
Degree Project in Technology

First cycle, 15 credits

Developing Guidelines for
Structured Process Data Transfer
PONTUS AMGREN
EMIL OLAUSSON

Stockholm, Sweden, 2023

Developing Guidelines for
Structured Process Data Transfer

PONTUS AMGREN

EMIL OLAUSSON

Bachelor’s Programme in Information and Communication Technology
Date: August 31, 2023

Supervisor: Mira Kajko-Mattsson
Examiner: Thomas Sjöland

School of Electrical Engineering and Computer Science
Swedish title: Utvecklande av riktlinjer för strukturerad process dataöverföring

© 2023 Pontus Amgren and Emil Olausson

 Abstract | i

 Abstract
 Today, society is ever-increasing in its use of technology and computers.
 The increase in technology creates a need for different programming
 languages with unique properties. The creation of a system may require
 multiple languages for multiple processes that need to transfer data
 between one another. There are several solutions for sharing data between
 processes with their respective strengths and weaknesses. The differences
 create a problem of needing to understand the data transfer solutions to use
 them effectively.

 This thesis addresses the problem of there not existing any guidelines for
 data transfer solutions. The purpose is to create guidelines for choosing a
 data transfer solution. The goal is to help software developers find a data
 transfer solution that fits their needs.

 The thesis is meant to inform and contribute to the understanding of
 possible solutions for sharing data between processes. A literature study and
 practical study were needed to get that understanding. The literature study
 was conducted to understand the solutions and to be able to compare them.
 After that, a practical study was performed to work with the solutions and
 gain experience. The study was meant to gain measurements for later
 comparisons of data transfer solutions. The measurements followed the
 comparative criteria of speed , resource usage , and language support .

 The result was the creation of guidelines that displayed different scenarios
 based on the comparative criteria. For each situation, there was a
 recommendation of solutions that would help in the given situation. These
 results accomplished the goal and purpose by providing guidelines that
 could help software developers choose a data transfer solution.

 Keywords
 Inter-Process Communication, Data Interchange Format, Performance

 Evaluation

 ii | Abstract

 Sammanfattning | iii

 Sammanfattning

 Användningen av olika teknologier och datorer ökar konstant i dagens
 samhälle. Detta skapar ett behov av olika programmeringsspråk med
 olika egenskaper. Ett projekt kan kräver flera språk för olika processer, så
 kan programmen behöva kommunicera genom att överföra data
 sinsemellan. Det finns olika dataöverföringslösningar för att dela data
 och de har sina svagheter och styrkor. Skillnaderna skapar problemet att
 en användare behöver förstå dataöverföringslösningar för att använda
 dem effektivt.

 Avhandlingen tar upp problemet att det inte finns några riktlinjer för
 dataöverföringslösningar. Syftet med avhandlingen är att skapa riktlinjer
 för att välja en dataöverföringslösning. Målet med avhandlingen är att
 hjälpa mjukvaruutvecklare att välja en dataöverföringslösning som passar
 deras behov.

 Avhandlingen är menad att informera och att bidra till förståelsen av
 dataöverföringslösningar. Därför krävdes det både en litteraturstudie och
 en praktisk studie. Litteraturstudien utfördes för att få en förståelse för
 de olika lösningarna och kunna jämföra dem. Den praktiska studien
 utfördes för att arbeta med lösningarna och lära sig om dem. Arbetet var
 menat att ta fram mätvärden för att kunna jämföra
 dataöverföringslösningar. Mätvärdena följde jämnförelsekriterierna
 hastighet , resursanvändning , och tillgängliga språk .

 Resultatet av avhandlingen var skapandet av riktlinjerna. Riktlinjerna
 visar olika situationer baserade på jämförelsekriterierna. För varje
 situation rekommenderas det en dataöverföringslösning som hjälpte i
 situationen. Resultatet uppnådde syftet och målet med avhandlingen
 genom att skapa riktlinjer som hjälper mjukvaruutvecklare att välja
 dataöverföringslösningar.

 Nyckelord
 Interprocesskommunikation, Dataöverföringsformat, Utvärdering av
 Prestanda

 iv | Sammanfattning

 Acknowledgments | v

 Acknowledgements

 First of all, we would like to thank our supervisor, Mira Kajko-Mattson, for her
 valuable feedback and insight throughout the project. Her support and
 feedback has helped shape the thesis to what it has become. With her
 knowledge she helped guide the thesis in the proper direction when we were
 unsure of how to proceed further. We would like to thank Mira Kajko-Matsson
 for being available to answer our constant questions throughout the project.

 We would also like to thank our examiner, Thomas Sjöland, for essential
 feedback that allowed us to focus our efforts on the correct path. His insightful
 comments helped improve the thesis and provide a clear direction. We want to
 thank Thomas Sjöland for being attentive to detail to help with problems that
 we did not think about.

 We would like to thank our fellow students who have been a part of the whole
 creation process. They have given hard and valuable critique that has helped in
 the creation process. They have also allowed for discussion, which led to a
 better thinking process for solving problems.

 Lastly, we would like to thank our families and friends for their unending
 support during the creation of the thesis. Their support was crucial for making
 us able to write the thesis even in times of doubt and stress.

 vi | Acknowledgments

 Contents | vii

 Contents
 1. Introduction 1

 1.1 Background 1
 1.2 Problem 2
 1.3 Purpose 2
 1.4 Goal 2
 1.5 Research Method 2
 1.6 Target Audience 3
 1.7 Scope and Limitations 3
 1.8 Benefits, Ethics, Sustainability 4
 1.9 Thesis Outline 4

 2. Data Transfer Solutions 7
 2.1 Historical Background 7
 2.2 Computer Fundamentals 8

 2.2.1 Computer Systems 8
 2.2.2 Data Interchange Formats 10
 2.2.3 Inter-process Communication 12

 2.3 Existing Solutions 13
 2.3.1 Packages 14
 2.3.2 Shared Memory 14
 2.3.3 Message Queues 14
 2.3.4 Pipes 14
 2.3.5 Sockets 15

 2.4 Related Work 17
 3. Research Method 19

 3.1 Research Strategy 19
 3.2 Research Phases 20

 3.2.1 Pre-study 20
 3.2.2 Creation of Comparison Model 21
 3.2.3 Creation of guidelines 21
 3.2.4 Finalisation of guidelines 22

 3.3 Research Methods 22
 3.4 Comparison Model 22

 3.4.1 Introduction 23
 3.4.2 Speed 23
 3.4.3 Resource Usage 24
 3.4.4 Language Support 24

 3.5 Research Instruments 25
 3.6 Validity Threats 26
 3.7 Ethical Requirements 26

 4. Pre-study Results 29
 4.1 IPCs 29

 4.1.1 Speed of Transfer 29

 viii | Contents

 4.1.2 Resource Usage 33
 4.1.3 Language Support 35

 4.2 Formats 37
 4.2.1 Serialisation and Deserialisation Time 37
 4.2.2 Resource Usage 39
 4.2.3 Language Support 42

 5. Guidelines for Use of Structured Data Transfer Solutions 45
 5.1 Introduction 45
 5.2 Instructions 46
 5.3 Purpose 48
 5.4 Limitations 48
 5.5 Guidelines 49

 5.5.1 Overview 49
 5.5.2 High speeds 51
 5.5.3 Memory Usage 55
 5.5.4 CPU Usage 56
 5.5.5 Language Support 58
 5.5.6 Network Communication 59
 5.5.7 Custom Format 59

 5.6 Visualisation 60
 5.7 Summary of Literature Study and Tests 62

 5.7.1 Literature 62
 5.7.2 IPC Tests 62
 5.7.3 Data Interchange Format Test 63

 5.8 Validity Threats 64
 6. Analysis and Discussion 65

 6.1 Analysis of Pre-study 65
 6.2 Analysis of Guidelines 66
 6.3 Discussion 67

 7. Conclusions and Future Work 69
 7.1 Conclusions 69
 7.2 Future Work 71
 7.3 Reflection 72

 References 73
 Appendix 79

 Introduction | 1

 1. Introduction
 Today we live in a technology-dominated society where almost everything is
 in some way connected to the Internet (Statistics Sweden, 2022). To be able
 to use the internet one needs some kind of computer. Then to use the
 computers in the way that we want them, we need some kind of way to give
 instructions. Those instructions are called programming. As there are many
 different spoken languages there are different programming languages. All
 of these programming languages function in different ways, much like
 spoken languages and their different grammar. With how spoken languages
 are affected by their location on earth, programming languages are affected
 by what purpose they are meant to serve. This leads to programming
 languages having different strengths and weaknesses and are good at
 different things (Nanz and Furia, 2015).

 The differences in strengths and weaknesses creates situations where one
 might want to use multiple programming languages, to utilise their
 respective strengths. This is supported by a study that found that the
 average number of programming languages used on projects hosted on
 GitHub was five (Mayer and Bauer, 2015). The problem with using multiple
 languages is that it involves working with multiple programs. The problem
 with working with multiple programs is that they are designed not to affect
 one another. This is done to prevent programs from getting involved with
 one another and creating problems. However, allowing programs to
 cooperate can lead to multiple benefits. Some benefits from cooperation is
 an increase in speeds and a decrease in the need for copying data.
 Therefore, there was a need to develop solutions for transferring or sharing
 data between programs.

 1.1 Background

 When writing a program the user writes what it is supposed to do in a
 programming language. The written program can either be started directly
 after writing, or the program needs to be converted into a form that the
 computer can read, before starting. Whether the program needs to be
 converted depends on the programming language. Once the program finally
 starts a process is created. The process is a way for the computer to
 recognize the running program. Therefore, when transferring data between
 programs one needs to transfer it between their respective processes.
 Solutions exist for the transfer of data between processes.

 2 | Introduction

 There are multiple solutions that transfer data between processes that have
 already been created. The solutions were created with different goals in
 mind. These different goals gave the solutions different strengths and
 weaknesses.

 Due to the strengths and weaknesses of the different solutions, they should
 be used in different situations. This is because some situations may require
 the solutions to be as fast as possible, but other situations may require that
 the solution is resource efficient. That then creates the problem that one
 needs to have a good understanding of the different solutions, in order to
 implement the most suitable one.

 All developers may not have a sufficient understanding of the solutions,
 required to choose the most suitable one. They then need to search for
 information to make an educated decision. The problem is that the
 information is spread out and there are no easy guides or guidelines to help
 choose a solution. Therefore there is a need for such guidelines that can help
 the developer make the decision. This will result in the developer not having
 to spend time and effort searching for hard-to-find information, or choosing
 a suboptimal solution.

 1.2 Problem

 The problem that this thesis addresses is that there are no guidelines for
 data transfer solutions.

 1.3 Purpose

 The purpose of this thesis is to create guidelines for choosing a solution to
 transfer data between processes.

 1.4 Goal

 The main goal of this thesis is to help software developers find the data
 transfer solution that best fits their needs.

 1.5 Research Method

 The thesis is about giving information and understanding different
 solutions for communication between processes. This requires a good

 Introduction | 3

 understanding of the solutions and the inner workings of them. To gain
 information on the different solutions a pre-study is conducted which
 includes both a literature study and a practical study. To compare the
 solutions with the information gained from the pre-study, a comparison
 model is created with important criteria.

 The type of the research is qualitative in how the thesis works with different
 case studies and observations. This resulted in new insights that came from
 both the studies and our own measurements. A comparative approach was
 chosen, as the different solutions needed to be compared to one another.

 The literature studies were used to gather information on the solutions from
 different perspectives. The practical study was used to gather our own
 experience and measurements to compare with others. The measurements
 were later used to compare the solutions to one another. The research
 followed a qualitative structure with the support of comparative research.
 The research method is further explained in Chapter 3.

 1.6 Target Audience

 The target audience of this thesis is the software development industry and
 the academic field. The thesis could help the industry by presenting some of
 the available options and when to use what solution. This could help by
 allowing inexperienced software developers to choose the optimal solution
 for their needs. For the academic side, the thesis could be used as
 educational material for programming students. The thesis could also be
 used as educational material to help students understand the different
 solutions and how to evaluate different solutions. They could learn how to
 evaluate solutions by understanding how the thesis evaluates
 communication methods. For the research community of the academic side
 then the thesis will provide information on the solutions, both through
 literature studies and some measurements.

 1.7 Scope and Limitations

 The focus of the thesis was to evaluate the different solutions for
 transferring data between processes. The data, in this case, was limited to
 two structures: tree-structured and tabular. The data was chosen to be
 represented by the following formats: Extensible Markup Language (XML),
 JavaScript Object Notation (JSON), Binary JSON (BSON), and
 Comma-Separated Values (CSV). With the large number of different
 languages and their differences, not all languages can be tested. This
 resulted in the thesis mainly evaluating the communication solutions for the

 4 | Introduction

 languages Javascript, Python and C. The thesis focuses on the solutions that
 the operating systems Windows and Linux provide.

 1.8 Benefits, Ethics, Sustainability

 The result of the thesis could benefit academic students that study software
 development. This is due to the fact that they could get a better
 understanding of the data transfer solutions from the thesis. The students
 could also use the thesis as a way to learn how to evaluate different solutions
 by using measurement and understanding of the solution. The result could
 positively contribute to companies that work with different programs and
 processes. The thesis could have a positive impact due to the company being
 able to understand what method they should use for their needs.

 The thesis could help software professionals choose a solution that fits their
 needs. This could help save time and resources for the developers when
 choosing a solution. It could also help by choosing a solution that better fits
 the system. This could make the system run better and save time, resources
 and money.

 With the perspective of sustainability the thesis can in one way help. The
 thesis compares different methods of transferring structured data between
 processes. The comparison could help understand which method is better in
 resource usage on the used device. This information can be used when
 creating a system with low resource usage, in order to achieve lower energy
 consumption. Lower energy consumption can lead to lower usage of
 non-renewable energy sources. During the creation of this thesis,
 importance was held on keeping to the IEEE Code of Ethics (Institute of
 Electrical and Electronics Engineers. 2020).

 1.9 Thesis Outline

 The thesis is structured in the following manner:

 ● Chapter 2: Data transfer solutions: This chapter provides
 information on the subject of data transfer solutions. It first gives a
 historical background and then goes into more detail about different
 solutions.

 ● Chapter 3: Research Method: This chapter describes the research
 method of the thesis. It contains the different aspects of the research

 Introduction | 5

 such as research phases, research strategies and more. This chapter
 also includes the comparison model that is used in the thesis.

 ● Chapter 4: Pre-study Results: This chapter presents the
 measurements from different methods in accordance with the
 comparison criteria.

 ● Chapter 5: Guidelines for Use of Structured Data Transfer
 Solutions: This chapter presents the guidelines that are created from
 the results in Chapter 5.

 ● Chapter 6: Analysis and Discussion: This chapter summarises the
 results of Chapters 5 and 6. The results from the chapters are then
 analysed. Lastly in the chapter, there is a discussion of the results
 and what they mean.

 ● Chapter 7: Conclusions and Future Work: This chapter describes the
 conclusions that are drawn from the analysis. It is then further
 extended with potential future works, outside of the scope of this
 thesis.

 6 | Introduction

 Data Transfer Solutions | 7

 2. Data Transfer Solutions
 Chapter 2 contains information regarding data transfer solutions. It includes
 why they were created, what they are called and how they work. The chapter
 goes through a historical introduction to data transfer solutions within Section
 2.1. This is to give an understanding of how and why the data transfer
 solutions exist. Section 2.2 provides a more theoretical background on the
 subject of data transfer solutions and computers. The section also includes
 some information on why data transfer solutions are needed, and how the data
 can be structured. Section 2.3 contains information on existing solutions for
 how to transfer data between programs. The last section is Section 2.4 which
 discusses related works.

 2.1 Historical Background

 When looking into the historical aspect of computers then in the time of the
 1940s were the start of the computers we know today. The first commercial
 computers could not run multiple programs or processes at a time. But in 1961
 the computer called LEO-III was created and was the first computer that
 allowed for multitasking (Leo Computers Society , n.d.). Multitasking allowed
 for multiple programs and processes to be run at the same time. This was
 achieved by running a lower prioritised process when higher prioritised
 processes waited for something (Leo III User Manual Vol IV MASTER
 PROGRAMME and PROGRAMME TRIALS SYSTEM , n.d.). Multitasking
 improved computation speed but allowed for the problem of processes
 affecting one another whilst they were running.

 Potential defects could occur from processes freely affecting one another’s
 memory. Therefore memory protection was created to limit a process to only
 affect its own memory. But having cooperating processes can increase
 computation speed, modularity, and information sharing (Silberschatz,
 Galvin, and Gagne, 2018). This led to the creation of inter-process
 communication (IPC), which allowed for safer ways of affecting processes
 memory.

 The first IPC solution was the use of shared memory that multiple processes
 can access. Shared memory was implemented first with the operating system
 XDS-940 in the early 1960s (Silberschatz, Galvin, and Gagne, 2018). It
 allowed for the cooperation of processes. However, with it came the problem
 of multiple processes writing over one anothers information. This led to the
 creation of semaphores in the THE operating system in the mid 1960s
 (Silberschatz, Galvin, and Gagne, 2018). Semaphores allow for the decision of

 8 | Data Transfer Solutions

 which process can access the memory at a given moment. Later, in the late
 1960s came the creation of message passing with the RC 4000 operating
 system (Silberschatz, Galvin, and Gagne, 2018). Message passing allowed the
 sharing of messages of memory, instead of whole memory spaces.

 The evolution of computers led to diversity in how the computers functioned
 and handled data. This created a need for a more standardised way of
 organising data that could be shared amongst computers that differ in their
 inner workings. There were many different standards that were created and
 those standards were called data interchange formats.

 One early data interchange format, originating in 1972, is CSV (IBM, 1972).
 Later, along with the rise of the internet in the 1990s, another data
 interchange format called XML was developed (Hemmendinger, 2023). Soon
 after XML rose to popularity, another data format called JSON, was developed
 in 2001 (Florescu and Fourny, 2013). JSON was designed as a lightweight
 alternative to XML, also being able to represent complex structures, but with a
 simpler syntax. As internet traffic grew and more data was being transferred,
 lightweight, fast, and efficient formats were developed. One such format is
 BSON (MongoDB, n.d.).

 2.2 Computer Fundamentals

 Section 2.2 contains information that is needed to understand the technical
 side of the problem and solutions. The section brings forth information
 regarding how computers work and how data can be organised in Section
 2.2.1. It also showcases a subset of the different formats used for data storage
 in Section 2.2.2. Finally, Sections 2.2.3 presents the different fundamentals to
 inter-process communication solutions.

 2.2.1 Computer Systems

 The data that is used in a process comes in many different forms called data
 types. Examples of data types include Booleans for representing true/false
 values, Integers for representing whole numbers, and Strings for representing
 a sequence of characters. It is possible to organise data into structures called
 data structures. There are many types of data structures, two common ones
 are trees and lists. Lists store data in a linear manner, while tree data
 structures allow for storing non-linear hierarchical data. Figure 1 depicts the
 differences between these structures.

 Data Transfer Solutions | 9

 Figure 1. List (above) and tree (below).

 Figure 1 shows that the list is linear with its data where one value, in this case
 a word, points to the next value. This is in contrast to the tree-structure
 illustrated below the list, which has multiple paths for each value. This results
 in the tree being able to have different values in a hierarchical structure. Or in
 the case of Figure 1, it can present different ways a sentence can be structured.

 When working with computers it may be desirable to have a computer that is
 only intended for a single purpose. This can be attained using a virtual
 machine (VM). Oracle describes a VM as a “computer made from software”
 that can run any software on a physical computer (What Is a Virtual
 Machine? , n.d.). With a VM, resources can be allocated to create a testing
 environment that is unaffected by programs outside of the VM.

 Out of the available resources in a computer, the thesis focuses on the
 following: CPU, storage, and memory. The CPU is the central part of the
 computer and follows all instructions. The storage is where all of the persistent
 information on the computer is kept. The memory or random access memory
 (RAM) acts as smaller and faster temporary storage for the CPU.

 Figure 2. The structure of RAM, CPU and storage

 10 | Data Transfer Solutions

 Figure 2 presents the structure of how the CPU, RAM and storage are
 structured. The CPU acts similar to an accountant working at their desk. The
 storage is similar to a filing cabinet, in how it contains lots of information and
 the CPU can take information from the storage. This is similar to the
 accountant taking forth a new document from their cabinet. RAM is a place
 where information from the storage can be placed temporarily. RAM is more
 limited in size compared to regular storage but is faster. This results in CPU
 placing often used information in the RAM so it can get the information faster
 than getting it from the storage. This is similar to how the accountant can keep
 important documents on their desk so that they do not need to stand up and
 get a new document from the filing cabinet.

 2.2.2 Data Interchange Formats

 There are many data interchange formats. Some of the most common ones are
 XML, JSON, BSON, and CSV. These formats were developed for different
 purposes. Thus, the performance of a program implementing a format
 depends on the properties of the data.

 Before storing the formatted data in a file or transferring it using an ICP
 solution, it needs to be serialised. Serialisation is the process of converting the
 data in the programming language to the standardised structure of the format.
 To then use the variables stored in the serialised structure, it must first be
 deserialised. Deserialisation simply returns the stored data back to its original
 state. Serialisation and deserialisation are sometimes referred to as encoding
 and decoding, respectively.

 Extensible Markup Language

 XML is one of the most commonly used text-based formats for storing
 structured data (World Wide Web Consortium, 2019). XML is designed to be
 readable by both humans and machines. Figure 3 shows a simple example of
 the XML syntax.

 Figure 3. XML syntax

 Data Transfer Solutions | 11

 The data in an XML file consists of elements. Each element has a start and an
 end tag, such as the tag “brand” in Figure 3. Between these tags, goes either a
 string of alphanumeric characters, or other elements. This type of nesting
 allows for representing more complex data structures, such as trees.

 JavaScript Object Notation

 JSON is a text-based data-interchange format (JSON, n.d.). It is, like XML,
 designed to be readable by both humans and computers. The structure of a
 JSON file consists of objects called attribute-value pairs, where the value can
 be either a string, number, boolean, array or another JSON object. The ability
 to nest objects allows for the creation of a complex structure for data storage.
 Figure 4 shows a simple example of the JSON syntax.

 Figure 4. JSON syntax

 Binary JavaScript Object Notation

 BSON is a binary file format, meaning that the contents of the file are stored as
 ones and zeros. BSON files are thus readable to a computer, but not to a
 human. Other than being a binary file format, BSON is similar to JSON in
 many ways. Some key differences though, are that BSON supports a few more
 data types than JSON, it requires additional overhead, and it can traverse the
 content more easily as the data is indexed (MongoDB, n.d.).

 Comma Separated Values

 CSV is a text-based format for storing values in a structured way. The values
 are stored in plain text, separated by commas (Shafranovich, 2005), thus
 making it human-readable. Due to this simple structure, CSV files are very
 space efficient. However, the simple structure also limits the complexity of the
 data stored. Figure 5 shows a simple example of the CSV syntax.

 12 | Data Transfer Solutions

 Figure 5. CSV syntax

 Notice how there is no “car” element in the CSV example shown in Figure 5, as
 there is for the other examples. This is because the limited complexity does not
 allow for storing hierarchical data. Thus there is no way to show that the
 attributes of the car belong to a specific car object.

 2.2.3 Inter-process Communication

 IPC allows two or multiple running processes on a computer to share data. The
 sharing of data allows processes to cooperate and it can lead to a lower need
 for copying data, increase calculation speed, and create a modular system
 (Silberschatz, Galvin, and Gagne, 2018). To share the data between multiple
 processes there are two main models and those are shared memory and
 message passing (Silberschatz, Galvin, and Gagne, 2018). The main models
 are depicted in Figure 6.

 There are differences between shared memory and message passing in how
 they allow processes to access the data. The shared memory model uses a
 memory space on the computer that multiple processes can access and that is
 how they share data. This is seen in Figure 6 where the two processes look at a
 memory segment that is between the processes. Message passing works by
 having processes send data as messages between the processes. This is
 depicted in Figure 6 where the messages share a queue and can access the
 short messages numbered M1 to Mn. For those different models, there are
 different ways of implementing them and some of those will be described in
 Section 2.3.

 Figure 6. Shared memory (left) and message passing (right)

 Data Transfer Solutions | 13

 Figure 7. Two processes communicating through synchronous message
 passing

 When it comes to message passing there is the problem of synchronisation and
 whether they are synchronous or asynchronous, also known as blocking and
 non-blocking (Silberschatz, Galvin, and Gagne, 2018). The difference between
 them is that one requires some waiting whilst the other does not. Synchronous
 is the one that requires waiting and that is both for sending and receiving
 messages. So if a message is sent the process will wait until the message has
 been received. If receiving a message then the process will wait until it can
 read a message. An example of synchronous message passing is illustrated in
 Figure 7, where process 1 will wait for a message until process 2 writes hello.
 Asynchronous does not require any waiting for sending or retrieving messages.
 So when sending a message it will simply send the message and resume other
 operations, without checking if the message has been received. Then when
 reading a message it will try to read and if there is nothing to read it will
 simply read nothing and resume other operations. If the message passing in
 Figure 7 is asynchronous and process 1 reads first, then it will not wait for
 process 2 to write hello. This results in process 1 reading nothing.

 2.3 Existing Solutions

 Multiple IPC solutions are used and available on different operating systems.
 Therefore this section describes some of the solutions for IPC. Section 2.3.1
 describes the more common packages of IPC solutions whilst Sections
 2.3.2-2.3.4 describe types of solutions.

 14 | Data Transfer Solutions

 2.3.1 Packages

 One family of solutions are from the portable operating system interface
 (POSIX). POSIX works on most operating systems. This is not applicable for
 Windows as they only use POSIX in C libraries. The thing with POSIX is that it
 works with operating systems and is used in C and C++ languages. The POSIX
 library in C allows the software developer to use methods such as Shared
 memory, message queues, pipes, and a specific type of socket called Unix
 sockets.

 When wanting to use the IPC solutions on a Windows system a software
 developer can use the Windows Application program Interface (API). This
 allows for setting up IPC solutions, but it is not something that is for certain
 programming languages. One language that allows for the use of Windows API
 is the C programming language.

 2.3.2 Shared Memory

 POSIX has a command that is called shm_open that creates a shared memory
 space that multiple processes can utilise (Kerrisk, 2010). In addition to this,
 there is a POSIX command called mapped memory file and that allows the
 process to access the shared memory as if it was a file. This allows the
 processes to easily read and write data to the so-called file to be able to
 transfer the data between processes.

 2.3.3 Message Queues

 POSIX has a command that is called mq_open that creates a message queue
 that multiple processes can utilise (Kerrisk, 2010). To that the users can
 specify what the maximum message size can be. The maximum default
 message size in the Linux operating system is 8 kb (Mq_overview, 2023). To
 read and write messages to the queue one can simply read and write with
 mq_send() and mq_recieve. A process can access the message queue as long
 as it knows the name of the queue.

 2.3.4 Pipes

 The pipe solution follows the message passing model and is one of the POSIX
 solutions. There are commonly two types of pipes: ordinary pipes, also called
 anonymous pipes, and named pipes (Silberschatz, Galvin, and Gagne, 2018).
 An ordinary pipe allows for two processes to send messages in a one-way
 system so one process sends and one receives. If a user wants to have the two

 Data Transfer Solutions | 15

 Figure 8. Two processes communicating through two pipes

 processes send messages back and forth, then there needs to be two pipes. One
 pipe goes from Process One to Process Two and the other goes from Process
 Two to Process One. This is depicted in Figure 8 where Pipe 1 is for messages
 from Process 1 to Process 2. Then Pipe 2 is the other way around.

 There is a problem with ordinary pipes and that is that they only work for a
 process that was created by another process. This means that everything needs
 to be in the same program and that does not allow for different programs to
 communicate. The solution to this problem is the pipes called named pipes.

 Named pipes or also referred to as FIFOs in the UNIX operating systems are
 pipes that look like typical files (Silberschatz, Galvin, and Gagne, 2018). The
 FIFO solutions allow multiple processes to use the pipe to transfer data and
 they allow for processes from different programs to use them. The pipes will
 also remain after the processes stop using them, as opposed to ordinary pipes
 that are removed once no processes are using them. Then the FIFOs also allow
 for processes to read and write from the same pipe but there can only be one
 direction at a time. This means that if one wants to have processes send and
 receive at the same time there should be two FIFO pipes created.

 2.3.5 Sockets

 The way to allow computers to communicate over a network is by the use of
 sockets. There are standards for sockets and those are called protocols and
 they describe how the data transfer is supposed to happen. This allows for
 information to be sent over a network to the right computer, and to the right
 process of the receiving computer. There can however be differences between
 programming languages for how the data is sent, so that is something to keep
 in mind.

 16 | Data Transfer Solutions

 Figure 9. Two processes on different computers communicating through
 sockets

 Figure 9 depicts how sockets work for communication between processes on
 different computers. In Figure 9 Process A exchanges data with Socket 1 which
 is attached to Computer 1. This is the same for Process B which exchanges data
 with socket 2 which is attached to Computer 2. Then the communication can
 be exchanged through the sockets so that data from Process B can be received
 by Process A.

 Regular sockets can be used to send data between processes on the same
 computer. Therefore it works more like other IPC solutions. This is achieved
 by having the socket for each process and sending data between those sockets.
 This is illustrated in Figure 10. Figure 10 depicts how Process A can exchange
 data with Process B by the use of their Socket 1 and 2.

 Figure 10. Two processes on the same computer communicate through a
 socket network.

 Data Transfer Solutions | 17

 Regular sockets work for transfers over both a network and in a computer.
 There is also a solution called Unix domain sockets which only allows for
 transfers within a single computer. Unix domain sockets work similar to a
 regular socket but instead of binding a socket to an address then a socket is
 bound to a file name. The file name can be a to a name that does not appear in
 the file system (Kerrisk, 2010).

 2.4 Related Work

 When investigating data interchange formats, a journal article similar to the
 thesis was found: A Literature Review on Device-to-Device Data Exchange
 Formats for IoT Applications , by Kaur, Ayyagari, Mishra, and Thukral (2020).
 The article compares ten data formats, including the ones covered in this
 thesis. The article references nine sources including theses, journal articles,
 and conference proceedings, that have evaluated and compared different
 combinations of the introduced data formats. For each source, relevant results
 are brought up and a conclusion regarding the involved formats are drawn.
 Finally the article summarises the strengths, weaknesses, and suitable
 applications for all ten formats.

 One report that is related to the subject of inter-process communication is a
 report by Zoran Spasov and Ana Madevska Bogdanova (2010). The study was
 called Inter-process communication, analysis, guidelines and its impact on
 computer security . The report is about the security issues of IPC solutions,
 both in general and for specific solutions. The solutions are only for windows
 programs and regards named pipes, ordinary pipes, shared memory, microsoft
 message queues, and microsoft remoting. The report notes on the solutions
 properties and their strengths and weaknesses in regards to security. It also
 provides some suggestions on when to use a certain method. The problem with
 the source is that the recommendations are all in written flowing text, which
 makes it hard to find certain suggestions. The report does not give
 recommendations depending on what properties that a developer wants from
 their solution.

 There is an ebook by Marty Kalin that was called A guide to inter-process
 communication in Linux (n.d) . The ebook included information on shared
 memory, pipes, message queues, sockets, and signals. The information is both
 how the solutions work, how to implement the solutions, and a short summary
 of their uses. The ebook comes with suggestions of when to use certain
 solutions and when not to use them. The ebook notes that shared memory
 would be suitable for smaller data stream sizes and not suitable for larger
 sizes. For pipes and message queues it notes that those are simple and easy to
 use solutions. For sockets and signals there were no suggestions of when to use
 them. Then lastly the report noted some overall suggestions and it was

 18 | Data Transfer Solutions

 repetitive as it does not recommend shared memory for larger data and
 recommends pipes or sockets instead. The report also brings up that no
 solution is the perfect solution and each has their use cases with a trade off for
 performance and simplicity.

 Research Method | 19

 3. Research Method
 Chapter 3 presents the research methodology that was followed during the
 thesis. Section 3.1 describes the overall research strategy that was followed.
 The rest of the sections describe the different parts of the research strategy in
 more depth. The research phase is described in Section 3.2 and lists the
 different stages in the research process. Section 3.3 presents and motivates the
 research methods that were used. Section 3.4 describes the comparison model
 used during the research. Section 3.5 describes the instruments that were used
 to collect and evaluate data. Lastly Section 3.6 presents potential threats to the
 validity and 3.7 describes ethical requirements.

 3.1 Research Strategy

 The research is extensive so there was a need for a methodical way to find and
 compile information. This methodology was also needed as the information on
 the subject was spread out over many sources. To help the gathering of
 information efficiently, a research strategy was chosen. This was to gather as
 much information as possible within the limited time frame of the project.

 Table 1. Overview of the research strategy

 Research
 phases

 Research
 methods

 Research
 instruments

 Validity
 threats

 Ethical
 requirements

 4 main phases:

 Pre-study

 Creation of
 comparison
 model

 Creation of
 guidelines

 Finalisation

 Qualitative

 and

 Comparative

 Literature
 study

 Comparison
 model

 Github

 Visual Studio
 Code

 Oracle
 VirtualBox

 Google scholar

 Tests

 Credibility

 Transferability

 Dependability

 Confirmability

 Information

 Consent

 Confidentiality

 Usufruct

 20 | Research Method

 Table 1 illustrates the research strategy that was used in the thesis. The
 research strategy consisted of six components as can be seen in Table 1. The
 components were the research phase, research methods, research
 instruments, respondents, validity threats and ethical requirements . All
 components are described in the coming sections, in the order that they are
 presented in Table 1.

 3.2 Research Phases

 The research phases present the different parts of the research process in this
 thesis. Each phase corresponds to an activity that was adopted to follow a
 structured approach to the thesis. The research phases and how they are
 connected are presented in Figure 11. Figure 11 depicts all of the phases:
 pre-study including literature study and practical study, creation of the
 comparison model, implementation including the creation and improvements
 of the guidelines, and lastly finalisation and evaluation of the guidelines.

 Figure 11. The research phases of the thesis

 3.2.1 Pre-study

 The goal of the pre-study phase was to gather information on the area and
 potentially find existing guidelines. The pre-study was conducted in two steps.
 The first was a literature study where information was searched on the
 internet through different search engines. Then the practical study was carried
 out, in which our tests were conducted on the data transfer solutions. This was
 done in order to gather further information and complement the information

 Research Method | 21

 found in the literature study. Tests for IPC solutions and data interchange
 formats were conducted independently of each other.

 The way that literature study was performed was by the use of search engines
 such as Google and Google Scholar. Google Scholar is a search engine where
 the results primarily contain scientific articles and journals with the searched
 keywords. This was used to find information on specific areas and get
 technical specifications. The Google search engine results in more general
 information such as new articles, online discussions and websites. The use of
 Google was to find more general information such as online coding platforms
 to understand concepts, partially through examples.

 With both search engines, keywords were used and they were words such as
 “data transfer”, “data formats”, “guidelines”, “IPC” and “XML”. These words
 gather the necessary information and possibly find other guidelines. The
 searches resulted in information both on different solutions, and how the data
 can be structured. It provided a good understanding of keywords that would
 later be used in the implementation phase to create the guidelines. The
 information also provided information on key aspects of the solutions that
 were important so that those aspects could be provided through criteria in the
 comparison model.

 3.2.2 Creation of Comparison Model

 The goal of the creation of the comparison model phase was to use the
 information from the pre-study to create a comparison model. The
 comparison model was then used in the implementation phase to compare the
 different solutions to one another. Therefore the comparison model needed to
 include criteria that were seen as important for the different solutions.

 The comparison model was created to have three different criteria for the
 solutions. The criteria were speed of transfer , resource usage and language
 support . The criteria were then used to compare the different solutions with
 the information that was gathered in the pre-study phase. The result of the
 comparisons was then used for the implementation phase when creating the
 guidelines. The comparison model is further explained in Section 3.4.

 3.2.3 Creation of guidelines

 The creation of guidelines phase involved taking the information from the
 pre-study to gather the results of the solutions. The results were a collection of
 information that regarded the different criteria that were presented in the
 comparison model. From those results, a guideline was created that was meant
 to provide information and suggestions for the different solutions. After the

 22 | Research Method

 guidelines were created they were the input for the next phase finalisation of
 guidelines .

 3.2.4 Finalisation of guidelines

 The last phase was the finalisation of guidelines phase and it included no
 sub-phases. This phase would result in the final guidelines that were created
 from the results provided from the creation of guidelines phase. Once the final
 guidelines were created then a final correction was done. The final corrections
 were to correct small errors that occurred throughout the creation of
 guidelines phase. The small corrections could be things such as grammatical
 errors or odd phrasing.

 3.3 Research Methods

 Qualitative research is used to gather non-numerical data, such as case studies
 and observations, in order to understand the experiences and attitudes of
 individual people or groups (Bhandari, 2023). The qualitative research type
 was chosen for this thesis, since the aim was to discover new insights, through
 reviewing case studies and gathering measurements of our own.

 Comparative research is a method for comparing related things, based on
 some criteria. The comparison of entities allows for similarities and
 differences to be discovered and further studied. Comparative research was
 chosen as an appropriate method because the research phase included many
 types of data transfer methods that needed to be compared. This comparison
 was conducted in accordance with the criteria presented in Section 3.4.

 Quantitative research, unlike qualitative, uses numerical data to gain a
 concrete and objective answer to a specific question. The numerical data
 would also be used to reach a generalised answer for a larger population. This
 makes it suitable for doing experiments on a subject group of the populace.
 This thesis works with gaining in-depth knowledge on the subject of data
 transfer solutions and is therefore not giving a concrete answer to a concrete
 question. This made it not suitable to use a quantitative research method for
 the thesis.

 3.4 Comparison Model

 Section 3.4.1 introduces the comparison model and its criteria. Each criterion
 is first described in detail and how it was measured. The purpose of the

 Research Method | 23

 criterion is motivated by explaining what the expected result is, and how that
 contributes to the final results. Section 3.4.2-3.4.4 describes the three criteria:
 speed , resource usage and language support , respectively.

 3.4.1 Introduction

 The comparison model consisted of 3 comparison criteria. The 3 criteria were
 speed , resource usage , and language support . The reason for the criteria was
 to evaluate and compare the different solutions to each other. Thus, the
 criteria needed to be easy to measure and to be used in a comparison between
 the solutions. Although the main comparison criteria were the same for IPC
 methods and formats, their inherent differences required minor alterations to
 the metrics used.

 Since different data structures and sizes of data affect the performance,
 different scenarios were tested. The different scenarios were chosen to
 represent real-life situations. For example, one situation includes transferring
 a small amount of data in a nested structure, which could represent a client
 sending a request to a server for some information. In another example, a
 large amount of data in a simple tabular format is transferred, possibly
 representing the server responding to the client by sending many rows from a
 database. For the testing, a combination of data structure complexity and data
 size will be evaluated.

 3.4.2 Speed
 The first criterion was speed . For the IPC methods, this refers to the speed of
 transfer of data. That is, how fast data can be transferred from one process to
 another. For the formats, the speed criterion refers to the serialisation or
 deserialisation time. That is, the time it takes to convert an object in the
 programming language to the specified format, or vice versa.

 The reason why the speed was included was that different solutions had
 different transfer speeds and that could be impactful for a user. So for the
 criterion, it was argued that a higher speed was better for most situations. This
 criterion was expanded upon with how the speed was affected by the size of
 the data. This was due to how the speed of the solutions could depend on if the
 data was small or large. The metric for this criterion when comparing IPC
 methods, was the time it took to transfer data of a predetermined size, with the
 base unit seconds. For formats, the metric was the time it took to serialise and
 deserialise data of a predetermined size, with the base unit seconds.

 24 | Research Method

 3.4.3 Resource Usage

 Resource usage was the second criterion of the comparison model. It aimed to
 measure the amount of resources used on the machine. For the IPC methods,
 this refers to the resources used while transferring the data. For the formats, it
 refers to the resources used when data is serialised or deserialised.

 The specific resources that were measured for IPC methods were: processor
 usage and memory usage . These resources were measured with the metrics:
 CPU time and number of bytes allocated for the process, respectively.

 When comparing the data interchange formats, the specific resources
 measured were: processor usage , memory usage , and space requirement . The
 first two resources were measured the same way as with IPC solutions. The
 third resource, space requirement, was defined as the size of the serialised
 format, in bytes. The space requirement is interesting as it directly determines
 the size of data, and thus affects the transfer time, since more data needs to be
 transferred.

 3.4.4 Language Support

 To make the IPC method or format easy to implement it is preferable if a
 language has official libraries and support for easier use. If there are libraries
 for the solutions then the user can simply use them instead of trying to create
 support for the solutions themselves. This helps save development time and
 makes it easier to work with the methods and formats.

 Here we chose to look at some of the most popular programming languages,
 and for each IPC method and format, check if the programming language
 provides official, external, or no library support. The included programming
 languages were: C, C++, C#, Python, Java, Javascript, Rust, and Ruby. The C
 language provides information on a low-level language. C++ and C# are
 included to provide information on compiled and object-oriented languages.
 Java and Python are included as they are high-level interpreted languages.
 Javascript is included as it provides information for a high-level language that
 is just-in-time compiled. Rust was included as it is a general-purpose language
 that is relatively new as the official version came out in 2015 (Announcing
 Rust 1.0 | Rust Blog , 2015). Lastly Ruby was included as it was designed with
 programming productivity in mind.

 Research Method | 25

 3.5 Research Instruments

 The instruments used in the thesis were a Literature study , Comparison
 model, and Tests . Then there were tools that were used during the thesis and
 such tools were GitHub, Visual Studio Code and Oracle VirtualBox. What the
 instruments were and why they were used is explained in the following points:

 ● Literature study: this was an essential part of the research as most
 of the information on how the solutions worked came from it. Also due
 to the time limitation of the project, not all tests could be done by us.
 That meant that many measurements came from existing related work.

 ● Comparison model: was used when comparing the different
 solutions to one another. This was essential to the project as the
 guidelines relied on there being comparisons between solutions. This
 was required to understand which solution was best for a situation. The
 comparison model is explained in Section 3.4.

 ● Tests: were used to gain measurements in the practical study. There
 were two types of test for IPC solutions, which were large transfers and
 small transfers. Large transfers involved sending the contents of a file
 from one process to another. The file sizes ranged from 1 MB to 1 GB.
 The small transfers regarded sending a message from a process to
 another and then back again. The small message size ranged from 1 kB
 to 512 kB. The small test represents a system that needs messaging
 between processes and the larger test is when multiple processes work
 with files. For the data interchange formats, tests were conducted with
 varying size and structure of the data. These tests were conducted in
 both JavaScript and Python. The structure and results of the tests are
 described in detail in Chapter 4.

 ● GitHub: is a tool that allows for the organisation and sharing of code.
 The tool is used in the practical study phase to organise the tests and
 share the test programs over multiple computers. It helps with saving
 the information in an easy-to-find location (GitHub: Let’s Build From
 Here , n.d.).

 ● Visual Studio Code: is a computer program that allows for editing
 and writing programs. The program allows for the creation of tests in
 different languages and the ability to execute them (Visual Studio Code
 - Code Editing. Redefined , 2021).

 ● Oracle VirtualBox: is a tool that allows for virtualization on a
 computer. What virtualization does is it allows for a separate machine
 or a VM to run on a regular machine. This VM does not need to be of
 the same operating system as the original machine. This allows for tests

 26 | Research Method

 to be both run on Windows and Linux systems on the same machine
 (Oracle VM VirtualBox , n.d.).

 ● Google scholar: is a search engine that provides sources from
 journals, books, reports, and more. The search engine allows for the
 efficient search of scientific papers within a subject. When searching for
 information, certain key phrases were used such as IPC, data
 interchange formats, and resource usage (Google Scholar , n.d.).

 3.6 Validity Threats

 The criteria for validity threats are used to test the strength and soundness of a
 research method. Therefore they are presented in this section to test the
 chosen research method. The validity threats for qualitative research are
 credibility , transferability , dependability and confirmability (Shenton,
 2004). All of the criteria are further explained in the following points and how
 they were addressed:

 ● Credibility: Credibility deals with the trustworthiness of the project
 and the claims that are made. It is important that when stating that x
 leads to y that it is credible and well-founded. That means that there
 needs to be trust in the results of the final guidelines.

 ● Transferability: This threat is in accordance with how generalised the
 results are to other situations. The thesis aims to create guidelines that
 could help in multiple situations and therefore the results should be
 generalised.

 ● Dependability: Dependability regards if the results would be
 replicable if the research was done again and in a different context. It
 can be hard to provide dependability with a qualitative research method
 as the process can heavily depend on context.

 ● Confirmability: This threat is the potential for the research to be
 biassed. This confirmability issue can come from the writer's bias
 affecting the study.

 3.7 Ethical Requirements

 With any type of research, it is important that the ethical part is accounted for.
 To account for the ethical part there were some requirements that needed to
 be followed in a qualitative research method. The four requirements for

 Research Method | 27

 qualitative research were information requirement , consent requirement ,
 confidential requirement and usufruct (Vetenskapsrådet, 2002). A description
 of the requirements is provided below:

 ● Information requirement: This requirement was to ensure that all
 parties in the research were informed about the purpose and
 participation. It was important that those that participated in the
 research understood the purpose of the research and understood their
 right to participation. This was ensured by providing the participants
 notice that they could resign their participation at any point. If the
 participants were to resign after their provided information was used,
 but before publication, then the provided information was not used. It
 was also provided by notifying the participants of the research and its
 purpose before beginning to work together.

 ● Consent requirement: This regards well-founded for the
 participants to know about their rights for participating and their
 consent. It was to ensure that the participants were willing to work
 together and not be forced. This requirement was met by receiving
 verbal confirmation from participants that they were willing to
 participate. It was also provided by ensuring the participants that they
 were free to resign at any point before publication.

 ● Confidential requirement: The confidential requirement was in
 regards to allowing the participants to remain anonymous. To provide
 confidentiality the names and workplaces of the participants were not
 disclosed. This was further extended by asking if the participants
 wanted further anonymity and to provide it.

 ● Usufruct: This requirement states that the results attained should not
 be used for anything other than the thesis’ predetermined purposes.
 The specific purpose of this thesis was to create guidelines for data
 transfer. The results from the literary study, and practical study were
 used for this purpose and this purpose only.

 28 | Research Method

 Pre-study Results | 29

 4. Pre-study Results
 The first phase of the research strategy was the pre-study and which contained
 the literature study and practical study. The results from the pre-study are
 presented in different sections. Sections 4.1 and 4.2 introduces the results by
 presenting IPC and data interchange formats results respectively. The results
 from Sections 4.1 and 4.2 are from both literature studies and practical
 studies.

 4.1 IPCs

 Section 4.1 presents the results of both the literature and the practical study.
 For each criterion of the comparison model, there is a subsection where the
 results of each criterion are presented. Subsection 4.1.1 presents the
 comparison of the different solutions in regard to their speed of transfer.
 Subsection 4.1.2 presents the solutions in regard to their resource usage.
 Subsection 4.1.3 presents the language support of the solutions.

 4.1.1 Speed of Transfer

 From the literature study three articles were found. These three articles note
 the transfer speeds of different IPC solutions. The first article notes the
 transfer speeds of pipes, shared memory, and sockets (Venkataraman and
 Jagadeesha, 2015). The second article notes the transfer speeds of message
 queues, pipes, shared memory, and sockets (Smith and Wells, 2017). The last
 article compares the transfer speeds of pipes, Unix sockets, and regular
 sockets (Wright, Gopalan, and Kang, 2007).

 Literature Study

 To present the results from the literature study the maximum speeds of the
 IPC solutions are presented. The maximum speed was the highest speed that
 was recorded in an article. The articles were done on different machines and
 therefore the speeds were different between articles. The maximum speeds
 were presented in Table 2.

 Table 2 depicts the results from the literature study of transfer speeds of IPC
 solutions. The table contains the maximum speeds that were found for the
 solutions in Megabytes per second. The table, therefore, notes the solution, the
 speed of the solution and the source where the data came from.

 30 | Pre-study Results

 Table 2. Maximum transfer speeds for IPC solutions

 Speed
 (MB/s) Source

 FIFO
 Pipes 3,000 (Venkataraman and Jagadeesha,

 2015)

 Socket 1,700 (Venkataraman and Jagadeesha,
 2015)

 Shared
 memory 6,500 (Venkataraman and Jagadeesha,

 2015)

 Message
 queues 567 (Smith and Wells, 2017)

 Unix
 Socket 1,500 (Wright, Gopalan, and Kang,

 2007)

 The article by Aditya Venkataraman and Kishore Kumar Jagadeesha tested the
 IPC solutions of pipes, sockets and shared memory (2015). Therefore they
 gave no transfer speeds for message queues or Unix Sockets. The article by
 Kwame Wright, Kartik Gopalan and Hui Kang did a study on pipes, Unix
 sockets and regular sockets (2007). The results from the article were the Unix
 sockets had the best transfer speeds whilst pipes were second with around
 40% of the top-speed Unix sockets. The last was the regular sockets with 28%
 of the Unix max speed. The source was the only source found that tested Unix
 sockets.

 The result of the message queues came from an article by Dylan Smith and
 George Wells (2017). The article was tested on a Windows system. To use the
 libraries in the article they created their own libraries with the use of C code.
 This resulted in the fastest IPC solution being the message queues. After that
 came the pipes which had a speed that was 68% of the message queues. Next
 was a solution called file mapping which is very similar to shared memory and
 it was 30% the speed of message queues. Lastly was Java's implementation of
 sockets and it was 1.2% of message queues. The authors noted that this was
 due to the larger overhead of the messages. The messages had a larger
 overhead due to the protocols involved with socket transfers.

 Pre-study Results | 31

 Practical Study

 After the literature study came the results from the practical study and those
 results are shown in Table 4. The table describes the results from a program
 that consisted of two processes. One process read a file with a specific buffer
 size and sent it to the other process with the use of the IPC solution. The
 second process read the data and then wrote the data into a new file. This
 created a program that would copy the contents of a file. The tests were done
 with different sizes of files and with different buffer sizes for the solutions. The
 file sizes ranged from 1 MB to 5 GB and the buffer was 16 kB, 64 kB, and 256
 kB. There was a problem with the message queue. The problem was that
 message queues had a maximum buffer size of 8 kB.

 The results from the practical study of IPC solutions all came from a VM
 running Ubuntu on a Windows machine. The original windows machine was
 running a 6-core CPU and 16 GB of RAM. The allocated resources of the
 Ubuntu VM are noted in Table 3. The VM was allocated 4 of the 6 available
 cores and 5 GB of RAM.

 There was a test that was for IPC solutions when sending a shorter message
 and getting it back. So Process 1 sent a message to Process 2 and then Process
 2 sent a new message to Process 1. The results from the test are noted in
 Figure 12. The results in Figure 12 display the transfer speeds of the IPC
 solutions in MB/s with different message sizes. The vertical axis is organised
 in a logarithmic scale whilst the horizontal axis is in accordance with the
 message size. Figure 12 showed that pipes were the best for message sizes 1 kB,
 4 kB, 8 kB, 16 kB, and 32 kB. The graph in Figure 12 presented that sockets
 provided the fastest speed of transfer for messages of 2 kB. Lastly was shared
 memory which was the fastest solution for message sizes 64 kB, 256 kB, and
 512 kB.

 Table 3. Specification of VM

 Number of cores 4

 CPU frequency 3.6 Ghz

 RAM 5 GB

 32 | Pre-study Results

 Table 4. Maximum transfer speeds for IPC solutions when sending contents of
 a file

 Speed
 (MB/s) File (MB) Buffer (kB)

 FIFO
 Pipes 587 64 64

 Socket 1,476 16 256

 Shared
 memory 574 64 256

 Message
 queues 378 64 16

 Unix
 Socket 918 16 256

 Figure 12. Transfer speeds for IPC solutions when sending one message

 Pre-study Results | 33

 4.1.2 Resource Usage

 During the literature study no sources on the resource usage of the solutions
 were found. Therefore only tests from the practical study noted the resource
 usage of the IPC solutions. The resource usage that was measured was the
 amount of memory used in the RAM and the amount of CPU time used. The
 result of the memory usage is displayed in Table 5.

 The test for Table 5 was to send information from a file to another process that
 wrote it into a new file, similar to Table 4. The tests were done with file sizes
 ranging from a 1 MB file to a 5 GB file. Table 5 shows the average memory
 usage, by the process and shared memory, over four different file sizes for the
 solutions for specific buffer sizes. The average was from running the test 20
 times. The buffer sizes were 16 kB, 64 kB and 256 kB.

 The result from Table 5 showed that pipes had the lowest memory usage when
 working with smaller files. Then for files larger than 16 MB message queues
 took over the lowest memory usage. The worst solution was the regular sockets
 and it was the worst for all file sizes. Shared memory had the second lowest
 memory usage at 1 MB files but is second worst or worst for other sizes. The
 solution in the middle was Unix sockets which were often the second worst or
 the middle solution in memory usage.

 Table 5. Average memory usage in megabytes of IPC solution depending on
 file size

 1 MB 16 MB 64 MB 1 GB

 FIFO
 Pipes

 0.44 4.47 4.51 4.44

 Socket 4.81 4.81 4.92 4.92

 Shared
 memory

 2.05 4.82 4.79 4.77

 Message
 queues

 4.04 4.04 4.03 4.08

 Unix
 Socket

 4.75 4.75 4.75 4.77

 34 | Pre-study Results

 Table 6. Average CPU usage time in milliseconds of IPC solution depending on
 file size

 1 MB 16 MB 64 MB 1 GB 5 GB

 FIFO
 Pipes

 4 39 145 7133 44007

 Socket 0 1 47 1612 3717

 Shared
 memory

 3 42 352 5160 15728

 Message
 queues

 1 24 109 2593 7083

 Unix
 Socket

 0 40 161 3563 7909

 The second test was the measure of CPU usage and it is portrayed in Tables 6
 and 7. The tables were for the same tests as with memory usage in Table 5
 where the contents of a file were transferred. The tests were for the data sizes 1
 MB, 16 MB, 64 MB, 1 GB, and 5 GB. All of these tests were also with different
 buffer sizes of 16 kB, 64 kB and 256 kB. The results were the average from
 running the tests 10 times.

 Table 7. Average CPU usage time in milliseconds of IPC solution depending on
 buffer size

 16 kB 64 kB 256 kB

 FIFO
 Pipes

 7262 12404 11128

 Socket 1200 988 1039

 Shared
 memory

 8366 3157 1248

 Message
 queues

 2577 2229 2097

 Unix
 Socket

 3046 1568 1271

 Pre-study Results | 35

 The result in Table 6 depicts the average CPU usage of the two processes in
 CPU time of milliseconds. Some sizes were noted as zero due to the
 monitoring program not being able to measure lower times. The result in
 Table 6 was the usage when copying files of different sizes. The averages were
 the averages from each buffer size that could be seen in Table 7.

 The results in Table 7 shows the average CPU usage time depending on the
 buffer size for the solution, in milliseconds. The table depicted the buffer sizes
 in the upper horizontal line and the solutions in a vertical line. These results
 were from all of the file sizes that could be seen in Table 6.

 The results of Table 6 show that both pipes and shared memory used the most
 CPU time when working with all file sizes. The shared memory was worse for
 sizes 16 MB and 64 MB. Pipes were the worst for the rest of the file sizes. The
 solution that had the least CPU usage time was sockets and it was for all file
 sizes. The second best was message queues and the third best was Unix
 domain sockets.

 The results from Table 7 showed that sockets had the lowest CPU usage for all
 buffer sizes. Then shared memory had the most for 16 kB buffer and pipes had
 the most for the rest of the buffer sizes. Unix domain sockets were the third
 best solution for every data size, except for 64 kB. For message queues it was
 shown that for buffer sizes of 16 kB, it had the second lowest usage time. The
 message queues had the third lowest CPU time usage when the buffer size was
 64 kB. For the buffer size of 256 kB it is shown in Table 7 that the message
 queues had the second highest CPU usage time.

 4.1.3 Language Support

 The language support of each of the solutions is presented in Table 8. The
 table has three text types: bold , italic and empty. The different text types
 represent what kind of library the solution needed. If the test is bold, that was
 an official library for the programming language. The italic text represents an
 external library that a user can add to their project. The empty text boxes
 represent that no library was available for a solution in a given programming
 language. There are some notes in Table 8. The notes are explained after the
 table. The notes regard the definition of what is an official library for solutions.
 The first note is about the problem of an official library being available on one
 operating system but not another. The second note regards the definition of
 whether a library is not strictly called the same as the IPC solution. But the
 library provides the same functionality as the IPC solution.

 36 | Pre-study Results

 Table 8. Language support for IPC solutions

 FIFO
 pipes Sockets Shared

 memory
 Message
 queues

 Unix
 Sockets

 C mkfifo socket.
 h shm.h mqueue.

 h socket.h

 C++ mkfifo socket.
 h shm.h mqueue.

 h socket.h

 C#

 Mono.Pos
 ix.NETSt
 andard

 System.
 Net.Soc

 kets

 System.I
 O.Memo
 ryMapp
 edFiles

 System.
 Messagi

 ng

 (Note 1)

 System.N
 et.Socket

 Python os socket posix-ipc posix-ipc socket

 Java
 java.ne
 t.Socke

 t

 Java.nio
 (Note 2)

 java.net.
 UnixDom
 ainSocket

 Addres

 Javascript fifo-js WebSo
 cket PosixMQ

 unix
 -dgram
 -socket

 Rust nix std::net nix IPC-Chan
 nel

 std::os::u
 nix::net

 Ruby FileUtils socket sysvipc sysvipc socket

 ● Note 1 : The problem with message queues for C# was that it did have an
 official library for message queues on Windows, but not on Linux. To be
 able to use message queues on Linux then one needs to either use a
 library called RabbitMQ or create a library. The RabbitMQ library
 allows for message queues that are based on sockets and may have
 complications when trying to access them without the RabbitMQ
 library. The final option was to create a new library that relies on C code
 to access the message queue system by the Linux operating system.

 ● Note 2 : The note about the Java shared memory is that it is not called
 shared memory. With Java three libraries from java.nio can be used
 and it will act like shared memory. If the users want to use the shared
 memory that the operating systems provide then one needs to create
 one's own library, which can be done in C.

 Pre-study Results | 37

 4.2 Formats
 Section 4.2 presents results from both literature and practical study, regarding
 the compared data interchange formats. Each subsection corresponds to a
 criterion from the comparison model. Sections 4.2.1-4.2.3 present the criteria
 for serialisation and deserialisation time, resource usage, and language
 support respectively. Sections 4.2.1 and 4.2.2 begin by presenting the results of
 the literature study, which is then followed by results from the practical study.

 4.2.1 Serialisation and Deserialisation Time

 In total, three relevant articles and two web pages were found on the topic of
 time comparisons between data interchange formats. Articles by Šimec and
 Magličić (2014) and Nurseitov, Paulson, Reynolds, and Izurieta (2009)
 included JSON and XML performance comparisons. Both articles find that
 JSON is significantly faster than XML. The third article by Vahdati, Karim,
 Huang, and Lange (2015) compares XML and CSV, and finds that CSV is
 faster. The web pages, (JSON vs BSON , n.d.) and (GeeksForGeeks, 2023),
 both note BSON as being faster than JSON.

 Literature Study

 The article by Šimec and Magličić (2014) found that decoding a simple data
 example in PHP was more than four times faster with JSON compared to
 XML. Although JSON significantly outperformed XML in terms of speed, it
 was noted in the conclusion that XML is still a valuable format thanks to its
 broader support for different data types.

 The comparison study by Nurseitov et al. (2009) investigated the difference in
 performance between JSON and XML when transferring data from a client to
 a server where the data was decoded. Measurements were taken on CPU
 utilisation for both client and server, system memory utilisation, and
 transmission times. The results show that JSON was more than fifty-eight
 times faster than XML when transferring and decoding many objects at once.
 When transferring and decoding a lower amount of objects in intervals, JSON
 was approximately forty times faster on average.

 In the paper by Vahdati et al. (2015) the performance of a mapping from
 formats including XML and CSV, to the Resource Description Framework
 (RDF) format, was measured. The results showed that the mapping time from
 XML to RDF was more than nine times slower than the mapping from CSV to
 RDF.

 38 | Pre-study Results

 GeeksForGeeks, (2023) presents differences between the JSON and BSON
 formats. Among the listed differences, a claim for BSON is that “It is faster
 than JSON”. This claim is supported by another webpage, (JSON vs BSON ,
 n.d.), stating for JSON that “It is comparatively less faster than BSON.”

 Practical Study

 Our practical study compared the serialisation and deserialisation time of
 JSON, BSON, XML, and CSV. The time here, refers to the total time of
 serialising and then deserialising the data to and from a given format. The
 benchmarks were written and conducted using two programming languages:
 Python and JavaScript. The serialisation and deserialisation were conducted
 under six scenarios. Scenarios 1-3 involved tabular structured data of
 increasing sizes. Scenarios 4-6 involved tree-structured data of increasing
 sizes. The simple data consisted of items with seven attributes of different data
 types. The complex data consisted of items with fifteen attributes of different
 data types, at different depths in the tree-structure. The specific structures
 used in the practical study can be found in the Appendix. The scenarios of
 different sizes consisted of 1, 100, and 10,000 items respectively. Since CSV
 does not support non-linear data, it was not included in the complex-data
 scenarios.

 The results from the Python benchmarks, as shown in Table 9, was that JSON
 was the fastest, for all scenarios. For the medium and large data size scenarios
 with simple structured data (scenarios 2 and 3), the order of fastest
 serialisation and deserialisation was: JSON, CSV, XML, BSON. For the small
 data size scenario (scenario 1), it went: JSON, CSV, BSON, XML. When
 running the benchmarks with the complex structured data (scenarios 4-6), the
 order was constant, regardless of data size: JSON, XML, BSON.

 Table 9. Serialisation and deserialisation time in Python in milliseconds

 Scenario JSON BSON CSV XML

 1 0.004 0.016 0.007 0.022

 2 0.154 1.218 0.191 0.985

 3 18.197 133.400 19.169 115.389

 4 0.006 0.034 - 0.038

 5 0.346 3.089 - 2.142

 6 50.104 330.066 - 284.902

 Pre-study Results | 39

 Table 10. Serialisation and deserialisation time in JavaScript in milliseconds

 Scenario JSON BSON CSV XML

 1 0.002 0.02 0.152 0.062

 2 0.089 0.514 0.333 2.717

 3 8.635 49.990 17.369 284.297

 4 0.003 0.03 - 0.088

 5 0.197 1.137 - 5.316

 6 19.607 117.557 - 583.843

 When running the benchmarks in JavaScript, JSON achieved the fastest time
 for all scenarios. Table 10 shows the results from all scenarios in JavaScript.
 For the scenario with simple structured data of small size (scenario 1), the
 order of fastest execution went: JSON, BSON, XML, CSV. For the medium and
 large scenarios (scenarios 2 and 3), the execution order was: JSON, CSV,
 BSON, XML. For the scenarios with complex structured data (scenarios 4-6),
 the order of fastest execution was the same for all data sizes: JSON, BSON,
 XML.

 4.2.2 Resource Usage

 Three relevant articles were found that compared resource usage between data
 interchange formats. The paper by Nursevoit et al. (2009) found that XML had
 higher memory usage than JSON. It also found that JSON had higher user
 CPU utilisation, but lower system CPU utilisation. The paper by Vahdati et al.
 (2015) comparing XML and CSV found that memory usage for XML was
 higher. The third paper by Popić, Pezer, Mrazovac, and Teslić (2016) included
 a comparison of file size between JSON and BSON. The results show that the
 JSON files were larger.

 Literature Study

 The paper by Nurseitov et al. (2009) showed for the test where many objects
 were transferred and decoded at once, XML system memory usage was
 approximately 8% higher than JSON. In the same test, JSON had 58% higher
 user CPU utilisation, but 71% lower system CPU utilisation. In the tests where
 fewer objects were sent in intervals, JSON’s user CPU utilisation was, on
 average, 13% higher than XML’s. On the system side, JSON CPU utilisation
 was 61% lower. The average memory utilisation for these tests was 0.3%
 higher for XML than JSON.

 40 | Pre-study Results

 The comparison by Vahdati et al. (2015) also included memory usage as a
 comparison metric and found that CSV outperformed XML in this category.
 Recorded XML memory usage was more than 26% higher than the memory
 usage for CSV. The paper also recorded the number of generated RDF triples
 resulting from the mapping. The results show that the mapping from XML to
 RDF generated approximately 20% more triples than the CSV to RDF
 mapping.

 The difference in file size between JSON and BSON formats was shown in the
 paper by Popić et al. (2016). When converting 51690 messages into JSON and
 BSON formats and summarising the file sizes, the JSON files were
 approximately 17% larger than the BSON files.

 Practical Study

 Our practical study measured the CPU and memory usage during the
 serialisation and deserialisation of the formats. The formats were then written
 to file, which allowed their file size to be measured for the space requirement
 criterion. The scenarios measured were the same as in the serialisation and
 deserialisation time benchmark.

 The results from the space requirement benchmark show that for simple
 tabular data, CSV takes up the least amount of space. Following CSV, JSON
 and BSON perform similarly. XML files were the largest. The specific
 measurements are displayed in Table 11.

 For the CPU usage benchmarking scenarios with simple structured data, the
 results depended heavily on input size. For the small test case (scenario 1),
 JSON performed best, followed by BSON, XML, and CSV. For the
 medium-sized input (scenario 2), the order of best performance was JSON,
 CSV, BSON and XML. Finally, for the large test case (scenario 3), CSV had the
 lowest CPU usage, followed by JSON, BSON, and XML. When benchmarking
 the complex structured data (scenarios 4-6), the order of best performance
 was constant: JSON, BSON, then XML.

 The scenarios where CPU usage was measured were each run between one
 hundred to ten thousand iterations, and then the average was calculated, in
 order to achieve a consistent value. The values for average CPU usage for one
 iteration run in JavaScript are displayed in Table 12. The columns in the table
 represent a data interchange format. The rows represent a combination of data
 size and structure. The specific scenarios for the rows are given in the leftmost
 column.

 Pre-study Results | 41

 Table 11. File sizes

 Scenario JSON BSON CSV XML

 1 162 B 164 B 107 B 205 B

 2 14.336 kB 13.969 kB 6.064 kB 17.568 kB

 3 1.396 MB 1.379 MB 0.586 MB 1.711 MB

 4 325 B 330 B - 428 B

 5 30.373 kB 30.233 kB - 39.368 kB

 6 2.969 MB 2.973 MB - 3.846 MB

 Table 12. CPU time in microseconds

 Scenario JSON BSON CSV XML

 1 15 30 91 77

 2 60 291 138 1 011

 3 2 746 18 118 2 306 66 994

 4 1 31 - 107

 5 81 527 - 2 101

 6 7 810 36 994 - 144 212

 Table 13. Memory usage in megabytes

 Scenario JSON BSON CSV XML

 1 34.499 35.652 45.683 38.638

 2 36.476 39.153 40.764 43.184

 3 72.19 92.528 76.858 153.764

 4 34.844 36.055 - 39.01

 5 37.849 41.215 - 52.5

 6 78.332 104.25 - 182.988

 42 | Pre-study Results

 In the same benchmarks as for the CPU usage, memory usage was also
 measured. Also here, the results for the simple data depended on input size.
 For the small test case (scenario 1), JSON had the lowest memory usage,
 followed by BSON, XML, and CSV. For the medium-sized test case (scenario
 2), JSON again performed the best, followed by BSON, CSV, and XML. For the
 large test case (scenario 3), the order of lowest memory usage was: JSON,
 CSV, BSON, and lastly XML. The order when benchmarking the complex
 structured data (scenarios 4-6) was constant: JSON, BSON, XML. Table 13
 shows the memory allocated for the process while running one hundred
 iterations in JavaScript.

 4.2.3 Language Support

 The language support criteria for the data interchange formats were based on
 whether the language had an official or external library for encoding and
 decoding of the respective formats.

 Table 14. Language support for formats

 JSON BSON CSV XML

 C cJSON libbson libcsv libxm12

 C++ RapidJSON mongo-cxx-d
 river

 standard
 C++ streams libxml++

 C# System.Tex
 t.Json

 MongoDB
 C#/.NET

 driver
 System.Data System.Xml

 Python json PyMongo csv xml

 Java javax.json MongoDB
 Java driver java.io javax.xml

 Javascript JSON bson csv-parser xml-js

 Rust serde_json bson csv xml-rs

 Ruby json
 MongoDB

 Ruby
 driver

 CSV Nokogiri

 Pre-study Results | 43

 The results were chosen to be displayed in Table 14. Bold characters in a cell
 represent that the format is official and built-in to the language. Italic
 characters in a cell represent that the language does not have an official or
 built-in library, but that third-party libraries are available. The text in the cells
 represents the name of the official, or possible third-party, resource.

 44 | Pre-study Results

 Guidelines for Use of Structured Data Transfer Solutions | 45

 5. Guidelines for Use of Structured Data
 Transfer Solutions
 Chapter 5 presents the guidelines that were created based on the results from
 the pre-study. Section 5.1 summarises the structure of the chapter and what
 components it contains. Section 5.2 describes how to use the guidelines. The
 purpose of the guidelines are described in Section 5.3. After that comes
 Section 5.4 which provides the limitations of the created guidelines. Section
 5.5 contains the list of created guidelines. To improve the use of the guidelines
 there is visualisation of the guidelines as flowcharts in Section 5.6. After that
 comes Section 5.7 which is the summary of the literature and practical study
 that contains information that was used to motivate the guidelines. Lastly are
 the validity threats and how the thesis addresses them in Section 5.8.

 5.1 Introduction

 A visual introduction to the structure of the guidelines is presented in Figure
 13. The figure illustrates the different sections and how they are organised. The

 Figure 13. Overview of guidelines structure

 46 | Guidelines for Use of Structured Data Transfer Solutions

 instructions section contains information on how to read and use the
 guidelines. The limitations section describes the limitations of the guidelines.
 Third is the guidelines section, which is introduced with an overview, followed
 by the guidelines themselves. After that comes a visualised version of the
 guidelines, in the form of flowcharts. Second to last is the summary of the
 literature study and tests which contains information regarding the motivation
 for each recommendation. The last section describes how the thesis’ validity
 threats were dealt with.

 5.2 Instructions

 The guidelines bring up information regarding six areas of concern. The areas
 of concern the solution should work with are high speeds (HS), achieve the
 lowest memory usage (MU), or achieve the lowest CPU usage (CU). The
 last three areas are that the solutions have good language support (LS),
 network communication (NC), or use a custom format (CF). The areas
 of concern are visualised in Figure 14. To use the guidelines the user selects an
 area that they think is important. With the selected area of concern they check
 the subcategories.

 Figure 14. The areas of concern

 Guidelines for Use of Structured Data Transfer Solutions | 47

 In each of the six different areas of concern there are three subcategories that
 can change the recommendation. The three subcategories are the size of
 data , structure of data , and the programming language . The
 recommendation can change depending on the size of data so the guidelines
 bring forth the data size ranges. The ranges are for data less than 6kB, between
 6kB and 40kB, between 40kB and 1MB, or larger than 1MB. The structure of
 the data can change the recommendation so the guidelines bring up two
 different structures, simple or complex. Lastly the programming language can
 impact the recommendation therefore the guidelines bring up Javascript and
 Python.

 Figure 15 presents how the subcategories work. The figure starts on the left
 with an area of concern, in this case high speed. With the area of concern
 chosen it goes to the subcategories, illustrated as a table. In the table there are
 the different sizes of data, structures, and programming languages. There can
 be different recommendations depending on the values of the different
 subcategories. After the values of the subcategories are determined there is a
 recommendation of an IPC solution and data interchange format.

 When using the guidelines the user will select an area of concern that they
 think is important for their situation. Once they have selected an area then
 they can look at the recommendations. The recommendations are divided into
 three subcategories to provide a suitable solution. So with the area of concern
 the user will look at the recommendation with their needs in mind. So if the
 user chooses the area of wanting high speeds then they will look for guidelines
 with the ID starting with HS. To get a recommendation the user will need to
 understand what data they will use. For example, a user knows that they will
 use data larger than 1MB with a simple structure, written in Python. The user
 can then see that a recommendation matches that situation: HS-1. In this case
 the user would be recommended to use sockets as an IPC solution and CSV as
 a data interchange format.

 Figure 15. How the subcategories work

 48 | Guidelines for Use of Structured Data Transfer Solutions

 The guidelines are given in two different forms. The main format is the text
 based format that is described in Section 5.5. The second format is the
 visualised format which is presented in Section 5.6. The text based format
 provides the areas of concern and subcategories in the shape of section and
 subsection. This allows the user to go to a section and then further to a
 subsection to find their recommendation. The text format also provides
 detailed information on the recommendation and the motivation behind it.
 This is in contrast to the simpler response of the visualisation in Section 5.6.

 The second presentation format was the visualised format that is presented in
 Section 5.6. The visualisation is presented in the form of flowcharts that the
 user can follow to get their recommendation. There are two flowcharts with
 one presenting the recommendation for IPC solution and the other for the
 recommendation of data interchange format. So the user is intended to use
 both flowcharts to get their recommended solution.

 5.3 Purpose
 The purpose of the guidelines is to help software developers use a good data
 transfer solution for their situation. This was needed as there are many
 different solutions for this problem but each has their strengths and
 weaknesses. This requires developers to have an understanding of the
 solutions to use an appropriate solution. However, gaining the understanding
 can be time consuming which could be spent elsewhere. Therefore some
 guidelines that would ease the choice of solution would help save time for
 developers and companies.

 5.4 Limitations

 One of the limitations of the guidelines is that they do not bring up the
 recommendations for the mix of areas of concern. This makes it so that the
 guidelines do not provide recommendations for situations where high speeds
 and low CPU usage are wanted.

 A limitation of the guidelines is that it only looks into a small number of
 languages. For the IPC solutions it only looks at the solutions with evidence
 based on tests written in C. For data interchange formats it only regards
 Python or Javascript. This is a limiting factor as seen with high speed data
 interchange formats where the language affected the recommendation with a
 file size of larger than 1 MB.

 Guidelines for Use of Structured Data Transfer Solutions | 49

 For the area of concern of language support there was a limited amount of
 languages investigated. There was a total of eight languages and those were C,
 C++, C#, Python, Java, Javascript, Rust, and Ruby. For each language if there
 was an official library, external library, or no library for the solution.

 The guidelines only regard a handful of IPC solutions and data interchange
 formats. The IPC solutions that the guidelines worked with were pipes,
 sockets, shared memory, message queues, and Unix sockets. The solutions
 were all compared against one another. All solutions except Unix sockets were
 included in at least one guideline. For data interchange formats the formats
 that were compared were JSON, BSON, CSV, and XML. The formats were
 tested and compared, and all formats except BSON were recommended in one
 or more guidelines.

 5.5 Guidelines
 Section 5.5 presents the guidelines as headings followed by motivation and
 evidence for the chosen IPC solution and data interchange format. Section
 5.5.1 summarises the guidelines in a table to give a simple overview. Sections
 5.5.2-5.5.7 are divided into the areas of concern: high speeds, low memory
 usage, low CPU usage, language support, network communication, and custom
 format, respectively.

 5.5.1 Overview
 Each of the areas of concern, introduced in Section 5.2, brings forth a possible
 important aspect for the user. It is therefore important for the user to easily
 find the recommendation for their situation. That is why an overview of the
 guidelines are presented in this section. To increase the readability of the
 guidelines each recommendation has an ID. The ID is based on the area of
 concern that the recommendation is a part of.

 Table 15 presents the overview of the guidelines. The table presents each of the
 guidelines ID in the left column and their respective recommendation title in
 the right column. Therefore the user can choose an area of concern that they
 think is important. The user then looks up the abbreviation of the area of
 concern. With the abbreviation the user can then look at the rows associated
 with the area of concern. The user looks at the recommendation in the right
 column to find a recommendation for their needs. With the complete ID in the
 left column the user can look up the full description for the guidelines in
 Sections 5.5.2-5.5.7.

 50 | Guidelines for Use of Structured Data Transfer Solutions

 Table 15. Overview of guidelines

 ID Title

 High Speeds

 HS-1 Use Sockets and CSV for Simple
 Data larger than 1 MB in Python

 HS-2 Use Sockets and JSON for Simple
 Data larger than 1 MB in JavaScript

 HS-3
 Use Shared Memory and JSON for
 Simple Data between 40 kB and 1
 MB

 HS-4 Use Pipes and JSON for Simple Data
 smaller than 40 kB

 HS-5 Use Sockets and JSON for Complex
 Data larger than 1 MB

 HS-6
 Use Shared Memory and JSON for
 Complex Data between 40 kB and 1
 MB

 HS-7 Use Pipes and JSON for Complex
 Data smaller than 40 kB

 Memory Usage

 MU-1 Use Message Queues and JSON for
 Data larger than 1 MB

 MU-2 Use Pipes and JSON for Data
 smaller than 1 MB

 CPU Usage

 CU-1 Use Sockets and CSV for Simple
 Data larger than 1 MB

 CU-2 Use Sockets and JSON for Simple
 Data smaller than 1 MB

 CU-3 Use Sockets and JSON for Complex
 Data

 Guidelines for Use of Structured Data Transfer Solutions | 51

 Language Support

 LS-1 Use Sockets and JSON for Language
 Support

 Network Communication

 NC-1 Use Sockets for Network
 Communication

 Custom Format

 CF-1 Use XML for All Custom Format
 Data

 5.5.2 High speeds

 When developing systems it may be important that the solutions can transfer
 as much data as possible in a limited time frame. This is to lower possible
 waiting time or stutters in the system. Therefore a high speed of transferring
 the data can lead to a smoother experience for the user.

 When it comes to the higher speed solutions then there were three areas that
 impacted the recommendations. The areas were the size of the data that was to
 be transferred, the structure of the data, and the choice of programming
 language. The size of data would impact both the IPC solution and the data
 format solution. The structure of the data and programming language
 however, only impacted the recommendation for data interchange format.

 HS-1: Use Sockets and CSV for Simple Data larger than 1 MB
 in Python

 For transferring simple structured data larger than 1 MB using Python, the
 guidelines recommends sockets as IPC solution, and CSV as data interchange
 format.

 Sockets were the recommended solution for files larger than 1 MB mostly due
 to the results in Section 5.7. The results showed that sockets was the fastest
 IPC solution, for files larger than 1 MB. One of the tests in Section 5.7 had the
 lowest size of 1 MB and therefore could show that sockets had better
 performance for files larger than 1 MB. This is supported by the articles as
 sockets had the third maximum transfer speed. The maximum transfer speeds
 was 1 700 MB/s in the article by Venkataraman and Jagadeesha (2015). This
 would point to sockets being one of the faster solutions.

 52 | Guidelines for Use of Structured Data Transfer Solutions

 CSV was the chosen data interchange format for large, simple data when
 programming in Python. Even though JSON serialisation and deserialisation
 is slightly faster, as can be seen in Section 5.7, the resulting CSV object is
 smaller. The smaller file size here is enough for the difference in IPC transfer
 speed to be greater than the difference in serialisation and deserialisation
 time. Thus, even though the serialisation and deserialisation phase is faster
 with JSON, the complete transfer becomes faster with CSV.

 HS-2: Use Sockets and JSON for Simple Data larger than 1 MB
 in JavaScript

 For transferring simple structured data larger than 1 MB using JavaScript, the
 guidelines recommends sockets as IPC solution, and JSON as data interchange
 format.

 Sockets were the recommended solution for files larger than 1MB mostly due
 to the results in Section 5.7. The results showed that sockets was the fastest
 IPC solution, for files larger than 1 MB. One of the tests in Section 5.7 had the
 lowest size of 1MB and therefore could show that sockets had better
 performance for files larger than 1 MB. This is supported by the articles as
 sockets had the third maximum transfer speed. The maximum transfer speeds
 was 1 700 MB/s in the article by Venkataraman and Jagadeesha (2015). This
 would point to sockets being one of the faster solutions.

 JSON was the chosen data interchange format for large, simple data when
 programming in JavaScript. This is due to the fact that JSON had the fastest
 serialisation and deserialisation for all sizes of data as described in Section 5.7.
 Section 5.7 describes that JSON is the fastest with it taking half of the time as
 the second fastest format CSV.

 HS-3: Use Shared Memory and JSON for Simple Data between
 40 kB and 1 MB

 For transferring simple structured data between 40 kB and 1 MB, the
 guidelines recommends shared memory as IPC solution, and JSON as data
 interchange format.

 For files between the sizes of 40 kB and 1 MB then shared memory was the
 recommended solution. This was due to the results in Section 5.7 where shared
 memory was one of the fastest solutions in the small message test. The results
 of the test showed that shared memory was the fastest for data between the
 sizes of 64 kB and 512 kB. Shared memory is regarded as fastest for 40 kB due

 Guidelines for Use of Structured Data Transfer Solutions | 53

 to it being the fastest for 64 kB. It was also supported by shared memory being
 the fastest solution from the articles. The shared memory achieved a max
 transfer speed of 6,500 MB/s, in the article by Venkataraman and Jagadeesha
 (2015). Therefore pipes were not recommended at 40 kB even when it
 performed better at 32 kB message sizes.

 With files with a size between 40 kB and 1 MB, JSON was the fastest solution.
 This was regardless whether the programming language was JavaScript or
 Python. It was supported by the results in Section 5.7, which describes that
 JSON is the fastest. Section 5.7 describes that JSON is the fastest solution with
 CSV being the second fastest solution. Section 5.7 describes that the fastest
 solution was JSON for all measuring scenarios.

 HS-4: Use Pipes and JSON for Simple Data smaller than 40 kB

 For transferring simple structured data smaller than 40 kB, the guidelines
 recommends pipes as IPC solution, and JSON as data interchange format.

 The reason that pipes were recommended for file sizes less than 40 kB is due
 to the result of the test described in Section 5.7. The results showed that pipes
 were the fastest solution for file sizes of 32 kB or smaller. This resulted in
 pipes being the recommended solution for files less than 40kB. The
 recommendation was also reinforced with the pipes being the second fastest
 solution from the articles. Pipes achieved a max transfer speed of 3,000 MB/s
 in the article by Venkataraman and Jagadeesha (2015).

 With files smaller than 40 kB, JSON was the fastest solution. This was
 regardless whether the programming language was JavaScript or Python. It
 was supported by the results in Section 5.7, which describes that JSON is the
 fastest. Section 5.7 describes that JSON is the fastest solution with CSV being
 the second fastest solution. Section 5.7 describes that the fastest solution was
 JSON for all measuring scenarios.

 HS-5: Use Sockets and JSON for Complex Data larger than 1
 MB

 For transferring complex structured data larger than 1 MB, the guidelines
 recommends sockets as IPC solution, and JSON as data interchange format.

 Sockets were the recommended solution for files larger than 1MB mostly due
 to the results in Section 5.7. The results showed that sockets was the fastest
 IPC solution, for files larger than 1 MB. One of the tests in Section 5.7 had the
 lowest size of 1MB and therefore could show that sockets had better
 performance for files larger than 1 MB. This is supported by the articles as

 54 | Guidelines for Use of Structured Data Transfer Solutions

 sockets had the third maximum transfer speed. The maximum transfer speeds
 was 1 700 MB/s in the article by Venkataraman and Jagadeesha (2015). This
 would point to sockets being one of the faster solutions.

 JSON was recommended because it achieved the lowest serialisation and
 deserialisation time measured for all tests, as described in Section 5.7.
 Although CSV was almost as fast as JSON for large data in Python and
 generated a smaller file size, it is disqualified due to its inability to represent
 complex data. This is supported by Šimec and Magličić (2014) and Nurseitov
 et al. (2009), where JSON was found to be the fastest out of the measured
 formats.

 HS-6: Use Shared Memory and JSON for Complex Data
 between 40 kB and 1 MB

 For transferring complex structured data between 40 kB and 1 MB, the
 guidelines recommends shared memory as IPC solution, and JSON as data
 interchange format.

 For files between the sizes of 40 kB and 1 MB then shared memory was the
 recommended solution. This was due to the results in Section 5.7 where shared
 memory was one of the fastest solutions in the small message test. The results
 of the test showed that shared memory was the fastest for data between the
 sizes of 64 kB and 512 kB. Shared memory is regarded as fastest for 40 kB due
 to it being the fastest for 64 kB. It was also supported by shared memory being
 the fastest solution from the articles. The shared memory achieved a max
 transfer speed of 6,500 MB/s, in the article by Venkataraman and Jagadeesha
 (2015). Therefore pipes were not recommended at 40 kB even when it
 performed better at 32 kB message sizes.

 JSON was recommended because it achieved the lowest serialisation and
 deserialisation time measured for all tests, as described in Section 5.7.
 Although CSV was almost as fast as JSON for large data in Python and
 generated a smaller file size, it is disqualified due to its inability to represent
 complex data. This is supported by Šimec and Magličić (2014) and Nurseitov
 et al. (2009), where JSON was found to be the fastest out of the measured
 formats.

 Guidelines for Use of Structured Data Transfer Solutions | 55

 HS-7: Use Pipes and JSON for Complex Data smaller than 40
 kB

 For transferring complex structured data smaller than 40 kB, the guidelines
 recommends pipes as IPC solution, and JSON as data interchange format.

 The reason that pipes were recommended for file sizes less than 40 kB is due
 to the result of the test described in Section 5.7. The results showed that pipes
 were the fastest solution for file sizes of 32 kB or smaller. This resulted in
 pipes being the recommended solution for files less than 40kB. The
 recommendation was also reinforced with the pipes being the second fastest
 solution from the articles. Pipes achieved a max transfer speed of 3,000 MB/s
 in the article by Venkataraman and Jagadeesha (2015).

 JSON was recommended because it achieved the lowest serialisation and
 deserialisation time measured for all tests, as described in Section 5.7.
 Although CSV was almost as fast as JSON for large data in Python and
 generated a smaller file size, it is disqualified due to its inability to represent
 complex data. This is supported by Šimec and Magličić (2014) and Nurseitov
 et al. (2009), where JSON was found to be the fastest out of the measured
 formats.

 5.5.3 Memory Usage

 Memory usage can be important for a user as they do not want their data
 transfer solution to take precious memory from other important programs. If
 the solutions use too much memory then it could result in the complete system
 slowing down. This would be as a result from processes and solutions fighting
 over memory space.

 Memory usage can be especially important in computers with a low amount of
 memory and lots of processes running. An example of this would be a mobile
 phone as they have many processes running in the background, such as social
 media apps, checking if someone is calling, or a game the phone is running.
 With the processes each needs some memory to have good performance and if
 that memory is used by the solutions then it can slow the phone.

 MU-1: Use Message Queues and JSON for Data larger than 1
 MB

 For transferring data larger than 1 MB, the guidelines recommends message
 queues as IPC solution, and JSON as data interchange format.

 56 | Guidelines for Use of Structured Data Transfer Solutions

 When looking at the results in Section 5.7 it showed that for all sizes except 1
 MB message queue had the lowest memory usage. The memory usage was
 consistent for the file sizes. This resulted in the recommendation that for files
 larger than 1 MB message queues would give lower memory usage.

 JSON was recommended because it achieved the lowest memory usage for all
 test scenarios, as shown in Section 5.7.

 MU-2: Use Pipes and JSON for Data smaller than 1 MB

 For transferring data smaller than 1 MB, the guidelines recommends pipes as
 IPC solution, and JSON as data interchange format.

 The recommendation for pipes with smaller files was due to the results of the
 test that were done, as described in Section 5.7. The results described that
 pipes had the lowest memory usage for files of 1 MB. This suggested that pipes
 worked well with smaller files. Therefore pipes were the recommended
 solution for files less than 1 MB.

 JSON was recommended because it achieved the lowest memory usage for all
 test scenarios, as shown in Section 5.7.

 5.5.4 CPU Usage

 CPU usage can be important for a user as they do not want their data transfer
 solution to impact the processing speed of another program. If a system relies
 on many parts that does a large amount of calculations then CPU time can be
 limited. Then a solution that also wants CPU time can slow down the whole
 system.

 Low CPU usage can help not impact the performance of other parts of a
 system. This would be helpful in a system that deals with large amounts of
 data that is calculated. The calculation can take time and therefore needs time
 to be calculated by the CPU. Then it would be a problem if the calculation
 program was fighting for CPU time with the solution that provides the data
 from one process to another.

 CU-1: Use Sockets and CSV for Simple Data larger than 1 MB

 For transferring simple data larger than 1 MB, the guidelines recommends
 socket as IPC solution, and CSV as data interchange format. The IPC format

 Guidelines for Use of Structured Data Transfer Solutions | 57

 did not change the choice of IPC solution and the same solution was for all file
 sizes.

 For the IPC part of the solution then sockets were the recommended solution.
 This came from the results that are described in Section 5.7. Section 5.7
 describes that sockets have the lowest CPU usage out of all the solutions.
 Therefore sockets is the recommended solution for files larger than 1 MB.

 CSV was the recommended data interchange format, because it achieved the
 lowest CPU time for the large data test scenario. The results of the test
 scenarios are described in Section 5.7.

 CU-2 Use Sockets and JSON for Simple Data smaller than 1
 MB

 For transferring simple data smaller than 1 MB, the guidelines recommends
 socket as IPC solution, and JSON as data interchange format. The IPC format
 did not change the choice of IPC solution and the same solution was for all file
 sizes.

 For the IPC part of the solution then sockets were the recommended solution.
 This came from the results of the test as described in Section 5.7. Section 5.7
 shows that sockets has the lowest CPU usage out of all the solutions. The tests
 did not involve file sizes less than 1 MB but the test involved buffer sizes less
 than 1 MB. Sockets had the lowest CPU usage for all buffer sizes. This would
 indicate that if a message was the size of the buffer, less than 1 MB, that
 sockets would still have the lowest CPU usage. Therefore sockets are the
 recommended solution for data smaller than 1 MB.

 JSON was chosen as the recommended data interchange format because it
 achieved the lowest CPU time for the small and medium simple structured
 data. This result was obtained from test scenarios, and is described in Section
 5.7.

 CU-3 Use Sockets and JSON for Complex Data

 For transferring complex data, the guidelines recommends socket as IPC
 solution, and JSON as data interchange format. The IPC format did not
 change the choice of IPC solution and the same solution was for all file sizes.

 For the IPC part of the solution then sockets were the recommended solution.
 This came from the results of the test as described in Section 5.7. Section 5.7
 shows that sockets has the lowest CPU usage out of all the solutions. The tests
 did not involve file sizes less than 1 MB but the test involved buffer sizes less

 58 | Guidelines for Use of Structured Data Transfer Solutions

 than 1 MB. Sockets had the lowest CPU usage for all buffer sizes. This would
 indicate that if a message was the size of the buffer, less than 1 MB, that
 sockets would still have the lowest CPU usage. Therefore sockets are the
 recommended solution for data smaller than 1 MB.

 JSON was chosen as the recommended data interchange format because it
 achieved the lowest CPU time for the small and medium simple structured
 data. This result was obtained from test scenarios, and is described in Section
 5.7.

 5.5.5 Language Support

 Language support can improve how easy it can be to implement a solution in a
 system. This is because a developer does not need to search for libraries or
 create their own to get something working. Therefore high language support
 would make it easier to work with the solution.

 When a solution is easy to implement then that could lead to multiple benefits.
 One benefit would be that developers have to spend less time implementing
 the solution. This can lead to more time working on bigger aspects of the
 system, which can help make deadlines and the same costs. If a solution is
 easy to implement with official libraries then it can be more easily maintained
 in the future of the system. Lastly, if a solution has official libraries in many
 languages then it will be easier to add new languages to the system which
 could work with the old system.

 LS-1 Use Sockets and JSON for Language Support

 For language support the sockets and JSON was the recommendation. This
 recommendation was not divided by data structures and file formats as they
 do not impact the language support. The only aspect that affects the language
 support is the programming languages that are included and how many there
 were.

 For the IPC solution sockets were the recommended solution as it was the only
 solution with eight official libraries. This resulted in it being the solution with
 best language support, as the second best was Unix sockets with seven official
 libraries and one external. The data interchange format with the best language
 support was JSON with official libraries in six out of eight languages. This was
 the best as the second best solutions CSV and XML had five official libraries
 out of eight.

 Guidelines for Use of Structured Data Transfer Solutions | 59

 5.5.6 Network Communication

 Some systems may run over a cluster of different computers. In this situation
 multiple cooperative processes can run on multiple different computers. These
 processes in different computers need to transfer data between one another to
 complete the whole system. This requires some solutions that can transfer
 data between the computers.

 The use of multiple separate computers can increase things such as reliability,
 performance, and modularity. The reliability is increased with how if one
 computer turns off then another can take its place. An example of this is the
 google file system described by Ghemawat, Gobioff, and Leung (2003). The
 google file systems worked by storing information of a master computer and if
 it stopped working then another computer could take its place. The
 performance could be increased by having two computers do different
 operations. This would help as a single computer would do operation one and
 then the second operation. But with two computers then a computer can do
 one of the operations and both are done at the same time. The last is an
 increase in modularity which would be a result of if one wants more
 performance or adds a new part of the system, then one can add a new
 computer.

 NC-1 Use Sockets for Network Communication

 With sockets being the only solution that can transfer data over a network, it
 should be used over other solutions. The communication over the network has
 no impact on the data interchange format. The format is only affected by the
 size of the data and the structure of the data. Therefore for the use of data
 interchange format, check the other guidelines.

 5.5.7 Custom Format
 There are some restrictions when working with formats such as JSON, BSON
 and CSV in terms of flexibility. One such restriction is the inability to write
 comments in the format structure, without having to create an attribute
 specifically for it. If flexibility is desired for the structure of the data, then a
 more extensible data format should be used.

 CF-1 Use XML for All Custom Format Data

 Regardless of IPC solution, if flexibility with the structure of the data is
 desirable, then XML is the recommended data interchange format. Much of
 the flexibility of the XML format comes from the ability to define namespaces,
 include attributes in element tags, and include comments. Unfortunately,

 60 | Guidelines for Use of Structured Data Transfer Solutions

 XML achieved the worst performance on almost all tests. Therefore it can only
 be recommended if all of the comparison criteria are irrelevant.

 The custom format does not have any influence on the IPC solution. Therefore
 the choice of IPC solution is decided by going through the other guidelines and
 choosing a solution in accordance with user criteria.

 5.6 Visualisation

 To improve the ease of using the guidelines, some visualisations were created.
 The visualised flowcharts depict the recommendations depending on the need
 of the software developer. The flowcharts are designed after the
 recommendations in Section 5.5. Figure 16 represents the IPC solution part of
 the guidelines, while Figure 17 represents the data interchange part. Splitting
 the guidelines into two separate flowcharts was done to improve readability.

 Figure 16. Visualisation of guidelines for IPC recommendations

 Guidelines for Use of Structured Data Transfer Solutions | 61

 Figure 17. Visualisation of guidelines for data interchange format
 recommendations

 The user uses the flowchart by starting in the square called start , at the top of
 the figure. The user then follows the arrows from the diamond-shaped
 decision boxes, depending on their answer. This step is repeated until an oval
 conclusion box is reached. Once the user reaches an oval box then they have
 their recommended solution. Guidelines consist of a combination of an IPC
 solution and data interchange format. Therefore, both flowcharts need to be
 consulted in order to reach a complete result.

 The following is an example of a user consulting Figure 16 to determine the
 IPC solution for their use case: The user starts in the start box at the top of the
 figure. They then follow the arrow to the over network decision box and can
 either choose to follow the yes or no arrow. This user does not need their
 solution to transfer data over networks, and thus chooses no . The user then

 62 | Guidelines for Use of Structured Data Transfer Solutions

 follows the no arrow to the most important criteria decision box. This user
 wants the data transfer to have a low resource impact on the system, and
 therefore chooses to follow the resource usage arrow. This leads the user to
 the low CPU or memory decision box. The user is more concerned with low
 CPU usage and therefore follows the CPU arrow. The user has now arrived at
 the Socket conclusion box, and is done.

 5.7 Summary of Literature Study and Tests

 The summary contains information regarding the literature that was found on
 the subject and the tests that were done. Section 5.7.1 describes the articles
 that were found and used in the motivation for the different solutions. The
 first paragraph is the IPC solutions articles and the second paragraph is the
 data interchange format articles. Section 5.7.2 contains information on the IPC
 tests that were conducted and their results. The last Section 5.7.3 contains the
 test for data interchange formats and their respective results.

 5.7.1 Literature

 There are three articles that were used in the guidelines for high speed for IPC
 solution motivation. One article is Interprocess communication with Java in
 a Microsoft Windows Environment by Dylan Gregory Smith and George Wells
 (2017). The second article is Evaluation of inter-process communication
 mechanisms by Aditya Venkataraman and Kishore Kumar Jagadeesha (2015).
 The last article was Performance analysis of various mechanisms for
 inter-process communication by Kwame Wright, Kartik Gopalan, and Hui
 Kang (2007).

 For the articles regarding high speed for data interchange formats there were a
 total of three. The first article is Comparison of JSON and XML Data Formats
 by Alen Šimec and Magdalena Magličić (2014). The second article is
 Comparison of JSON and XML Data Interchange Formats: A Case Study by
 Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente
 Izurieta (2009). The last article is Mapping Large Scale Research Metadata
 to Linked Data: A Performance Comparison of HBase, CSV and XML by
 Sahar Vahdati, Farah Karim, Jyun-Yao Huang, and Christoph Lange (2015).

 5.7.2 IPC Tests

 Tests were done to get numerical data on the speed of transfer of IPC
 solutions. There were two different tests, one that sent a message back and

 Guidelines for Use of Structured Data Transfer Solutions | 63

 forth with the IPC solution. The other test read the contents of a file, sent all of
 the data through the solution to another process and then wrote the data to a
 new file. The messages in the first test ranged from 1 kB to 512 kB. The files in
 the second test ranged from 1MB to 5 GB. The result of the first test was that
 pipes were the fastest solution for messages less than 64 kB. The test showed
 that shared memory was the fastest solution for messages between 64 kB and
 up to 512 kB. The results from the second test showed that sockets were the
 fastest solution for the different file sizes.

 The memory usage of the IPC solutions were measured by the use of a file
 copying test. The test involved reading the data from a file, transferring the
 data to another process with the IPC solution, and writing the data to a new
 file. The data sizes of the file ranged from 1 MB to 1 GB. The results of the tests
 were that pipes had the lowest memory usage for the 1 MB files. Message
 queues proved to have the lowest memory usage for files larger than 1 MB. The
 tests were also done with measuring the CPU usage of the solution. The results
 of those tests were that sockets had the lowest CPU usage for all file sizes.

 The test for measuring the CPU usage of the solutions was the same as for
 memory usage. The test involved sending the contents of a file between two
 processes with an IPC solution. The file sizes ranged from 1 MB to 5 GB. To the
 test there was also a varying buffer size for the solutions. The buffer sizes were
 16 kB, 64 kB, and 256 kB. The results of the test showed that sockets had the
 lowest CPU usage for all file sizes and all buffer sizes.

 5.7.3 Data Interchange Format Test

 Measurements for serialisation and deserialisation time for the data
 interchange formats were conducted twice. The first round of measurements
 were written in Python, and the second in JavaScript. The Python
 measurements showed that JSON serialisation and deserialisation time was
 consistently the fastest, for all measuring scenarios. For the scenarios where
 the data was restricted to tabular structure, CSV was consistently the second
 fastest. The JavaScript measurements also resulted in JSON achieving the
 fastest serialisation and deserialisation time for all measuring scenarios.

 Memory usage was measured for all formats during serialisation and
 deserialisation. Regardless of data complexity and size, memory usage for
 JSON was consistently the lowest.

 Like memory usage, CPU usage was also measured during serialisation and
 deserialisation. When data was restricted to a tabular structure, JSON CPU
 usage was lowest for the small and medium size tests. For the test with large

 64 | Guidelines for Use of Structured Data Transfer Solutions

 data size, CSV CPU usage was the lowest. For the tests with complex
 structured data, JSON achieved the lowest CPU usage regardless of data size.

 After serialising a data object to a file, the size of the file was measured and
 recorded. For the tests with tabular structured data, CSV achieved the smallest
 file size, for all scenarios. For the tests with complex structured data, JSON file
 size was the smallest for the small and large test case. For the medium test
 case, BSON file size was the smallest.

 5.8 Validity Threats

 The criteria for validity threats are used to test the strength and soundness of a
 research method. Therefore they are presented in this section to test the
 chosen research method. The validity threats for qualitative research are
 credibility , transferability , dependability and confirmability . All of the
 criteria are further explained in how they were addressed:

 ● Credibility: To solve this there was a mixture of both our practical
 research and literary studies. Most of the work was based on multiple
 studies and therefore if all of them said the same thing then the
 conclusion is most likely trustworthy. In addition to that, some
 measurements were done in order to confirm and bolster claims done
 in some studies.

 ● Transferability: In order to help with keeping the results generalised
 then multiple sources were used. By using multiple sources it showed
 results from different situations.

 ● Dependability: To provide dependability the thesis uses both
 literature studies and some measurements. This would help provide
 dependability as the measurements would be able to be done again in
 different contexts. In addition, the measurements were done multiple
 times and then the average was taken from those. This would increase
 dependability as the measurements would be done in different contexts
 of the system.

 ● Confirmability: To help prevent bias in the results the research
 process was thoroughly described to help note how the research was
 done. Then to further improve confirmability then the motivation for
 each decision was made so that other researchers could understand the
 reasoning.

 Analysis and Discussion | 65

 6. Analysis and Discussion
 It is important to analyse the results and bring forth a discussion. Therefore
 this chapter is about analysing and discussing the results from the pre-study
 and the guidelines. In Section 6.1 the results of the pre-study phase are
 analysed. It focuses on comparing results from the literature study with the
 results from the practical study. Section 6.2 presents an analysis on the
 guidelines. Lastly is Section 6.3, which is a discussion of the results. The
 discussion is meant to bring forth new questions, answers, and perspectives.

 6.1 Analysis of Pre-study
 The literature study from the IPC section of the pre-study showed that shared
 memory was the fastest. It was followed by pipes, sockets, Unix sockets and
 message queues in order of fastest to slowest. In the practical study, it was
 shown that for larger files, sockets were the fastest option. Pipes were shown
 to be the fastest solution for messages sizes smaller than 64 kB. For message
 sizes between 64 kB and 1 MB it was shown that shared memory was the
 fastest solution.

 In regards to resource usage there were two predominant solutions: FIFO
 pipes and sockets. When transferring 1 MB files, FIFO pipes showed the lowest
 memory usage, but the highest CPU usage. This was in contrast to sockets
 which showed the lowest CPU usage but the highest memory usage. The
 solution that had the best average of both low memory usage and low CPU
 usage was message queues. This was due to message queues having one of the
 lower memory usages and often the second-lowest CPU usage.

 One thing to note about the results is the message sizes used in the test. For
 the single message test there were messages larger than 8 kB. Hoewer as noted
 in Section 2.3.3 message queues have a maximum message size of 8 kb in the
 Linux operating system. This required the message queues to send multiple
 messages, instead of one, for tests with messages larger than 8 kB. The small
 message sizes were seen as a property of message queues and could be the
 reason for message queues low memory usage. This would be due to message
 queues not needing as much message buffer size in memory for the message.

 For IPC solutions, only speed of transfer criterion included both results from
 the practical study and literature study. Therefore that was the only criterion
 with the possibility of a comparison between the studies. When looking at the
 max speed of transfer then there could be a difference between all solutions.
 All solutions were slower in the practical study than in the literature study.
 The closest was for sockets, where the practical study came close to achieving

 66 | Analysis and Discussion

 the same transfer speeds as the literature study. The results were also different
 when sending the contents of a file. The main difference was that sockets
 proved to be one of the fastest solutions in the practical study. This was in
 contrast to the literature study where sockets were a sixth of the speed of the
 fastest solution, which was shared memory.

 Regarding the performance of the data interchange formats, BSON performed
 worse than expected in the practical study. During the literature study, no
 research-based articles studying BSON serialisation and deserialisation time
 were found. However, the web pages that were found, both noted that BSON is
 faster than JSON. This was not supported by the practical study, where BSON
 was several times slower than JSON, for all measuring scenarios.

 6.2 Analysis of Guidelines

 The results from Chapter 5 presented the guidelines that were the result of the
 information from the pre-study in Chapter 4. The guidelines were structured
 in a way that provided six main areas of concern. Those areas were high speed,
 low memory usage, low CPU usage, language support, network
 communication, and custom formats. Each represented a main property that
 the user would want the solution to focus on. Then for each area of concern,
 there were subcategories that could change the recommendation. The
 subcategories were the size of data, the format of the data, and the
 programming language. The sizes could be less than 40 kB, between 40 kB and
 1 MB, and larger than 1 MB. For the data formats, they could be simple,
 complex, or custom. The programming languages could either be Python and
 Javascript.

 For the data formats there were different recommendations when using simple
 formats. Sometimes CSV was recommended and sometimes JSON. For
 complex data formats, the JSON dominated and was the recommended
 solution for all areas of concern. One of the areas of concern was custom
 formats. XML was the solution that provided the most amount of flexibility,
 and was thus the recommended format.

 Regarding the IPC solution, sockets were the recommended solution for
 network communication, language support, and low CPU usage. The
 high-speed area of concern had three different solutions depending on the file
 size. Those solutions were pipes, sockets, and shared memory. For the memory
 usage area of concern, either pipes or message queues were recommended,
 depending on file size. Pipes were recommended for files smaller than 1 MB,
 whilst message queues were recommended for files larger than 1 MB.

 Analysis and Discussion | 67

 Unix sockets and BSON were not recommended for any of the guidelines. The
 reason why Unix sockets were not recommended was because they were not
 great in any aspect, but average in many. The guidelines focused on one area of
 concern at a time. This resulted in the recommendations focusing more on
 solutions with the best performance in one area. Regarding BSON, the
 serialisation and deserialisation were noted in the literature study to be faster
 than JSON. However, this was not reliably shown in the practical study. This
 caused the guidelines to not confidently recommend the format.

 6.3 Discussion

 One interesting note from the result was the literature study of IPC solutions
 noted that sockets would be one of the slower solutions. This was not true for
 the practical study where sockets were one of the faster solutions. This created
 the question of why sockets were better in the practical study than in the
 literature study. This could be due to how the tests were conducted, because
 the tests were running on a VM, because of the computer hardware, or a
 combination of these factors. An understanding of the reason could lead to
 better guidelines. The guidelines would improve by including more relevant
 areas of concerns and subcategories which would be more likely to give
 accurate recommendations.

 One possible answer to why sockets were fast in the practical study, but slow
 in the literature study, is the difference in computer hardware and operating
 system. The tests were done on a VM and it may have had an impact on the
 results. This would be due to IPC solutions working with the operating
 systems. Adding a VM could potentially add complexity to the operating
 system functionality. This could possibly slow down solutions that are more
 heavily reliant on the operating system.

 The type of tests proved to have an impact on the IPC solutions. This was seen
 in how pipes and shared memory were better in the back-and-forth message
 test, in Figure 12. The file copying tests in Table 4 showed that sockets were
 the faster solution. This would indicate that a generalised answer to the choice
 of IPC solution could be hard to make. Therefore it can be important to
 include a variety of areas of concern and subcategories to provide accurate
 guidelines.

 The reason for the surprising result on BSON serialisation and deserialisation
 time is not clear, and could depend on several factors. One such factor is the
 choice of programming language. It is possible that BSON would have
 performed relatively better than JSON, if the same tests were run in, for
 example, C. This is because C is a low-level programming language, more

 68 | Analysis and Discussion

 optimised for binary operations. This behaviour might be beneficial for
 binary-based formats, such as BSON.

 Conclusions and Future Work | 69

 7. Conclusions and Future Work

 The amount of technology and computers we as humans use today are ever
 increasing. With that increase comes an increase in the number of different
 programming languages. Those languages have different strengths and
 weaknesses. Using different languages for different parts of a system is one
 reason for needing data transfer solutions. The problem is that there are no
 guidelines for data transfer solutions. Therefore the purpose of the thesis is to
 create guidelines that would help in choosing a suitable data transfer solution.
 The goal of the thesis is to help inexperienced software developers to find a
 data transfer solution that fits their needs.

 The thesis uses a qualitative research method with the support of a
 comparative method. The comparative method is supported by a comparison
 model. The results of the thesis is information on the solutions from a
 literature study and a practical study. The results are also the guidelines that
 help software developers choose a suitable data transfer solution for their
 situation.

 7.1 Conclusions

 The research was conducted in four phases which were Pre-study , Creation of
 comparison model , Creation of Guidelines , and Finalisation of Guidelines .
 The Pre-study was about gaining information on the solutions through a
 literature study and a practical study. The Creation of comparison model
 phase involved creating a comparison model to further compare the solutions.
 The Creation of Guidelines phase involved creating the guidelines and
 continually improving them. The last phase, Finalisation of Guidelines, was
 the creation of the final version of the guidelines. The final version was created
 by correcting problems from the latest version of the guidelines.

 To be able to compare the different solutions a comparison model was created.
 The model contained criteria that were deemed to be of importance for the IPC
 solutions and data interchange formats. The different criteria were speed ,
 resource usage , and language support . The speed criterion was included to
 determine which solution was the fastest, as it would be important for some
 use cases. The resource usage criterion was included as a low impact on the
 system can be desirable. A low system impact allows for more resources to be
 assigned to more essential programs. The last criterion was language support .
 With higher language support, the solution would be easier to implement in
 different systems. An easier implementation can lead to a decrease in
 development time.

 70 | Conclusions and Future Work

 The results from the literature study showed that shared memory is the fastest
 IPC solution. In the practical study, it was shown that it depends on the data
 size. The pre-study shows that depending on the data size either pipes or
 message queues have the lowest memory usage. Sockets had, for all data sizes,
 the lowest CPU usage, and the best language support.

 For data interchange formats, the literature study showed that JSON was
 faster than both XML and CSV. In regards to resource usage it was shown that
 XML had higher memory usage and higher system CPU utilisation than JSON.
 However, JSON had higher user CPU utilisation. Additionally, the literature
 study showed that XML also had higher memory usage than CSV. All of these
 findings were supported by the practical study with benchmarks of format
 system impact. One of the statements from the literature study which was not
 supported by the practical study, was a difference in file size between JSON
 and BSON. The reason for this contradiction would have to be explored in
 future research.

 The result of the thesis are guidelines that are structured to help choose a
 combination of IPC solution and data interchange format. The guidelines
 provide recommendations for solutions depending on what area of concern
 the user prioritises. For each area of concern, there is a recommendation
 depending on the data sizes, structure of the data, and programing language.

 The thesis provides the research domain with use cases for both IPC solutions
 and data interchange formats. For example, the literature study for IPC
 solutions showed that shared memory was the fastest solution. However, in
 the practical study, it was noted that shared memory was only the fastest for
 larger single message transfers. If a developer wanted constant transfers of
 larger messages than sockets would potentially be the best solution. Another
 example is that BSON was expected to perform better due to the information
 from the literature study. But in the practical study, it was found that BSON
 did not perform as well. This may have been due to the programming
 languages in which the tests were implemented.

 The guidelines can help the research domain by being a potential starting
 point for further guidelines. The problem of the thesis is that there were no
 guidelines. However, the thesis has now created guidelines. The guidelines can
 be used to further the research domain. This would be done by further
 improving or expanding on the existing guidelines. The current results could
 also be used as an inspiration for similar reports in other research areas.

 Conclusions and Future Work | 71

 7.2 Future Work

 There is an opportunity to expand on this thesis by conducting future work.
 With the comparison model already created, the future work could be
 expanding the number of solutions and programming languages. The practical
 study of the thesis focuses on IPC solutions from the POSIX library. This could
 be expanded to include other libraries like system V, or the use of other
 message queues, such as RabbitMQ. There could also be an expansion of the
 data interchange formats by including formats such as Protocol Buffers,
 YAML, and MessagePack.

 There is an opportunity to expand the tests in the pre-study by including more
 programming languages. The tests were only run on C, Python, or JavaScript.
 The pre-study can be expanded to include an investigation for other
 programming languages.

 An increase of languages in the pre-study can lead to improvements in the
 guidelines. The problem is that only two programming languages are
 represented in the guidelines. The guidelines show that language has an
 impact on the recommended solution. Thus, an increase in languages can lead
 to more accurate recommendations.

 The guidelines could also be extended to factor in multiple areas of concern in
 one recommendation. The current guidelines only focus on one area of
 concern at a time. For example, if the user wants high speeds or low memory
 usage. By including multiple areas of concern in every recommendation, the
 user can prioritise certain areas of concern, for example, wanting low memory
 usage as number one priority, and good language support as second priority.
 This would result in the guidelines recommending a solution that has one of
 the lowest memory usage and good language support.

 One of the main aspects that the thesis was missing was the use of interviews.
 The interviews could be with both software professionals, and possible users of
 the guidelines. New information and perspectives could be obtained by
 interviewing software professionals knowledgeable in the field. The
 professionals could give feedback on the guidelines to note what they feel is
 important when choosing a data transfer solution. By interviewing possible
 users, such as inexperienced software developers, the guidelines could be
 improved to help usability. The interviews would give a better insight into
 what is needed for the guidelines to be more readable.

 72 | Conclusions and Future Work

 7.3 Reflection

 The guidelines from this report addresses the problem that there are no
 guidelines for data transfer solutions. During the creation of the guidelines,
 problems occurred that we have learned from. Most of these problems
 occurred during the testing and evaluation of the solutions. It was difficult to
 design tests that simulated real-life scenarios. Finding the potential criteria for
 the comparison model proved to be difficult. Another challenge was how to
 measure the properties of the solutions. This was especially hard due to us
 being inexperienced in working with the solutions. If a similar project would
 be undertaken, seeking advice from someone knowledgeable in the field would
 greatly help.

 There is a belief that the guidelines could prove helpful for users when
 choosing a data transfer solution. The guidelines provide information on what
 solutions there are, and when to use them. This would help software
 developers that are either working with data transfer solutions or getting
 started. These individuals can be either academic students, who need to
 understand the different solutions, or inexperienced software developers. The
 software developers would use the guidelines to easily choose a solution. This
 would allow them to focus more on implementation, rather than choosing a
 solution. This would help save both development time and money for the
 developers and companies. This is especially important since we live in a
 technology-dominated society.

 References | 73

 References
 Announcing Rust 1.0 | Rust blog . (2015, May 15). Retrieved August 30, from

 https://blog.rust-lang.org/2015/05/15/Rust-1.0.html

 Bhandari, P. (2023, January 30). What Is Qualitative Research? | Methods &

 Examples . Scribbr. Retrieved June 25, 2023, from

 https://www.scribbr.com/methodology/qualitative-research/

 Computer History Museum. (n.d.). Timeline of Computer History . Retrieved

 June 07, 2023, from

 https://www.computerhistory.org/timeline/computers/

 Florescu, D., & Fourny, G. (2013). JSONiq: The History of a Query Language.

 IEEE Internet Computing , 17 (5), 86–90.

 https://doi.org/10.1109/mic.2013.97

 GeeksforGeeks. (2023). Difference Between JSON and BSON . GeeksforGeeks.

 Retrieved June 26, 2023.

 https://www.geeksforgeeks.org/difference-between-json-and-bson/

 Ghemawat, S., Gobioff, H., & Leung, S. A. (2003). The Google file system .

 https://doi.org/10.1145/945445.945450

 GitHub: Let’s build from here . (n.d.). GitHub. Retrieved August 30, 2023.

 https://github.com/

 Google Scholar . (n.d.). Retrieved August 30, 2023.

 https://scholar.google.com/

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://www.scribbr.com/methodology/qualitative-research/
https://www.json.org/json-en.html
https://www.computerhistory.org/timeline/computers/
https://doi.org/10.1109/mic.2013.97
https://www.geeksforgeeks.org/difference-between-json-and-bson/
https://doi.org/10.1145/945445.945450
https://github.com/
https://scholar.google.com/

 74 | References

 Hemmendinger, D. (2023, May 8). XML . Encyclopedia Britannica .

 https://www.britannica.com/technology/XML

 IBM. (1972). IBM FORTRAN Program Products for OS and the CMS

 Component of VM/370 General Information (Document No.

 GC28-6884-0).

 IEEE. (2020) “7.8 IEEE Code of Ethics” IEEE Policies, Section 7 - Professional

 Activities (Part A - IEEE Policies).

 JSON. (n.d.). The JSON Data Interchange Format . Retrieved May 4, 2023,

 from https://www.json.org/json-en.html

 JSON vs BSON . (n.d.). Javatpoint. Retrieved June 26, 2023, from

 https://www.javatpoint.com/json-vs-bson

 Kalin, M. (n.d) A guide to inter-process communication in Linux .

 OPENSOURCE.COM. Received on 2023-05-30. Taken from

 https://opensource.com/downloads/guide-inter-process-communicati

 on-linux

 Kaur, A., Ayyagari, S., Mishra, M., & Thukral, R. (2020). A Literature Review

 on Device-to-Device Data Exchange Formats for IoT Applications.

 JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTING , 1 (1),

 1–10. https://doi.org/10.51682/jiscom.00101001.2020

 Kerrisk, M. (2010). The Linux Programming Interface (1st ed.). San Francisco,

 No Starch Press.

https://www.britannica.com/technology/XML
https://www.json.org/json-en.html
https://www.javatpoint.com/json-vs-bson
https://opensource.com/downloads/guide-inter-process-communication-linux
https://opensource.com/downloads/guide-inter-process-communication-linux
https://doi.org/10.51682/jiscom.00101001.2020

 References | 75

 Krishnaveni, S., & Ruby, D. (2016). Comparing and evaluating the

 performance of inter process communication models in Linux

 environment. International Journal of Trend in Research and

 Development , 51-55. 2023-05-03, Received from

 http://www.ijtrd.com/papers/IJTRD4246.pdf

 Leo Computers Society. (n.d.). Leo III Installations . Retrieved June 18, 2023,

 from http://www.leo-computers.org.uk/leo-3s.html

 Leo III User Manual Vol IV MASTER PROGRAMME and PROGRAMME

 TRIALS SYSTEM . (n.d.). Retrieved June 17, 2023, from

 http://settle.ddns.net/LeoMan/Vol4P1.htm#s6

 Mayer, P. & Bauer, A. (2015). An empirical analysis of the utilization of

 multiple programming languages in open source projects. In

 Proceedings of the 19th International Conference on Evaluation and

 Assessment in Software Engineering (pp.1-10). Association for

 Computing Machinery, New York, NY, USA, Article 4, Received from

 https://doi.org/10.1145/2745802.2745805

 MongoDB. (n.d.). Explaining BSON With Examples . Retrieved May 4, 2023,

 from https://www.mongodb.com/basics/bson

 Mq_overview(7) - Linux manual page . (2023). Linux Man-Pages. Retrieved

 June 26, 2023, from

 https://man7.org/linux/man-pages/man7/mq_overview.7.html

 Nanz, S., & Furia, C. A. (2014). A Comparative Study of Programming

 Languages in Rosetta Code. In 2015 IEEE/ACM 37th IEEE

http://www.ijtrd.com/papers/IJTRD4246.pdf
http://www.leo-computers.org.uk/leo-3s.html
http://settle.ddns.net/LeoMan/Vol4P1.htm#s6
https://doi.org/10.1145/2745802.2745805
https://www.mongodb.com/basics/bson
https://man7.org/linux/man-pages/man7/mq_overview.7.html

 76 | References

 International Conference on Software Engineering ,(pp. 778-788)

 Florence, Italy, https://doi.org/10.1109/icse.2015.90

 Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009). Comparison of

 JSON and XML Data Interchange Formats: A Case Study. In Computer

 Applications in Industry and Engineering (pp. 157–162).

 https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf

 Oracle VM VirtualBox . (n.d.). Retrieved August 30, 2023, from

 https://www.virtualbox.org/

 Popić, S., Pezer, D., Mrazovac, B., & Teslić, N. (2016). Performance evaluation

 of using Protocol Buffers in the Internet of Things communication .

 https://doi.org/10.1109/sst.2016.7765670

 Shafranovich, Y. (2005). Common Format and MIME Type for

 Comma-Separated Values (CSV) Files .

 https://doi.org/10.17487/rfc4180

 Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative

 research projects. Education for Information , 22 (2), 63–75.

 https://doi.org/10.3233/efi-2004-22201

 Silberschatz, A. Galvin, P., B. & Gagne, G. (2018). Operating System Concepts

 (10th ed.) John Wiley & Sons.

 Šimec, A., & Magličić, M. (2014). Comparison of JSON and XML Data

 Formats. Received from

https://doi.org/10.1109/icse.2015.90
https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
https://www.virtualbox.org/
https://doi.org/10.1109/sst.2016.7765670
https://doi.org/10.17487/rfc4180
https://doi.org/10.3233/efi-2004-22201

 References | 77

 https://www.researchgate.net/publication/329707959_Comparison_o

 f_JSON_and_XML_Data_Formats

 Smith, D. G., & Wells, G. C. (2017). Interprocess communication with Java in a

 Microsoft Windows Environment. South African Computer Journal ,

 29 (3), 198-214. https://doi.org/10.18489/sacj.v29i3.500

 Spasov, Z. & Madevska Bogdanova, A. (2010). Inter-process communication,

 analysis, guidelines and its impact on computer security . Institute of

 Informatics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and

 Methodius University in Skopje, Macedonia.

 Statistics Sweden, (2022), Share of persons who have used the Internet

 several times per day , Statistics Sweden, Received 02-02-2023 from

 https://www.scb.se/en/finding-statistics/statistics-by-subject-area/livi

 ng-conditions/living-conditions/ict-usage-in-households-and-by-indivi

 duals/pong/tables-and-graphs/share-of-persons-who-have-used-the-in

 ternet-several-times-per-day/

 Vahdati, S., Karim, F., Huang, J., & Lange, C. (2015). Mapping Large Scale

 Research Metadata to Linked Data: A Performance Comparison of

 HBase, CSV and XML. In Communications in computer and

 information science (pp. 261–273). Springer Science+Business Media.

 https://doi.org/10.1007/978-3-319-24129-6_23

 Venkataraman, A. and Jagadeesha, K, K. (2015). Evaluation of inter-process

 communication mechanisms. 2023-05-02 Received from

 https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Co

 mmunication_Mechanisms.pdf

https://www.researchgate.net/publication/329707959_Comparison_of_JSON_and_XML_Data_Formats
https://www.researchgate.net/publication/329707959_Comparison_of_JSON_and_XML_Data_Formats
https://doi.org/10.18489/sacj.v29i3.500
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/living-conditions/living-conditions/ict-usage-in-households-and-by-individuals/pong/tables-and-graphs/share-of-persons-who-have-used-the-internet-several-times-per-day/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/living-conditions/living-conditions/ict-usage-in-households-and-by-individuals/pong/tables-and-graphs/share-of-persons-who-have-used-the-internet-several-times-per-day/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/living-conditions/living-conditions/ict-usage-in-households-and-by-individuals/pong/tables-and-graphs/share-of-persons-who-have-used-the-internet-several-times-per-day/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/living-conditions/living-conditions/ict-usage-in-households-and-by-individuals/pong/tables-and-graphs/share-of-persons-who-have-used-the-internet-several-times-per-day/
https://doi.org/10.1007/978-3-319-24129-6_23
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf

 78 | References

 Vetenskapsrådet. (2002). Forskningsetiska principer inom

 humanistisk-samhällsvetenskaplig forskning . Stockholm:

 Vetenskapsrådet.

 Visual Studio Code - Code editing. Redefined . (2021, November 3). Retrieved

 August 30, 2023. https://code.visualstudio.com/

 What is a Virtual Machine? (n.d.). Oracle Sverige.

 https://www.oracle.com/se/cloud/compute/virtual-machines/what-is-

 virtual-machine/

 World Wide Web Consortium. (2019). XML Core (Second Edition) . Retrieved

 May 4, 2023, from https://www.w3.org/standards/xml/core

 Wright, K., Gopalan, K., & Kang, H. (2007). Performance analysis of various

 mechanisms for inter-process communication. Operating Systems and

 Networks Lab, Dept. of Computer Science, Binghamton University .

 2023-05-03, Received from

 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d5

 23500aa27c65c9e76215ea2aa59e87b9c5760c

https://code.visualstudio.com/
https://www.oracle.com/se/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.oracle.com/se/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.w3.org/standards/xml/core
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d523500aa27c65c9e76215ea2aa59e87b9c5760c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d523500aa27c65c9e76215ea2aa59e87b9c5760c

 Appendix | 79

 Appendix

 This appendix includes figures that illustrate the structure of the data that was
 used for the benchmarking in Section 4.2. The benchmarks included two
 different structures of the data. These were tabular structured data, and nested
 structure data. Figures 18 and 19 show the structure of the data in the JSON
 format, as to display the differences between tabular and nested data.

 The structure of the tabular data is illustrated in Figure 18. It contains one
 item, consisting of seven attributes: id , name , price , description , color , size ,
 and material . When benchmarking the larger scenarios with multiple items,
 these were all generated and put inside of the Simple_data structure.

 The structure of the nested data is illustrated in Figure 19. This structure also
 represents one item. Here, two of the attributes, properties and reviews ,
 represent a list of other attributes, or collection of attributes. Similar to the
 tabular structure, when benchmarking the larger scenarios, multiple items
 were placed inside the Complex_data structure.

 Figure 18. Tabular data in JSON

 80 | Appendix

 Figure 19. Nested data in JSON

TRITA-EECS-EX- 2023:699

www.kth.se

