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Abstract

This thesis introduces a novel computational scheme tailored for efficient calcula-
tions of nonlinear spectroscopic observables. First, a derivation and implementa-
tion of an algorithm designed to harness the linearity of the Fock matrix construc-
tion in calculating two-photon absorption cross-sections within the self-consistent
field approximation is presented. Subsequently, this computational scheme is ex-
tended to the density functional theory approximation for functionals belonging to
the generalized gradient approximation. Lastly the derivation and implementation
of the nonlinear exchange-correlation kernel for functionals belonging to the meta
generalized gradient approximation are presented for the first time.

Collectively, the advancements presented in this thesis contribute new method-
ologies and insights to the computational realm of nonlinear spectroscopic calcula-
tions, offering the potential for large-scale theoretical spectroscopy calculations at
the level of density functional theory.
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Svensk sammanfattning

Denna avhandling introducerar en ny beräkningsmetod skräddarsydd för effek-
tiva beräkningar av icke-linjära spektroskopiska observabler. Först presenteras en
härledning och implementering av en algoritm utformad för att utnyttja lineariteten
i Fock-matrixkonstruktionen vid beräkning av två-fotons absorptions tvärsnitt inom
ramen för "the self-consistent field approximation". Därefter utvidgas denna beräkn-
ingmethod till nivån av "density functional theory" för funktionaler som tillhör
den generaliserade gradientapproximationen. Slutligen presenteras härledningen
och implementeringen av den icke-linjära "exchange-correlation kernelen" för funk-
tionaler som tillhör meta-generaliserade gradientapproximationen för första gån-
gen.

Sammantaget bidrar de framsteg som presenteras i denna avhandling med nya
metoder och insikter för beräkningen av för icke-linjära spektroskopiska beräkningar,
vilket erbjuder potentialen för storskaliga teoretiska spektroskopiberäkningar.
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I N T R O D U C T I O N

Background and motivation

Computational chemistry has emerged as an indispensable tool for
the exploration of chemical systems and the prediction of their prop-
erties, playing a crucial role in advancing our understanding of molec-
ular phenomena and driving innovations in various fields such as
materials science 1,2, drug discovery 3–5, and catalysis 6. At its core,
computational chemistry seeks to find approximate solutions to the
Schrödinger equation 7. This partial differential equation is typically
recast into a linear algebraic matrix equation by projecting it onto a
finite-dimensional space spanned by a set of known basis functions.
Leveraging variational principles reformulates the problem of solving
the Schrödinger equation into a routine task in numerical analysis. In
variational methods, the objective is to determine the wave function
parameters by enforcing the approximate wave function to adhere
to constraints that align with the exact solution. In this procedure,
the fundamental operations that constitute the building blocks of any
quantum chemistry software can, as mentioned above, be divided be-
tween linear algebra operations and integral evaluations. The linear
algebra operations predominantly consist of tensor contractions, ma-
trix diagonalizations, and matrix inversions. In the design of efficient
modern large-scale computer algorithms for approximate solutions
of the Schrödinger equation, there are mainly three performance-
oriented aspects to consider. First, the number of operations needed,
that is, the computational cost. Second, the storage demand re-
quired to handle and store final and intermediate tensors and inte-
grals. Lastly, optimizing parallel processing capabilities and adeptly
managing both aggregated and distributed memory resources to en-
sure effective scaling on state-of-the-art High-Performance Comput-
ing (HPC) systems. In this thesis, a widely adopted computational
strategy for approximating the solution to the Schrödinger equation is
the Hartree–Fock approximation 8–11. Within this approximation, the
wave function is represented as a single Slater determinant. The Slater
determinant in turn is constructed from a set of molecular orbitals
composed of linear combinations of a finite set of N known atomic ba-
sis functions and their corresponding coefficients, which serve as the
variational parameters. The Rayleigh–Ritz variational principle, to-
gether with a single Slater determinant ansatz, yields a matrix pseudo
eigenvalue equation known as the Hartree–Fock equation. Solving
the Hartree–Fock equation involves constructing the Fock matrix and
diagonalizing it iteratively to obtain a converged set of eigenvalues
and variational parameters. In fact, the efficiency of a Hartree–Fock
implementation is centered around the construction and the diago-
nalization of the Fock matrix 12–14. The HF method’s computational
complexity formally scales with the number of basis functions N as
O(N4). In practice, this means that for the most demanding step, a
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B A C K G R O U N D A N D M O T I VA T I O N

doubling of the number of basis functions would imply a 16-fold in-
crease in the number of basic mathematical operations for that step
alone. This scaling primarily arises from two key steps associated
with the Fock matrix construction:

• The evaluation of the two-electron integrals, represented as a
rank 4 tensor.

• The subsequent matrix-tensor contraction between the density
matrix and the two-electron integral tensor for the Fock matrix
construction.

Both these steps formally scale as O(N4). In the early days of com-
putational chemistry the two-electron integral tensors were typically
calculated only once in the atomic orbital basis and stored for use in
all subsequent Fock matrix constructions. However, this approach
quickly encountered memory bottlenecks as the number of unique in-
tegrals to store grows asO(N

4

8
) 14. In modern computational schemes,

other strategies are employed due to memory constraints, and the
two-electron integral tensor is typically never stored in memory. In-
stead, the two-electron integrals are constructed and immediately
contracted with the density matrix for the Fock matrix construction.
This strategy is referred to as a direct integral approach 15,16 and of-
ten leads to a significant reduction in memory requirements, making
calculations for large systems tractable. Yet, the savings in memory
demands gained by employing a direct approach come at the cost of
requiring multiple re-evaluations of the two-electron integral tensors,
which significantly increase the number of mathematical operations
required. This has far-reaching consequences when going beyond
the time-independent case to the approximate solution of the time-
dependent Schrödinger equation for the simulation of light-matter
interactions. Within the framework of time-dependent Hartree–Fock
theory and linear and non-linear response, the corrections to the Fock
matrix in the presence of the field emerge as a central component of
the mathematical formalism 17. In fact, the most computationally de-
manding step is again found to be the construction of a large num-
ber of auxiliary Fock matrices. This necessitates efforts to minimize
the number Fock matrix constructions. In this context, a two-electron
code with a small memory footprint would enable the use of parallel
construction of large numbers of Fock matrices created from a sin-
gle evaluation of the set of two-electron integrals. To make maximal
use of each two-electron integral evaluation, the fact that the auxiliary
Fock matrices represent linear transformations acting on the density
matrices with the two-electron integrals as the transformation tensor
can be used to design an efficient algorithm. This allows for a com-
putational scheme with a small memory footprint that potentially can
scale to very large systems. The explicit goal of this thesis is to present
a new efficient computational scheme exploiting the linearity in the
two-electron integral contractions and exchange-correlation kernel in-
tegrations required for the simulation of non-linear spectroscopic ob-
servables.
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T H E S E M I - C L A S S I C A L
A P P R O X I M A T I O N O F L I G H T M A T E R
I N T E R A C T I O N S

Linear and non-linear susceptibilities

MAXW ELL’S EQUATIONS

The semi-classical approximation is a modelling approach in
which the medium is treated quantum mechanically through the
Schrödinger equation, while the electromagnetic radiation is de-
scribed as a classical electromagnetic wave using Maxwell’s equa-
tions 18. A natural starting point for our discussion on light-matter
interactions within the semi-classical approach is, therefore, the set of
coupled differential equations known as Maxwell’s equations, which
synthesize Gauss’s law for electricity, Gauss’s law for magnetism,
Faraday’s law of electromagnetic induction, and Ampere’s law. Be-
fore Maxwell, the laws governing electricity and magnetism were
considered distinct. Maxwell formulated a set of equations that uni-
fied the electric F (r, t) and the magnetic H(r, t) vector fields. His
equations demonstrated that a changing electric field could induce a
magnetic field, and a changing magnetic field could induce an electric
field. This interplay between the two fields gives rise to electromag-
netic waves 19.

Maxwell’s Equations in Free Space

∇ · F = 0,

∇ ·H = 0,

∇× F = −µ0
∂H

∂t
,

∇×H = ε0
∂F

∂t
.

(2.1)

The constants ε0 and µ0 represent the electric and magnetic permit-
tivity of free space, respectively. They describe the inherent properties
of a vacuum with respect to electric and magnetic fields, determining
both the strength of the electric and magnetic forces in the vacuum
and the speed of light within it 20. Using the vector identity

∇× (∇× F ) = ∇(∇ · F )−∇2F , (2.2)

alongside Maxwell’s equations, we can derive the wave equation that
describes how the electric and magnetic components of electromag-
netic waves propagate in free space. Here, we present the wave equa-
tion for the electric field component:

∇2F − 1

ε0µ0

∂2F

∂t2
= 0 (2.3)
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In this model, every medium has its own permittivity and perme-
ability, and these quantities reflect how the material responds to the
field. In a material, the electric field can cause the charges to displace
and the dipoles within it to reorient. To accommodate a material’s
response in Maxwell’s equations, the electric displacement field D is
introduced

D = ε0F + P (2.4)

B = µ0H + µ0M (2.5)

where, P is the polarization density vector, which represents the
alignment of the electric dipoles within the material 21. The polariza-
tion vector has a unit of C/m2 and can be interpreted as the dipole
moment per unit volume. In the absence of free charges and currents,
Maxwell’s equations in a medium take the following form

Maxwell’s equations in matter

∇ ·D = 0

∇ ·B = 0

∇× F = −∂B
∂t

∇×H =
∂D

∂t

(2.6)

The wave equation derived from this set of coupled equations de-
scribes the propagation of electromagnetic waves within a material,
accounting for the material’s polarization.

∇2F − 1

εµ

∂2F

∂t2
= 0 (2.7)

where ε and µ are now the electric and magnetic permittivity of the
material, respectively. A valid solution to the wave equation takes the
form

Fi(t) =
1

2

∑
k

(
Fi(ωk)e−iωkt + Fi(−ωk)eiωkt

)
(2.8)

where F ∗i (ωk) = Fi(−ωk), ensuring that Fi(t) is a real function of
time.

THE POLAR IZATION

The polarization represents the response of the material due to the
electric field and is in general a dynamic quantity that is a function
of time. Furthermore, the polarization will in general not be instanta-
neous in the sense that the current state of the polarization depends on
the history of the applied electric field 22,23. We can model the response
of the material as a series of convolutions 24,25 between the electric field

6
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and the electric susceptibility χ, known as a Volterra series

Pi(t) = ε0

∫ t

−∞
χ

(1)
ij (t− τ)Fj(τ)dτ

+ ε0
1

2

∫ t

−∞

∫ t

−∞
χ

(2)
ijk(t− τ1, t− τ2)Fj(τ1)Fk(τ2)dτ1dτ2

+ ε0
1

6

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ

(3)
ijkl(t− τ1, t− τ2, t− τ3)

Fj(τ1)Fk(τ2)Fl(τ3)dτ1dτ2dτ3 + ...

(2.9)

In this expression, τ signifies the time delay between the input and
the response, while the time difference (t − τ) represents the inter-
val between when the input was applied and the moment we are ob-
serving the response. The integration over all possible values of τ
captures the system’s response at time t, accounting for all interac-
tions up until time t. The susceptibilities, denoted by χ, are generally
tensors and characterize the material’s propensity to become polar-
ized in response to an applied electric field. Both the polarization and
the susceptibilities, as well as the electric fields, are all real functions
within the time domain. To avoid the integrations associated with the
convolutions, we can employ the convolution theorem. This theorem
allows us to represent the convolutions in the frequency domain as
products of the Fourier transforms of the susceptibilities and electric
fields. Leveraging the convolution theorem, we get that the Fourier
component of the polarization can be expressed as 24

P
(n)
i (ωσ) = ε0χ

(n)
ijk..(−ωσ;ω1, ω2...ωn)Fj(ω1)Fk(ω2)... (2.10)

where ωσ =
∑
k ωk. The trade-off for this simplification is that, in

general, Fourier components are complex 26. Furthermore, since the
polarization in the time-domain is a continuous, periodic, and real
function, we can utilize the inverse Fourier transform to rewrite the
polarization in the time-domain as the sum

P
(n)
i (t) =

1

2

∑
k

(
P

(n)
i (ωk)e−iωkt + P

(n)
i (−ωk)eiωkt

)
(2.11)

where P (n)
i (ωk) and P

(n)
i (−ωk) are, in general, complex numbers,

which satisfy the relation (P
(n)
i (ωk))∗ = P

(n)
i (−ωk). Since the Fourier

component of the polarization in general are complex numbers, we
can decompose them into real and imaginary parts as follows

P
(n)
i (ω) =R P (n)(ω) + i IP (n)(ω) (2.12)

where RP (n)(ω) and IP (n)(ω) are the real and imaginary components
respectively. The complex Fourier coefficients of the polarization can
be represented in terms of its magnitude and phase as

P
(n)
i (ω) = |P (n)

i (ω)|eiφ(ω) (2.13)

7
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where φ(ω) represents the phase difference between the response and
the perturbing fields and depends on the magnitude of the real and
imaginary parts through the 2-argument arctangent function

φ(ω) = atan2

( IP (n)(ω)
RP (n)(ω)

)
(2.14)

The magnitude of the Fourier component of the polarization is then
given by

|P (n)
i (ω)| =

√
( RP (n)(ω))

2
+ ( IP (n)(ω))

2 (2.15)

The phase shift between the polarization and the field is tied to the
time delay between the field and the polarization. Generally, a de-
lay in the time domain manifests as a phase shift when observing the
system’s response in the frequency domain. This understanding is
vital when analyzing periodic phenomena, as it allows us to decom-
pose the system’s response into a periodic component that is in-phase
with the field and another component that is π

2
out of phase with the

electric field at a given frequency. Applying Eq.(2.11) and Eq.(2.12),
together with the identities

cos(x) =
eix + e−ix

2
, ; sin(x) =

eix − e−ix

2i
(2.16)

we get that each frequency component of the polarization can be de-
composed into two periodic terms that are π

2
out of phase:

P (t) =
∑
k

(
RP (n)(ωk) cos(ωkt) +I P (n)(ωk) sin(ωkt)

)
(2.17)

If there is no time delay between the field and the material’s polar-
ization, then there is no phase shift, and the Fourier coefficient of the
polarization is real, IP (n)(ω) = 0 (see Fig.2.2). Conversely, if the po-
larization is shift by a quarter of its period, T/4, it becomes entirely
out of phase with the field, resulting in a phase difference of π

2
. In

this case, the polarization’s Fourier coefficient is completely imagi-
nary, RP (n)(ω) = 0 (see Fig.2.3). In the subsequent sections, it will be
seen that it is the time derivative of the polarization that needs to be
in phase with the electric field for optimal energy transfer between a
medium and the electric field.

Mathematical Framework for Orientational Averaging

In the study of various physical processes such as the interaction of
radiation with matter, experiments are often conducted with matter
in a liquid or gas phase. In order to relate the results of such exper-
iments to theory, the random orientation of the molecules must be
taken into account when deriving expressions for observables. This
is usually achieved by deriving the corresponding result for a system
with a fixed orientation and then forming a rotational mean value.

8



M A T H E M A T I C A L F R A M E W O R K F O R O R I E N T A T I O N A L AV E R A G I N G

This section is devoted to the orientational averaging required to con-
nect the calculated polarization to the experimentally observed polar-
ization. A natural starting point is therefore the Volterra series of the
time-dependent dipole moment in the molecular frame

µα(t) =

∫ t

−∞
ααβ(t− τ)Fα(τ)dτ

+
1

2

∫ t

−∞

∫ t

−∞
βαβγ(t− τ1, t− τ2)Fα(τ1)Fβ(τ2)dτ1dτ2

+
1

6

∫ t

−∞

∫ t

−∞

∫ t

−∞
γαβγδ(t− τ1, t− τ2, t− τ3)

Fα(τ1)Fβ(τ2)Fγ(τ3)dτ1dτ2dτ3 + ...

(2.18)

where α, β, γ are the polarizability, the hyperpolarizability and the
second-order non-linear hyperpolarizabiity. We get that in frequency
domain each Fourier component of the the corrections of the dipole
moment, analogously to Eq. (2.10), are given by

µ(n)
α (ωσ) = R

(n)
αβγ..(−ωσ;ω1, ω2...ωn)Fβ(ω1)Fγ(ω2)... (2.19)

where R denotes a general hyperpolarizability of order n. The connec-
tion between the molecular properties and the materials polarization
is through the effective susceptibility

P
(n)
i (ωσ) = ε0χ

(n) eff
ijk.. (−ωσ;ω1, ω2...ωn)Fj(ω1)Fk(ω2)... (2.20)

The effective susceptibility is obtained by taking the orientational av-
erage of R

χ
(n) eff
ijk.. (−ωσ;ω1, ω2...ωn) = N

∑
αβγ...

R
(n)
αβγ..〈piαpjβpkγ ..〉 (2.21)

where N is the number density and piα are the directional cosines
between the lab and molecular coordinate systems. The orientational
average of the directional cosines are given by

〈piαpjβpkγ ..〉 =
1

8π2

∫ π

0

∫ 2π

0

∫ 2π

0

piαpjβpkγ .. sin(θ)dθdφdψ (2.22)

where θ is the polar angle, φ is the azimuthal angle and ψ is the ro-
tation angle about a particular molecular axis. We are primarily in-
terested in the second and fourth-order terms which are given by the
expressions 27–29

〈piαpjβ〉 =
1

3
δijδαβ (2.23)

〈piαpjβpkγplδ〉 =
1

30
δijδkl(4δαβδγδ − δαγδβδ − δαδδβγ)

+
1

30
δikδjl(4δαγδβδ − δαβδγδ − δαδδβγ)

+
1

30
δilδjk(4δαδδγδ − δαγδβδ − δαβδγδ)

(2.24)

9
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Conservation of energy and the Poynting theorem

The Poynting theorem, a fundamental principle in electromagnetism,
embodies the concept of energy conservation in electromagnetic sys-
tems. Once the Fourier components of the polarization are known,
the Poynting theorem allows us to calculate the energy exchange be-
tween the radiation field and the material, bridging the spatial flow
of electromagnetic energy with the work done on charges within the
material. Utilizing the vector identity

∇ · (F ×H) = (∇× F ) ·H − (∇×H) · F (2.25)

in conjunction with Maxwell’s equations, we arrive at the Poynting
theorem 30:

∇ · (F ×H) = −∂U
∂t
− F · ∂P

∂t
− µ0H ·

∂M

∂t
(2.26)

This differential form of the equation describes the conservation of
electromagnetic energy within a small differential volume. The rate
of energy flow across the volume’s boundaries is given by the diver-
gence of S = F × H , also known as the Poynting vector 31 which
describes the instantaneous rate of energy transfer per unit area due
to the electromagnetic fields. U is the electromagnetic energy density,
representing the quantity of energy stored in the electric and mag-
netic fields within the differential volume. The last two terms on the
right-hand side signify the work exerted on the electric and magnetic
dipoles in the material by the respective fields. To link the Poynting
theorem with the intensity loss of the electric field within the differ-
ential volume, we can express it in terms of the Poytnting vector as 32

∇ · S = −∂U
∂t
− F · ∂P

∂t
− µ0H ·

∂M

∂t
(2.27)

The time average of the Poynting vector, S, is referred to as the field’s
intensity, I , or the average power per unit area 21. If there is a contin-
uous inflow of light through the boundary surface into the enclosed
volume, and a portion of the energy in the electromagnetic field is
absorbed, then the energy flux exiting the boundary of the volume
will be less than what is entering it. In this scenario, the time aver-
age of the gradient of the Poynting vector will be negative, indicating
a loss of intensity. Simultaneously, the energy density stored within
the electromagnetic field in the differential volume is presumed to re-
main constant. If the electric field within the volume is doing work
on the dipoles in the material, the second term in the right hand side
in the Poynting equation will be non-zero. Consequently, we get the
expression

∇I(n) = − 1

T

∫ T

0

F (t) · ∂P
(n)(t)

∂t
dt (2.28)

which relates the intensity loss of light within the material to the work
done on the dipoles of the material. As an illustration, we see that in
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for a complex polarization
Fourier coefficient
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Fig.2.1, the electric field, polarization, and the time derivative of the
polarization are depicted, along with the time average of their prod-
ucts, in the case of a monochromatic perturbation. In Fig.2.1, the po-
larization possesses both real and imaginary components, resulting in
a response component that is out of phase with the perturbing field.
In Fig.2.2, the Fourier component of the polarization is purely real,
thus the response and the perturbing field are perfectly in phase with
each other. Conversely, in Fig.2.3, the polarization is purely imagi-
nary, in this scenario, the polarization and the perturbation are out
of phase, while the time derivative of the response and the pertur-
bation are in phase. From these three cases, it is evident that the
average work done by the field on the material over a period is zero
when the polarization is in phase with the perturbation. In remained
of this section, we will see that it is the imaginary component, or the
out-of-phase component of the polarization, that contributes to a net
energy transfer between the material and the field. After expressing
the polarization in terms of its inverse Fourier transform (as shown in
Eq.(2.11)), we obtain

∂Pi(t)

∂t
= −

∑
a

iωa
2

(
P

(n)
i (ωa)e−iωat − P (n)

i (−ωa)eiωat
)

(2.29)

Substituting Eq.(2.29) into Eq.(2.28), we find that after time-averaging,
the gradient of the intensity is given by the expression

∇I(n) = −
∑
a

iωa
2

(
P

(n)
i (−ωa)Fi(ωa)− P (n)

i (ωa)Fi(−ωa)

)
(2.30)

Therefore, to each order, the gradient of the intensity for each fre-
quency of light is described by the expression

∇I(n)(ω) = − iω
2

(
P

(n)
i (−ω)Fi(ω)− P (n)

i (ω)Fi(−ω)

)
(2.31)

Using the relation between the complex conjugates of the Fourier am-
plitudes and the negative frequencies, we find

∇I(n)(ω) = − iω
2

(
P
∗(n)
i (ω)Fi(ω)− P (n)

i (ω)F ∗i (ω)

)
(2.32)

If the medium is isotropic we get that the Fourier component of the
polarization is related to the susceptibility as

P
(n)
i (ωσ) = ε0χ

(n) eff
ij... (−ωσ;ω1, ...ωn)Fj(ω1)... (2.33)

By employing Eq.(2.21) and Eq.(2.23), we find that the effective linear
susceptibility in an isotropic medium is given by

χ
(1) eff
ij (−ω;ω) = N〈ααβ(−ω;ω)〉 =

N

3
ααβ(−ω;ω)δijδαβ (2.34)
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As a result, we find that the first-order intensity gradient can be rep-
resented by the expression

∇I(1)(ω)

= − iωN
6

∑
ijαβ

(
α∗αβ(−ω;ω)F ∗j (ω)Fi(ω)− ααβ(−ω;ω)Fj(ω)F ∗i (ω)

)
δijδαβ

= − iω

3cε

∑
α

(α∗αα(−ω;ω)− ααα(−ω;ω))I(ω)

= − 2ω

3cε

∑
α

Iααα(−ω;ω)I(ω)

(2.35)
where we have used the relation I(ω) = cε

2
F (ω)F ∗(ω). We thus find

that the solution to the differential equation in Eq.(2.35) is given by
terms of the form

I(ω, z) = I0e
−σ(ω)z (2.36)
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0.0

0.2

0.4
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1.0

I(z
)

Solution of I( , z)
z = ( )I( , z)

= 1
= 1

2

FIGURE 2.4: The predicted intensity as a function of the distance travelled
within a material for a given frequency for two different values of σ(ω)

The orientationally averaged tensor we obtained in Eq. (2.35) will
be referred to as the isotropic average polarizability ᾱ

ᾱ(−ω;ω) =
1

3

∑
α

ααα(−ω;ω) (2.37)

The same logic applies to the second-order correction to the inten-
sity gradient, which will depend on the second hyperpolarizability.
For linearly polarized light with fields of the same frequency, we find
that the effective second hyperpolarizability for randomly oriented
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molecules is given by the expression 33

γ̄(−ω;ω,−ω, ω) =
1

15

x,y,z∑
α,β

(
γααββ(−ω;ω,−ω, ω)

+ γαβαβ(−ω;ω,−ω, ω)

+ γαββα(−ω;ω,−ω, ω)

)
.

(2.38)

Finally, we can then write the gradient of the intensity in an isotropic
medium as the series 34

∇I(ω) = − 2ω

cε0

Iᾱ(−ω;ω)I(ω)− 4ω

c2ε20

Iγ̄(−ω;ω,−ω, ω)I2(ω) + · · ·

(2.39)
Using the coefficients in the intensity gradient expansion, we now de-
fine the one and two-photon cross sections as

The one and two-photon absorption cross-sections

σ(ω) =
2ω

cε0

Iᾱ(−ω;ω) (2.40)

σ(2)(ω) =
4ω

c2ε20

Iγ̄(−ω;ω,−ω, ω) (2.41)

In the coming sections, we will determine the explicit expressions
for the polarizability of molecules in response to external electric field
perturbations, utilizing the Schrödinger equation, and discuss how
absorption spectra can be calculated efficiently.
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The Dirac–Frenkel variational principle

The quantum system under consideration is described by the wave
function Ψ, which in general is a time-dependent complex function.
Its evolution in time is dictated by the time-dependent Schrödinger
equation 7 (

Ĥ(t)− i~ ∂
∂t

)
|Ψ〉 = 0 (3.1)

Here, Ĥ represents the Hamiltonian operator, encapsulating the to-
tal energy of the system, including the interactions between the elec-
trons and the nuclei and the interaction with the external field. In
the context of solving the Schrödinger equation, we intend to use the
Dirac—Frenkel variational principle to obtain approximate solutions
to the Schrödinger equation. To do this, we will define the Lagrangian
density, A, as

A[Ψ] = 〈Ψ|
(
Ĥ(t)− i~ ∂

∂t

)
|Ψ〉. (3.2)

A first observation is that the exact solution Ψ makes the Lagrangian
density stationary, in other words, for any small variations δΨ around
Ψ, δA = 0, where δA is given by,

δA[Φ] = 〈δΦ|
(
Ĥ(t)− i~ ∂

∂t

)
|Φ〉+ 〈Φ|

(
Ĥ(t)− i~ ∂

∂t

)
|δΦ〉 (3.3)

The logic is now that if an approximate solution Φ behaves similarly
under small variation δΦ, then Φ should be a good approximation
to Ψ. The Dirac-Frenkel variational principle then proposes that one
finds an approximate solution Φ by finding a wave-function for which
small variations δΦ from Φ the Lagrangian density is stationary, that is
that the changes to A to first-order should be zero. The wave function
is in general complex and the variations δΦ and δΦ∗ are independent
variations. Instead of treating δΦ and δΦ∗ as as independent varia-
tions we multiply the variation δΦ by i to get an orthogonal variation
in the complex plane, |δΦ′〉 = i|δΦ〉 and get a second equation for the
Lagrangian density 35

δA[Φ]′ = −i〈δΦ|
(
Ĥ(t)− i~ ∂

∂t

)
|Φ〉+ i〈Φ|

(
Ĥ(t)− i~ ∂

∂t

)
|δΦ〉 = 0

(3.4)
combining Eq. (3.3) and Eq. (3.4) we see that a further condition is that
both terms in Eq. (3.3) must be zero

〈δΦ|
(
Ĥ(t)− i~ ∂

∂t

)
|Φ〉 = 0 (3.5)
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〈Φ|
(
Ĥ(t)− i~ ∂

∂t

)
|δΦ〉 = 0 (3.6)

Furthermore, we can write Eq. (3.6) in terms of the complex conjugate
of Eq. (3.5) using the relation

〈Φ|
(
Ĥ(t)− i~ ∂

∂t

)
|δΦ〉 = 〈δΦ|

(
Ĥ(t)− i~ ∂

∂t

)
|Φ〉∗ − i ∂

∂t
〈Φ|δΦ〉

(3.7)
The first expression on the right hand side of Eq. (3.7) being the com-
plex conjugate of Eq. (3.5) is hence zero. Substituting this expression
into Eq. (3.3) we get the condition

δA[Φ] = −i ∂
∂t
〈Φ|δΦ〉 = 0 (3.8)

In order to make use of Eq. (3.8) we introduce an ansatz for the wave
function

|Φ〉 = e−iΛ(t)|Φ̄〉. (3.9)

Here |Φ̄〉 is the phase isolated wave-function and depends on some set
of parameters which we will call ηω which are the Fourier components
of the time-dependent wave-function parameter η(t) and Λ is a phase
that also depends on η(t). For now we have not specified the details
of η, that will be discussed in section 3.3. Furthermore, we constrain
the phase isolated wave function such that its norm is unity and that
the first-order variation of the norm is zero for all times

〈Φ̄(t)|Φ̄(t)〉 = 1, δ〈Φ̄(t)|Φ̄(t)〉 = 0 (3.10)

We then get that the we can rewrite Eq. (3.8) as 36

δA[Φ] = −i
∑
n

∑
k

∂

∂t
〈Φ(t)|∂Φ(t)

∂η
ωk
n
〉

= −i
∑
n

∑
k

∂

∂t
〈Φ̄(t)|

(
−i∂Λ(t)

∂η
ωk
n

+
∂

∂η
ωk
n

)
|Φ̄(t)〉

=
∑
n

∑
k

(
∂2Λ(t)

∂η
ωk
n ∂t

− i ∂
∂t
〈Φ̄(t)|∂Φ̄(t)

∂η
ωk
n
〉
)

= 0

(3.11)

Substituting the ansatz for the wave-function in Eq. (3.9) into the
Schrödinger equation, Eq. (3.1), we can define the quasi-energy 37 Q(t)
as the time-derivative of the phase Λ

Q(t) =
∂Λ(t)

∂t
= 〈Φ̄(t)|

(
Ĥ(t)− i ∂

∂t

)
|Φ̄(t)〉 (3.12)

The quasi-energy will as will be seen an important quantity in the
coming sections when we attempt to derive expressions for the re-
sponse properties. With use of the quasi-energy we then get an equa-
tion for the parameters η for which the Lagrangian density is station-
ary
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The phase-isolated Dirac–Frenkel variational principle

δA[Φ] =
∑
n

∑
k

(
∂Q(t)

∂η
ωk
n
− i ∂

∂t
〈Φ̄(t)|∂Φ̄(t)

∂η
ωk
n
〉
)

= 0 (3.13)

Solving this equation for the parameters η hence gives us a way to
find approximate solutions to the time-dependent Schrödinger equa-
tion.

Time-Averaged Quasi-Energy Variational Formulation

In the previous section, we discussed the Lagrangian density and the
Dirac-–Frenkel variational principle, and arrived at Eq.(3.13), from
which we could, in principle, solve for the wave-function parameters
η(t), which would provide us the time evolution of the wave function.
In this section, we will employ Fourier component variational pertur-
bation theory to solve Eq.(3.13). We now consider a system subjected
to a periodic time-dependent perturbation given by V (t) = V (t+ T ),
such that the system is characterized by the Hamiltonian,

Ĥ(t) = Ĥ0 + V̂ (t) (3.14)

Where we have separated the the Hamiltonian Ĥ0 which describes
the unperturbed system and the perturbation operator represents the
coupling between a time-dependant electric field from a laser that is
small compared to the atomic field with the dipole moment of the
molecule

V̂ (t) = −µ̂ · F (t) (3.15)

µ̂ =

µ̂xµ̂y
µ̂z

 , F (t) =

Fx(t)
Fy(t)
Fz(t)

 . (3.16)

Assuming that the perturbation is periodic, the perturbation operator
can be written as the discrete Fourier series

V̂ (t) = −
∑
k

x,y,z∑
α

µ̂α
(
Fα(ωk)e−iωkt + Fα(−ωk)eiωkt

)
(3.17)

Moreover, since the electric field is periodic and real, the Fourier com-
ponents of the field are related as

Fωkα = (F−ωkα )∗. (3.18)

In the presence of this periodic perturbation, we expand the phase-
isolated wave-function Φ̄ in a power series of the Fourier amplitudes
of the field.

|Φ̄(t, F )〉 = |Φ̄〉+
∑
k

∑
α

|Φ̄(1)
α (ωk)〉Fωkα e−iωkt

+
∑
k,l

∑
α,β

|Φ̄(2)
αβ(ωk, ωl)〉Fωkα F

ωl
β e−i(ωk+ωl)t + ..

(3.19)
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By substituting this expansion into the Dirac–Frenkel variational prin-
ciple, as given in Eq.(3.13), and performing time-averaging, we find
that the second term is zero

1

T

∫ T

0

−i
∑
k..

∑
i

∂

∂t
〈Φ̄(t)|∂Φ̄(t)

∂η
ωk
i

〉dt =

∑
mn

∑
k..

∑
i

ωσ〈Φ̄(n)
α,..(ωk, ..)|

∂Φ̄
(m)
α,.. (ωk, ..)

∂η
ωk
i

〉Fωkα ..
1

T

∫ T

0

e−iωσtdt = 0

(3.20)
Here, ωσ represents the sum of all the frequencies involved in each
term. Consequently, after time-averaging, we can reformulate the
Dirac–Frenkel variational principle of Eq.(3.13) as

1

T

∑
n

∑
k

∫ T

0

[
∂Q(t)

∂η
ωk
n
− i ∂

∂t
〈Φ̄(t)|∂Φ̄(t)

∂η
ωk
n
〉
]
dt = 0

→ 1

T

∑
n

∑
k

∫ T

0

∂Q(t)

∂η
ωk
n

dt =
∑
n

∑
k

∂

∂η
ωk
n

1

T

∫ T

0

Q(t)dt

=
∑
n

∑
k

∂QT
∂η

ωk
n

= 0

(3.21)

We have thus found that, in the presence of the perturbation, the
Fourier components of the system’s time-dependent wave-function
parameters are altered in a way that renders the time-averaged quasi-
energy stationary with respect to the electronic degrees of freedom.

Parametric Representation of the Phase-Isolated Reference
State

In this section, we will introduce the parametrizations used for
the phase-isolated wave-function. We will employ an exponential
parametrization in terms of an anti-Hermitian operator, which will
ensure that the transformation preserves the norm of the wave-
function

|Φ̄(t)〉 = e−η̂(t)|0〉. (3.22)

The anti-Hermitian operator η̂ can be represented as an inner prod-
uct of two vectors, where one vector contains the operators and one
vector contains the wave-function parameters

η̂(t) =
(
Ô†n −Ôn

)(ηn(t)
η∗n(t)

)
(3.23)

In this exponential parametrization, we distinguish between two
cases: a parametrization in terms of the exact eigenstates of the unper-
turbed Hamiltonian, which we refer to as a state-rotation parametriza-
tion, and one where we use a single Slater-determinant ansatz and
excite between single-particle orbitals, which we will refer to as an or-
bital rotation parametrization. In the state-rotation parametrization,
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we introduce the state-rotation operators 38:

R̂†n = |Ψn〉〈Ψ0|, R̂n = |Ψ0〉〈Ψn| (3.24)

that transforms the wave-function to the exact eigenstates of Ĥ0:

R̂†n|Ψ0〉 = |Ψn〉 (3.25)

The other parametrization mentioned above is the orbital rotation
parametrization. In this approach, the starting point is a reference
state Slater-determinant |Θ0〉:

|Θ0〉 = Πocc
i â†i |vac〉 (3.26)

where the operators â are defined with respect to a basis of spin or-
bitals that we have obtained by either conducting a Hartree-Fock (HF)
or Density Functional Theory (DFT) self-consistent field (SCF) calcu-
lation. We can then generate excited state Slater determinants from
this reference state by promoting electrons as in 34

q̂†n|Θ0〉 = |Θn〉 (3.27)

where each excited-state Slater-determinant represents a different
configuration of electrons. We then express perturbations to the wave-
function in terms of single-particle excitations q̂†n and de-excitation q̂n
between occupied and unoccupied orbitals

q̂†n = â†aâi, q̂n = â†i âa, (3.28)

with indices i, j, . . ., a, b, . . ., and p, q, . . ., we denote occupied, un-
occupied, and general spin orbitals or spatial orbitals, respectively,
whether the operators are accompanied with a spin index. We also in-
troduce compound indices, n,m, . . ., to denote pairs of orbital indices
a, i.

The time-dependent Hellmann–Feynman theorem

In this section, we will use the time-dependent Hellmann–Feynman
theorem to derive explicit expressions for the Fourier components
of the induced time-dependent dipole moment in terms of the
response vectors presented in the previous section. Using the
Baker–Campbell–Hausdorff expansion and the expression for the
phase-isolated wave function given by Eq. (3.22), we can expand the
time-dependent dipole moment in terms of the wave-function param-
eters as

µ(t) = 〈0|eη̂(t)µ̂e−η̂(t)|0〉

= 〈0|µ̂|0〉+
∑
n

〈0|[ηr(t)R̂†n − η∗n(t)R̂n, µ̂]|0〉

+
1

2!

∑
n,m

〈0|
[
ηr(t)R̂

†
n − η∗n(t)R̂n,

[
ηm(t)R̂†m − η∗m(t)R̂m, µ̂

]]
|0〉

+ . . . .
(3.29)
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Time-averaging the dipole moment in Eq.(3.29) and projecting it onto
e−iωt yields the Fourier coefficient

µα(−ω) =
1

T

∫ T

0

µ(t)e−iωtdt (3.30)

Substituting Eq.(3.29) into Eq.(3.30) and taking the derivative of the
Fourier coefficient with respect to the wave-function parameters gives
us the first and second-order derivatives

dµ−ωα
dη
ωk
n

∣∣∣∣
η=0

= 〈Ψ0|[R̂n, µ̂α]|Ψ0〉δ(ω + ωk) (3.31)

d2µ−ωα
dη
ωk
n dη

ωl
m

∣∣∣∣
η=0

=
1

2
Pnm〈Ψ0|[R̂n, [R̂m, µ̂α]]|Ψ0〉δ(ω+ωk +ωl) (3.32)

The Fourier coefficient of the dipole moment is a function of the wave-
function parameters, and we can consequently write the expansion of
the Fourier component of the dipole moment as a Taylor expansion

µα(−ω) =
∑
k,n

dµ−ωα
dη
ωk
n

∣∣∣∣
η=0

ηωkn +
∑
klmn

d2µ−ωα
dη
ωk
n dη

ωl
m

∣∣∣∣
η=0

ηωkn ηωlm + · · ·

(3.33)
Utilizing this formula allows us to observe the alterations in the dipole
moment’s Fourier component as modifications are made to the pa-
rameters of the wave function. To illustrate, we can derive formulas
to understand the variations in the dipole moment’s Fourier compo-
nent relative to an external electric field by calculating the derivative
of the Fourier coefficient with respect to the field

dµ−ωα
dF

ωk
β

∣∣∣∣∣
F=0

=
dµ−ωα
dη
ωk
n

∣∣∣∣
η=0

dη
ωk
n

dF
ωk
β

(3.34)

d2µ−ωα
dF

ωk
β dFωmγ

∣∣∣∣∣
F=0

=
dµ−ωα
dη
ωk
n

∣∣∣∣
η=0

d2η
ωk
n

dF
ωk
β dFωmγ

+
d2µ−ωα
dη
ωk
n dη

ωl
m

∣∣∣∣
η=0

dη
ωk
n

dF
ωk
β

dη
ωl
m

dF
ωl
γ

(3.35)
The second-order derivatives have two pathways: one is related to
the simultaneous change of a wave function parameter with respect
to two fields, and the second term involves the separate change of
different wave function parameters with respect to two distinct per-
turbations. In the section on non-linear response, we will discuss the
differences between these two terms in greater detail. From these
equations, it is apparent that we can estimate the rate of change of
the Fourier component of the dipole moment with respect to the field
if we know the rate of change of the Fourier components of the wave
function parameters. Utilizing these derivatives, we can construct a
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power series expansion of the Fourier component of the dipole mo-
ment with respect to the field

µFα (−ω) =
∑
k

dµ−ωα
dF

ωk
β

∣∣∣
F=0

F
ωk
β +

1

2

∑
k,l

d2µ−ωα
dF

ωk
β dF

ωl
γ

∣∣∣
F=0

F
ωk
β Fωlγ

+
1

6

∑
k,l,m

d3µ−ωα
dF

ωk
β dF

ωl
γ dFωmδ

∣∣∣
F=0

F
ωk
β Fωlγ Fωmδ + ..

(3.36)
By definition, the derivatives represent the polarizability and the hy-
perpolarizabilities.

The hyper polarizabilities

ααβ(−ω;ωk) =
dµ−ωα
dF

ωk
β

∣∣∣∣∣
F=0

,

βαβγ(−ω;ωk, ωl) =
d2µ−ωα

dF
ωk
β dF

ωl
γ

∣∣∣∣∣
F=0

,

γαβγδ(−ω;ωk, ωl, ωm) =
d3µ−ωα

dF
ωk
β dF

ωl
γ dFωmδ

∣∣∣∣∣
F=0

.

(3.37)

After time averaging, the quasi-energy is a function of the Fourier
amplitudes of the field through the operator V̂ as well as the Fourier
amplitudes of the wave function parameters in the phase isolated
wave function, QT (ηω, Fω). If we now consider how the time-
averaged quasi-energy changes with respect to the field, we obtain
the time-dependent Hellman-Feynman theorem

The time-dependent Hellmann-Feynmann theorem

dQT
dFωα

=
∂QT
∂Fωα

+
∑
n

∂QT
∂ηωn

∂ηωn
∂Fωα

= µα(−ω) (3.38)

The second term in the right hand side of Eq. (3.38) equals zero
since the quasi-energy remains stationary with respect to the wave
function parameters, as shown in Eq. (3.21). Moreover, the remain-
ing term can be written in terms of the expected value of the time-
dependent dipole moment 37

∂QT
∂Fωα

=
1

T

∫ T

0

〈Φ̄(t)|∂V̂ (t)

∂Fωα
|Φ̄(t)〉dt

=
1

T

∫ T

0

〈Φ̄(t)|µ̂α|Φ̄(t)〉e−iωtdt
(3.39)
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To obtain the Fourier coefficients of the time-dependent dipole mo-
ment, we expand the dipole moment using a power series.

〈Φ̄(t)|µ̂α|Φ̄(t)〉 = µα +
∑
β

∑
k

ααβ(−ω;ωk)F
ωk
β e−iωkt

+
1

2

∑
β,γ

∑
k,l

βαβγ(−ω;ωk, ωl)F
ωk
β Fωlγ e−i(ωk+ωl)t

+
1

6

∑
β,γ,δ

∑
k,l,m

γαβγδ(−ω;ωk, ωl, ωm)F
ωk
β Fωlγ Fωmδ e−i(ωk+ωl+ωm)t

+ · · ·
(3.40)

We then have that the field derivative of the time-averaged quasi-
energy is related to the Fourier components of the time-dependant
dipole moment through a power series of the field amplitudes by
combining Eq. (3.40) and Eq. (3.39)

dQT
dFωα

= µα
1

T

∫ T

0

e−iωtdt

+
1

2

∑
β

∑
k

ααβ(−ω;ωk)F
ωk
β

1

T

∫ T

0

e−i(ωk+ωn)tdt

+
1

6

∑
β,γ

∑
k,l

βαβγ(−ω;ωk, ωl)F
ωk
β Fωlγ

1

T

∫ T

0

e−i(ωk+ωl+ω)tdt

+
∑
β,γ,δ

∑
k,l,m

γαβγδ(−ω;ωk, ωl, ωm)F
ωk
β Fωlγ Fωmδ

1

T

∫ T

0

e−i(ωk+ωl+ωm+ω)tdt

+ · · ·
(3.41)

We therefore, get that the Fourier component of the dipole moment
that oscillates at frequency ω is given by the following power series

dQT
dFωα

=
∑
β

∑
k

ααβ(−ω;ωk)F
ωk
β δ(ωk + ω)

+
1

2

∑
β,γ

∑
k,l

βαβγ(−ω;ωk, ωl)F
ωk
β Fωlγ δ(ωk + ωl + ω)

+
1

6

∑
β,γ,δ

∑
k,l,m

γαβγδ(−ω;ωk, ωl, ωm)F
ωk
β Fωlγ Fωmδ δ(ωk + ωl + ωm + ω)

+ · · ·
(3.42)

where the polarizabilites are defined as the rate of change of the dipole
moment with respect to the field evaluated at zero field strength so as
to give the intrinsic property of the molecule
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The hyper polarizabilities in terms of the quasi-energy

ααβ(−ω;ωk) =
d2QT

dFωα dF
ωk
β

∣∣∣∣∣
F=0

,

βαβγ(−ω;ωk, ωl) =
d3QT

dFωα dF
ωk
β dF

ωl
γ

∣∣∣∣∣
F=0

,

γαβγδ(−ω;ωk, ωl, ωm) =
d4QT

dFωα dF
ωk
β dF

ωl
γ dFωmδ

∣∣∣∣∣
F=0

.

(3.43)

Employing a vector formalism allows us to derive concise expres-
sions for the field derivatives of the quasi-energy, as will be demon-
strated below. In terms of the parameter vector of Eq. (3.23), which
had two blocks

η =

(
ηn
η∗n

)
. (3.44)

where the upper block is referred to as the excitation block, and the
lower segment as the de-excitation block we can derive explicit for-
mulas for hyperpolarizabilities as higher-order field derivatives of the
quasi-energy

ααβ(−ω;ωk) =
∂2QT

∂Fωα ∂ηωk
dηωk

dF
ωk
β

, (3.45)

βαβγ(−ω;ωk, ωl) =
∂3QT

∂Fωα ∂ηωk∂ηωl
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

+
∂2QT

∂Fωα ∂ηωk,ωl
d2ηωk,ωl

dF
ωk
β dF

ωl
γ
.

(3.46)

γαβγδ(−ω;ωk, ωl, ωm) =
∂4QT

∂Fωα ∂ηωk∂ηωl
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

dηωm

dFωmδ

+
∂3QT

∂Fωα ∂ηωk,ωl∂ηωm
d2ηωk,ωl

dF
ωk
β dF

ωl
γ

dηωm

dFωmδ

+
∂3QT

∂Fωα ∂ηωl,ωm∂ηωm
d2ηωl,ωm

dF
ωl
γ dFωmδ

dηωk

dF
ωk
β

+
∂3QT

∂Fωα ∂ηωk,ωm∂ηωl
d2ηωk,ωm

dF
ωk
β dFωmδ

dηωl

dF
ωl
γ

+
∂2QT

∂Fωα ∂ηωk,ωk,ωl
d3ηωk,ωl,ωm

dF
ωk
β dF

ωl
γ dFωmδ

.

(3.47)
Leveraging the equation ∂QT

∂Fωα
= µα(−ω) enables us to express the

derivatives more explicitly in terms of dipole moment derivatives

ααβ(−ω;ωk) =
∂µ−ωα
∂ηωk

dηωk

dF
ωk
β

, (3.48)
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βαβγ(−ω;ωk, ωl) =
∂2µ−ωα

∂ηωk∂ηωl
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

+
∂µ−ωα
∂ηωk,ωl

d2ηωk,ωl

dF
ωk
β dF

ωl
γ
.

(3.49)

γαβγδ(−ω;ωk, ωl, ωm) =
∂3µ−ωα

∂ηωk∂ηωl
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

dηωm

dFωmδ

+
∂2µ−ωα

∂ηωk,ωl∂ηωm
d2ηωk,ωl

dF
ωk
β dF

ωl
γ

dηωm

dFωmδ

+
∂2µ−ωα

∂ηωl,ωm∂ηωm
d2ηωl,ωm

dF
ωl
γ dFωmδ

dηωk

dF
ωk
β

+
∂2µ−ωα

∂ηωk,ωm∂ηωl
d2ηωk,ωm

dF
ωk
β dFωmδ

dηωl

dF
ωl
γ

+
∂µ−ωα

∂ηωk,ωk,ωl
d3ηωk,ωl,ωm

dF
ωk
β dF

ωl
γ dFωmδ

.

(3.50)

To summarize this section, we have demonstrated that the dipole mo-
ment is indirectly affected by an external perturbation. This perturba-
tion modulates the wave-function parameters, allowing the Fourier
component of the dipole moment to be estimated via a Taylor expan-
sion centered around the reference state. Through this expansion, we
can analyze the variations in the Fourier component of the dipole mo-
ment as a function of the wave-function parameters. The remaining
task is to elucidate how the Fourier components of the wave-function
parameters vary in response to the external perturbation.

Perturbation expansion of the time-averaged variational
principle

In previous sections, we established that comprehending the varia-
tions in the dipole moment relative to external perturbations necessi-
tates understanding the alterations in the wave function parameters
in relation to the external field. This section is dedicated to formu-
lating equations that detail the order corrections to the wave function
parameters as influenced by the external field. The parameterization
for the wave function was presented in Eq. (3.23), we will now look in
more detail at the time-dependent parameter vector part 39

η(t) =

(
ηn(t)
η∗n(t)

)
. (3.51)

Each wave function parameter can be expressed in terms of its Fourier
components as follows

ηn(t) =
∑
k>0

(
ηn(ω)e−iwkt + ηn(−ω)eiwkt

)
(3.52)
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η∗n(t) =
∑
k>0

(
η∗n(ω)eiwkt + η∗n(−ω)e−iwkt

)
(3.53)

Given that η(t) is a complex function, the positive and negative fre-
quency Fourier components are generally independent. This neces-
sitates determining both components, illustrated by the inequality
ηn(ω) 6= ηn(−ω). Consequently, the wave function parameter vec-
tor can be written as

η(t) =
∑
k>0

[(
ηn(ω)
η∗n(−ω)

)
e−iωkt +

(
ηn(−ω)
η∗n(ω)

)
eiωkt

]
(3.54)

We shall refer to the two vectors in Eq. (3.54) as

ηω =

(
ηn(ω)
η∗n(−ω)

)
, η−ω =

(
ηn(−ω)
η∗n(ω)

)
(3.55)

In the presence of the perturbation, we assume that we can approx-
imate the wave function parameters with a power series in terms of
the Fourier amplitudes of the field, centered at the reference state.

η
F
n (ωσ) =

∑
k>0

∑
α

(
dηωσn

dF
ωk
α

∣∣∣
F=0

F
ωk
α +

dηωσn

dF
−ωk
α

∣∣∣
F=0

F
−ωk
α

)

+
1

2!

∑
k,l>0

∑
α,β

(
d2ηωσn

dF
ωk
α ∂F

ωl
β

∣∣∣
F=0

F
ωk
α F

ωk
β +

d2ηωσn

dF
−ωk
α ∂F

−ωl
β

∣∣∣
F=0

F
−ωk
α F

−ωl
β

)
+ · · ·

(3.56)
and the complex conjugate of the negative frequency component can
be expressed as

η
∗F
n (−ωσ) =

∑
k>0

∑
α

(
dη∗−ωσn

dF
ωk
α

∣∣∣
F=0

F
−ωk
α +

dη∗−ωσn

dF
−ωk
α

∣∣∣
F=0

F
ωk
α

)

+
1

2!

∑
k,l>0

∑
α,β

(
d2η∗−ωσn

dF
ωk
α ∂F

ωl
β

∣∣∣
F=0

F
−ωk
α F

−ωk
β +

d2η∗−ωσn

dF
−ωk
α ∂F

−ωl
β

∣∣∣
F=0

F
ωk
α F

ωl
β

)
+ · · ·

(3.57)

The corrections to the wave function parameters are grouped into
vectors, which we refer to as response vectors. The elements within
these vectors denote the state or orbital-rotation amplitudes, illustrat-
ing the magnitude of the contribution each potential transition or or-
bital rotation to the overall response of the wave function. To assess
the behavior of the wave function parameter vector in the presence of
the field, we utilize a vector field expansion

ηωσ (F ) = ηωσ +
∑
k

∑
α

dηωσ

dF
ωk
α

∣∣∣
F=0

Fωkα

+
1

2!

∑
k,l

∑
α,β

d2ηωσ

dF
ωk
α ∂F

ωl
β

∣∣∣
F=0

Fωkα F
ωk
β + · · ·

(3.58)

Using Eqs. (3.56)–(3.57), we get that the upper and lower parts of the
response vectors have the following structure

dηωσ

dF
ωk
β

∣∣∣
F=0

=


dηωσn
dF

ωk
β

dη∗−ωσn

dF
−ωk
β

∣∣∣
F=0

(3.59)
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d2ηωσ

dF
ωk
β dFωmγ

∣∣∣
F=0

=

 d2ηωσn
dF

ωk
β

∂F
ωl
γ

d2η∗−ωσn

dF
−ωk
β

∂F
−ωl
γ

∣∣∣
F=0

(3.60)

In order to determine the corrections to the wave function param-
eters at each order in the perturbation strengths, we expand the vari-
ational principle of Eq. (3.21) in a power series of the field.

The quasi-energy variational principle

(
∂QT
∂ηωσn

)
(F ) =

d

dF
ωk
β

(
∂QT
∂ηωσn

)∣∣∣
F=0

F
ωk
β

+
d2

dF
ωk
β dF

ωl
γ

(
∂QT
∂ηωσn

)∣∣∣
F=0

F
ωk
β Fωlγ

+
d3

dF
ωk
β dF

ωl
γ dFωmδ

(
∂QT
∂ηωσn

)∣∣∣
F=0

F
ωk
β Fωlγ Fωmδ

+ ... = 0
(3.61)

Since the electronic gradient of the quasi-energy must be zero for
all field strengths, it follows that all coefficients of the power series
must be zero. From the stationary condition of the quasi-energy for
each order we obtain equations for the order corrections of the wave
function parameters, which we will refer to as the response equations

d

dF
ωk
β

(
∂QT
∂η−ωσ

)∣∣∣
F=0

= Mβ +
∂2QT

∂η−ωσ∂ηωk
dηωk

dF
ωk
β

= 0, (3.62)

d2

dF
ωk
γ dF

ωl
β

(
∂QT
∂η−ωσ

)∣∣∣
F=0

= M
ωk,ωl
βγ +

∂2QT
∂η−ωσ∂ηωk,ωl

d2ηωk,ωl

dF
ωk
β dF

ωl
γ

= 0,

(3.63)
d3

dF
ωk
β dF

ωl
γ dFωmδ

(
∂QT
∂η−ωσ

)∣∣∣
F=0

= M
ωk,ωl,ωm
βγδ

+
∂2QT

∂η−ωσ∂ηωk,ωl,ωm
d3ηωk,ωl,ωm

dF
ωk
β dF

ωl
γ dFωmδ

= 0,

(3.64)
Within the expressions for the response equations, we have intro-
duced the one, two, and three-photon transition moment vectors, de-
noted as M ,Mωk,ωl ,Mωk,ωl,ωm . These vectors characterize the in-
teraction between the external electric field and the molecular dipole
moment operator and the perturbations of the energy gradient

Mβ =
∂2QT

∂η−ωσ∂F
ωk
β

(3.65)
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M
ωk,ωl
βγ =

∂3QT
∂η−ωσ∂ηωl∂F

ωk
β

dηωl

dF
ωl
γ

+
∂3QT

∂η−ωσ∂ηωl∂F
ωl
γ

dηωk

dF
ωk
β

+
∂3QT

∂η−ωσ∂ηωk∂ηωl
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

(3.66)

M
ωk,ωl,ωm
βγδ =

∂4QT
∂η−ωσ∂ηωl∂ηωm∂F

ωk
β

dηωl

dF
ωl
γ

dηωm

dFωmδ

+
∂4QT

∂η−ωσ∂ηωk∂ηωm∂F
ωl
γ

dηωk

dF
ωk
β

dηωm

dFωmδ

+
∂4QT

∂η−ωσ∂ηωk∂ηωl∂Fωmδ

dηωk

dF
ωk
β

dηωl

dF
ωl
γ

+
∂3QT

∂η−ωσ∂ηωk,ωl∂Fωmδ

d2ηωk,ωl

dF
ωk
β dF

ωl
γ

+
∂3QT

∂η−ωσ∂ηωk,ωm∂F
ωl
γ

d2ηωk,ωm

dF
ωk
β dFωmδ

+
∂3QT

∂η−ωσ∂ηωl,ωm∂F
ωk
β

d2ηωl,ωm

dF
ωl
γ dFωmδ

+
∂3QT

∂η−ωσ∂ηωk∂ηωl,ωm
dηωk

dF
ωk
β

d2ηωl,ωm

dF
ωl
γ dFωmδ

+
∂3QT

∂η−ωσ∂ηωl∂ηωk,ωm
dηωl

dF
ωl
γ

d2ηωk,ωm

dF
ωk
β dFωmδ

+
∂3QT

∂η−ωσ∂ηωm∂ηωk,ωl
dηωm

dFωmδ

d2ηωk,ωl

dF
ωk
β dF

ωl
γ

+
∂4QT

∂η−ωσ∂ηωk∂ηωl∂ηωm
dηωk

dF
ωk
β

dηωl

dF
ωl
γ

dηωm

dFωmδ

(3.67)

By solving the response equations presented in equations (3.62) to
(3.64), we are able to derive expressions for the variations in the
wave function parameters in the presence of the perturbations. Sub-
sequently, these expressions can be used to calculate the alterations in
the Fourier components of the dipole moment using equations (3.48)
to (3.50). In the next section, we will focus on deriving explicit ex-
pressions for the derivatives of the Fourier components of the wave
function parameters and the dipole moment.

Response functions within Exact state theory

In this section we will establish the connection between the order cor-
rections of the Fourier coefficients of the dipole moment and the quan-
tum mechanical properties of the system.

By inspection of the response equations delineated in Eqs. (3.62)–
(3.64), it becomes apparent that the solutions to the response equa-
tions are encapsulated by expressions of the form

dnη

dFωk ...dFωn
=

(
∂2QT

∂η−ωσ∂ηωk,..ωn

)−1

M (n) (3.68)
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Consequently, we are tasked with inverting the electronic Hessian of
the quasi-energy. Adopting the state-rotation parametrization and ex-
pressing the wave-function expansion in terms of the exact eigenstates
of the Hamiltonian Ĥ0, we get that the electronic Hessian of the time-
averaged quasi-energy can be written as

∂2QT
∂η−ωσ∂ηωk,..

∣∣∣
η=0

=

(
∂2E

∂η−ωσ∂ηωk,..

∣∣∣
η=0
− (ωk + ..)

∂2S

∂η−ωσ∂ηωk,..

∣∣∣
η=0

)
δ(ωk + ..+ ωσ)

(3.69)
The electronic Hessian is evaluated at the expansion point η = 0,
which is the ground-state stationary point. Given that the energy is
scalar and we are taking its derivative with respect to two vectors, the
electronic Hessian emerges as a rank-two tensor, encompassing four
blocks that stem from the block structure of the response vectors, see
Eq. (3.51). The explicit expression for the electronic Hessian is given
by

∂2E

∂η∂η

∣∣∣
η=0

=

(
∂2E

∂η∗n∂ηm
∂2E

∂η∗n∂η
∗
m

∂2E
∂ηn∂ηm

∂2E
∂ηn∂η∗m

)
η=0

(3.70)

Since the electronic-Hessian is the second-order derivative of the en-
ergy and we are using the eigenstates of Ĥ0, the off-diagonal elements
of the electronic-Hessian are zero and the diagonal elements are equal
to the energy difference between the energy of the expansion point
and the other eigenstates of the unperturbed Hamiltonian

∂2E

∂ηn∂η∗m

∣∣∣
η=0

= −1

2
〈Ψ0|[R̂†n, [R̂m, Ĥ0]]|Ψ0〉 −

1

2
〈Ψ0|[R̂m, [R̂†n, Ĥ0]]|Ψ0〉

=
(
〈Ψn|Ĥ0|Ψn〉 − 〈Ψ0|Ĥ0|Ψ0〉

)
δnm

= (En − E0)δnm = λnδnm
(3.71)

The generalized overlap tensor exhibits a similar structure and is di-
agonal, noting that the upper and lower blocks have opposite signs

∂2S

∂η∗n∂ηm

∣∣∣
η=0

= 〈Ψ0|[R̂n, R̂†m]|Ψ0〉 = δnm (3.72)

∂2S

∂ηn∂η∗m

∣∣∣
η=0

= 〈Ψ0|[R̂†n, R̂m]|Ψ0〉 = −δnm (3.73)

Given the expressions above, the tensors can be succinctly repre-
sented as

∂2E

∂η∂η

∣∣∣
η=0

=

(
λ 0
0 λ

)
,
∂2S

∂η∂η

∣∣∣
η=0

=

(
1 0
0 −1

)
(3.74)

Here, λ are the exact energy differences between the excited eigen-
states and the ground state of the unperturbed Hamiltonian Ĥ0. Since
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FIGURE 3.1: The dispersion of
the polarizability, as derived
using standard response the-
ory

the electronic quasi-energy Hessian is diagonal, it can be straightfor-
wardly inverted, yielding(

∂2QT
∂η−ωσ∂ηωk,..ωn

)−1

=

( 1
λ−ωσ 0

0 1
λ+ωσ

)
(3.75)

We therefore get that the derivatives of the wave-function parameters
with respect to the field to all orders have the structure

dnη

dFωk ...dFωn
=

( 1
λ−ωσ 0

0 1
λ+ωσ

)(
−M
M∗

)
(3.76)

In exact-state theory, the one-photon transition moment vector pos-
sesses the structure

Mβ =
∂2QT

∂η−ωσ∂F
ωk
β

=

(
〈Ψ0|[R̂†n, µ̂β ]|Ψ0〉
〈Ψ0|[R̂n, µ̂β ]|Ψ0〉

)
=

(
−〈Ψ0|µ̂β |Ψn〉
〈Ψn|µ̂β |Ψ0〉

)
(3.77)

Combining these equations with Eq. (3.45), we get that the polariz-
ability in exact-state theory is given by the expression

ααβ(−ω;ω) =
d2QT

dFωα dF
ω2
β

∣∣∣
F=0

= −
∑
i6=0

(
〈Ψ0|µ̂α|Ψi〉〈Ψi|µ̂β |Ψ0〉

λi − ω
+
〈Ψ0|µ̂β |Ψi〉〈Ψi|µ̂α|Ψ0〉

λi + ω

)
(3.78)

The Fourier coefficients of the polarizability that we have derived
thus far are invariably real, implying that the response of the sys-
tem will only encompass an in-phase component. If we assume the
medium is isotropic we have that

Pi(ω) = ᾱ(−ω;ω)Ei(ω) (3.79)

where ᾱ in this context is a real number, given by Eq. (2.37). In scenar-
ios where only one field perturbation is present and it is monochro-
matic, we find that the polarization is described as

Pi(t) =
1

2

(
Pi(ω)e−iωt + Pi(−ω)eiωt

)
= |ᾱ(−ω;ω)||Ei(ω)| cos(ωt)

(3.80)

We note that the Fourier coefficients we derive exhibit singularities
when the optical frequencies coincide with an excitation energy, as
depicted in Fig.3.1. This results in non-physical behavior in the pre-
dicted polarization of Eq.(3.80), as the amplitude of the polarization
would approach infinity near resonance. This unrealistic behavior
stems from the assumption that the excited states possess infinite life-
times in the derivation of the standard molecular response functions.
To yield a more accurate representation of molecular properties that
mirrors the correct physical behaviors at resonance frequencies, we

2 8
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need to incorporate finite lifetimes for the excited states. This inte-
gration, however, is not easily achieved using a standard quantum
chemical description, necessitating the introduction of finite lifetimes
through a phenomenological approach 40. This topic will be explored
further in the following section.

Inclusion of finite lifetime and relaxation dynamics

As mentioned in the previous section, the assumption of infinite life-
times in Shrödinger equation leads to unphyiscal singularities of the
response functions at resonance frequencies. Norman approached the
depiction of finite lifetime effects from a unique perspective 41. He
adapted the Ehrenfest theorem, which dictates the time evolution of
the molecular system, by adding a damping term. This adjustment
effectively attributes finite lifetimes to the excited states. By lever-
aging the modified Ehrenfest theorem to generate complex response
vectors. In conventional response theory, transitions from the ground
state to the excited states are characterized using oscillator strengths,
which are derived from the residues of response functions 42. This
leads to an absorption spectrum with sharply peaked residues. How-
ever, experimental absorption spectra demonstrate that these peaks
are broader, and the oscillator strength is determined by integrat-
ing over the absorption band, which signifies the electronic transi-
tion. Various physical phenomena contribute to the experimentally
observed broadening: molecular collisions, Doppler effects, molecu-
lar vibrations, and the inherent lifetime of the excited states due to
spontaneous emission. To accurately depict these physical events,
modifications to the Hamiltonian Ĥ0 are necessary. However, given
the challenges in making such alterations within quantum chemistry,
a practical approach has been adopted. In order to introduce finite
life times to the excited states we rewrite the electronic Hessian and
its higher-order derivatives as 40

∂2E

∂η∂η

∣∣∣
η=0

=

(
λ− iγ 0

0 λ+ iγ

)
(3.81)

Where γ is the damping parameter, which is related to the effective
lifetime τ of the excited states as τ = 1

2γ
. If we include damping, we

observe that the real and imaginary components of the polarizability
become 34

Iααβ(−ω;ω) =
∑
i6=0

(
γ〈Ψ0|µ̂α|Ψi〉〈Ψ0|µ̂β |Ψi〉

(λi − ω)2 + γ2
− γ〈Ψ0|µ̂β |Ψi〉〈Ψ0|µ̂α|Ψi〉

(λi + ω)2 + γ2

)
(3.82)

Rααβ(−ω;ω)

=
∑
i6=0

(
(λi − ω)〈Ψ0|µ̂α|Ψi〉〈Ψ0|µ̂β |Ψi〉

(λi − ω)2 + γ2
+

(λi + ω)〈Ψ0|µ̂β |Ψi〉〈Ψ0|µ̂α|Ψi〉
(λi + ω)2 + γ2

)
(3.83)

2 9
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The imaginary or out-of-phase component of the polarizability then
assumes a Lorentzian shape, as can be observed in Fig. 3.2
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FIGURE 3.2: The dispersion of the real and imaginary components of the
polarizability’s Fourier components

Assuming an isotropic medium and a monochromatic perturba-
tion at the frequency ω, the Fourier components of the polarization
with damping will generally be complex, and the in-phase and out-
of-phase contributions to the time-dependent polarization are given
by

Pi(t) =R ᾱ(−ω;ω)|Ei(ω)| cos(ωkt) +I ᾱ(−ω;ω)|Ei(ω)| sin(ωkt)
(3.84)

The polarization will now remain finite even at resonance, since the
Fourier components no longer posses singularities. When the fre-
quency of the perturbation is far from the resonance frequencies, the
imaginary component approaches zero, and at resonance, the real
part reduces to zero. According to the Poynting theorem, the imag-
inary component of the polarizability dictates how energy can be ex-
changed between the electric field and the molecule. From Eq.(3.82),
we notice that as the optical field approaches a frequency that matches
the energy difference between the eigenstates of the unperturbed
Hamiltonian, the imaginary component of the polarizability reaches
a maximum, as illustrated in Fig.3.2. This outcome aligns precisely
with our expectations: at light frequencies that are far from any reso-
nance frequency of the molecule, we anticipate the light to be trans-
mitted, scattered, or reflected. Conversely, when the photon energy
approaches with a resonance frequency, we expect that the molecule
will begin to absorb energy from the electromagnetic field. The mech-
anism behind this phenomenon is explained by combining the Poynt-
ing theorem with Eq. (3.82).

∇I(1)(ω) ∝ −
2ω

cε0

∑
i6=0

(
γ〈Ψ0|µ̂α|Ψi〉〈Ψ0|µ̂β |Ψi〉

(λi − ω)2 + γ2
−
γ〈Ψ0|µ̂β |Ψi〉〈Ψ0|µ̂α|Ψi〉

(λi + ω)2 + γ2

)
(3.85)
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Hence, what characterizes the response of a molecule to the external
field are the eigenstates of the unperturbed system, its excitation en-
ergies and the transition strengths which are given by the transition
dipole moments 〈Ψ0|µ̂α|Ψi〉 which describe how the dipole moment
couples the different eigenstates of the system. We see that in order
for a transition to be dipole allowed it must have a non zero transition
dipole moment coupling those state together. The expression for the
polarizability in terms of the exact eigenstates of H0 acts as guidance
for us to understand the structure and meaning of the the response
functions in approximate state theory. In practice we will not have ac-
cess to the eigenstates of the Hamiltonian Ĥ0. In order to describe the
energy transfer between the light and the molecule when we don’t
have access to the exact eigenstates and energies there are now two
different approaches that one can take. Once the expression for the po-
larizability has been derived one approach would be to get explicit ap-
proximations for all the eigenstates of the unperturbed Hamiltonian
and then evaluate the imaginary component of the polarizabilites by
simply substituting in the approximate excitation energies and eigen-
states into Eq. (3.85). Another central focus of this thesis is the use of
a single-determinant as the reference state, coupled with an orbital-
rotation parametrization. This will be the subject of the subsequent
section, where we will derive the polarizabilities using approximate
state theory. Further, we aim to identify the approximate transition
dipole moments and excitation energies by contrasting them with the
expressions derived from the exact state theory.

Response functions within Approximate state theory

This section delves deeper into the computational aspects of cal-
culating the order-corrections to the order-corrections to the wave-
function parameters within the framework of approximate state the-
ory. By employing an orbital rotation parameterization and a single
Slater determinant approach, we can describe the overall response
of the wave function through coupled single-particle excitations and
de-excitations between occupied and unoccupied orbitals. The re-
sponse equations govern the extent to which each type of single-
particle excitation contributes to the total response, with the elements
of the response vector functioning as weights that describe the contri-
bution from each individual single-particle excitation. Since Slater-
determinants are not eigenstates of the Hamiltonian the electronic
Hessian of the quasi-energy is not in general diagonal and all the el-
ements of the response vectors are coupled, that is they don’t change
independently. The off-diagonal elements of the electronic Hessian
of the quasi-energy describe the coupling between the single-particle
excitation and how they interact and influence each other. Ultimately,
they are all adjusting in a coupled manner so that the Dirac-Frenkel
variation principle is satisfied to each order of the perturbation. Our
starting point is an BCH expansion of the quasi-energy in terms of the
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orbital rotation parameters

Q(t) = 〈0|eκ̂(t)

(
Ĥ(t)− i ∂

∂t

)
e−κ̂(t)|0〉

= 〈0|Q̂(r)|0〉+
∑
n

〈0|[κr(t)q̂†n − κ∗n(t)q̂n,

(
Ĥ(t)− i ∂

∂t

)
]|0〉

+
1

2!

∑
n,m

〈0|
[
κr(t)q̂

†
n − κ∗n(t)q̂n,

[
κm(t)q̂†m − κ∗m(t)q̂m,

(
Ĥ(t)− i ∂

∂t

)]]
|0〉

+ . . . ,
(3.86)

Since the gradient of the quasi-energy will contain the gradient of the
energy, the overlap, and the perturbation we start by rewriting the
electronic-gradient of the quasi-energy as(

∂QT
∂κ−ωσ

)
= f(κ(F )) + s(κ(F )) + v(κ(F ), F ) = 0 (3.87)

In these equations f is a BCH expansion of the gradient of the en-
ergy and is hence an expansion of the occupied-virtual elements of
the Fock matrix.

f(κ(F )) = f +
df

dκ

∣∣∣
κ=0

κ+
1

2

d2f

dκdκ

∣∣∣
κ=0

κκ+ · · · (3.88)

The compound indices, n,m, . . ., follow the same convention as intro-
duced in section 3.3 and the terms in the energy-gradient expansion
of Eq. (3.88) are given as

fn = 〈Θ0|[q̂n, Ĥ0]|Θ0〉
dfn
dκm

∣∣∣
κ=0

= Pn,m
1

2
〈Θ0|[q̂n, [q̂m, Ĥ0]]|Θ0〉

d2fn
dκmdκl

∣∣∣
κ=0

= Pn,m,l
1

3
〈Θ0|[q̂n, [q̂m, [q̂l, Ĥ0]]]|Θ0〉

(3.89)

In Eq. (3.87),s, corresponds to the BCH-expansion of the [q̂†n,−i ∂∂t ]
operator

s(κ(F )) = s− ωσ
ds

dκ

∣∣∣
κ=0

κ− ωσ
d2s

dκdκ

∣∣∣
κ=0

κκ+ · · · (3.90)

where each each term in the expansion can be written explicitly as

sn = 〈Θ0|q̂n|Θ0〉
dsn
dκm

∣∣∣
κ=0

= Pn,m
1

2
〈Θ0|[q̂n, q̂m]|Θ0〉

d2sn
dκmdκl

∣∣∣
κ=0

= Pn,m,l
1

3
〈Θ0|[q̂n, [q̂m, q̂l]]|Θ0〉

(3.91)

Likewise, vn is the corresponding BCH-expansion of the electronic-
gradient of the perturbation operator. We can can then conveniently
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express the time-averaged variational principle in approximate state
theory as

d

dF
ωk
β

(
∂QT
∂κ−ωσ

)∣∣∣
F=0

=
dv

dF
ωk
β

+
df

dF
ωk
β

+
ds

dF
ωk
β

= 0, (3.92)

d2

dF
ωk
γ dF

ωl
β

(
∂QT
∂κ−ωσ

)∣∣∣
F=0

=
d2v

dF
ωk
γ dF

ωl
β

+
d2f

dF
ωk
γ dF

ωl
β

+
d2s

dF
ωk
γ dF

ωl
β

= 0,

(3.93)
d3

dF
ωk
β dF

ωl
γ dFωmδ

(
∂QT
∂κ−ωσ

)∣∣∣
F=0

=

d3v

dF
ωk
β dF

ωl
γ dFωmδ

+
d3f

dF
ωk
β dF

ωl
γ dFωmδ

+
d3s

dF
ωk
β dF

ωl
γ dFωmδ

= 0,

(3.94)
The most computationally demanding terms of these equations, as
will be illustrated below, are found in the field derivatives of the en-
ergy gradient vector f , which encompasses the occupied-virtual ele-
ments of the Fock matrix. This can be understood since these terms
necessitate the evaluation and contraction of the two-electron integral
tensors. The energy-gradient vector field-derivatives that emerge in
Eqs. (3.92)–(3.94) are more explicitly given by following tensor con-
tractions

df

dF
ωk
β

∣∣∣
F=0

=
∂f

∂κ

dκ

dF
ωk
β

(3.95)

d2f

dF
ωk
γ dF

ωl
β

∣∣∣
F=0

=
∂f

∂κ

d2κ

dF
ωk
γ dF

ωl
β

+
∂2f

∂κ∂κ

dκ

dF
ωk
β

dκ

dF
ωl
β

(3.96)

d3f

dF
ωk
β dF

ωl
γ dFωmδ

∣∣∣
F=0

=
∂f

∂κ

d3κ

dF
ωk
β dF

ωl
γ dFωmδ

+
∂2f

∂κ∂κ

d2κ

dF
ωk
β dFωmδ

dκ

dF
ωl
β

+
∂2f

∂κ∂κ

dκ

dF
ωk
β

d2κ

dF
ωl
β dFωmδ

+
∂3f

∂κ∂κ∂κ

dκ

dF
ωk
β

dκ

dF
ωl
β

dκ

dFωmδ
(3.97)

Each contraction of the energy gradient derivatives in these equations
yields vectors representing the occupied-virtual elements of the trans-
formed Fock matrices, denoted as f̄ai, ¯̄fai, and ¯̄̄

fai.

∂f

∂κ

dκ

dF
ωk
β

=

(
f̄ai
f̄ia

)
(3.98)

∂2f

∂κ∂κ

dκ

dF
ωk
β

dκ

dF
ωl
β

=

(
¯̄fai
¯̄fia

)
(3.99)

∂3f

∂κ∂κ∂κ

dκ

dF
ωk
β

dκ

dF
ωl
β

dκ

dFωmδ
=

(
¯̄̄
fai
¯̄̄
fia

)
(3.100)

Recalling that the compound index for the elements of a response vec-
tor refers to a pair of virtual (v) and occupied (o) molecular orbitals,
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we scatter the elements of the response vectors into the ov- and vo-
blocks of a matrix according to 17,43,44

κωα =

(
0 dκω

dFωα

−
(
dκ−ω

dF−ωα

)∗
0

)
(3.101)

The elements of field-derivatives of the the energy gradient vector of
Eqs. (3.98)–(3.100) can then be written in terms of the auxillary Fock
matrices fωkai , fωk,ωlai , fωk,ωl,ωmai and the matrix representation of the
response vectors of Eq. (3.101) as

f̄ai = [κωk ,f ]ai + f
ωk
ai (3.102)

¯̄fai = [κωk , [κωl ,f ] + 2fωl ]ai + [κωl , [κωk ,f ] + 2fωk ]ai + f
(ωk,ωl)
ai

(3.103)
¯̄̄
fai = [κωk , [κωl , [κωm ,f ] + 3fωm ] + [κωm , [κωl ,f ] + 3fωl ] + 3f (ωl,ωm)]ai

+ [κωk , [κωl , [κωm ,f ] + 3fωm ] + [κωm , [κωl ,f ] + 3fωl ] + 3f (ωl,ωm)]ai

+ [κωk , [κωl , [κωm ,f ] + 3fωm ] + [κωm , [κωl ,f ] + 3fωl ] + 3f (ωl,ωm)]ai

+ f
(ωk,ωl,ωm)
ai

(3.104)
where frequencies in parenthesis are permuted

f
(ωk,ωl)
ai = f

ωk,ωl
ai + f

ωl,ωk
ai , (3.105)

f
(ωk,ωl,ωm)
ai = f

ωk,ωl,ωm
ai + f

ωk,ωm,ωl
ai + f

ωl,ωk,ωm
ai

+ f
ωl,ωm,ωk
ai + f

ωm,ω,ωk
ai + f

ωm,ωk,ω
ai .

(3.106)

The construction of the auxiliary Fock matrices in atomic orbital basis
requires the evaluation of the rank four two-electron integral tensors,
denoted as (µν|λσ)

(µν|λσ) =

∫ ∫
ψ∗µ(r1)ψν(r1)ψ∗λ(r2)ψσ(r2)

r12
dr1dr2 (3.107)

In a basis of N atomic orbitals there would N4 elements of which N4

8

are unique. In order to construct an auxiliary Fock matrix one would
then need to perform the following matrix tensor contraction

fωkµν =

N∑
λσ

[κωk ,D0]λσ

[
(µν|σλ)− 1

2
(µλ|σν)

]
. (3.108)

f
ωk,ωl
ai =

N∑
λσ

[κωk , [κωl ,D0]]λσ

[
(µν|σλ)− 1

2
(µλ|σν)

]
. (3.109)

f
ωk,ωl,ωm
ai =

N∑
λσ

[κωk , [κωl , [κωm ,D0]]]λσ

[
(µν|σλ)− 1

2
(µλ|σν)

]
.

(3.110)
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Assuming we have N atomic basis functions the two-electron ten-
sor contraction with the density matrix would require 2N4 − 2N2

operations. The construction of the transformed Fock matrices in
Eqs. (3.98)–(3.100) and the associated auxillary Fock matrices of
Eqs. (3.108)–(3.110) which in essence describe the energy changes of
the system are the core and most computationally demanding com-
ponents required in order to evaluate the response of the system.

S IMU LTANEOUS DIAGONALIZ ATION

While the response equations for large scale systems in practice are
solved using a Davidson subspace procedure, as detailed in 45,46,our
discussion here will predominantly concentrate on a qualitative un-
derstanding. Within approximate state theory with a single Slater-
determinant approximation the response equations relate the deriva-
tives of the occupied-virtual elements of the Fock, overlap and per-
turbation matrices. When the perturbation is switched on, the orbital-
rotation parameters κω are functions of the field strength and the al-
lowed variations for these parameters are such that the sum of the
field derivatives of the occupied-virtual elements of the these three
matrices are zero to all orders in the perturbation. From Eq. (3.92), we
get that the linear response equation takes the form(

∂f

∂κ
− ω ∂s

∂κ

)
dκ

dFωβ
= − ∂v

∂κ
(3.111)

In order to diagonalize the response equation and get the equations
in a similar form as in exact state theory, Eqs. (3.62)–(3.63), we need to
transform Eq. (3.111) to a basis in which the the response parameters
are independent. Changing basis does not of course change the prob-
lem, it just shifts our perspective of the problem. In a basis where the
electronic Hessian of the quasi-energy is diagonal, all the elements
of the response vectors are decoupled and represent orthogonal ex-
citation path ways, these are essentially "composite" single-particle
excitations which are a mix of the original single-particle excitations,
tailored in such a way that now each element of the response vector
is independent of the other. In order to achieve this simultaneous di-
agonalization of the electronic Hessian ∂f

∂κ
and the generalized over-

lap matrix ∂s
∂κ

we are looking for a similarity transform facilitated by
a matrix X such that we simultaneously diagonalize both the elec-
tronic Hessian and the generalized overlap matrix. The properties of
this transformation matrix must be such that it can be made to be or-
thogonal with respect to the inner product induced by the electronic
Hessian and to satisfy the generalized normalization condition 42,47

X†l
∂f

∂κ
Xk = λkδkl (3.112)

X†l
∂s

∂κ
Xk = sgn(k)δkl (3.113)
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The orthogonality of the vectors Xf with respect to the generalized
overlap matrix S ensures that the composite single-particle excitations
described by the elements ofXf are orthogonal or independent with
respect to each each other. This transformation matrix, denoted asX ,
can then be identified by solving the generalized eigenvector equa-
tions

∂f

∂κ
Xf = λf

∂s

∂κ
Xf

∂f

∂κ
X−f = −λf

∂s

∂κ
X−f

(3.114)

where the structure of the eigenvectors are given by

Xf =

(
Xai(λf )
X∗ai(−λf )

)
, X−f =

(
Xai(−λf )
X∗ai(λf )

)
(3.115)

We then form the transformation matrix X in terms of the eigenvec-
tors of the generalized eigenvector equations as 42,45,46

X =
(
Xf , · · · ,X−f

)
(3.116)

The generalized eigenvector equation in itself is worthwhile to dis-
cuss. Since we are evaluating the response equations at zero field
strength, we are evaluating the approximate electronic Hessian or the
curvature of the energy at κ = 0 which is a stationary point (the ref-
erence point for the expansion). When the electronic Hessian is writ-
ten in diagonal form in exact state theory and evaluated at a station-
ary point, the eigenvalues of the electronic Hessian are the the en-
ergy difference between the reference state and all other eigenstates
of the Hamiltonian from which the electronic Hessain is derived, as
was seen in Eq. (3.71). In approximate state theory the diagonalized
Hessian at a stationary point contains the approximations to the ex-
citation energies. Hence once we have diagonalized the electronic
Hessian and the generalized overlap simultaneously the approximate
excitation energies will be the diagonal elements λ of the electronic
Hessian

X†
∂f

∂κ
X =

(
λ 0
0 λ

)
, X†

∂s

∂κ
X =

(
1 0
0 −1

)
(3.117)

Having diagonalized the electronic Hessian of the quasi-energy, tak-
ing its inverse is straight forward. Using the similarity transform X
we diagonalize and invert the electronic quasi-energy Hessian and
transform back as(

∂2QT
∂κ−ωσ∂κωk

)−1

= X(X†
∂2QT

∂κ−ωσ∂κωk
X)−1X†

= X

( 1
λ−ω 0

0 1
λ+ω

)
X† =

∑
f

[
1

λf − ω
XfX

†
f +

1

λf + ω
X−fX

†
−f

]
(3.118)
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In the orbital rotation parametrization, the matrix M represents the
one-photon transition moment in the basis of the single-particle exci-
tations

Mβ =
∂2QT

∂κ−ωσ∂F
ωk
β

=

(
〈Θ0|[q̂†n, µ̂β ]|0〉
〈Θ0|[q̂n, µ̂β ]|0〉

)
=

(
−〈Θ0|µ̂β |Θa

i 〉
〈Θa

i |µ̂β |Θ0〉

)
(3.119)

With the use of Eqs. (3.118)–(3.119), we can write the solutions of the
response equations in terms of the eigenvectors of the generalized
eigenvector equation of Eq. (3.114) as

dκωk

dF
ωk
β

=
∑
f

(
XfX

†
f

λf − ωk
+
X−fX

†
−f

λf + ωk

)
Mβ

=
∑
f

〈0|µ̂α|f〉
λf − ωk

Xf +
〈f |µ̂α|0〉
λf + ωk

X−f

(3.120)

Here, 〈0|µ̂α|f〉 represents the projection of the transition dipole mo-
ment vector in the basis of excited Slater-determinants onto the eigen-
vectorXf that make up the transformation matrixX . This projection
serves as our approximation to the many-body transition dipole mo-
ment found in exact-state theory

〈0|µ̂α|f〉 = M†
αXf , 〈f |µ̂β |0〉 = X†fMβ

〈f |µ̂α|0〉 = M†
αX−f , 〈0|µ̂β |f〉 = X†−fMβ

(3.121)

Within the framework of response theory we do not work with ex-
plicit expressions for any of the excited states as linear combinations
of excited Slater determinants as in configuration-interaction singles,
the notation |f〉 serves as a placeholder. Instead of having explicit ex-
pressions for the excited states, we obtain the approximations of the
transition moments as projections onto the eigenvectors Xf . The ap-
proximate transition dipole moments become weighted sums of tran-
sition dipole moments between Slater determinants

〈0|µ̂α|f〉 = M†
αXf =

∑
ia

(
〈Θa

i |µ̂α|Θ0〉Xia(λf )− 〈Θ0|µ̂α|Θa
i 〉X∗ia(−λf )

)
(3.122)

〈f |µ̂α|0〉 = M†
αX−f =

∑
ia

(
〈Θa

i |µ̂α|Θ0〉Xia(−λf )− 〈Θ0|µ̂α|Θa
i 〉X∗ia(λf )

)
(3.123)

Combining the expression for the response vector of Eq.(3.120) with
the expression for the polarizability of Eq.(3.45), we find that the re-
sponse function in approximate state theory becomes

d2QT

dF−ωσα dFωβ

∣∣∣
F=0

= −
∑
f

M†
α

(
XfX

†
f

λf − ω − iγ
+

X−fX
†
−f

λf + ω + iγ

)
Mβ .

(3.124)
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Each vector Xf corresponds to the specific changes in the wave-
function parameters, representing approximations for the transitions
from the reference state to the other stationary states of the unper-
turbed Hamiltonian. In the orbital rotation parametrization, each
approximate transition consists of one or more single-particle excita-
tions. To illustrate this clearly, Fig.3.3 depicts the predominant single-
particle excitation associated with a specific eigenvector Xf , as de-
fined in Eq.(3.114). In this case, the sole non-zero element of the
eigenvector corresponds to the orbital rotation occurring between the
HOMO and LUMO orbitals. Generally, there might be multiple non-
zero elements, potentially leading to more complex excitations.

FIGURE 3.3: An illustrative single-particle excitation corresponding to a
HOMO to LUMO transition

Assuming real one-photon transition moment vectors, we can ex-
press the real and imaginary components of the polarizabilities in ap-
proximate state theory as

Iααβ(−ω;ω) =
∑
f

(
γ〈0|µ̂α|f〉〈f |µ̂β |0〉

(λf − ω)2 + γ2
− γ〈0|µ̂β |f〉〈f |µ̂α|0〉

(λf + ω)2 + γ2

)
(3.125)

Rααβ(−ω;ω) =
∑
f

(
(λf − ω)〈0|µ̂α|f〉〈f |µ̂β |0〉

(λf − ω)2 + γ2

+
(λf + ω)〈0|µ̂β |f〉〈f |µ̂α|0〉

(λf + ω)2 + γ2

) (3.126)
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This formulation is reminiscent of the exact-state theory expressions
detailed in Eqs. (3.82)–(3.83), but now incorporates our approximate
transition dipole moments and approximate excitation energies.
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FIGURE 3.4: An illustration of the imaginary component of the polarizability
(blue curve) and the one-photon transition strengths (black bars).

From Fig.3.4, we can observe that for each eigenvector and eigen-
value pair, Xf and λf , from equation Eq.(3.114), there corresponds
a peak indicative of an excitation 0 → f . The strength of each tran-
sition depends on the magnitude of M†αXfX

†
fMβ , representing the

coupling between the reference state and the excited state f mediated
by the dipole moment operator. By summing over all states f and
applying the Lorentzian broadening implied by Eq.(3.125), we obtain
the absorption spectrum, as depicted in Fig.3.4.

Non-linear response and multiple-photon interactions

When an intense field interacts with a material, multiple simultane-
ous field interactions can occur, causing the material’s response to be-
come nonlinear. This means that the response is no longer merely the
sum of the individual responses. Our goal is to describe how multi-
ple photons can interact with the material simultaneously and explore
phenomena such as two-photon absorption 48–61 or second harmonic
generation 62–69. To model this, we need to examine how the initial re-
sponse from the first field interaction is influenced by the presence of
other concurrent field interactions. This aspect is encapsulated by the
nonlinear response, which captures the cooperative effects that would
not be apparent when considering multiple, separate first-order re-
sponses. We can gain insights into this process by considering the
second- and third-order corrections to the Fourier coefficients of the
dipole moments, which were given by Eqs. (3.49)–(3.50). We have
observed that the dispersion behavior of these Fourier coefficients is
primarily determined by the behavior and characteristics of the order
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corrections to the wave-function parameters. In particular the imagi-
nary component of the first-order corrections take the form 70

I dη
ω

dFωβ
=
∑
f

(
γXfX

†
f

(λf − ω)2 + γ2
+

γX−fX
†
−f

(λf + ω)2 + γ2

)
Mβ (3.127)

These are non-zero only near resonance frequencies. The second-
order derivatives, representing the rate of change of linear response,
take the form

I d
2ηωk,ωk

dF
ωk
β F

ωl
δ

=
∑
f

(
γXfX

†
f

(λf − (ωk + ωl))2 + γ2
+

γX−fX
†
−f

(λf + (ωk + ωl))2 + γ2

)
M

ω,ω
βδ

(3.128)

The rate of change of the linear response with respect to a second
field interaction introduces new non-zero contributions at frequencies
corresponding to combinations of the perturbation frequencies
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FIGURE 3.5: An illustration of the dispersion of one component of the first-
order and second-order corrections to the Fourier components of the wave-
functon parameters

As illustrated in Fig. 3.5, incorporating the non-linear response
vectors into our model suddenly enables the material to exchange
energy with the field at spectral frequencies that would not have
been possible if the perturbations were treated as completely separate
events. The cooperative effect of two photons, for instance, can be ob-
served in two-photon absorption transitions that are forbidden in one-
photon absorption. These processes could not occur if one considered
the effect of each photon separately. Information regarding simultane-
ous two-photon absorption can be obtained from the cubic response
function as was shown by the Poynting theorem. The quadratic re-
sponse function however also contains information regarding two-
photon absorption as will be discussed in the section concerning the
residue of the quadratic response function. Drawing from the Poynt-
ing theorem, we have determined that the second-order correction to
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the intensity gradient is directly given by the imaginary component
of the isotropic second-nonlinear hyperpolarizability

∇I(2)(ω) =
4ω

c2ε20

Iγ̄(−ω;ω,−ω, ω)I2(ω) (3.129)

The second-order nonlinear hyperpolarizability of Eq. (3.50) can be
rewritten in terms of the only the first and second-order corrections to
the wave-function parameters and the explicit expression of a single
tensor component is given by the following expression 71–75

γαβγδ(−ω;ω,−ω, ω) =

dκ−ω

dF−ωα

∂4QT
∂F∂κ∂κ∂κ

[
dκ−ω

dF−ωγ

dκω

dFωδ
+
dκω

dFωβ

dκω

dFωδ
+
dκωk
dFωβ

dκ−ωl
dF−ωγ

]

+
dκ−ω

dF−ωα

∂3QT
∂F∂κ∂κ

[
d2κ−ω,ω

dF−ωγ Fωδ
+
d2κω,ω

dFωβ F
ω
δ

+
d2κω,−ω

dFωβ F
−ω
γ

]

+
dκ−ω

dF−ωα

∂3QT
∂κ∂κ∂κ

[
dκω

dFωβ

d2κ−ω,ω

dF−ωγ dFωδ
+
dκ−ω

dF−ωγ

d2κω,ω

dFωβ F
ω
δ

+
dκω

dFωδ

d2κω,−ωl

dFωβ dF
−ω
γ

]

+
dκ−ω

dF−ωα

∂4QT
∂κ∂κ∂κ∂κ

dκω

dFωβ

dκ−ω

dF−ωγ

dκω

dFωδ

+
∂3QT

∂Fωα ∂κ∂κ

[
dκω

dFωβ

d2κ−ω,ω

dF−ωγ Fωδ
+
dκ−ω

dF−ωγ

d2κω,ω

dFωβ F
ω
δ

+
dκω

dFωδ

d2κω,−ω

dFωβ F
−ω
γ

]

+
∂4QT

∂F∂κ∂κ∂κ

dκω

dFωβ

dκ−ω

dF−ωγ

dκω

dFωδ
,

(3.130)
Looking at Eq.(3.130), it is seen that evaluating a single tensor ele-
ment necessitates the resolution of both linear and quadratic response
equations, along with several contractions of Fock-matrix derivatives
up to the third order.

TH E REDUC ED EXPRESS ION FOR TWO-P HOTON A BS OR PTION
C ROS S S EC TIONS

In this section, we will discuss a reduced expression for the second-
order nonlinear hyperpolarizability pertinent to the articles II and IV
included in this thesis. Looking at Fig.3.5, it is seen that in regions far
removed from any one-photon resonance, the imaginary components
of all the first-order response vectors are approximately zero. Conse-
quently, all the first-order response vectors are predominantly real in
such spectral regions. This suggests that the two-photon absorption
transition moment vectors of Eq.(3.66) are also real. However, the
second-order nonlinear hyperpolarizability encompasses quadratic
response vectors as described in Eq.(3.128). These quadratic response
vectors might possess non-zero imaginary components if combina-
tions of frequencies align closely with resonance energies, as depicted
in Fig.3.5. Thus, we infer that within the imaginary component of the
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second-order nonlinear hyperpolarizability, many terms are equal to
zero far from any one-photon resonance. By isolating only the non-
zero contributions from the imaginary component of Eq. (3.130), we
obtain a substantially simplified expression 76.

Iγred
αβγδ(−ω;ω,−ω, ω)

≈

[
∂3QT
∂κ∂κ∂κ

dκ−ω

dF−ωα

dκ−ω

dF−ωγ
+ Pα,γ

∂3QT

∂F−ωα ∂κ∂κ

dκ−ω

dF−ωγ

]
d2κω,ω

dFωβ F
ω
δ

=
(
M−ω,−ω

αγ

)†∑
f

(
γXfX

†
f

(λf − 2ω)2 + γ2
+

γX−fX
†
−f

(λf + 2ω)2 + γ2

)
Mω,ω

βδ

(3.131)
This derived expression for the hyperpolarizability, denoted as γred,
which is valid only in one-photon off-resonance regions, is referred
to as the reduced expression. In contrast, in the one-photon resonance
regions, we utilize the imaginary component of Eq. (3.130), termed the
full expression. In analogy to the first-order case, see Eq. (3.121), we
get expressions for the approximate two-photon transition moments
as the projections:

0→fS
ωl,ωm
αβ =

(
M

ωl,ωm
αβ

)†
Xf ,

(
0→fS

ωl,ωm
αβ

)†
= X†fM

ωl,ωm
αβ

(3.132)
Therefore, in one-photon off-resonance regions, the second-order cor-
rection to the intensity gradient is proportional to the following ex-
pression 40

∇I(2)(ω) ∝

− ω
∑
f

γ 0→fS−ω,−ωαγ

(
0→fSω,ωβδ

)†
(λf − 2ω)2 + γ2

+
γ
(

0→fS−ω,−ωαγ

)†
0→fSω,ωβδ

(λf + 2ω)2 + γ2

 I
2
(ω)

(3.133)

In Fig. 3.6, both the imaginary component of the polarizability
α(−ω, ω), corresponding to one-photon absorption, and the second
hyperpolarizability γ(−ω, ω,−ω, ω) have been plotted. Due to the in-
corporation of the second-order response vector, the hyperpolarizabil-
ity exhibits resonance in one-photon off-resonance regions.
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FIGURE 3.6: Dispersion of the real and imaginary component of the Fourier
components of the polarizability and the second hyperpolarizability

To conclude, when ω = 0.5λf in one-photon off-resonance regions
the energy transfer from the field to the molecule is proportional to the
complex magnitude squared of the two-photon transition moments
corresponding to that excitation.

TH E RESID UE APP ROACH

The two-photon transition moments can also be discerned using the
quadratic response function 42. In this section, we will delve deeper
into the nuances of two-photon transition moments and explore an
alternative method for their calculation and the residue approach,
employed in paper V, will be discussed in more detail. Within non-
damped response theory, the residue approach is used where the re-
sponse functions exhibit singularities at spectral frequencies at the ex-
citation energies. In this method, the quantities of interest are com-
puted as follows

Rf = lim
ω→λf

(ω − λf )R(ω) (3.134)

Here, R denotes the response function and Rf represents the terms
within the response function that persist post-division by (ω−λf ) as ω
approaches λf . Looking at Eq. (3.78), it is evident that such a residue
can isolate the product of transition moments corresponding to λf .
Likewise, the two-photon transition moments can be extracted from
the quadratic response function, a process detailed in the subsequent
discussion. Once the two-photon transition strengths are obtained,
the two-photon absorption spectrum can be constructed by aggre-
gating all transitions strengths and incorporating a broadening func-
tion. Performing a rotational average of the two-photon transition
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strengths yields the effective two-photon transition strength as 75,77.

δTPAf =
1

15

∑
αβ

[
0→fS

−
λf
2
,−
λf
2

αα

(
0→fS

−
λf
2
,−
λf
2

ββ

)†

+ 0→fS
−
λf
2
,−
λf
2

αβ

(
0→fS

−
λf
2
,−
λf
2

αβ

)†
+ 0→fS

−
λf
2
,−
λf
2

βα

(
0→fS

−
λf
2
,−
λf
2

βα

)† ]
(3.135)

The two-photon absorption cross section as a function of the optical
frequency is then given by the expression

σ(2)(ω) =
Nπ2α2~4

e4
ω2
∑
f

δTPAf L(ω), (3.136)

where the Lorentzian broadening function is given by the expression

L(ω) =
γ

(λf − ω)2 + γ2
(3.137)

The starting point for this approach is as mentioned the quadratic re-
sponse function. After some algebraic manipulation we arrive at the
working expression for the quadratic response function in terms of
first-order response vectors as

d3QT

dF−ωσα dFω2
β dFω3

γ

∣∣∣
F=0

=
∂3QT

∂F−ωσα ∂ηω2∂ηω3

dηω2

dFω2
β

dηω3

dFω3
γ

+
dη−ωσ

dF−ωσα

[
∂3QT

∂η−ωσ∂ηω3∂Fω2
β

dηω3

dFω3
γ

+
∂3QT

∂η−ωσ∂ηω2∂Fω3
γ

dηω2

dFω2
β

]

+
dη−ωσ

dF−ωσα

∂3QT
∂η−ωσ∂ηω2∂ηω3

dηω2

dFω2
β

dηω3

dFω3
γ

(3.138)
where the response equations in standard response theory are given
by Eq. (3.120). Taking the residue as ω3 → λf of the quadratic
response function for ω2 = −λf

2
we get that all the terms in the

quadratic response function that do not contain the factor (λf − ω3)
are eliminated and we get an expression for the two-photon transition
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moment 42

lim
ω3→−λf

(λf + ω3)
d3QT

dF−ωσα dF
λf
2

β dFω3
γ

∣∣∣
F=0

=

[(
∂3QT

∂F−ωσα ∂η
−λf

2 ∂ηλf
+
dη−ωσ

dF−ωσα

∂3QT

∂η−ωσ∂η−
λf
2 ∂ηλf

)
dη−

λf
2

dF
−
λf
2

β

Xf

+
∂3QT

∂η−ωσ∂ηλf ∂F
−
λf
2

β

dη−ωσ

dF−ωσα

Xf

]
X†fMγ

= 0→fS
−
λf
2
,−
λf
2

αβ 〈f |µ̂γ |0〉
(3.139)

The term to the right of the square bracket in Eq. (3.139) corresponds
to 〈f |µ̂γ |0〉 and the term in the bracket corresponds to the two-photon
transition moment. In exact state theory we have that the cubic Hes-
sian of the quasi-energy is zero so we get that the two-photon transi-
tion moment is given by the expression

0→fS
−
λf
2
,−
λf
2

αβ =[
∂3QT

∂η−
λf
2 ∂ηλf ∂F

−
λf
2

β

dη−
λf
2

dF
−
λf
2

α

+
∂3QT

∂F
−
λf
2

α ∂η−
λf
2 ∂ηλf

dη−
λf
2

dF
−
λf
2

β

]
Xf

(3.140)
The the generalized dipole tensors in Eq. (3.139) can be written explic-
itly as

∂3QT

∂F−ωσα ∂ηω2∂ηω3
=

 ∂2µ−ωσα
∂η∗mηn

∂2µ−ωσα
∂η∗mη

∗
n

∂2µ−ωσα
∂ηmηn

∂2µ−ωσα
∂ηmη∗n

 (3.141)

Only the diagonal blocks are non-zero in exact state theory and using
the BCH expansion of Eq. (3.86) we have that the upper left block and
the lower right block can be written as

∂3QT

∂F−ωσα ∂η∗m∂ηn
= −1

2
〈Ψ0|[R̂†n, [R̂m, µ̂α]]|Ψ0〉 −

1

2
〈Ψ0|[R̂m, [R̂†n, µ̂α]]|Ψ0〉

= (〈Ψm|µ̂α|Ψn〉 − 〈Ψ0|µ̂α|Ψ0〉δnm)
(3.142)

∂3QT

∂F−ωσα ∂ηm∂η∗n
= −1

2
〈Ψ0|[R̂n, [R̂†m, µ̂α]]|Ψ0〉 −

1

2
〈Ψ0|[R̂†m, [R̂n, µ̂α]]|Ψ0〉

= (〈Ψn|µ̂α|Ψm〉 − 〈Ψ0|µ̂α|Ψ0〉δnm) .
(3.143)

Furthermore, in exact state theory, the eigenvectors have the structure

Xf =

(
δmf

0

)
, X−f =

(
0
δmf

)
, (3.144)
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such that after contracting the tensors we get the expressions

∂3QT

∂F
−
λf
2

α ∂η−
λf
2 ∂ηλf

dη−
λf
2

dF
−
λf
2

β

Xf =
∑
n,m

〈Ψ0|µβ |Ψn〉
λn −

λf
2

∂2µ
−
λf
2

α

∂η∗mηn
δmf

(3.145)

∂3QT

∂η−
λf
2 ∂ηλf ∂F

−
λf
2

β

dη−
λf
2

dF
−
λf
2

α

Xf =
∑
n,m

〈Ψ0|µα|Ψn〉
λn −

λf
2

∂2µ
−
λf
2

β

∂η∗mηn
δmf

(3.146)
Combining Eqs. (3.144)–(3.146) with Eq. (3.140) we get that the two-
photon transition moment for two degenerate photons of half the ex-
citation energy λf between the states |Ψ0〉 and |Ψf 〉 is given by the
expression

0→fS
−
λf
2
,−
λf
2

αβ =
∑
n

[
(〈Ψn|µ̂α|Ψf 〉 − 〈Ψ0|µ̂α|Ψ0〉δnf ) 〈Ψ0|µβ |Ψn〉

λn −
λf
2

+
(〈Ψn|µ̂β |Ψf 〉 − 〈Ψ0|µ̂β |Ψ0〉δnf ) 〈Ψ0|µα|Ψn〉

λn −
λf
2

]
(3.147)

In approximate state theory, the cubic Hessian is non-zero and we get
that the explicit expression for the two-photon transition moments in
approximate state theory from the residue of the quadratic response
function is given by the expression

0→fS
−
λf
2
,−
λf
2

αβ =
∂3QT

∂κ−
λf
2 ∂κλf ∂F

−
λf
2

β

dκ−
λf
2

dF
−
λf
2

α

Xf

+

 ∂3QT

∂F
−
λf
2
a

α ∂κ−
λf
2 ∂κλf

+
dκ−

λf
2

dF−ωσα

∂2f−
λf
2

∂κ−
λf
2 ∂κλf

 dκ−
λf
2

dF
−
λf
2

β

Xf

(3.148)
Consequently, determining the two-photon transition moment from
the residue of the quadratic response function necessitates solving
the linear response equation and the generalized eigenvector equa-
tion, delineated in Eq.(3.114), as well as executing the Fock matrix
contraction as per Eq.(3.99) and Eq. (3.103). This approach stands in
stark contrast to the method detailed in the preceding section, where
the two-photon transition moments are derived from the second hy-
perpolarizability within the theory of damped response; in that ap-
proach, eigenvectors are not utilized. Furthermore, the two-photon
transition moments obtained from the residue of the quadratic re-
sponse function manifest distinct singularities when the optical fre-
quency matches an excitation energy. While calculating the two-
photon transition moments as indicated in equation (3.131), these
transition moments are computed employing damped response vec-
tors, which remain finite at and in proximity to resonance. This im-
plies that these two-photon transition moments obtained from the
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residue of the quadratic response function are ill-suited for circum-
stances where the intermediate state in the TPA process represents a
real eigenstate 40.

TH E SUM-OVER STATES APPROAC H

A final approach for obtaining two-photon absorption strengths is
with the use of the two-state model, which will be presented in this
section. While the sum-over-states expression has been somewhat
supplanted by the method presented in the previous sections for prac-
tical calculations, it retains its value for theoretical analyses 78,79. In
this approach, we will truncate the expression for the two-photon
transition moment of Eq. (3.147) to include only two states. We then
get an approximation for the two-photon transition moment, which
takes the form 34

0→fS
λf
2
,
λf
2

αβ ≈
∑
n

Pαβ

[
(〈Ψf |µ̂α|Ψn〉 − 〈Ψ0|µ̂α|Ψ0〉δnf ) 〈Ψn|µβ |Ψ0〉

λn −
λf
2

]
δnf

=
2

λf

[
∆µfα〈Ψn|µβ |Ψ0〉+ ∆µfβ〈Ψn|µα|Ψ0〉

]
(3.149)

In this expression, we have defined ∆µfα, which represents the dif-
ference between the dipole moment of the excited state f and the
ground state. Taking the isotropic average of these two-state model
two-photon transition moments, we find that the isotropic averaged
two-photon absorption strength is defined by 80

δ2SM
f =

4

15

〈0|µ̂|0〉〈0|µ̂|0〉〈0|µ̂|f〉〈f |µ̂|0〉
0.25λ2

f

(1 + 2 cos2 θ00
0f )

− 8

15

〈0|µ̂|0〉〈0|µ̂|f〉〈f |µ̂|0〉〈f |µ̂|f〉
0.25λ2

f

(2 cos θ0f
00 cos θff0f + cos θff00 )

+
4

15

〈0|µ̂|f〉〈f |µ̂|0〉〈f |µ̂|f〉〈f |µ̂|f〉
0.25λ2

f

(1 + 2 cos2 θ0f
ff )

(3.150)
To assess the two-photon transition momenta within the context of
the two-state model, it is necessary to calculate the dipole moment of
the excited state. In approximate state theory, we lack explicit access
to the excited state wave functions of Ĥ0, but we can derive the ex-
cited state dipole moment from the quadratic response function. This
dipole moment can be obtained by taking the double residue of the
quadratic response function 42 for ω2 → −λf and ω3 → λf .

lim
ω2→−λf

(λf + ω2)

[
lim

ω3→λf
(λf − ω3)

d3QT

dF−ωσα dF
ω2
β dF

ω3
γ

∣∣∣
F=0

]
=

[(
∂3QT

∂F−ωσα ∂η−λf ∂ηλf
+
dη−ωσ

dF−ωσα

∂3QT

∂η−ωσ∂η−λf ∂ηλf

)
XfX−f

]
X
†
fMβX

†
−fMγ

(3.151)

In exact state theory, where the electronic cubic-Hessian is zero, the
double residue transforms into a product involving the Hessian of the
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generalized dipole moment tensor. As anticipated, this Hessian, when
assessed at the stationary point, contains the difference between the
dipole moments of the reference state and the other excited states of
Ĥ0. Explicitly, the double residue is given as 42,81

lim
ω2→−λf

(λf + ω2)

[
lim

ω3→λf
(λf − ω3)

d3QT

dF−ωσα dFω2
β dFω3

γ

∣∣∣
F=0

]

=

[(
∂3QT

∂F−ωσα ∂η−λf ∂ηλf

)
XfX−f

]
X†fMβX

†
−fMγ

=

[
〈Ψf |µ̂α|Ψf 〉 − 〈Ψ0|µ̂α|Ψ0〉

]
〈Ψf |µ̂β |Ψ0〉〈Ψ0|µ̂γ |Ψf 〉

(3.152)

Meanwhile, in approximate state theory, the corresponding residue of
the quadratic response function incorporates a non-zero cubic Hes-
sian tensor. Hence, the approximation for the excited state dipole mo-
ment will be given by the following expression

〈f |µ̂α|f〉

= 〈0|µ̂α|0〉+

[(
∂3QT

∂F−ωσα ∂κ−λf ∂κλf
+
dκ−ωσ

dF−ωσα

∂2f−ωσ

∂κ−λf ∂κλf

)
XfX−f

]
(3.153)

Conclusively, the determination of the excited-state dipole moment
necessitates the resolution of the generalized eigenvector equation,
given in Eq.(3.114), along with the contraction of the energy-gradient
derivatives as shown in Eq.(3.99) and Eq. (3.103)
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VeloxChem: A Python-driven density-functional theory
program for spectroscopy simulations (Summary of paper I)

VeloxChem is an open-source program designed to calculate elec-
tronic response functions using Hartree–Fock and Kohn–Sham den-
sity functional theories. It employs an object-oriented structure writ-
ten in a layered Python/C++ approach. This design promotes time-
efficient prototyping of innovative methodologies within electronic
structure theory without compromising computational efficiency. As
described in previous sections, the response properties necessitated
order corrections to the Fourier components of the wave-function pa-
rameters. VeloxChem addresses this by tackling multiple frequencies
and transition dipole moment vectors concurrently within a single
shared subspace. This shared subspace technique notably enhances
convergence speeds compared to traditional serial computations 82.
A hallmark of VeloxChem is its integral code, based on a modified
Obara-Saika scheme. A primary advantage of mentioned integral
code is its low memory footprint, allowing the majority of the mem-
ory to be dedicated to storing auxiliary density and Fock matrices.
This is important since, solving the response equations necessitates
the creation of several auxiliary Fock matrices, a point underscored
in earlier sections. This allows for many auxiliary Fock matrices to
be constructed in parallel each time the two-electron tensor is con-
structed. The integral code and the response solver coalesce to posi-
tion VeloxChem as an efficient platform for computing response prop-
erties.

The tensor-average and subspace extraction technique
(Summary of paper II)

The key quantities of interest for simulating spectroscopic observ-
ables related to one- and two-photon absorption, as mentioned in pre-
vious sections, are the isotropic averages of polarizability Eq. (2.37)
and second-order nonlinear hyperpolarizability Eq. (2.38). The calcu-
lation of the second-order nonlinear hyperpolarizability necessitates
the formation of two- and three-photon transition moment vectors
Eqs. (3.66)–(3.67), which in turn require the contraction of the cubic
and quartic-Hessian as shown in Eqs.(3.99)–(3.100).

γ →

{(
¯̄̄
fai
¯̄̄
fia

)
,

(
¯̄fai
¯̄fia

)}

The number of auxiliary Fock matrices per frequency required for the
analytic form of this contraction follow a systematic and predictable
number. The number of unique auxiliary Fock matrices needed for
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computing all the distinct second-hyperpolarizability tensors, which
are required for determining the isotropic average, are represented by
the blue bar in Fig. 4.1, the details are discussed in paper II.

Given that the isotropic average is the quantity of interest, op-
timizations can be made since the auxiliary Fock matrices are con-
structed through a linear transformation with respect to the density
matrix, as depicted in Eqs. (3.108)–(3.110). This implies that the aux-
illary Fock matrix construction preserves both matrix addition (ad-
ditivity) and scalar multiplication (homogeneity), wherein the trans-
formation of the sum of multiple densities equates to the sum of the
individual densities, as described by the equation

F (D1) + ...+ F (Dn) = F (D1 + ...+Dn), (4.1)

Given that the auxiliary Fock matrices represent linear transforma-
tions of the perturbed densities, a new computational scheme is pre-
sented which is called the tensor-average approach. This scheme aims
to leverage the inherent linearity to reduce the computational cost as-
sociated with determining the isotropic average directly, as opposed
to evaluating the tensor components individually which we refer to
as the tensor-component approach, all without sacrificing numerical
accuracy. The aim of the tensor-average approach is hence to derive
the analytic form of the orientiationally averaged cubic and quartic-
Hessian tensor contractions which utilise the minimum amount of
auxiliary Fock matrix constructions:

γ̄ →

{〈(
¯̄̄
fai
¯̄̄
fia

)〉
,

〈(
¯̄fai
¯̄fia

)〉}

The auxillary Fock matrices that can be added using Eq. (4.1) then
define a set of compounded Fock matrices and the working equa-
tions are rewritten in terms of compounded auxillary Fock matri-
ces. In the tensor-average approach, each time two-electron inte-
grals are evaluated, applicable perturbed densities are cumulatively
added, followed by a single linear transformation, thereby signifi-
cantly reducing the number of necessary Fock matrix constructions
need to be managed in parallel. Furhtermore, the response equations,
in Eqs.(3.62)–(3.64), adopt the form:

Ax = m (4.2)

These equations are addressed using an iterative subspace method.
The actual subspace method used in VeloxChem is detailed in 45, here
a simplified but conceptual presentation is made to show the under-
lying logic for the subspace extraction technique developed in paper
II. After n iterations, we accumulate n trial vectors b, forming a trial
space bn

bn = {b1, ..., bn} (4.3)

Our objective is to estimate the solution to the linear system in Eq.(4.2)
using a combination of vectors that define the space in Eq. (4.3). A
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critical step involves the transformation of these trial vectors using
the matrixA, resulting in a transformed space.

(Ab)n = {Ab1, ...,Abn} (4.4)

Subsequently, Eq. (4.2) is solved in the subspace spanned by Eq. (4.3)
using the transformed space of Eq. (4.4) by inverting the reduced ma-
trix in the following equation

b†1Ab1 b†1Ab2 · · · b†1Abn
b†2Ab1 b†2Ab2 · · · b†2Abn

...
...

. . .
...

b†nAb1 b†nAb2 · · · b†nAbn



c1
c2
...
cn

 =


b†1m

b†2m
...

b†nm

 (4.5)

After convergence, the optimal solution in the space spanned by
Eq. (4.3) is written as a linear combination of the trial space vectors
and the coefficents obtained from Eq. (4.5) as

dκ

dF
=

n∑
p

cpbp (4.6)

In order to construct the reduced space matrix in Eq. (4.5) we required
the transformed space of Eq. (4.4) and since the matrixA contains the
electronic Hessian we would have contracted all the trial vectors with
the electronic Hessian using Eq. (3.98)(

∂f

∂κ
b

)n
= { ∂f

∂κ
b1, ...,

∂f

∂κ
bn} = {

(
f̄ai(b1)
f̄ia(b1)

)
, ...,

(
f̄ai(bn)
f̄ia(bn)

)
} (4.7)

When calculating the second-order nonlinear hyperpolarizability,
we would need to contract the cubic and quartic Hessians using
Eqs.(3.103)–(3.104). Since, in the subspace procedure, certain contrac-
tions are already made as per Eq.(4.7), some auxiliary Fock matrices
can be retrieved from the subspace, thus avoiding redundant Fock
matrix constructions. This observation becomes evident when com-
bining Eqs. (4.6), (3.98), and (3.102) to arrive at the following equality

∂f

∂κ

dκ

dF
ωk
β

=

n∑
p

cp
∂f

∂κ
bp =

(
[κωk ,f ]ai + f

ωk
ai

[κωk ,f ]ia + f
ωk
ia

)
(4.8)

This equation can in turn be written in terms of the vectors spanning
Eq. (4.7) and solved for a vector containing the auxiliary Fock matrices
fωk found in Eq. (3.103)–(3.104) as(

f
ωk
ai

f
ωk
ia

)
=

n∑
p

cp

(
f̄ai(bp)
f̄ia(bp)

)
−
(

[κωk ,f ]ai
[κωk ,f ]ia

)
(4.9)
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THE PERFORMANCE OF THE TENSOR -AVERAG E AND S UBSPA CE
EXTRA CTION T EHCNIQUES

The reduction in the total number of auxiliary Fock matrix construc-
tions required when utilizing the proposed tensor average approach
with the subspace extraction technique using the full expression for
the second-order nonlinear hyperpolarizability amounts to 90% as il-
lustrated in the black bars in Fig. 4.1.
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Percentage Reduction: 16.7% for Response Vectors and 90.2% for Auxillary Fock Matrices.

Tensor-Average
Tensor-Component

FIGURE 4.1: The number of response vectors and auxiliary Fock matrices
required per frequency for the evaluation of the full isotropic hyperpolar-
izability (Eq. (2.38) & Eq. (3.130)) using the tensor-component and the new
tensor-average algorithm. The blue bar in the figure represents the tensor
component approach where each individual tensor component is calculated
without exploiting the linearity of the Fock matrix construction or subspace
extraction, serving as a reference. In contrast, the black bar represents the
number of Fock matrix constructions based on the proposed tensor-average
algorithm with subspace extraction.

In one-photon off-resonance regions the expression for the second-
order non-linear hyperpolarizability reduces to the simplified expres-
sion in Eq. (3.131). When the tensor average is applied with the
subspace extraction technique, see Fig.4.2 one gets an 86% reduction
in the number of auxiliary Fock matrix constructions per frequency
when compared to a tensor component method without the use no
subspace extraction.
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Percentage Reduction: 25.0% for Response Vectors and 86.2% for Auxillary Fock Matrices.
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FIGURE 4.2: The number of response vectors and auxiliary Fock matrices re-
quired per frequency for the evaluation of the isotropic hyperpolarizability
(Eq. (2.38) & Eq. (3.131)) using the tensor-component and the new tensor-
average algorithm in one-photon off-resonance regions. The blue bar in the
figure represents the tensor-component approach where each individual
tensor component is calculated without exploiting the linearity of the Fock
matrix construction or using the subspace extraction technique, serving as
a reference. In contrast, the black bar represents the number of Fock matrix
constructions based on the proposed tensor average algorithm with use of
the subspace extraction technique.

Extensions to density functional theory (Summary of papers
III and IV)

The tensor average method, elaborated in detail in paper II, was pri-
marily designed for the Hartree-Fock approximation. In paper III, a
proof of principle is provided for the application of the tensor aver-
age method in density functional theory. This paper demonstrates
that, within the adiabatic approximation, the non-linear kernel inte-
grations required for the construction of the auxiliary Fock matrices
at the DFT level of theory can be construed as linear transformations
with respect to the perturbed densities. This is demonstrated for the
functionals belonging to the generalized gradient approximation and
the second-order property of second-harmonic generation.

In paper IV, working equations for the calculation of two-photon
absorption cross-sections using the tensor average method at the DFT
level of theory are presented and extended to include functionals be-
longing to the meta-generalized gradient approximation (meta-GGA).
This marks the first implementation of non-linear response for this
class of functionals, in particular enabling the calculation of two-
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photon absorption strengths with meta-GGA functionals for the first
time.

Benchmarking meta-GGA functionals for the calculation of
two-photon absorption strengths (Summary of paper V)

In paper V, the meta-GGA implementation of paper IV is used to
benchmark the performance of meta-GGA functionals for the calcu-
lation of nonlinear response properties. A comprehensive benchmark
study was carried out on 48 charge-transfer systems (see Fig. 4.3) pri-
marily focused on pure, hybrid, and range-separated GGA and meta-
GGA functionals.

FIGURE 4.3: Structures of compounds included in the benchmark study.

Consistent with previous studies on this benchmark set 80, the den-
sity functional approximations (DFAs) consistently underestimate the
TPA strengths as can be seen in Fig. 4.4, where the TPA strengths cal-
culated using Eqs. (3.135) and Eq. (3.148) are plotted against the cor-
responding TPA strengths using RI-CC2.
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FIGURE 4.4: Two-photon absorption strengths computed using RI-CC2 and
density functional approximations for the entire data set.

The TPA strengths in molecules 35-46 are dominated by a single
transition as can be seen in Fig. 4.5 where the two-state model TPA
strengths calculated using Eq. (3.150) are compared with the TPA
strenghts calculating using the residue of the quadratic response func-
tion using Eq. (3.135) and Eq. (3.148).
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(b)

FIGURE 4.5: Comparison of the two-state model (a) and RSP (b) TPA
strengths for selected global meta-GGA functionals and a long-range cor-
rected GGA functional, with the RI-CC2 level serving as a reference, for
molecules numbered 35-46.

The main reason for the underestimation of TPA strengths has pre-
viously been attributed to the underestimation of the difference be-
tween the dipole moments of the ground and the excited state 80. Us-
ing the fact that the TPA strengths are dominated by one transition,
the excited state dipole moments for the dominant state are calcu-
lated using Eq. (3.153) and the dipole moment difference is plotted
in Fig. 4.6
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FIGURE 4.6: The difference between the excited- state and ground-state
dipole moments for the dominant transition in molecules 35-46.

The results for the best global-hybrid meta-GGAs also follow this
trend, as illustrated in Fig.4.6. We note that MN15 and M06-2X, which
rank among the best DFAs in terms of correlation coefficients (see
Fig.4.7) and mean relative errors (see Fig. 4.8 & Table. 4.1), still un-
derestimate the difference in the dipole moment between the ground
and excited states, althought to a lesser extent compared to the best
long-range corrected DFA, CAM-B3LYP.
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FIGURE 4.7: Pearson-Correlation (r2) and Spearman-Correlation for the cal-
culation of TPA strengths from the residue of the quadratic response func-
tion at the DFT level of theory for molecules 1-48 with RI-CC2 as reference.
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FIGURE 4.8: Distribution of relative errors for the calculation of TPA
strengths from the residue of quadratic response for molecules 1-48 with
CC2 as reference.

Functional Mean Relative Error Mean Signed Relative Error
MPW1B95 32.30 -0.58
R2SCAN-30 34.32 -6.87
R2SCAN-35 35.18 -19.60
MN15 35.33 -32.48
BB1K 36.04 -30.06
B86B95 36.22 8.22
PW6B95 37.47 9.34
MPWB1K 38.52 -33.97
R2SCAN-40 38.75 -30.70
PBE0 39.11 12.03
SCAN0 39.14 0.14
M05 39.90 1.44
TPSS0 40.24 12.00
M06 41.53 4.79
PWB6K 41.66 -38.07
R2SCAN-45 44.88 -40.30
M06-2X 47.29 -47.29
M05-2X 48.81 -48.81
CAM-B3LYP 53.07 -53.05

TABLE 4.1: Mean relative error, mean signed relavtie error, min and max
relative errors for the calculation of two-photon absorption strengths with
the residue of the quadaratic response function. Reference: RI-CC2

In regards to the performance on the prediction of excited state
dipole moments, the meta-GGA functionals did exceptioanlly well as
can be seen in Fig. 4.9
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FIGURE 4.9: Pearson-Correlation (r2) and Spearman-Correlation for the cal-
culation of excited-state dipole moments for molecules 35-46 at the DFT
level of theory with RI-CC2 as reference.

The functionals MN15, BB1K and MPWB1K displayed the best per-
formance both in terms of correlation coefficients and mean relative
errors as can be seen in Fig.4.10
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FIGURE 4.10: Distribution of relative errors for the calculation of excited-
state dipole moments at the DFT and RI-CC2 level of theory for molecules
35-46.

In conclusion, the assessed meta-GGA functionals show promis-
ing performance in linear correlation and mean relative errors when
compared to RI-CC2 for two-photon absorption strength calculations.
Additionally, they exhibit significant improvements in accuracy and
linear correlation against RI-CC2 in determining excited state dipole
moments.
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