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ABSTRACT: There is a growing intent among engineers, stakeholders, and decision makers to use prob-

abilistic methods for infrastructure assessment or design objectives. However, the corresponding limit

state for such problems usually requires the construction of complex computational models, usually using

commercial software without parallelization capability. Such a requirement makes performing reliabil-

ity analysis computationally prohibitive, which is even more challenging for dynamic problems, since

a very short time step is required to obtain sufficiently accurate predictions. This concern has led to

several methods being proposed to surrogate the limit state function with a generally black box called a

meta-model. A variety of them, such as Kriging, Polynomial Chaos Expansion (PCE), Artificial Neural

Networks (ANN), and response surfaces (e.g., polynomial, spline, or radial-base functions), have been

adopted for this purpose. These meta-models are typically trained on a limited data set collected by

computing the true responses of carefully selected input variables. Their applicability for assessing the

probability of failure has been studied individually in the literature for both benchmark and practical

problems. However, as far as the authors are aware, no comparison has been made between them for

dynamic problems. This comparison needs to be made from the point of view of both accuracy and

performance (number of calls to the limit state function). In this context, this paper takes a systematic

approach to evaluate their performance under identical conditions, i.e., with similar training datasets.

For this purpose, the dynamic response of railway bridges with different spans excited by the passage of

trains with a wide range of speeds is used as a reference problem.

1. INTRODUCTION

The built environment faces a variety of uncer-

tainties during its lifetime. These uncertainties in-

clude, for example, induced impacts, experienced

damage, or changes in properties. Therefore, the

evaluation of their influence on the desired perfor-

mance of the infrastructure seems essential. This

statement is further emphasized when considering

that the infrastructures currently in operation are

quite old, the future environmental conditions are

very uncertain, and the expectations of modern so-

ciety are much higher than before.

Traditionally, partial safety factors are used

to implicitly account for the above uncertainties.

However, their applicability is not guaranteed if the

design scenario is far from those considered in the
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calibration process. Moreover, they cannot help in

assessing the level of risk. In addition, the design

process is inherently an optimization process, usu-

ally aimed at minimizing total cost or maximizing

utilities. Other researchers have discussed that con-

ventional optimization approaches do not necessar-

ily result in safe designs, even when all regulations

(based on partial safety factor approaches) are fol-

lowed. This has led to reliability-based design op-

timization (RBDO) approaches gaining significant

attention in recent decades. In this approach, the

satisfaction of the target reliability for each design

situation (limit state) is implemented as an addi-

tional constraint in the optimization process. The

interested reader can find more about RBDO in

Enevoldsen and Sørensen (1994).

Therefore, depending on the approach that aims

to address safety-related concerns of the infrastruc-

ture, the estimation of the probability of failure is

unavoidable. Such estimation requires the calcula-

tion of a multiple integral that reads as Eq. (1).

p f = P
[
g(X)≤ 0

]
=

∫
D f

fX(xxx)dxxx (1)

where fX(xxx) is the joint probability distribution of

the random variables X ∈ R
NX (NX is problem di-

mensionality), g(•) is the limit state function defin-

ing the boundary between safe and failure domains

and D f = {x|g(x)≤ 0} ⊂Ω is the failure domain.

A variety of methods have been developed to

calculate this integral, of which the first/second

order reliability method (FORM /SORM) and di-

rect Monte Carlo simulation (MCS) are probably

the best known. The former expresses the short-

est distance from the point with largest likelihood

to the most probable point (MPP) located on the

limit state; this is approximated by its first (or sec-

ond) order Taylor series expansion around the MPP.

Such an approximation may affect the accuracy of

FORM /SORM results for strongly nonlinear limit

state functions (Melchers and Beck, 2018). More-

over, the MPP is an unknown point that should be

determined iteratively, and the method requires the

calculation of gradients of the limit state function,

which can lead to high computational costs, es-

pecially for problems with complex computational

models (e.g., nonlinear finite element models).

On the other hand, MCS estimates the expected

value of an indicator function fed by pointwise es-

timates of the limit state function. The method is

very stable, but its accuracy is inversely propor-

tional to the square root of the pointwise estimates

(number of samples), which makes it computation-

ally impractical for problems with low failure prob-

ability and computationally intensive models.

The efficiency drawback of direct MCS is at-

tempted to be addressed by proposing methods such

as important sampling (Melchers, 1989) and sub-

set simulation (Au and Beck, 2001). Despite the

significant reduction in computational cost, these

methods still require significant calls to the compu-

tational model. Therefore, an alternative approach

is taken by adapting statistical learning concepts

to surrogate the limit state function with a func-

tion that is very cheap to evaluate, known as meta-

modeling (Hurtado, 2004).

Most often, the trained meta-models are used

in conjunction with MCS; however, previous stud-

ies have also used this concept for variance reduc-

tion and subset simulation approaches. As men-

tioned earlier, only the sign of the pointwise esti-

mate of the limit state function is required, mak-

ing both regression-based and binary classification-

based surrogate models applicable to reliability as-

sessment objectives. The former represents a con-

tinuous function that interpolates the result of the

limit state function, while the latter finds a bound-

ary separating the state space into safe and failure

domains. It should be emphasized here that the cur-

rent study focuses only on regression-based mod-

els.

A variety of regression-based surrogate mod-

els have been used for reliability assessment prob-

lems, such as Gaussian Process Regression (also

known as Kriging), Polynomial Chaos Expansion

(PCE), Artificial Neural Network (ANN), and Poly-

nomial Response Surface (RS). The following sec-

tions provides a brief overview of their concepts.

All these methods have shown acceptable per-

formance on benchmark problems (mostly with ex-

plicit limit state functions), especially in terms of

computational cost. However, the previous stud-

ies do not seem to answer in detail how and which
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methods should be selected for practical problems.

Assuming that the training phase of these models

is much less computationally intensive than the cal-

culation of the true value of the limit state function

at an unknown point, cross-validation techniques

can be used to select the most appropriate meta-

model. Despite the applicability of this approach,

some practical problems may arise.

Most often, meta-models are trained according to

an active learning scheme that starts with a small

experimental design (DOE). Then, at each itera-

tion, a learning function is used to find the most

informative points, its true limit state value is com-

puted, the DOE is enriched, and then the meta-

model is retrained until a stopping criterion is sat-

isfied (Moustapha et al., 2022). In this approach,

there is no guarantee that the best model selected

by cross-validation in the first step is still the best

one at the end of the active learning phase. More-

over, DOE is usually a very imbalanced dataset.

Therefore, it is possible that the stratified train-

ing/validation datasets contain points that all belong

to one class (most likely points within safe domain

), leading to misleading conclusions during cross-

validation.

Given these concerns, a systematic approach

is taken here to compare the performance of

regression-based meta-models. It is clear that their

performance also depends on the nature of the prob-

lem. Therefore, the current study focuses only on

dynamic problems, which often have a nonlinear

limit state with computationally expensive models.

The latter is mainly due to the very short time steps

required to achieve acceptable accuracy in the nu-

merical integration of the equations of motion. In

this context, the dynamic behavior of high-speed

railway bridges is considered.

The remainder of this article is organized to

provide a brief overview of the considered meta-

models, describe the problem of dynamic behav-

ior of high-speed railway bridges, compare the per-

formance of the meta-models considered for these

problems, and then conclude the article with a dis-

cussion of the highlights of the study.

2. REGRESSION-BASED META-MODELS

This section is devoted to briefly introduce the

concept of some common regression-based meta-

models used for structural reliability assessment.

2.1. Gaussian process regression (Kriging)
Gaussian process regression is a nonparamet-

ric model that, unlike conventional regression ana-

lyzes, does not assume independent errors between

predictions. It considers a spatial correlation be-

tween predictions implemented using an error func-

tion that follows a Gaussian process. Thus, the

meta-model can be formulated as Eq. (2).

g(X)≈ M̂GPR(X) = H (X,w)+ z(X;σ2
n ,θθθ) (2)

where H (X,w) is the matrix of basis functions

with coefficients of w representing the general trend

of the model and z(X;σ2
n ,θθθ)∼ G P(0,Σ) is the er-

ror function following a Gaussian process with zero

mean and covariance of Σ. The latter is accounted

for by a variety of kernel functions (e.g., Gaussian

and Matern families) with process variance of σ2
n

and hyperparameters of θθθ .

As mentioned earlier, the model is trained by

defining the coefficients of the basis functions, the

variance of the process, and the hyperparameters of

the autocorrelation function. It is worth noting that

the first two parameters can be estimated knowing

the hyperparameters, which are determined by the

maximum likelihood method. The interested reader

can find details of this method in Rasmussen and

Williams (2006) and its application for structural

reliability assessment in Gaspar et al. (2014); Al-

lahvirdizadeh et al. (2022).

2.2. Polynomial chaos expansion (PCE)
Polynomial chaos expansion approximates the

limit state function by a set of orthogonal basis

functions whose probability density functions of

the random variables are their inner product weight-

ing functions. It can thus be formulated as Eq.(3).

M̂PCE(X) = ∑
ααα∈NNX

wαααΨααα(u)≈ ∑
|ααα|≤q

wαααΨααα(u)

(3)

where Ψα(•) is a multivariate polynomial basis

function resulting from the tensor product of the
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univariate polynomial basis functions, u is the vec-

tor of transformed random variables, and wααα are

the coefficients of the basis functions. The model

is trained by defining the type of the basis func-

tion and calculating the deterministic coefficients.

The former depend on the type of the random vari-

able and the latter are computed either by minimiz-

ing the least square losses or by Galerkin projection

methods.

Note that the number of coefficients increases

exponentially with the dimensionality of the prob-

lem, so PCE suffers from the curse of dimension-

ality. Therefore, the highest order of polynomi-

als in practical problems is restricted to q (see Eq.

(3)). This truncation scheme is further refined by

the rank-based sparse representation or hyperbolic

truncation (Blatman and Sudret, 2011). The inter-

ested reader can find details of this method in Xiu

and Karniadakis (2002) and some applications of

that for structural reliability assessment in Sudret

(2012); Allahvirdizadeh et al. (2021).

2.3. Artificial neural network (ANN)

An artificial neural network consists of multiple

layers with the middle ones known as hidden layers,

each containing multiple parallel processing nodes

called neurons that are interconnected and map the

input space to the output space. The network where

all neurons in subsequent layers are interconnected

is called a multilayer perceptron network, which

has already been used for structural reliability as-

sessment. Determining the number of hidden layers

and also the number of neurons per layer has a sig-

nificant impact on the performance of ANN, com-

monly known as network architecture; which can

be determined using cross-validation techniques. It

is worth noting that ANN models with few hidden

layers are known as shallow neural networks, while

models with many hidden layers are known as deep

learning. Clearly, the runtime complexity of ANN

increases dramatically with the number of layers;

therefore, only the application of shallow neural

networks is of interest in this study.

The input of each neuron results from the weight-

ing of the outputs of the neurons in the previous

layer, which is fed by a function known as the acti-

vation function, which reads as Eq.(4).

x̂i j = A

[Ni−1

∑
n=1

wn jx̂(i−1)n+b
]

(4)

where x̂i j is the input of the jth neuron in the ith
layer, wn j is the weight of the output of the nth neu-

ron in the previous layer fed to the jth neuron in

the next layer, Ni−1 is the number of neurons in

the previous layer, b is the bias, and A (•) is the

activation function. It should be noted that a vari-

ety of activation functions have been proposed, of

which sigmoid, hyperbolic tangent, rectified linear

unit (ReLU), and radial basis functions are the most

commonly used. The meta-model based on ANN

can then be formulated as Eq.(5).

M̂ANN(X) = AAA′ ◦AAANL ◦ ...AAA2 ◦AAA1(X)

AAAi : RNi−1 → R
Ni i= 1, ...,NL

(5)

where AAA′(•) is the set of output functions that map

the output of the last hidden layer to the desired out-

put format, AAAi(•) is the set of activation functions

for the ith hidden layer, and NL is the number of

hidden layers. Note that the weights are computed

by minimizing the loss function (e.g., mean square

error or cross entropy loss), which is often achieved

by the backpropagation method. For brevity, the

details of the method are not discussed here; the in-

terested reader is therefore referred to Papadrakakis

et al. (1996); Hurtado and Alvarez (2001).

2.4. Polynomial response surface
The response surface method often uses low-

order polynomial functions (usually up to a maxi-

mum order of 2) to surrogate the limit state func-

tion. Therefore, in the case of considering interac-

tions between terms, the meta-model can be formu-

lated as Eq.(6).

M̂RS(X) = b+
NX

∑
i=1

wixi+
NX

∑
i=1

NX

∑
j=i

w′i jxix j (6)

where b is a bias or intercept term and w is a set

of deterministic weights determined by either least

squares or maximum likelihood methods.

Note that when considering a full quadratic

model, (NX + 1)(NX + 2)/2 terms must be de-

termined, which consequently require at least the
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same number of calls to the computational model,

causing this model to suffer from the curse of di-

mensionality. This problem can be solved by ne-

glecting the interaction terms, which reduces the

number of undetermined terms to 2NX +1. The in-

terested reader can find details of this method and

its application to structural reliability assessment in

Bucher and Bourgund (1990); Gaspar et al. (2014).

3. BENCHMARK PROBLEM

As mentioned earlier, the dynamic benchmark

problem used here to compare the performance

of the regression-based meta-models focuses on

high-speed railway bridges; a schematic represen-

tation of it can be seen in Figure 1. In this con-

text, the limit state considered is devoted to the

phenomenon of ballast instability (also known as

running safety). Previous experimental studies by

Zacher and Baeßler (2009) have shown that the

phenomenon occurs when the vertical acceleration

of the bridge deck exceeds certain limits. There-

fore, the limit state function is formulated based on

a limiting vertical acceleration and the maximum

vertical acceleration of the bridge deck. A detailed

explanation of the phenomenon and a preliminary

reliability assessment using FORM can be found in

Allahvirdizadeh et al. (2020).

It should be noted that only single-span, simply

supported reinforced concrete bridges with spans of

10 m, 20 m, and 30 m are considered. The struc-

tural behavior of the bridges is modeled using 2D

Euler-Bernoulli beams. Moreover, the stiffness of

track and rails is neglected and their contribution is

considered as additional mass. Furthermore, pass-

ing trains are simplified by neglecting the structure

of the coaches and representing them as a series of

equidistant moving loads.

The dynamic response of the bridge to the pass-

ing trains is then determined by the solution of the

equation of motion, which can be read in Eq.(7).

At this point, it should be emphasized that in EN

1991-2 (2003) it is recommended to filter out the

contribution of higher frequencies from the ob-

tained responses, which leads to the considera-

tion of a low-pass filter with a cutoff frequency of

max(30 Hz,1.5 f1, f3), where f1 and f3 are the fre-

quencies of the first and third vibration modes, re-

p p

L

v

D

pp p p

dBA

Track Rail

Suspension
System

Figure 1: Schematic view of the benchmark problem.

spectively.

Mÿ(x, t)+Cẏ(x, t)+Ky(x, t)

=
Nt

∑
j=1

p
[
Δ j(t,v,L)+Δ j(t− (D−dBA)/v,v,L)

]

Δ j(t,v,L) = δ
[
x− v(t− t j)

][
h(t− t j)−h(t− t j− L

v
)
]

(7)

where M,C and K are mass, damping and stiffness

matrices. Nt is the number of coaches, p is the axle

load of the train, v is the train speed, D is the length

of the coaches, δ (•) is the Dirac delta function, h(•)
is the Heaviside function, and t j = ( j− 1)D/v. It

should be mentioned here that a closed form solu-

tion to this problem was developed in Frỳba (2001).

This method is adopted here; however, its details

are not explained for the sake of brevity.

As mentioned earlier, the structure of passing

coaches, rails, and tracks is neglected in the con-

structed computational models. This approach

makes it impossible for the computational model

to take into account the effects of train-track-

bridge- interaction (TTBI), in particular the addi-

tional damping due to the train’s suspension sys-

tem, the amplification of responses due to uneven-

ness on the rail (rail irregularities), and the reduc-

tion of responses due to the distribution of axle

loads on the track structure. These effects are im-

plicitly implemented in the computational models

by Eqs. (8)-(10) (Yau et al., 2019; EN 1991-2,

2003; ERRI D 214/RP 9, 1999). At this point, it

should be emphasized that the additional damping

should be added to the damping recommended by
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the regulations in Eq. (11).

Δξ = μr
∣∣(r+2iξv)/[(1− r2)−2iξvr]

∣∣ (8)

γr = 1+α ′
[
56e−(

L
10 )

2
+50(

L f1
80
−1)e−(

L
20 )

2]
(9)

γt =−1.1λ ′4 +5.3λ ′3−8.3λ ′2 +5.7λ ′ −0.54

(10)

ξb(L) = max
[
1.5+0.07(20−L),1.5

]
(11)

where μ is the ratio of the modal mass of the coach

to the bridge, r is its fundamental frequency ratio

in percent, ξv is the modal damping of the coach,

α ′ = α/200 = min(v/22,1)/200, λ ′ = 0.1λ , λ =
v/ f1 is the wavelength, and 0.14≤ γt(λ ′)≤ 1.0.

Given the formulated problem, the contributing

basic random variables are categorized as given in

Table 1. It should be emphasized that all of them are

assumed to be independent, with the exception of

mass per length and moment of inertia. These two

random variables are both dependent on the cross

section dimensions and therefore cannot be consid-

ered independent. Therefore, a Student’s t-copula

function with parameters (ρ = 0.93,ν = 21) is used

to model this dependence.

Table 1: Considered random variables (parameters of
ξb are in physical space and χM is model uncertainty).

Variable Dist. Param. Trunc.
I(m4) L N -1.12 0.46 0.083

0.097 0.34 0.580

0.72 0.40 1.40

m(kg/m) L N 9.29 0.32 8900

9.72 0.26 12900

9.92 0.23 16900

E (GPa) N 29.7 3.56 -

ξb (%) L N Eq.(11) 0.30 -

p (kN) Gumbel 196 20.4 120

dBA (m) U 2.0 3.50 -

D (m) U 17.0 28.0 -

fv (Hz) Weibull 1.04 3.07 -

mv (kg) Gamma 2.2e3 8.60 -

ξv (%) Weibull 16.4 1.59 -

χM (-) L N 0.0 0.10 -

alim(m/s2) N 0.8g 0.1g [0.6-1.0]g

4. METHODOLOGY
The performance of surrogate models depends on

the DOE used for their training. In this context, ac-

tive learning methods have been developed to im-

prove the performance of the meta-model through

gradual DOE enrichment. However, these methods

are developed exclusively for each type of surro-

gate model. Therefore, it was decided to adopt a

general approach applicable to all meta-models. In

this context, an identical initial DOE is used for all

meta-models. The latter is created by generating

(NX + 1)(NX + 2)/2 uniformly distributed sample

points using Latin hypercube sampling technique.

Then the meta-models are trained and a randomly

generated and identical sample pool is passed to the

trained meta-models. The points within 5% quan-

tiles of the absolute calculated values are selected.

These points are the candidates closest to the ap-

proximated limit state at this stage. Then, the point

with the farthest distance from the DOE of the pre-

vious iteration is selected to enrich the DOE. This

approach is continued until DOE reaches a size of

200. It should be emphasized here that the final size

of DOE was chosen based on the authors’ experi-

ence and no stopping criteria are considered here.

Therefore, it is not the absolute accuracy of the

meta-models that is of interest here, but their per-

formance relative to each other. Then, the failure

probability of the considered bridges is calculated

for train speeds up to 200 km/h, 250 km/h and 300

km/h. This procedure is repeated 10 times to in-

vestigate the stability of the results and to estimate

the confidence interval of the predictions of each

meta-model. In addition, a subset simulation is per-

formed to evaluate the actual failure probability of

the system, which allows a comparison of the per-

formance of the meta-models. In Allahvirdizadeh

et al. (2021), the subset simulation was shown to

perform acceptably with a fixed conditional proba-

bility of 0.1 for intermediate limit states (p0) and a

number of samples equal to 4000 per iteration (Ns)

for the benchmark problems considered. Therefore,

the sensitivity of the results with respect to these pa-

rameters is not investigated here.

It should be highlighted here that the structure of

ANN is designed using the cross-validation tech-

nique only in the first stage of the described proce-
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dure for each train speed range and remains similar

in the remaining steps. In this context, the number

of hidden layers is changed between one and three.

Moreover, the number of neurons in each hidden

layer is varied between [NX −1.5NX ].

5. RESULTS AND CONCLUSION
The results obtained for each bridge span, the

train speed range, and type of the surrogate model

are summarized as box plots in Figure 2. As men-

tioned earlier, no stopping criteria are considered

when training the surrogate models; therefore, their

relative performance should be assessed using these

results without paying attention for possibility of

over/under-estimation.

It appears that Kriging and PCE perform better

than other meta-models in terms of both accuracy

and stability. Similarly, polynomial response sur-

faces appear to have fewer advantages in this re-

gard. Moreover, in some cases, a large discrepancy

is observed in the estimated failure probabilities of

ANN. This shortcoming could be due to the depen-

dence of ANN on its architecture, which has not

been optimized in all iterations of the training. As

a general conclusion, it seems possible for Kriging,

PCE, and ANN to accurately surrogate the compu-

tational model in dynamic problems, but when no

further information is available, Kriging may be the

first choice.

It should be noted that for bridges with shorter

spans, there is usually no resonance phenomenon at

the considered operating train speed ranges. There-

fore, the considered train speed is likely to result

in maximum responses. Similarly, for longer span

bridges, the resonance phenomenon almost always

occurs. This is not the case for medium span

bridges, which makes it difficult for the adopted

surrogate models to mimic the limit state function.

Therefore, a much larger deviation in the estimated

failure probabilities is observed for bridges with 20

m span length.
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Figure 2: Comparison between performance of the
meta-models (SS stands for subset simulation).
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