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Abstract

In this article, we look at the problem of minimizing an action potential that arises
from large devation theory for stochastic approximations. The solutions to the minimizing
problem satisfy, in the sense of a viscosity solution, a Hamilton-Jacobi equation. From weak
KAM theory, we know that these viscosity solutions are characterised by the projected Aubry
set. The main result of this paper is that, for a specific rate function corresponding to a
stochastic approximation algorithm, we prove that the projected Aubry set is equal to the
forward limit set to the limit ODE.

1 Introduction

The theory of large deviations provides a powerful set of techniques to study rare events of
stochastic processes. In many instances the large deviations rate function associated with a
sequence of stochastic processes {Xn(t); t ∈ [0, T ]} on the space of continuous functions can be
written as an action functional of the form

I(ψ) =

∫ T

0
L(ψ(s), ψ̇(s))ds, (1.1)

where ψ is an absolutely continuous function from [0, T ] to Rd with derivative ψ̇ and L : R2d → R
is the local rate function, such that v 7→ L(x, v) is convex for all x ∈ Rd. Markov processes
provide a rich source of examples of processes for which the rate function is of this form, see e.g.
[2, 3, 8, 15].

The study of rare events leads naturally to variational problems of minimizing the action
functional under appropriate boundary conditions. For example, consider the probability that
the process Xn exits an open set Ω ⊂ Rd before time T , conditioned on X(t) = x, for 0 ≤ t < T ,
x ∈ Ω; written Pt,x(Xn(T ) /∈ Ω). If the rate function associated with Xn is given by (1.1), then
the large deviations rate of this probability is given by

U(t, x) = inf
ψ

{∫ T

t
L(ψ(s), ψ̇(s))ds, ψ(t) = x, ψ(T ) /∈ Ω

}
,
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where the infimum is taken over all absolutely continuous functions. Intuitively, for large n, the
large deviations principle leads to the asymptotic approximation

Pt,x(X
n(T ) /∈ Ω) ≈ e−nU(t,x).

The value function, U(t, x), provides a measure of the rarity of the event that Xn leaves Ω,
whereas the minimizing trajectory gives information about the most likely path that leads to the
rare event. Since U is the value function of a variational problem, it satisfies, in the sense of a
viscosity solution, a Hamilton-Jacobi terminal value problem of the form{

Ut(t, x)−H(x,−DU(t, x)) = 0, (t, x) ∈ [0, T )× Ω,

U(T, x) = 0, x ∈ ∂Ω,
(1.2)

where H is the Fenchel-Legendre transform of L, see e.g. [8], Ut is the time derivative and D is
the gradient.

A variational problem similar to (1.2) defines the action functional

M(t, y;x) = inf
ψ

{∫ t

0
L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y

}
, t > 0 x, y ∈ Rd,

where the infimum is taken over all absolutely continuous functions ψ : [0, t] → Rd. This action
functional is a well-studied object in large deviations theory and control-theory and may be
interpreted as a cost that measures the exponential rate of decay of the probability of transiting
from x to a neighborhood of y in time t, see for example [10, 9] and the references therein. In the
weak KAM and dynamical systems literature it is often referred to as Mather’s action functional,
see the overview paper [13] and references therein, even though this functional was known well
before the papers by Mather.

Transitions costs over arbitrary time intervals may be studied by considering Peierl’s barrier
and the Mañé potential. For a given c ∈ R, Peierl’s barrier refers to the limit of the action
functional given by

hc(x, y) = lim inf
t→∞

{M(t, y;x) + ct},

and the projected Aubry set as the points for which Peierl’s barrier vanishes,

Ac = {x ∈ Rd : hc(x, x) = 0}.

The Mañé potential at level c ∈ R given by the value of the variational problem

Sc(x, y) = inf
ψ,t

{∫ t

0
c+ L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y

}
, x, y ∈ Rd,

where, again, the infimum is taken over all absolutely continuous functions ψ : [0,∞) → Rn and
t > 0, see [12]. For given x and c, consider the function y 7→ Sc(x, y). When this function is
continuous, it is a viscosity subsolution of the stationary Hamilton-Jacobi equation

H(y,DS(y)) = c, y ∈ Rd.
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From the definition of the Mañé potential it is elementary to show that

Sc(x, y) = inf
t>0

{M(t, y;x) + ct}.

For coercive Hamiltonians, the Mañé potential is a viscosity solution to the stationary Hamilton-
Jacobi equation on Rd and the Aubry set is important because all viscosity solutions to the
stationary Hamilton-Jacobi equation depends essentially on the Mañé potential y 7→ Sc(x, y)
where x is in the projected Aubry set, see Theorem 3.6 below.

In this paper, we study Peierl’s barrier, the projected Aubry set and the Mañé potential
related to the action functional given by the rate function associated with the large deviations
principle for stochastic approximations. The stochastic approximation sequence {Xk}n∈N0 is of
the Robbins-Munro type, with state-dependent Markovian noise {Yk}k∈N, starting from X0 and
satisfying the recursion,

Xk+1 = Xk +
1

k + 1
g(Xk, Yk+1), k ≥ 0,

where g : Rdx ×Rdy → Rdx is the update function, {Yn}n∈N0 is the noise sequence starting from
Y0, and, for every k ∈ N0 and A ∈ B(Rdy)

P (Yk+1 ∈ A|Xk, Yk) = ρXk
(Yk, A)

with ρx(y, ·) ∈ P(Rdy) for any x ∈ Rdx and y ∈ Rdy . Stochastic approximation algorithms
are frequently used for training statistical and machine learning models via stochastic gradient
descent and persistent contrastive divergence algorithms, in adaptive Markov chain Monte Carlo
methods and in statistical physics computations such as the Wang-Landau algorithm.

The large deviations principle provides information about the asymptotic behaviour of the
stochastic approximation {Xn}n∈N for large values of n. More specifically, for each n ∈ N and
x0 ∈ Rd, define a process {Xn

k }k≥n that follows the same recursive iterations but starts from the
n-th step recursion. To be precise, let Xn

n = x0 and for k ≥ n

Xn
k+1 = Xn

k +
1

n
g(Xn

k , Yn+k+1). (1.3)

We consider a family of continuous interpolations of {Xn
k }k≥n: for each n, Xn = {Xn(t) : t ∈

[0, T ]} is given by Xn( kn −
1
n) = Xn

n+k for k = 0, 1, . . . , and for intermediate time points t, Xn(t)

is defined by a piece-wise linear interpolation. Note that, for each n, Xn ∈ Cx0([0, T ] : Rdx).
The Markov kernel, ρx, for the noise sequence is assumed to be ergodic with invariant measure
πx. We define the limit function ḡ(x) as

ḡ(x) = EY∼πx [g(x, Y )].

From standard results in stochastic approximation, we expect that for large n the function Xn(t)
should behave similarly to the solution of the ordinary differential equation,

ẋ(t) = ḡ(x), (1.4)
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called the limit ODE. The large deviations principle provides information about the rate at which
the stochastic approximation deviates significantly from the solution to the limit ODE.

Under certain assumptions on the update function g, the family of Markov kernels {ρx}
and the step size sequence {ϵk}, the linear interpolation {Xn} of the stochastic approximation
satisfies a large deviations principle with rate function (1.1) where the local rate function, e.g.
the Lagrangian, is of the form

L(x, β)
.
= inf

µ

{
inf

γ∈M(µ)
R(γ(dy × dz)||µ(dx)⊗ ρx(y, dz)) : β =

∫
g(x, z)µ(dz)

}
, (1.5)

where µ is a probability distribution Rd, M(µ) are distributions on Rd ×Rd with µ as marginal
distributions. By understanding the variational problems appearing in the large deviations rate
function associated with stochastic approximation we gain insights into fundamental properties
of convergence, including typical and abnormal behavior of stochastic approximations. Our main
result shows that

The paper is organized as follows. In Section 2 the Mañé potential and stationary Hamilton-
Jacobi equations are introduced and we establish some relevant properties for a general La-
grangian. In Section 3 a stochastic approximation algorithm and its corresponding rate function
is introduced and we characterise the projected Aubryb set for the local rate function to this
rate function.

2 The Mañé potential and the stationary Hamilton-Jacobi equa-
tion

We begin by introducing the Mañé potential and establish some of its properties, as well as
its relation to the stationary Hamilton-Jacobi equation. Throughout the paper we make the
following assumption: the Langrangian L : Rd × Rd → R is a locally bounded measurable
function that is convex in the second coordinate. The Hamiltonian H is the Fenchel-Legendre
transform of L,

H(x, p) = sup
v
{⟨p, v⟩ − L(x, v)}, (2.1)

and by convex duality it follows that

L(x, v) = sup
p
{⟨p, v⟩ −H(x, p)}.

2.1 The Mañé potential

Originally introduced by Mañé in [12], the Mañé potential at level c ∈ R, is the function Sc :
Rd × Rd → R defined by

Sc(x, y) = inf
ψ,t

{∫ t

0
c+ L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y

}
, x, y ∈ Rd, (2.2)
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where the infimum is taken over all t > 0 and absolutely continuous paths ψ : [0,∞) → Rd.
Since L is locally bounded it follows that Sc(x, y) < ∞, for all x, y ∈ Rd and c < ∞. It is
possible that Sc is identically −∞ for small c. Indeed, if L(x, v) = 1

2 |v|
2 and c < 0, then it

follows from the definition (2.2) that Sc(x, y) = −∞ for all x, y ∈ Rd, by taking a path ψ for x
to y that remains at x for an arbitrary long time interval, and letting the interval length tend to
infinity. For completeness, some elementary and well-known properties of Sc are established for
the specific setting considered here.

Proposition 2.1 Let Sc be given by (2.2). The following properties hold.

(i) For each x, y ∈ Rd, the function c 7→ Sc(x, y) is nondecreasing.

(ii) For each c ∈ R, the function (x, y) 7→ Sc(x, y) satisfies the triangle inequality:

Sc(x, z) ≤ Sc(x, y) + Sc(y, z), x, y, z ∈ Rd. (2.3)

(iii) If Sc(x0, y0) = −∞ for some x0, y0 ∈ Rd and c ∈ R, then Sc(x, y) = −∞ for all x, y ∈ Rd.

(iv) If Sc > −∞, then Sc(x, x) = 0, for each x ∈ Rd.

Throughout the paper cL denotes the infimum over all c such that Sc > −∞.
Proof. (i) follows immediately from the definition of the Mañé potential. (ii) For the triangle
inequality, if Sc(x, z) = −∞ there is nothing to prove. Suppose Sc(x, z) > −∞. Then Sc(x, y) >
−∞ and Sc(y, z) > −∞ as well, for otherwise, if Sc(x, y) = −∞, then there exists, for each
N > 0, a tN > 0 and an absolutely continuous path ψN with ψN (0) = x and ψN (tN ) = y such
that

Sc(x, y) ≤
∫ tN

0
c+ L(ψN (s), ψ̇N (s))ds ≤ −N.

Let τ > 0 and φ be any absolutely continuous path with φ(0) = y and φ(τ) = z and
∫ τ
0 c +

L(φ(s), φ̇(s))ds =: C <∞. Then, by concatenating ψN and φ as

ψN (s)I{0 ≤ s ≤ tN}+ φ(s− tN )I{tN < s ≤ tN + τ}

it follows that

Sc(x, z) ≤
∫ tN

0
c+ L(ψN (s), ψ̇N (s))ds+

∫ τ

0
c+ L(φ(s), φ̇(s))ds ≤ −N + C.

By sending N → ∞ it follows that Sc(x, z) = −∞, which is a contradiction. Consequently,
Sc(x, y) > −∞. A similar argument shows that Sc(y, z) > −∞.

To proceed with the proof of the triangle inequality, take an arbitrary ϵ > 0, and select
t1, t2 > 0 and absolutely continuous paths ψ1, ψ2 with ψ1(0) = x, ψ1(t1) = y, ψ2(0) = y and
ψ2(t2) = z such that

Sc(x, y) ≥
∫ t1

0
c+ L(ψ1(s), ψ̇1(s))ds−

ϵ

2
,

Sc(y, z) ≥
∫ t2

0
c+ L(ψ2(s), ψ̇2(s))ds−

ϵ

2
.
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Concatenate the two trajectories by

ψ(s) = ψ1(s)I{0 ≤ s ≤ t1}+ ψ2(s− t1)I{t1 < s ≤ t1 + t2}.

It follows that

Sc(x, y) + Sc(y, z) ≥
∫ t1

0
c+ L(ψ1(s), ψ̇1(s))ds

+

∫ t2

0
c+ L(ψ2(s), ψ̇2(s))ds− ϵ

=

∫ t1+t2

0
c+ L(ψ(s), ψ̇(s))ds− ϵ

≥ Sc(x, z)− ϵ.

Since ϵ > 0 is arbitrary the triangle inequality follows.
(iii) follows from the triangle inequality.
To prove (iv), take x ∈ Rd and let ϵ > 0, h > 0 be such that h(c+L(x, 0)) < ϵ and ψ(s) = x

for each 0 ≤ s ≤ h. By definition of the Mañé potential,

Sc(x, x) ≤ h(c+ L(x, 0)) < ϵ.

Since ϵ > 0 is arbitrary it follows that Sc(x, x) ≤ 0. The reverse inequality, Sc(x, x) ≥ 0, follows
from the triangle inequality.

2.2 The stationary Hamilton-Jacobi equation

Given a Hamiltonian H : Rd × Rd → R and c ∈ R, the stationary Hamilton-Jacobi equation is

H(y,DS(y)) = c, y ∈ Rd. (2.4)

A continuous function S : Rd → R is a viscosity subsolution (supersolution) of the stationary
Hamilton-Jacobi equation (2.4) if, for every function v ∈ C∞(Rd),

if S − v has a local maximum (minimum) at y0 ∈ Rd,
then H(y0, Dv(y0)) ≤ c (≥ c).

}
(2.5)

Such a function S is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

The Mañé critical value is the infimum over c for which (2.4) admits a viscosity subsolution.
With some abuse of notation it will be denoted by cH . The critical value admits the lower bound

cH ≥ sup
y

inf
p
H(y, p). (2.6)

Indeed, if (2.4) admits a viscosity subsolution U c at level c, then for every y there is a v ∈ C∞(Rd)
such that U c − v has a local maximum at y and infpH(y, p) ≤ H(y,Dv(y)) ≤ c. The claim
follows by taking supremum over y. Examples where cH = supy infpH(y, p) are provided below.
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The Mañé potential (2.2) is well studied within weak KAM theory, where it is commonly
assumed that the Hamiltonian is uniformly superlinear: for each K ≥ 0 there exists C(K) ∈ R
such that H(y, p) ≥ K|p| − C(K) for each y, p. Under such an assumption there exist critical
viscosity subsolutions, that is, there exists a global viscosity subsolution to (2.4) for c = cH ,
see [6, 5]. In this paper uniform superlinearity is not assumed. In contrast, it is assumed that
the Hamiltonian is given by the Fenchel-Legendre transform of a Lagrangian L, as in (2.1), and
consequently p 7→ H(y, p) is convex in p, for every y ∈ Rd. For instance, the Hamiltonian
associated with the unit rate Poisson process, which is of the form

H(p) = ep − 1, p ∈ R,

is covered by our assumptions. For this choice of H the Mañé critical value is cH = −1, but there
can be no critical subsolution S as it would have to satisfy DS(y) = −∞ almost everywhere, see
Example 2.3 below.

The following properties of the Mañé potential are well known and similar statements appear
in [5, 6, 7], see also the lecture notes [4, 1]. However, our assumptions on the Hamiltonian are
different and thus a proof is included for completeness.

Proposition 2.2 Assume (2.1). Take c ∈ R, x ∈ Rd and suppose that the function y 7→ Sc(x, y)
is continuous. The following statements hold.

(i) Suppose that Sc > −∞. Then y 7→ Sc(x, y) is a viscosity subsolution to H(y,DS(y)) = c
on Rd and a viscosity solution on Rd \ {x}.

(ii) For each y ∈ Rd, Sc(x, y) = supS∈Sc
x
S(y), where Scx is the collection of all continuous

viscosity subsolutions to H(y,DS(y)) = c that vanish at x.

Recall that cL is the infimum over c such that Sc > −∞. Take x ∈ Rd and suppose that, for
each c > cL, the function y 7→ Sc(x, y) is continuous. For c > cH there exist viscosity subsolutions
to (2.4) and by Proposition 2.2(ii) it follows that Sc > −∞. Consequently, cH ≥ cL. Similarly,
for c < cH there are no subsolutions and by Proposition 2.2(i) Sc = −∞, which implies cH ≤ cL.
This proves the following.

Corollary 2.3 Take x ∈ Rd and suppose that, for each c > cL, the function y 7→ Sc(x, y) is
continuous. Then cH = cL.

Before proceeding to the proof of Proposition 2.2 we state an important lemma that can be
interpreted as a dynamic programming property of the Mañé potential.

Lemma 2.4 Suppose that Sc > −∞. For any x, y0 ∈ Rd with y0 ̸= x and ϵ > 0 there exist
0 < δ < |x− y0|, y with |y − y0| < δ, h > 0 and an absolutely continuous path ψ with ψ(0) = y,
ψ(h) = y0, and |ψ(s)− y0| < δ for all s ∈ [0, h], such that

Sc(x, y0) ≥ Sc(x, y) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ϵ.
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Proof. Given x, y0 ∈ Rd with x ̸= y0 and ϵ > 0, take t > 0 and an absolutely continuous
function φ with φ(0) = x, φ(t) = y0 such that

Sc(x, y0) ≥
∫ t

0
(c+ L(φ(s), φ̇(s))) ds− ϵ.

Let 0 < δ < |x − y0| and take h > 0 such that |φ(s) − y0| < δ for each s ∈ [t − h, t]. With
y = φ(t− h) and ψ(s) = φ(s+ t− h), s ∈ [0, h], it follows that

Sc(x, y0) ≥
∫ t

0
(c+ L(φ(s), φ̇(s))) ds− ϵ

=

∫ t−h

0
(c+ L(φ(s), φ̇(s))) ds+

∫ t

t−h
(c+ L(φ(s), φ̇(s))) ds− ϵ

≥ Sc(x, y) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ϵ.

This completes the proof.
Proof of Proposition 2.2. Proof of (i). Suppose that Sc > −∞, take x ∈ Rd and suppose that
y 7→ Sc(x, y) is continuous. First we prove the viscosity subsolution property. For v ∈ C∞(Rd),
suppose that Sc(x, ·)−v has a local maximum at y0 and, contrary to what we want to show, that
H(y,Dv(y))− c ≥ θ > 0 for |y − y0| ≤ δ, for some δ > 0. We may assume that δ is sufficiently
small that

Sc(x, y)− v(y) ≤ Sc(x, y0)− v(y0), for |y − y0| ≤ δ.

Take any y with |y− y0| ≤ δ and consider any absolutely continuous path ψ such that ψ(0) = y,
ψ(h) = y0 and |ψ(s) − y0| ≤ δ for all s ∈ [0, h]. By the triangle inequality (2.3) and the last
inequality

0 ≥ Sc(x, y0)− Sc(x, y)−
∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

≥ v(y0)− v(y)−
∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

=

∫ h

0

(
d

ds
v(ψ(s))− L(ψ(s), ψ̇(s))− c

)
ds

=

∫ h

0

(
⟨Dv(ψ(s)), ψ̇(s)⟩ − L(ψ(s), ψ̇(s))− c

)
ds.

We may assume that ψ̇ is chosen such that, using the conjugacy between H and L,

H(ψ(s), Dv(ψ(s))) ≤ ⟨Dv(ψ(s)), ψ̇(s)⟩ − L(ψ(s), ψ̇(s)) +
θ

2
,

for all s ∈ [0, h]. Then

θh

2
≥
∫ h

0
(H(ψ(s), Dv(ψ(s)))− c) ds ≥ θh,
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which is a contradiction. Thus, it must hold that H(y0, Dv(y0)) ≤ c.
Next, we prove the supersolution property on Rd \ {x}. Take v ∈ C∞(Rd) and suppose

Sc(x, ·) − v has a local minimum at y0 ̸= x and, contrary to what we want to show, that
H(y,Dv(y))− c ≤ −θ < 0 for |y− y0| ≤ δ, for some δ > 0. We may assume that δ is sufficiently
small that |x− y0| > δ and

Sc(x, y)− v(y) ≥ Sc(x, y0)− v(y0), for |y − y0| ≤ δ.

By Lemma 2.4 we may select y with |y − y0| ≤ δ and an absolutely continuous path ψ such
that ψ(0) = y, ψ(h) = y0 and |ψ(s)− y0| ≤ δ for all s ∈ [0, h], with the property that

Sc(x, y0) ≥ Sc(x, y) +

∫ h

0
c+ L(ψ(s), ψ̇(s))ds− θh

2
.

The last inequality implies that

θh

2
≥ Sc(x, y)− Sc(x, y0) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

≥ v(y)− v(y0) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

=

∫ h

0

(
− d

ds
v(ψ(s)) + L(ψ(s), ψ̇(s)) + c

)
ds

=

∫ h

0

(
−⟨Dv(ψ(s)), ψ̇(s)⟩+ L(ψ(s), ψ̇(s)) + c

)
ds

≥
∫ h

0
−
(
H(ψ(s), Dv(ψ(s)))− c

)
ds.

We conclude that

−θh
2

≤
∫ h

0
(H(ψ(s), Dv(ψ(s)))− c) ds ≤ −θh.

This is a contradiction and thus it must indeed hold that H(y0, Dv(y0)) ≥ c, which completes
the proof of (i).

Proof of (ii). Let c ∈ R. If there are no viscosity subsolutions at level c, then by (i)
Sc = −∞ and Scx = ∅, which implies that supS∈Sc

x
S(y) = −∞ as well. If there exist continuous

viscosity subsolutions at level c, take x ∈ Rd and let S be a continuous viscosity subsolution
of H(y,DS(y)) = c on Rd. It is sufficient to show that for any y ∈ Rd, t > 0 and absolutely
continuous function ψ with ψ(0) = x and ψ(t) = y,

S(y)− S(x) ≤
∫ t

0

(
c+ L(ψ(s), ψ̇(s))

)
ds. (2.7)

To show (2.7), fix t > 0, y ∈ Rd, an absolutely continuous path ψ with ψ(0) = x and ψ(t) = y
and take an arbitrary ϵ > 0. For every s ∈ [0, t], let vs ∈ C∞(Rd) be such that S− vs has a local
maximum at ψ(s). Then, there exists δs > 0 such that

S(z)− vs(z) ≤ S(ψ(s))− vs(ψ(s)), for |z − ψ(s)| < δs,
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and consequently that

S(z)− S(ψ(s)) ≤ vs(z)− vs(ψ(s)), for |z − ψ(s)| < δs. (2.8)

By continuity of H and Dvs we may, in addition, assume that δs is sufficiently small that

H(z,Dvs(z)) ≤ c+
ϵ

t
, for |z − ψ(s)| < δs.

For every s ∈ [0, t], let hs > 0 be such that |ψ(u)−ψ(s)| < δs for every u with |u− s| < hs. This
is possible due to the continuity of ψ. The union

[0, h0) ∪
⋃

s∈(0,t]

(s, s+ hs),

is an open cover of [0, t]. Since [0, t] is compact there is a finite subcover, which we can assume
is of the form

[0, h0) ∪
n−1⋃
k=1

(sk, sk + hsk),

where 0 = s0 < s1 < · · · < sn−1 < sn = t. Since the finite union is a subcover, it must hold that
sk−1 < sk < sk−1 + hsk−1

for each k = 1, . . . , n. It follows that, using (2.8) and the conjugacy
between H and L,

S(y)− S(x) =
n∑
k=1

S(ψ(sk))− S(ψ(sk−1))

≤
n∑
k=1

vsk−1
(ψ(sk))− vsk−1

(ψ(sk−1))

=

n∑
k=1

∫ sk

sk−1

⟨Dvsk−1
(ψ(s)), ψ̇(s)⟩ds

≤
n∑
k=1

∫ sk

sk−1

(
H(ψ(s), Dvsk−1

(ψ(s))) + L(ψ(s), ψ̇(s))
)
ds

≤
n∑
k=1

∫ sk

sk−1

(
c+

ϵ

t
+ L(ψ(s), ψ̇(s))

)
ds

= ϵ+

∫ t

0

(
c+ L(ψ(s), ψ̇(s))

)
ds.

Since ϵ > 0 was arbitrary the claim follows.
We proceed by computing Mañé’s critical value, cH for some Hamiltonians arising in the

theory of large deviations of stochastic processes; in all three examples there is equality in the
lower bound for cH .
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Example 2.1 (Critical diffusion process) Let U : Rd → R be a potential function and b(y) =
−DU(y). Consider the Hamiltonian H(y, p) = ⟨b(y), p⟩+ 1

2 |p|
2. Then cH = supy infpH(y, p) =

−1
2 infy |b(y)|

2. Indeed, from (2.6), cH ≥ −1
2 infy |b(y)|

2 and U is a subsolution to H(y,DS(y)) =
−1

2 infy |b(y)|
2, which implies cH ≤ −1

2 infy |b(y)|
2. In particular, if DU(y) = 0 for some y, then

cH = 0. In this setting the Mañé potential can be viewed as a generalization of Freidlin and
Wentzell’s quasi-potential, described in [10, Ch. 4].

Example 2.2 (Birth-and-death process) Consider an interval (a, b) ⊂ R and functions µ :

(a, b) → [0,∞), λ : (a, b) → [0,∞) satisfying
∫ b
a log(

√
µ(y)/λ(y))dy < ∞. Consider the Hamil-

tonian

H(y, p) = λ(y)(ep − 1) + µ(y)(e−p − 1).

In this case cH = supy infpH(y, p) = − infy(
√
µ(y) −

√
λ(y))2. To see this, recall from (2.6)

that cH ≥ − infy(
√
µ(y)−

√
λ(y))2. A subsolution of

H(y,DS(y)) = − inf
y
(
√
µ(y)−

√
λ(y))2,

is given by

U(y) =

∫ y

a
log(

√
µ(z)/λ(z))dz.

Indeed,

H(y,DU(y)) = −(
√
µ(y)−

√
λ(y))2 ≤ − inf

y
(
√
µ(y)−

√
λ(y))2.

Example 2.3 (Pure birth process) Let λ : [0,∞)d → [0,∞)d and put

H(y, p) =

d∑
j=1

λj(y)(e
pj − 1).

In this case cH = supy infpH(y, p) = − infy
∑d

j=1 λj(y) =: −λ∗. Indeed, from (2.6) it follows
that cH ≥ −λ∗ and for any c ∈ (−λ∗, 0) and α ≤ log(1 + c/λ∗), the function α⟨1, y⟩ is a
subsolution to H(y,DS(y)) = c, which implies cH ≤ −λ∗.

We end this subsection by proving a sufficient condition for the continuity of y 7→ Sc(x, y).

Proposition 2.5 Suppose that the Lagrangian L is continuous at (y, 0) for each y ∈ Rd. Then,
for each x ∈ Rd and c > cL the function y 7→ Sc(x, y) is continuous.

Proof. Take y0 ∈ Rd, c > cL and ϵ > 0. To prove continuity at y0 we show that there exists a
δ > 0 such that |y − y0| < δ implies

Sc(x, y0) ≤ Sc(x, y) + ϵ, (2.9)
Sc(x, y) ≤ Sc(x, y0) + ϵ. (2.10)

11
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We begin to prove (2.9). By assumption L is continuous at (y0, 0) and we may select δ′ such that
L(y0+z, v) ≤ L(y0, 0)+1 for all |z| < δ′ and |v| < δ′. Pick h > 0 such that h(c+L(y0, 0)+1) < ϵ/2
and let δ = hδ′. For y such that |y − y0| < δ, take t > h and an absolutely continuous path ψ
with ψ(0) = x, ψ(t− h) = y such that

Sc(x, y) ≥
∫ t−h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ϵ

2
,

and ψ̇(s) = h−1(y0 − y) for t− h ≤ s ≤ t. Then,

Sc(x, y0) ≤
∫ t−h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds+

∫ t

t−h

(
c+ L(ψ(s), ψ̇(s))

)
ds

≤ Sc(x, y) +
ϵ

2
+ h(c+ L(y0, 0) + 1)

≤ Sc(x, y) + ϵ,

by the choice of h. The proof of (2.10) is similar.

3 Large deviations for stochastic approximations and the pro-
jected Aubry set

In this section, we will study the Lagrangian appearing as the local rate function in a large
deviations principle of stochastic approximations and characterise the projected Aubry set.

3.1 The Lagrangian associated with stochastic approximations

We are interested in the Lagrangian on the form

L(x, β)
.
= inf

µ

{
inf

γ∈M(µ)
R(γ(dy × dz)||µ(dx)⊗ ρx(y, dz)) : β =

∫
g(x, z)µ(dz)

}
, (3.1)

where µ is a probability distribution Rdy , M(µ) are distributions on Rdy × Rdy with µ as
marginal distributions, R(·∥·) is the relative entropy between probability distributions, g(x, z) is
the stochastic approximation update function from Rdx × Rdy to Rdx and ρx(y, dz) is a Markov
kernel that depends on x with the following assumptions:

Assumption 3.1

(I) For every α ∈ Rdx ,

sup
x∈Rdx

sup
y∈Rdy

(
log

∫
Rdy

e⟨α,g(x,z)⟩ρx(y, dz)

)
<∞.

(ii) L(x, β) is continuous in (x, β).

12
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In [11] it is proven that under additional assumptions on g and {ρx}, the Lagrangian (3.1)
is the local rate function of the stochastic approximation (1.3). However, for the main results of
this paper we will not need such additional assumptions. The continuity of L will imply that its
convex dual, H, is coercive. See [14].

The Lagrangian (3.1) has a number of useful properties, summarized in the following lemma.

Lemma 3.2 Assume the Lagrangian L(x, β) is on the form given by equation (3.1) satisfies
assumption 3.1 then the following holds

(i) For all x, L(x, β) is convex in β.

(ii) L(x, β) is super-linear. i.e for all x ∈ Rdx and all K > 0 there exists a constant C(K),
that depends only on K, such that

L(x, β) ≥ K∥β∥+ C(K),

for all β ∈ Rdx .

Proof. Property (i) and (ii) are proved in [11]. Here we prove (iii). By Assumption 3.1, for all
K > 0 there is a constant C̃(K) such that,

sup
x∈Rdx

sup
y∈Rdy

(∫
Rdy

eK∥g(x,z)∥ρx(y, dz)

)
< C̃(K).

For a given ϵ > 0, β ∈ Rdx and x ∈ Rdx , choose measures µ(dy) and q(y, dz) such that µ is
invariant measure to q,

L(x, β) + ϵ > R(q ⊗ µ||ρx ⊗ µ),

and
β =

∫
Rdy

g(x, y)µ(dy).

Now for any β we have

∥β∥ =

∥∥∥∥∫
Rdy

g(x, y)µ(dy)

∥∥∥∥ ≤
∫
Rdy

∥g(x, y)∥µ(dy) =
∫
Rdy

∫
Rdy

∥g(x, y)∥ q(z, dy)µ(dz)

=

∫
Rdy

∫
Rdy

∥g(x, y)∥ q(z, dy)µ(dz)

ρx(z, dy)µ(dz)
ρx(z, dy)µ(dz).

Now using the inequality ab ≤ eKa+ 1
K (b log(b)+b−1), with a = ∥g(x, y)∥ and b = q(z,dy)µ(dz)

ρx(z,dy)µ(dz)
ρx(z, dy)

yields

∥β∥ ≤
∫
Rdy

∫
Rdy

eK∥g(x,y)∥ρx(z, dy)µ(dz) +
1

K
R(q ⊗ µ||ρx ⊗ µ)

≤ sup
x∈Rdx

sup
y∈Rdy

(∫
Rdy

eK∥g(x,z)∥ρx(y, dz)

)
+

1

K
(L(x, β) + ϵ)

≤ C̃(K) +
1

K
(L(x, β) + ϵ).

13
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With C(K) = −KC̃(K)− ϵ we have that

L(x, β) ≥ K∥β∥+ C(K),

which proves the superlinearity of L(x, β).
The superlinearity is an important property because it yields compactness properties for

minimizing curves to the Lagrangian.

Theorem 3.3 Let L be a Lagrangian that is convex and superlinear, and let K be a compact set.
Then the following subset of absolutely continuous paths{

ψ ∈ AC([a, b]) : ψ([a, b]) ∩K ̸= ∅,
∫ b

a
L(ψ(t), ψ̇(t))dt ≤ γ

}
,

is compact in the topology of uniform convergence for all γ > 0.

For proof see [5]. Now we proceed to establish the critical values for the Mañé potential associated
with the Lagrangian (3.1).

Lemma 3.4 For the Lagrangian specified in equation (3.1) and satisfying the assumptions 3.1,
we have cH = cL = 0.

Proof.
The equality between cL and cH follows from Corollary 2.3 and Proposition 2.5. Since the

relative entropy is always larger than zero we have that L(x, β) ≥ 0. This implies that cL ≤ 0.
Let x be a point such that L(x, 0) = 0, these are the stationary points to the ODE 1.4. If cL < 0
then the value Sc(x, x) can be made arbitrarily small. This implies that cL ≥ 0 and therefore we
have that cL = 0. From now on we deal with the case of c = 0.

Since the Lagrangian L ≥ 0, then S0(x, y) > −∞ and by Preposition 2.2 we have that
S0(x, y) is a viscosity subsolution on Rdx and a viscosity solution on Rdx\{x}.

3.2 Characterisation of the projected Aubry set

There is a close connection between the projected Aubry set and viscosity solutions to the
stationary Hamilton-Jacobi equations.

Lemma 3.5 Let H be a coercive Hamiltonian and c ≥ cH . The following are equivalent:

• x ∈ Ac.

• y → Sc(x, y) is a viscosity solution to H(y,DS(y)) = c on Rd.

We know from Proposition 2.2 that, for each x ∈ Rdx , y 7→ Sc(x, y) is a viscosity solution
on Rd\{x}, the projected Aubry set is precisely the points where this property extends to the
whole space. The projected Aubry set is also important in characterising the viscosity solutions,
for example if the underlying space is a compact closed manifold M , we have the following
representation formula for viscosity solutions.

14
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Theorem 3.6 Given a coercive Hamiltonian H on a compact connected manifold M , all vis-
cosity solutions u : Rd → R of the stationary Hamilton-Jacobi equation, H(u,Du) = cH , satisfies

u(x) = inf
y∈Ac

[u(y) + ScH (y, x)].

See [5] for proof. Our contribution in this part is characterising the Aubry set for Lagrangian
defined in (3.1). The forward set, at the point x ∈ Rd, to the ODE (1.4) is

F (x) = ∩t>0{y(s) : s > t},

where y(s) is a solution to the ODE with initial value y(0) = x. Define the total forward set F
to be the union of all forward sets

F = ∪x∈RdF (x).

The main theorem of this section connects the total forward set with the projected Aubry set.

Theorem 3.7 The projected Aubry set A0 to the Lagrangian defined by (3.1) and satisfying the
assumptions 3.1 is equal to the total forward set F .

Proof. First, we prove the following, that for a trajectory satisfies ψ(t),
∫ T
0 L(ψ(t), ψ̇(t))dt = 0

is equivalent to that ψ is a solution almost everywhere to the ODE (1.4). From the definition of
L(x, β)

L(x, β) = inf
µ

inf
q:µq=q

{∫
R(q(y, ·)||ρx(y, ·))µ(dy) :

∫
g(x, y)µ(dy) = β

}
,

we have that if L(x, β) = 0 iff β = ḡ(x). if β = ḡ(x) then we can take as the minimizing measures
µ = π and q = ρx which implies that L(x, β) = 0. If L(x, β) = 0 this means that for a minimizing
measures µ and q we have that q(y, ·) = ρx(y, ·) except for a µ-null set. This means that∫

ρx(y, dz)µ(dy) =

∫
q(y, dz)µ(dy) = µ(dz),

which implies that µ is an invariant measure to ρx. Since the invariant measure is unique we
have that µ = π and therefore that β = Eπ[g(x, Y )] = ḡ(x). So a trajectory ψ have zero cost
iff ψ̇(x) = ḡ(x). Now we can prove that x ∈ F ⇒ x ∈ A0. If x ∈ F then there is a point x0
such that a solution to the ODE (1.4) ψ(t) with the properties ψ(0) = x0 and either ψ(t) = x
infinitely often or limt→∞ ψ(t) = x. In the case that ψ(t) visits x infinitely often there is a
increasing sequence of times tk such that limk→∞ tk → ∞ and such that ψ(tk) = x. Then

M(tk − t1, x, x) ≤
∫ tk−t1

0
L(ψ(t1 + t), ψ̇(t1 + t))dt = 0,

which implies that h(x, x) = 0. In the case that ψ(t) converges to x then since ḡ(x) is uniformly
continuous then ψ̇(t) → 0 and we have that x is a stationary point ḡ(x) = 0. Stationary points
are obviously in the projected Aubry set.

Now we will assume that x ∈ A0. Then there exists trajectories ψk, increasing times tk and
numbers ϵk such that limk tk → ∞, lim ϵk = 0 and∫ tk

0
L(ψk(s), ψ̇k(s))ds < ϵk.
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By Theorem 3.3 the sequence {ψk} is compact for every time interval. We can therefore construct
a limit functionψ by

ψ(t) = lim
k→∞

ψk(t),

where we take the limit over a convergent subsequence. Now the function ψ satisfies∫ T

0
L(ψ(t), ψ̇(t))dt = 0.

Therefore ψ must be a solution almost everywhere to the ODE 1.4 with initial value ψ(0) =
x. Due to the uniform convergence we can for all ϵ > 0 find a N such that for k > N ,
supt∈[0,tk] ∥ψ(t)− ψk(t)∥ < ϵ. Since ψk(tk) = x we have that for every ϵ > 0 we can find infinite
times tk such that ∥ψ(tk)− x∥ < ϵ. This implies that

x ∈ ∩t>0{ψ(s), s > t} = F (x).

So x is in the total forward set F .
To further specify the projected Aubry set we take some insights from Lyaponov theory. If

the limit function is on the form ḡ(x) = −fx(x) for some real valued function f , bounded from
below and f(x) → ∞ when ∥x∥ → ∞, then the Forward limit set is all the stationary points
F = A0 = {x : ḡ(x) = 0}. The conditions on G(x) would for example be satisfied in a linear
regression case with squared loss or logistic regression with cross-entropy loss. We conclude
with some stochastic approximation algorithms where the projected Aubry set can be explicitly
calculated.

Example 3.1 (Stochastic gradient descent) Given some data y = {yi}Ni=1 and parameters
x the task is to minimize a function G(x) = 1

N

∑N
i=1G(yi, x) with stochastic gradient descent

(SGD). Assume that G(y, x) is bounded from below and G(x) → ∞ if ∥x∥ → ∞. Given a
estimate of the parameters xn the next point is given by the procedure: sample In+1 uniformly
from {1, . . . , N} and update xn+1 by

xn+1 = xn −
1

n+ 1
∇xG(yIn+1 , x).

In this setting we have that g(x, I) = −∇xG(yI , x) and that the noise distribution ρ is the uniform
measure over {1, . . . , N}. The Lagrangian is then given by

L(x, β) = inf
µ

{
N∑
i=1

log(Nµi)µi : β = −
N∑
i=1

∇xG(yi, x)µi

}
,

where the minimizing measure µ can be parameterized by a N -long probability vector. We also
require L(x, β) <∞ in a neighbourhood of β = 0. The corresponding Hamiltonian is given by

H(x, α) = log

(
1

N

N∑
i=1

e−⟨α,∇xG(yi,x)⟩

)
.

Since the limit function ḡ(x) = −∇xG(x) we have that the projected Aubry set is given by

A0 = {x : ∇xG(x) = 0},

all stationary points to the minimization problem.
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Example 3.2 (Persistent contrastive divergence) Consider a model with visible variables
v, hidden variables h, model parameters x and probability density on the form

p(v, h|x) = e−E(v,h;x)+F (x),

where E is the energy and F is the free energy or normalisation constant

F (x)− log

∫
e−E(v,h;x)dhdx.

We also define the density for the hidden variables given the visible and the parameters as

p(h|v, x) = e−E(h,v;x)+FH(x,v),

where
FH(v, x) = − log

∫
e−E(v,h;x)dh.

The persistent contrastive divergence algorithm minimizes the negative log-likelihood

G(x) =
N∑
i=1

log p(vi|x),

by a recursive updating scheme. The updating scheme relies on N + 1 Markov chains. The first
N chains will be Markov chains in y1 = h and will approximate p(h|vi, x). We denote these with
ρi,1x (y1|dz1) and construct these such that they have invariant distribution p(h|vi, x). The final
Markov chain ρ2(y2, dz2) have variable y2 = (h, v) and have stationary distribution p(v, h|x).
Now given a parameter estimate Xn the next parameter is given by

Xn+1 = Xn − εn+1

(
∇xE(vI , Y 1

n+1;x)−∇xE(Y 2
n+1;x)

)
.

The random index I is drawn uniformly from {1, . . . , N}, Y 1
n+1 is drawn from ρI,1Xn

(Y 1
n , dz) and

Y 2
n+1 is drawn from ρXn(Y

2
n , dz). By identifying

g(x, y) = ∇xE(vi, y1;x)−∇xE(y2;x)

and the noise distribution as

ρx(y, dz)ρI(i) =
1

N

N∑
j=1

ρi,1x (y1, dz)ρx(y
2, dz)δi=j ,

we have a stochastic approximation update on the form of equation (1.3). The limit function is
given by

ḡ(x) =
1

N

N∑
i=1

∫
∇xE(vi, h;x)p(h|vi, x)dh−

∫
∇xE(v, h;x)p(v, h;x)dvdh,

which is equal to the gradient of the log-likelihood, ḡ(x) = L(x). Furthermore if the energy E is
bounded from below and E(h, v;x) → ∞ as ∥x∥ → ∞ the projected Aubry set is given by

A0 = {x : ∇G(x) = 0} ,

the minimizing points to the log-likelihood.
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