim sup
`→∞

lim sup
m→∞

− 1

βn
logEe−βnF (Xn)

≤ lim sup
`→∞

E

[
lim sup
δ→0

F (X̂`) +

`−1∑
k=0

1

h(τ `k+1)
L
(
ζ(τ `k), ζ̇(τ `k)

)
(τ lk+1 − τ `k)

]
+ ε

≤ F (ζ) +

∫ T

0

1

h(t)
L(ζ(t), ζ̇(t))dt+ ε

= F (ζ) + I(ζ) ≤ inf
ϕ

(F (ϕ) + I(ϕ)) + 2ε.

Sending ε→ 0, we get

lim sup
`→∞

lim sup
m→∞

− 1

n
logEe−nF (Xn) ≤ inf

ϕ
(F (ϕ) + I(ϕ)).

8 Proof of Theorem 7.8

In this section we carry out the proof of Theorem 7.8, the convergence result for (ν̃n, X̃n) when
{ν̃n} is a generic sequence of control measures satisfying bounded expected running cost.

The first step towards proving Theorem 7.8 is the following uniform integrability property.

Lemma 8.1 Under (A.1)-(A.8), if {ν̃n} has bounded running cost, i.e.

sup
n
E

[
1

βn

βn+n−1∑
i=n

R(ν̃ni (·)||ρX̃n
i

(Ȳ n
i , ·))

]
<∞, (8.1)

then it satisfies the uniform integrability property,

lim
C→∞

sup
n
E

[∫ T

0

∫
‖g(X̃n(t),z)‖>C

‖g(X̃n(t), z)‖ν̃n(dz × dt)

]
= 0. (8.2)

Proof. The proof uses the inequality ab ≤ eσa + 1
σ (b log(b)− b+ 1) with a = ‖g(X̃n(t), z)‖ and
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b =
dν̃ni (·)

dρX̃ni
(Ỹ ni ,·)

. For t ∈ [0, T ], and fixed C and n, we have,

∫
‖g(X̃n(t),z)‖>C

‖g(X̃n(t), z)‖dν̃ni (dz)

=

∫
‖g(X̃n(t),z)‖>C

‖g(X̃n(t), z)‖ dν̃ni (z)

dρX̃n
i

(Ỹ n
i , z)

ρX̃n
i

(Ỹ n
i , dz)

≤
∫
‖g(X̃n(t),z)‖>C

eσ‖g(X̃
n(t),z)‖ρX̃n

i
(Ỹ n
i , dz)

+
1

σ

∫
‖g(X̃n(t),z)‖>C

(
dν̃ni (z)

dρX̃n
i

(Ỹ n
i , z)

log

(
dν̃ni (z)

dρX̃n
i

(Ỹ n
i , z)

)
− dν̃ni (z)

dρX̃n
i

(Ỹ n
i , z)

+ 1

)
ρX̃n

i
(Ỹ n
i , dz)

≤
∫
‖g(X̃n(t),z)‖>C

eσ‖g(X̃
n(t),z)‖ρX̃n

i
(Ỹ n
i , dz) +

1

σ
R(ν̃ni (·)||ρX̃n

i
(Ỹ n
i , ·))

≤ e−σC sup
x

sup
y

∫
e2σ‖g(x,z)‖ρx(y, dz) +

1

σ
R(ν̃ni (·)||ρX̃n

i
(Ỹ n
i , ·)),

Assumption (A.7) to guarantee that the first term is finite. Using this bound yields

E

[∫ T

0

∫
‖g(X̃n(t),z)‖>C

‖g(X̃n(t), z)‖ν̃n(dz × dt)

]

≤ E

[
βn+n−1∑
i=n

∫
ti,ti+1

1

hn(t)
e−σC sup

x
sup
y

∫
e2σ‖z‖ρx(y, dz) +

1

hn(t)

1

σ
R(ν̃ni (·)||ρX̃n

i
(Ỹ n
i , ·))dt

]

=≤ e−σC sup
x

sup
y

∫
e2σ‖z‖ρx(y, dz) +

1

σ
E

[
1

βn

βn+n−1∑
i=n

R(ν̃ni (·)||ρX̃n
i

(Ỹ n
i , ·))

]
.

Equation (7.5) ensures that the second term is bounded in n. Therefore, since the first term no
longer depends on n, taking C →∞, followed by σ →∞ yields the claimed convergence.

The proof Theorem 7.8 contains many steps and the idea follows closely from [9, Section 5.3].
We first prove the tightness of the controls {ν̃n} which assures the existence of a convergent
subsequence. We also show an important property of {ν̃n} called "uniform integrability" (see
Lemma 8.1). After that we consider a stochastic process Sn which is defined as

Sn(t) = x+

∫ t

0

∫
Rd2

g(X̂n(s), y)ν̃n(dy|s)ds,

where X̂n(t) is the picewise constant function that takes the values X̂n(tn+k − tn) = X̃n
k . With

this intermediate process Sn, we can then bridge the gap between X̃n and X̃. To be more precise,
we will show that there exists a subsequence of {Sn} (also denote it by the same notation) such
that Sn p−→ X̃ and

P

(
sup
t∈[0,T ]

‖X̃n(t)− Sn(t)‖ > ε

)
= 0 for any ε > 0
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to complete the proof. We begin with proving uniform integrability and tightness of the control
sequences {ν̃n}.

Before we show the convergence of {Sn}, we prove that {Sn} is tight in the following lemma.

Lemma 8.2 Define the modulus of continuity of Sn as

wn(δ) = sup
|s−t|<δ

‖Sn(t)− Sn(s)‖.

for any δ > 0. Then

(a) for all ε > 0 and η > 0 there exists a δ > 0 such that P (wn(δ) > ε) < η for all n.

(b) Sn is tight.

Proof. For part (a), given any ε > 0 and η > 0, from (8.2) we can choose C > 0 such that

sup
n
E

[∫ T

0

∫
‖g(Sn(t),y)‖>C

‖g(X̂n(t), y)‖ν̃n(dy × dt)

]
≤ ηε

2eT
.

Then setting δ = ε/(2C), using Markov’s inequality yields

P (wn(δ) > ε) = P

(
sup
|s−t|<δ

‖Sn(t)− Sn(s)‖ > ε

)

≤ P

(
sup
|s−t|<δ

∫ t

s

∫
Rd2
‖g(X̂n(r), y)‖ν̃n(dy|r)dr > ε

)

≤ P

(
sup
|s−t|<δ

∫ t

s

∫
‖g(X̂n(r),y)‖>C

‖g(X̂n(r), y)‖ν̃n(dy|r)dr

+ sup
|s−t|<δ

∫ t

s

∫
‖g(X̂n(r),y)‖≤C

‖g(X̂n(r), y)‖ν̃n(dy|r)dr > ε

)

≤ P

(
sup
|s−t|<δ

∫ t

s

∫
‖g(X̂n(r),y)‖>C

‖g(X̂n(r), y)‖h
n(r)

hn(r)
ν̃n(dy|r)dr + Cδ > ε

)

= P

(
sup
|s−t|<δ

∫ t

s

∫
‖g(X̂n(r),y)‖>C

‖g(X̂n(r), y)‖hn(r)ν̃n(dy × dr) > ε

2T

)

≤ P

(∫ T

0

∫
‖g(X̂n(r),y)‖>C

‖g(X̂n(r), y)‖ν̃n(dy × dr) > ε

2eT

)

≤ 2eT

ε
E

[∫ T

0

∫
‖g(X̂n(r),y)‖>C

‖g(X̂n(r), y)‖ν̃n(dy × dr)

]
< η.

As for part (b), since we have part (a) and we also know that Sn(0) = x for all n, the tightness
of {Sn} follows from Theorem A.3.22 in [9]. We next show that X̃n and Sn are close. To be
more precise, we prove the following lemma.
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Lemma 8.3 Let Sn and X̃n be defined as before, then for any ε > 0

P

(
sup
t∈[0,T ]

‖Sn(t)− X̃n(t)‖ > ε

)
→ 0,

as n→∞.

Proof. We will use the notation tnj = tj − tn. We first use the fact that X̃n is the piecewise
linear interpolation of the random vector {X̃n

j } = {X̃n(tnj )} to find

sup
t∈[0,T ]

‖Sn(t)− X̃n(t)‖ ≤ max
k∈J

sup
t∈[tnk ,t

n
k+1]
‖Sn(t)− X̃n(t)‖ ≤ max

k∈J
wn(εnk) + max

k∈J
‖Sn(tnk)− X̃n(tnk)‖

≤ wn(εn) + max
k∈J
‖Sn(tnk)− X̃n(tnk)‖,

where J .
= {n, . . . ,m(T + tn)}. Lemma 8.2 implies that wn(εn)

p→ 0. Hence it suffices to show
that maxk∈J ‖Sn(tnk)− X̃n(tnk)‖ p→ 0. For any ε > 0, we use Markov’s inequality to get

P

(
max
k∈J
‖Sn(tnk)− X̃n(tnk)‖ > ε

)
≤ 1

ε
E

[
max
k∈J
‖Sn(tnk)− X̃n(tnk)‖

]
.

It remains to show the expectation converges to 0. Given θ > 0, we introduce a variable Λnj
defined by

Λnj =

{
X̃n
j+1 − X̃n

j if ‖X̃n
j+1 − X̃n

j ‖ < θ

0 if ‖X̃n
j+1 − X̃n

j ‖ ≥ θ
.

Observe that Λnj is a truncation of εjg(Xn
j , Ȳ

n
j ), since X̃n

j+1 = X̃n
j + εjg(X̃n

j , Ȳ
n
j ). With this

notation and by the definitions of Sn and X̃n, and ν̃n(dy|s) = ν̃nj (dy) for s ∈ [tnj , t
n
j+1), we find

that

E

[
max
k∈J
‖Sn(tnk)− X̃n(tnk)‖

]

≤ E

max
k∈J

∥∥∥∥∥∥x+
k−1∑
j=n

εj

∫
Rd2

g(X̂n(tnj ), y)ν̃nj (dy)− X̃n(tnk)

∥∥∥∥∥∥


≤ E

max
k∈J

∥∥∥∥∥∥x+
k−1∑
j=n

Λnj − X̃n(tnk)

∥∥∥∥∥∥
 (8.3)

+ E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

(
Λnj − εj

∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)

)∥∥∥∥∥∥


+ E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

εj

(∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)−

∫
Rd2

g(X̄n
j , y)ν̃nj (dy)

)∥∥∥∥∥∥

(8.4)
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Therefore, it suffices to show that the last three terms on the right side of the inequality converge
to 0 as n→∞.

For the second term, we observe that with respect to the sigma algebra F̄nj
.
= σ(X̃n

n , . . . , X̃
n
n+j)

the sequence {Mn
j } defined by

Mn
j+1

.
= Λnj − εj

∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)

is a martingale difference sequence. Indeed, by the definition of ν̃nj

E[Λnj |F̄nj ] = E
[
(X̃n

j+1 − X̃n
j )1‖X̃n

j+1−X̃n
j ‖<θ
|F̄nj

]
= εjE

[
g(Xn

j , Ȳ
n
j )1{‖εjg(Xn

j ,Ȳ
n
j )‖<θ}F̄nj

]
= εj

∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy).

Therefore, {(
∑k

j=nM
n
j , F̄nk−1)} is a martingale and for any i 6= j, E

[〈
Mn
i ,M

n
j

〉]
= 0. In

addition, the second term becomes

E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

(
Λnj − εj

∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)

)∥∥∥∥∥∥
 = E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

Mn
j+1

∥∥∥∥∥∥
 .

We can then bound the second term by

E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

Mn
j+1

∥∥∥∥∥∥
 ≤

E
max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

Mn
j+1

∥∥∥∥∥∥
21/2

≤ 2

E
∥∥∥∥∥∥

βn∑
j=n

Mn
j+1

∥∥∥∥∥∥
21/2

,

where the first inequality comes from Cauchy-Schwarz inequality and the second one holds since
Doob’s submartingale inequality. Furthermore, because

E

∥∥∥∥∥∥
βn+n∑
j=n

Mn
j+1

∥∥∥∥∥∥
2 =

βn+n∑
j=n

E

[∥∥∥∥Λnj − εj
∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)

∥∥∥∥2
]

≤
βn+n∑
j=n

E
[
‖Λnj ‖2

]
≤ θ

βn+n∑
j=n

E
[
‖Λnj ‖

]
≤ θ

βn+n∑
j=n

E

[∫ tnj+1

tnj

∫
Rd2
‖g(X̃n

j , y)‖ν̃n(dy|t)dt

]

≤ θE
[∫ T

0

∫
Rd2
‖g(X̃n

j , y)‖hn(t)ν̃n(dy × dt)
]
,

where the first inequality comes from the fact that

E[Λnj |F̄nj ] = εj

∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy),
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and the second inequality holds due to ‖Λnj ‖ ≤ θ.
The expectation in the last display is bounded by a constant (which is independent of n) due

to the uniform integrability property, so by sending θ → 0 this term disappears.
Now for the first and the third term, we need to consider cn(θ) which is defined as

cn(θ)
.
= E

[∫ T

0

∫
Rd2
‖g(X̃n

j , y)‖1{‖εjg(X̃n
j ,y)‖>θ}ν̃

n(dy|t)dt
]
.

Notice that as n → ∞, cn(θ) → 0 because of the uniform integrability property and εj → 0.
Thus, we will complete the proof by bounding the first and the third term with cn(θ), and then
we send n→∞ followed by sending θ → 0.

For the first term, we write X̃n(tnk)− x as a telescoping sum to find

E

max
k∈J

∥∥∥∥∥∥x+

k−1∑
j=n

Λnj − X̃n(tnk)

∥∥∥∥∥∥
 ≤ E

m(T+tn)∑
j=n

‖X̃n(tnj+1)− X̃n(tnj )− Λnj ‖


≤ E

βn+n∑
j=n

εj‖g(X̃n
j , Ȳ

n
j )‖1{‖εjg(X̃n

j ,Ȳ
n
j )‖≥θ}


= E

βn+n∑
j=n

∫ tnj+1

tnj

∫
Rd2
‖g(X̃n

j , y)‖1{‖εjg(X̃n
j ,y)‖≥θ}ν̃

n
j (dy)dt


≤ cn(θ).

As for the third term

E

max
k∈J

∥∥∥∥∥∥
k−1∑
j=n

εj

(∫
Rd2

g(X̃n
j , y)1{‖εjg(X̃n

j ,y)‖<θ}ν̃
n
j (dy)−

∫
Rd2

g(X̃n
j , y)ν̃nj (dy)

)∥∥∥∥∥∥


≤ E

m(T+tn)∑
j=n

εj

∫
Rd2
‖g(X̃n

j , y)‖1{‖εjg(X̃n
j ,y)‖≥θ}ν̃

n
j (dy)


= E

βn+n∑
j=n

∫ tnj+1

tnj

∫
Rd2
‖g(X̃n

j , y)‖1{‖εjg(X̃n
j ,y)‖≥θ}ν̃

n(dy|t)dt


≤ cn(θ).

The proof is complete.
Now we know that there is a convergent subsequence of {Sn} according to Prohorov’s theo-

rem, and if we denote its limit as S, then it remains to show that with probability one (w.p.1)
S equals X̃, where X̃ is defined in (7.6).

Lemma 8.4 Let Sn and X̃ be defined as before, then for any ε > 0

P

(
sup
t∈[0,T ]

‖Sn(t)− X̃(t)‖ > ε

)
→ 0,

as n→∞.
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Proof. For any ε > 0, we first use Markov’s inequality to find

P

(
sup
t∈[0,T ]

‖Sn(t)− X̃(t)‖ > ε

)
≤ 1

ε
E

[
sup
t∈[0,T ]

‖Sn(t)− X̃(t)‖

]
.

It remains to show the expectation converges to 0. To show this, we notice that

E

[
sup
t∈[0,T ]

‖Sn(t)− X̃(t)‖

]

= E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

∫
Rd2

g(X̂n(s), y)dν̃n(y|s)ds−
∫ t

0

∫
Rd2

g(X̃(s), y)dν̃(y|s)ds
∥∥∥∥
]

≤ E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

∫
Rd2

g(X̂n(s), y)dν̃n(y|s)ds−
∫ t

0

∫
Rd2

g(X̂n, y)dν̃(y|s)ds
∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∫ t

0

∫
Rd2

∥∥∥g(X̂n, y)− g(X̃(s), y)
∥∥∥ dν̃(y|s)ds

]

≤ E

[
sup
t∈[0,T ]

∫
Rd2
‖g(X̂n, y)‖‖hn(s)− h(s)‖ν̃n(d× ds)

]

+ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̂n, y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̂n, y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∫ t

0

∫
Rd2

K‖X̂n(s)− X̃(s)‖dν̃(y|s)ds

]

≤ E

[
sup
t∈[0,T ]

∫
Rd2
‖g(X̂n, y)‖‖hn(s)− h(s)‖ν̃n(dy × ds)

]
(8.5)

+ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̂n, y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̂n, y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

(8.6)

+ E

[
sup
t∈[0,T ]

∫ t

0

∫
Rd2

K‖X̂n(s)− Sn(s)‖dν̃(y|s)ds

]
(8.7)

+ E

[
sup
t∈[0,T ]

∫ t

0

∫
Rd2

K‖Sn(s)− X̄(s)‖dν̃(y|s)ds

]
.

By Grönwald’s inequality we now get that

E

[
sup
t∈[0,T ]

‖Sn(t)− X̃(t)‖

]
≤ E

[
((8.5) + (8.6) + (8.7))eKT

]
.

All that is left is to prove that (8.5), (8.6) and (8.7) converges to zero. For (8.5), due to (8.2),
we know that there exists some C > 0 such that

sup
n
E

[∫ T

0

∫
‖g(X̂n(t),y)‖>C

‖g(x, y)‖ν̃n(dy × dt)

]
≤ 1.
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With this C > 0, we can find that

E

[
sup
t∈[0,T ]

∫
Rd2×[0,t]

‖g(X̂n(s), y)‖‖hn(s)− h(s)‖ν̃n(dy × ds)

]

≤ E

[∫ T

0

∫
‖g(X̂n(s),y)‖≤C

‖g(X̂n(s), y)‖‖hn(s)− h(s)‖ν̃n(dy × ds)

]

+ E

[∫ T

0

∫
‖g(X̂n(s),y)‖>C

‖g(X̂n(s), y)‖‖hn(s)− h(s)‖ν̃n(dy × ds)

]
≤ (CT + 1) sup

t∈[0,T ]
‖hn(t)− h(t)‖.

Thus, (8.5) converges to 0 due to the uniform converge of {hn} to h as n→∞.
As for (8.6), it requires more analysis. Notice that for any C > 0 and n0 > 0,

E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̂n(s), y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̂n(s), y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

≤ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̂n(s), y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃n(dy × ds)

∥∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃(dy × ds)−
∫
Rd2×[0,t]

g(X̂n(s), y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

≤ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∫
Rd2×[0,t]

‖X̂n(s)− X̄n0(s)‖h(s)ν̃n(dy × ds)

]

+ E

[
sup
t∈[0,T ]

∫
Rd2×[0,t]

‖X̄n0(s)− X̂n0(s)‖h(s)ν̃(dy × ds)

]

The last two terms can be made arbitrarily small by choosing large enough n and n0 due to X̃n

and X̂n converging to the same process. For the first term we split it up into two parts, one
that is bounded where we can use the weak convergence of ν̃n and one part that can be made
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arbitrarily small due to uniform integrability property.

E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

g(X̃n0(s), y)h(s)ν̃(dy × ds)

∥∥∥∥∥
]

≤ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

(
g(X̃n0(s), y)1{‖g(X̃n0 (s),y)‖≤C}

+C
g(X̃n0(s), y)

‖g(X̃n0(s), y)‖
1{‖g(X̃n0 (s),y)‖>C}

)
h(s)ν̃n(dy × ds)

−
∫
Rd2×[0,t]

(
g(X̃n0(s), y)1{‖g(X̃n0 (s),y)‖≤C}

+C
g(X̃n0 , y)

‖g(X̃n0(s), y)‖
1{‖g(X̃n0 (s),y)‖>C}

)
h(s)ν̃(dy × ds)

∥∥∥∥∥
]

+ E

[
sup
t∈[0,T ]

∥∥∥∥∥
∫
Rd2×[0,t]

(
g(X̃n0(s), y)− C g(X̃n0(s), y)

‖g(X̃n0(s), y)‖

)
1{‖g(X̃n0 (s),y)‖>C}h(s)ν̃n(dy × ds)

−
∫
Rd2×[0,t]

(
g(X̃n0(s), y)− C g(X̃n0(s), y)

‖g(X̃n0(s), y)‖

)
1{‖g(X̃n0 (s),y)‖>C}h(s)ν̃(dy × ds)

∥∥∥∥∥
]
.

For the new first term, we define notations

ϕC(x)
.
= x1{‖x‖≤C} + C

x

‖x‖
1{‖x‖>C}

and

`n(t)
.
=

∫
Rd2×[0,t]

ϕC(g(X̃n0(s), y))h(s)ν̃n(dy × ds)−
∫
Rd2×[0,t]

ϕC(g(X̃n0(s), y))h(s)ν̃(dy × ds).

Then the new first term can then be expressed as E[supt∈[0,T ] ‖`n(t)‖]. Now given any t ∈ [0, T ],
since ν̃(Rd2 × {t}) = 0, ν̃n converges weakly to ν̃ w.p.1, and notice that ϕC is bounded and
continuous, this implies that `n(t)→ 0 w.p.1 as n→∞. Without loss of generality, we assume
`n(t, ω) → 0 for all ω ∈ Ω and t ∈ [0, T ]. Now for any fixed ω ∈ Ω, it is not hard to see that
{`n(t, ω) : t ∈ [0, T ]}n∈N is equicontinuous and uniformly bounded by 2C. Thus, by Arzelà-
Ascoli theorem and since `n(t, ω) → 0, also the fact that if every subsequence has a further
subsequence which converges uniformly to the same limit, then the whole sequence converges
uniformly to the same limit, we can conclude that supt∈[0,T ] ‖`n(t, ω)‖ → 0 for that given ω.
Since ω is arbitrary, this means that supt∈[0,T ] ‖`n(t)‖ → 0 w.p.1. Moreover, due to the fact that
supt∈[0,T ] ‖`n(t)‖ ≤ 2C < ∞, we use the Lebesgue dominated convergence theorem to find that
the new first term, i.e. E[supt∈[0,T ] ‖`n(t)‖], converges to 0.

As for the new second term, we can use that h(s) < eT and∥∥∥∥x− C x

‖x‖

∥∥∥∥ 1{‖x‖>C} ≤ (‖x‖+ C)1{‖x‖>C} ≤ 2‖x‖1{‖x‖>C}
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for all x and (8.2) to bound it from above by

4eT sup
n
E

[∫ T

0

∫
‖g(X̄n0 (t),y)‖>C

‖g(x, y)‖ν̃n(dy × dt)

]
,

which converges to 0 by sending C →∞.
Finally we have the term (8.7) that converges to zero due to Lemma 8.3.
Now the proof of Theorem 7.8 is complete. The tightness of {ν̃n} follows from Lemma 8.1,

the tightness of {X̃n} follows from Lemma 8.2 and Lemma 8.3 and finally the limit (7.6) follows
from Lemma 8.4 and 8.3.

A Appendix

A.1 Proof I is a rate function

Lemma A.1 Under Conditions 2.2, The function I : C[0, T ]→ [0,∞] defined by

I(ϕ) =

∫ T

0

1

h(t)
L(ϕ(t), ϕ̇(t))dt,

where
L(x, β) = inf

µ∈P(Rd2 )

{
inf

η∈A(µ)
{R(η‖µ⊗ ρx(·, ·))} : β =

∫
Rd2

g(x, y)µ(dy)

}
,

and
h(t) = (eT − 1)e−t,

is a rate function, i.e., I has compact level sets.

Proof. We need to show that for any sequence of continuous functions {φj} such that I(φj) ≤ K
have a convergent subsequence where the corresponding limit φ fulfills I(φ) ≤ K. For any ε,
there exist a probability measure µj(dy×dt) = µj(dy|t)dt and a transition kernel qj(y, dz|t) such
that ∫ T

0

1

h(t)

∫
Rd2

R(qj(y, ·|t)||ρφj(t)(y, ·))µj(dy|t)dt ≤ I(φj) + ε∫
Rd2

g(φj(t), y)µj(dy|t) = φ̇j(t)

µjqj = µj

Now we prove that {µj}j is uniformly integrable. It is sufficient to prove that

lim
m

lim sup
n

∫ T

0

∫
Rd2

∫
‖z‖>M

‖z‖qj(y, dz|t)µj(dy × dt) = 0
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We use the inequality ab ≤ eσa + 1
σ (b log(b)− b+ 1)∫ T

0

∫
Rd2

∫
‖z‖>M

‖z‖qj(y, dz)µj(dy × dt)

≤
∫ T

0

∫
Rd2

∫
‖z‖>M

eσ‖z‖ρφj(t)(y, dz)µ
j(dy|t)dt+

1

σ

∫ T

0
R(qj(y, dz|t)µj(dy|t)||ρφj(t)(y, dz)µj(dy|t))dt

≤
∫ T

0
sup
y

∫
‖z‖>M

eσ‖z‖ρφj(t)(y, dz)dt+
1

σ
(K + ε)

≤
∫ T

0
e−σM sup

x
sup
y

∫
‖z‖>M

e2σ‖z‖ρx(y, dz)dt+
1

σ
(K + ε).

Now as in Lemma7.4 and Lemma 8.1, sending n → ∞, M → ∞ and then σ → ∞ yields the
desired limit. This proves that µj is tight. Now for a convergent subsequence of µj with limit µ.
We define φ as the solution to the following ODE

φ(t) = x0 +

∫ t

0
g(φ(s, y))µ(dy|s)ds.

We need to prove that this ODE has a unique solution.

Lemma A.2 The ODE

φ(t) = x0 +

∫ t

0

∫
g(φ(s), y)νζ(s),ζ̇(s)(dy)ds,

has a unique solution.

Proof. Let φ1 and φ2 be solutions to the ODE

φ1(t) = x0 +

∫ t

0

∫
g(φ1(s), y)νζ(t),ζ̇(t)(dy)ds,

φ2(t) = x0 +

∫ t

0

∫
g(φ2(s), y)νζ(s),ζ̇(s)(dy)ds,

and let ∆ be such that ∆K < 1, where K is the Lipschitz constant to g. Then we will prove
that for t ∈ [0,∆], φ1(t) = φ2(t).

sup
t∈[0,∆]

||φ1(t)− φ2(t)|| = sup
t∈[0,∆]

||
∫ t

0

∫
g(φ1(s), y)νζ(s),ζ̇(s)(dy)ds−

∫ t

0

∫
g(φ2(s), y)νζ(s),ζ̇(s)(dy)ds||

≤
∫ ∆

0

∫
sup
t∈[0,∆]

||g(φ1(t), y)− g(φ2(t), y)||νζ(s),ζ̇(s)(dy)ds

≤
∫ ∆

0

∫
K sup

t∈[0,∆]
||φ1(t)− φ2(t)||νζ(s),ζ̇(s)(dy)ds = K∆ sup

t∈[0,∆]
||φ1(t)− φ2(t)||.
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This is a contraction and the same procedure can be iterated arbitrary number of times leading
to

sup
t∈[0,∆]

||φ1(t)− φ2(t)|| ≤ (K∆)N sup
t∈[0,∆]

||φ1(t)− φ2(t)|| → 0, N →∞.

Now we need to extend this to t ∈ [0, T ]. For t ∈ [0, 2∆] we can use the above argument to get

sup
t∈[0,2∆]

||φ1(t)− φ2(t)|| = sup
t∈[0,2∆]

||φ1(t)− φ1(∆)− (φ2(t)− φ2(∆))||

= sup
t∈[∆,2∆]

||φ1(t)− φ1(∆)− (φ2(t)− φ2(∆))||

≤ ∆K sup
t∈[∆,2∆]

||φ1(t)− φ2(t)|| ≤ ∆K sup
t∈[0,2∆]

||φ1(t)− φ2(t)||

The same argument as above can now be applied to show that φ1(t) = φ2(t) for t ∈ [0, 2∆].
Repeating this procedure yields the result for t ∈ [0, T ].

A contradiction argument with different ε proves that φ is independent of ε. This proves
that there exists a subsequence of φj that converges and therefore is precompact. The proof is
finished if we can show I(φ) ≤ K.

K ≥ lim inf I(φj) ≥ lim inf

∫ T

0
R(qj(y, dz|t)µj(dy|t)||ρφj(t)(y, dz)µj(dy|t))dt− ε

≥
∫ T

0
R(q(y, dz|t)µ(dy|t)||ρφ(t)(y, dz)µ(dy|t))dts ≥ I(φ)− ε,

where the second inequality uses Fatou’s lemma, the lower semi-continuity of the relative entropy
and the feller property of ρ. Since ε is arbitrary we have I(φ) ≤ K and therefore I has compact
level sets and is a rate function.
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