
Degree Project in Embedded Systems

First cycle, 30 credits

Implementation of Bolt Detection
and Visual-Inertial Localization
Algorithm for Tightening Tool on
SoC FPGA
MUHAMMAD IHSAN AL HAFIZ

Stockholm, Sweden, 2023





Implementation of Bolt Detection
and Visual-Inertial Localization
Algorithm for Tightening Tool on
SoC FPGA

MUHAMMAD IHSAN AL HAFIZ

Master’s Programme, Embedded Systems, 120 credits
Date: September 13, 2023

Supervisors: Dimitrios Stathis, Sofia Olsson
Examiner: Ahmed Hemani

School of Electrical Engineering and Computer Science
Host company: Atlas Copco
Swedish title: Implementering av bultdetektering och visuell
tröghetslokaliseringsalgoritm för åtdragningsverktyg på SoC FPGA



© 2023 Muhammad Ihsan Al Hafiz



Abstract | i

Abstract
With the emergence of Industry 4.0, there is a pronounced emphasis on the
necessity for enhanced flexibility in assembly processes. In the domain of
bolt-tightening, this transition is evident. Tools are now required to navigate
a variety of bolts and unpredictable tightening methodologies. Each bolt,
possessing distinct tightening parameters, necessitates a specific sequence to
prevent issues like bolt cross-talk or unbalanced force.

This thesis introduces an approach that integrates advanced computing
techniques with machine learning to address these challenges in the tightening
areas. The primary objective is to offer edge computation for bolt detection
and tightening tools’ precise localization. It is realized by leveraging
visual-inertial data, all encapsulated within a System-on-Chip (SoC) Field
Programmable Gate Array (FPGA).

The chosen approach combines visual information and motion detection,
enabling tools to quickly and precisely do the localization of the tool. All
the computing is done inside the SoC FPGA. The key element for identifying
different bolts is the YOLOv3-Tiny-3L model, run using the Deep-learning
Processor Unit (DPU) that is implemented in the FPGA. In parallel, the thesis
employs the Error-State Extended Kalman Filter (ESEKF) algorithm to fuse
the visual and motion data effectively. The ESEKF is accelerated via a full
implementation in Register Transfer Level (RTL) in the FPGA fabric.

We examined the empirical outcomes and found that the visual-inertial
localization exhibited a Root Mean Square Error (RMSE) position of 39.69
mm and a standard deviation of 9.9 mm. The precision in orientation
determination yields a mean error of 4.8 degrees, offset by a standard deviation
of 5.39 degrees. Notably, the entire computational process, from the initial
bolt detection to its final localization, is executed in 113.1 milliseconds.

This thesis articulates the feasibility of executing bolt detection and visual-
inertial localization using edge computing within the SoC FPGA framework.
The computation trajectory is significantly streamlined by harnessing the
adaptability of programmable logic within the FPGA. This evolution signifies
a step towards realizing a more adaptable and error-resistant bolt-tightening
procedure in industrial areas.

Keywords
Bolt detection, Visual-Inertial localization, System-on-Chip (SoC), Field-
Programmable Gate Array (FPGA), Machine learning, Perspective-n-Points,



ii | Abstract

Error-State Extended Kalman Filter (ESEKF), High-Level Synthesis (HLS),
YOLO, Tightening tool



Sammanfattning | iii

Sammanfattning
Med framväxten av Industry 4.0, finns det en uttalad betoning på nödvändig-
heten av ökad flexibilitet i monteringsprocesser. Inom området bultåtdragning
är denna övergång tydlig. Verktyg krävs nu för att navigera i en mängd olika
bultar och oförutsägbara åtdragningsmetoder. Varje bult, som har distinkta
åtdragningsparametrar, kräver en specifik sekvens för att förhindra problem
som bultöverhörning eller obalanserad kraft.

Detta examensarbete introducerar ett tillvägagångssätt som integrerar
avancerade datortekniker med maskininlärning för att hantera dessa utma-
ningar i skärpningsområdena. Det primära målet är att erbjuda kantberäkning
för bultdetektering och åtdragningsverktygs exakta lokalisering. Det realiseras
genom att utnyttja visuella tröghetsdata, allt inkapslat i en System-on-Chip
(SoC) Field Programmable Gate Array (FPGA).

Det valda tillvägagångssättet kombinerar visuell information och rörelse-
detektering, vilket gör det möjligt för verktyg att snabbt och exakt lokalisera
verktyget. All beräkning sker inuti SoC FPGA. Nyckelelementet för att
identifiera olika bultar är YOLOv3-Tiny-3L-modellen, som körs med hjälp
av Deep-learning Processor Unit (DPU) som är implementerad i FPGA.
Parallellt använder avhandlingen algoritmen Error-State Extended Kalman
Filter (ESEKF) för att effektivt sammansmälta visuella data och rörelsedata.
ESEKF accelereras via en fullständig implementering i Register Transfer
Level (RTL) i FPGA-strukturen.

Vi undersökte de empiriska resultaten och fann att den visuella trög-
hetslokaliseringen uppvisade en Root Mean Square Error (RMSE) position
på 39,69 mm och en standardavvikelse på 9,9 mm. Precisionen i orien-
teringsbestämningen ger ett medelfel på 4,8 grader, kompenserat av en
standardavvikelse på 5,39 grader. Noterbart är att hela beräkningsprocessen,
från den första bultdetekteringen till dess slutliga lokalisering, exekveras på
113,1 millisekunder.

Denna avhandling artikulerar möjligheten att utföra bultdetektering
och visuell tröghetslokalisering med hjälp av kantberäkning inom SoC
FPGA-ramverket. Beräkningsbanan är avsevärt effektiviserad genom att
utnyttja anpassningsförmågan hos programmerbar logik inom FPGA. Denna
utveckling innebär ett steg mot att förverkliga en mer anpassningsbar och
felbeständig skruvdragningsprocedur i industriområden.



iv | Sammanfattning

Nyckelord
Bultdetektering, visuell-tröghetslokalisering, System-on-Chip (SoC), Field-
Programmable Gate Array (FPGA), Machine Learning, Perspective-n-Points,
Error-State Extended Kalman Filter (ESEKF), High-Level Synthesis (HLS),
YOLO, åtdragningsverktyg



Acknowledgments | v

Acknowledgments
I would like to thank Sofia Olsson and Dimitrios Stathis as my supervisors for
guiding me in my thesis project. I am also sincerely grateful to my examiner,
Prof. Ahmed Hemani, for his feedback, guidance, and insights for my thesis
project. I thank Atlas Copco for providing the resources and environment
conducive to my research. I also want to say thank you to the many researchers
and scholars that I cited in this report. Their original work has been the base
for my research. Last but not least, I am forever grateful for my family and
friends, who always support me.

Stockholm, September 2023
Muhammad Ihsan Al Hafiz



vi | Acknowledgments



Contents | vii

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Original problem and definition . . . . . . . . . . . . 2
1.2.2 Scientific and engineering issues . . . . . . . . . . . . 3

1.3 Purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . 4
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 You Only Look Once (YOLO) . . . . . . . . . . . . . 7
2.1.2 YOLOv3 . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 FPGA design platform . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 PYNQ Platform . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Vitis AI . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Deep-learning Processing Unit (DPU) . . . . . . . . . 10

2.3 Perspective-n-Points . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Collaborative Robot . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Error State Extended Kalman Filter . . . . . . . . . . . . . . 14
2.6 Related work area . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Visual and inertial sensor fusion for mobile X-ray
detector tracking . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Using Perspective-n-Point Algorithms for a Local
Positioning System Based on LEDs and a QADA
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . 17



viii | Contents

2.6.3 3-D Positioning System Based QR Code and Monoc-
ular Vision . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.4 Error State Extended Kalman Filter Localization for
Underground Mining Environments . . . . . . . . . . 19

3 Method 21
3.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Sample Size . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Target Population . . . . . . . . . . . . . . . . . . . . 24

3.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Test environment . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Hardware and Software . . . . . . . . . . . . . . . . . 26

3.4 Assessing reliability and validity of the data collected . . . . . 27
3.4.1 Validity of method . . . . . . . . . . . . . . . . . . . 27
3.4.2 Reliability of method . . . . . . . . . . . . . . . . . . 28
3.4.3 Data validity . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 Reliability of data . . . . . . . . . . . . . . . . . . . . 29

3.5 Planned Data Analysis . . . . . . . . . . . . . . . . . . . . . 30
3.5.1 Data Analysis Technique . . . . . . . . . . . . . . . . 30

4 Algorithm Implementation 33
4.1 Overview System . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Bolt Detection using Machine Learning . . . . . . . . . . . . 35

4.2.1 Building the YOLOv3-Tiny-3L Model . . . . . . . . . 35
4.2.2 Vitis AI Quantize and Compile Model . . . . . . . . . 37
4.2.3 Build DPU IP core . . . . . . . . . . . . . . . . . . . 38

4.3 Visual Localization . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Assignment 3D Location for The Bolts . . . . . . . . 40
4.3.2 Camera Pose Estimation . . . . . . . . . . . . . . . . 41

4.4 Error State Extended Kalman Filter . . . . . . . . . . . . . . 43
4.4.1 Predict Function ESEKF . . . . . . . . . . . . . . . . 44
4.4.2 Update Function ESEKF . . . . . . . . . . . . . . . . 45

4.5 System Integration . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results 49
5.1 Major results . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Bolt Detection Result . . . . . . . . . . . . . . . . . . 49
5.1.2 Localization Result . . . . . . . . . . . . . . . . . . . 51



Contents | ix

5.1.3 Time Execution . . . . . . . . . . . . . . . . . . . . . 56
5.2 Minor result . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 FPGA Implementation Result . . . . . . . . . . . . . 57

6 Discussion 63
6.1 Bolt Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Time Execution . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions and Future work 71
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 What has been left undone? . . . . . . . . . . . . . . 73
7.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75

A FPGA Schematic 81
A.1 Full FPGA Schematic . . . . . . . . . . . . . . . . . . . . . . 81



x | Contents



List of Figures | xi

List of Figures

2.1 Perspective-n-Points illustration [21] . . . . . . . . . . . . . . 12
2.2 Collaborative Robot (Cobot) based position reference [22] . . 13
2.3 Device position related to Cobot [22] . . . . . . . . . . . . . . 13

3.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Environment of bolt position for testing . . . . . . . . . . . . 26

4.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 33
4.2 Type of bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Process of quantization and compilation . . . . . . . . . . . . 38
4.4 Process of DPU Intellectual Property (IP) core integration . . 40
4.5 Perspective-n-Points calculation to get camera pose estimation 42
4.6 Error-State Extended Kalman Filter (ESEKF) IP core design . 43
4.7 Simplify FPGA schematic . . . . . . . . . . . . . . . . . . . 47

5.1 Training loss of bolt detection model on YOLOv3-Tiny-3L . . 49
5.2 (a) Labeled dataset. (b) Bolt detection YOLOv3-Tiny-3L. . . . 50
5.3 3D tracking Visual-inertial position estimation . . . . . . . . . 51
5.4 X axis comparison for Visual-inertial position estimation . . . 52
5.5 Y axis comparison for Visual-inertial position estimation . . . 52
5.6 Z axis comparison for Visual-inertial position estimation . . . 53
5.7 RMSE position histogram . . . . . . . . . . . . . . . . . . . . 53
5.8 Error orientation histogram for Visual-Inertial estimation . . . 54
5.9 Error orientation histogram for Visual estimation . . . . . . . 55
5.10 Timing summary . . . . . . . . . . . . . . . . . . . . . . . . 58
5.11 Power estimation report . . . . . . . . . . . . . . . . . . . . . 58



xii | List of Figures



List of Tables | xiii

List of Tables

3.1 The data collected . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The data output from processing . . . . . . . . . . . . . . . . 30

4.1 YOLOv3-Tiny_3L Architecture Configuration . . . . . . . . . 36
4.2 Deep-learning Processor Unit (DPU) Architecture Configuration 39
4.3 Input and output variables for predict function ESEKF . . . . 45
4.4 Input and output variables for update function ESEKF . . . . . 46

5.1 Accuracy of Bolt detection . . . . . . . . . . . . . . . . . . . 50
5.2 Localization parameter from Visual-Inertial pose estimation . 55
5.3 Time execution summary . . . . . . . . . . . . . . . . . . . . 56
5.4 Field-Programmable Gate Array (FPGA) Utilization . . . . . 57
5.5 YOLOv3-Tiny_3L workload on DPU IP core . . . . . . . . . 59



xiv | List of Tables



List of acronyms and abbreviations | xv

List of acronyms and abbreviations

AP Average Precision
AXI Advanced eXtensible Interface

CLB Configurable Logic Block
CNN Convolution Neural Networks
Cobot Collaborative Robot
CPU Central Processing Unit

DPM Deformable Parts Model
DPU Deep-learning Processor Unit
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing

ESEKF Error-State Extended Kalman Filter

FPGA Field-Programmable Gate Array

HLS High-Level Synthesis

IMU Inertial Measurement Unit
IoU Intersection over Union
IP Intellectual Property

KTH KTH Royal Institute of Technology

LUT Look-Up-Table

MAC Multiply-Accumulate
mAP mean Average Precision

PC Personal Computer
PL Programmable Logic
PnP Perspective-n-Point
PS Processing System

R-CNN Regions with Convolutional Neural Networks



xvi | List of acronyms and abbreviations

RAM Random Access Memory
RMSE Root Mean Square Error
RTDE Real-Time Data Exchange
RTL Register Transfer Level

SoC System-on-Chip
SPI Serial Peripheral Interface

TCP Transmission Control Protocol

USB Universal Serial Bus

YOLO You Only Look Once



Introduction | 1

Chapter 1

Introduction

In this thesis, we examine the implementation of bolt detection and visual-
inertial localization on a tightening tool using System-on-Chip (SoC) Field-
Programmable Gate Array (FPGA).

1.1 Background
Commonly, the assembly line for manufacturing has a specific design for
one type of product. In the evolving landscape of Industry 4.0, a significant
shift towards enhanced flexibility in assembly processes is observed. The
flexible assembly line means that the assembly line can be used for several
types of products and be used as modular. Manufacturer such as Scania
wants to shift to a more flexible assembly line [1]. This trend for greater
flexibility, though beneficial in many respects, has inadvertently led to an
increase in the complexity of these procedures. It can introduce several types
of human error due to the complexity of the procedure that is flexible. A
typical source of such errors is related to the improper use of tightening tools
within manufacturing environments. The importance of the bolt tightening
sequence lies in its influence on achieving a balanced force load, which directly
impacts the overall assembly’s structural integrity, longevity, and performance
[2], [3], [4]. Misplacement of these tools or the incorrect sequencing of bolts
frequently contributes to issues known as ’bolt cross-talk’. This phenomenon
is characterized by an uneven load distribution, which is far from optimal
within an assembly setup. In addition, the wrong tightening parameters, such
as torque value for several types of bolts, can become another type of human
error in the flexible assembly line.

In terms of a bolt cross-talk problem, numerous corrective strategies have



2 | Introduction

been proposed to mitigate the incidence of bolt cross-talk, among which vision
and tracking systems hold considerable promise. Previous research conducted
by Soni in 2020 [5] provides encouraging evidence of the effectiveness of these
strategies. By employing a combination of camera technology and machine
learning algorithms, Soni [5] could alert operators to the incorrect placement
of tools with an impressive probability of over 85%.

In an attempt to build upon this promising foundation, this study aspires
to implement bolt detection with machine learning in conjunction with a
localization algorithm. This system is particularly devised for tightening
tools that demand low-power and compact devices, such as SoC FPGAs.
This strategy considers visual and inertial data, as well as the bolt reference
position, to provide a comprehensive input for the localization system. With
an emphasis on high accuracy and processing speed, the objective is to
develop a system capable of real-time processing. It is anticipated that the
successful implementation of this research will pave the way for developing
future tightening tools that are impervious to bolt cross-talk, facilitated by an
accurate localization system.

Atlas Copco, a global leader in providing tightening tools within the
Industrial Technique business sector, is expected to benefit significantly from
the outcomes of this research. Conducted within the Total Work Station
division of Atlas Copco, this research aims to greatly enhance the accuracy and
reliability of tightening processes within the industrial context. Ultimately, the
results from this study could contribute to the broader objectives of improving
operational efficiency, reducing error rates, and ensuring the longevity of
assembly systems in various industrial settings.

1.2 Problems

1.2.1 Original problem and definition
• How accurate is the machine learning that can differentiate the bolt type?

• How accurate is the implementation of tightening tool localization based
on bolt detection and visual-inertial localization?

• How fast the implementation of the visual-inertial localization algo-
rithm on SoC FPGA can be achieved for real-time application?



Introduction | 3

1.2.2 Scientific and engineering issues
• Bolt Detection: The accuracy of machine learning in differentiating

between the types of bolts used in the assembly process needs to be
evaluated. The system must be trained and tested on various bolts to
ensure its robustness and effectiveness.

• Tightening Tool Localization: The accuracy of implementing the
tightening tool localization algorithm based on bolt detection and
visual-inertial data needs to be assessed. This requires the development
and integration of a reliable visual and inertial sensor system to provide
accurate localization information for the tightening tool.

• Real-time Processing: Implementing the visual-inertial localization
algorithm on SoC FPGA needs to be optimized for real-time processing.
This requires designing and developing an efficient hardware architec-
ture and software algorithms to provide accurate and timely localization
information for the tightening tool.

1.3 Purposes
The purposes of this thesis are the following

• To provide the implementation of the visual-inertial localization
algorithm implemented on SoC FPGA.

• To demonstrate the feasibility and effectiveness of implementing the
visual-inertial localization algorithm on SoC FPGA for the tightening
tool.

• To provide insights into the potential benefits and limitations of using
SoC FPGA to implement visual-inertial localization algorithms.

The benefit of the project in the technical things and intelligent proprietary
will be acquired by Atlas Copco as the host company. The result of
this research will open the possibility of enhancing the future tightening
process for the Atlas Copco industry with no human error in the tightening
process. On the other hand, in the scientific contribution, the project will
bring benefit to KTH Royal Institute of Technology (KTH) and the scientific
community because of the contribution to the knowledge of computer vision,
hardware implementation, and object localization with a published thesis



4 | Introduction

report. Moreover, the research supports the 2030 agenda for sustainable
development from the United Nations in sustainability goals 9: Industries,
Innovation, and Infrastructure.

1.4 Goals
The goal of this project is to provide the hardware implementation of
tightening tool localization based on bolt detection and visual-inertial
localization algorithm. This has been divided into the following three sub-
goals:

1. Subgoal 1: Bolt detection algorithm that is implemented in FPGA with
YOLOv3-Tiny-3L has mean Average Precision (mAP) value minimum
33 based on default YOLOv3-Tiny model [6].

2. Subgoal 2: The visual-inertial localization algorithm can provide the
average accuracy less than 100 mm for the translation.

3. Subgoal 3: The execution time for Bolt detection and localization
process is less than 150 ms.

A related previous publication defined subgoal 1, whereas subgoals 2 and
3 were defined by discussing with host industry requirements. The deliverable
for this project is an implemented SoC FPGA for tightening tool localization
using a camera and Inertial Measurement Unit (IMU) sensor.

1.5 Research Methodology
This study employs an empirical research method [7], aiming to present
a feasible implementation of bolt detection alongside a visual-inertial
localization algorithm for tightening tools on SoC FPGA. This approach is
predicated on combining machine learning and localization algorithms to
detect bolts and track the positioning of the tightening tool. The input data
for the localization system will be visual and inertial data in conjunction with
the bolt reference position.

The research employs a quantitative strategy to evaluate the performance of
the machine learning algorithm and the implementation of the visual-inertial
localization methodology. Quantitative research leverages mathematical
models and statistics to analyze and interpret data in response to research



Introduction | 5

questions. In the context of this study, the bolt recognition and visual-
inertial localization algorithm on SoC FPGA for real-time applications are
investigated for accuracy and execution speed. Quantitative data collection
and analysis are essential to resolve these issues. While qualitative research,
which utilizes observations, interviews, and other subjective methods, offers
profound insights into human experiences and perceptions, it may not be the
optimal approach for this research. The focus of this study is to measure and
quantify the performance of the bolt detection and localization algorithm in
real-time scenarios.

The SoC FPGA implementation will be tested with real data from the
laboratory. The FPGA implementation will also inspect the utilization and
power estimation of the logic block. The empirical evidence obtained from
the experimental results will be utilized to form a definitive conclusion for this
research.

This research operates under the assumption that the incidence of errors
in assembly processes can be reduced through the application of advanced
technology, specifically computer vision and sensor IMU. Furthermore, it
is posited that the implementation of a bolt detection and visual-inertial
localization algorithm for tightening tools can contribute to the development
of an error-free, flexible tightening process in the future.

1.6 Delimitations
The following are the delimitations of this project

• The project will only cover localization and exclude the mapping.

• The testing and evaluation will be done in the laboratory of the
tightening process.

• The system has the first location reference, and the location of every bolt
target for tightening has been known.

• The ground truth reference is obtained from the collaborative robot
platform.

• The bolt detection consists of two types of bolt

• The data evaluation in the result section is done with a dataset that has
been taken before.



6 | Introduction

1.7 Structure of the thesis
Chapter 2 presents relevant background information about object detection,
localization algorithms, and other topics related to this study. Chapter 3 breaks
down the methodology and the approach to solving the stated in sub-chapter
1.2. The next chapter, Chapter 4, describes how the implementation was done
for bolt detection and localization algorithm. In Chapter 5, the most important
results are shown. In Chapter 6, the results will be discussed further. In the last
chapter, Chapter 7, the conclusions of the results are stated, and discussions
about the limitations of the project and possible future work in this area are
made.



Background | 7

Chapter 2

Background

This chapter provides basic background information about object detection
and localization algorithms, including visual and inertial data. Additionally,
this chapter describes the algorithm for implementing machine learning on the
FPGA. The chapter also describes related work in bolt detection and visual-
inertial localization.

2.1 Object Detection
Object detection is one of the cases that is commonly addressed by machine
learning. the aim is to detect all of the objects and recognize the classes,
for example, cars, cats, trains, and so on, in an image. Object detection
consists of object recognition and image classification. Object recognition
is utilized to recognize the possible object without knowing the label of the
object. Image classification is used to classify the object within the defined
class. Therefore, the output of object detection consists of object class labels,
confidence, locations, and the size data of the object.

2.1.1 You Only Look Once (YOLO)
In 2016, Redmon et al. [8] presented a new approach for object detection that
is called You Only Look Once (YOLO). The basic idea is to use single-step
detection for detecting the object instead of two-step detection. Previously, the
common algorithm for object detection used a two-step process that consisted
of object recognition and an image classifier, such as the Fast Region-based
Convolutional Network method (Fast R-CNN) [9]. When extrapolating from
natural images to other domains like artwork, YOLO performs better than



8 | Background

other detection techniques like Deformable Parts Model (DPM) and Regions
with Convolutional Neural Networks (R-CNN) [8].

The YOLO object detection model is known for its simplicity, as it utilizes
a single convolutional neural network to predict multiple bounding boxes
and their corresponding class probabilities. YOLO also trains on full images
and optimizes detection performance directly, making it a more efficient and
effective approach compared to traditional methods of object detection.

YOLO has been developed and upgraded with several release versions.
From the first release in 2016 from Redmon et al. [8], which is YOLOv1,
until the last update in 2023, which is YOLOv8, published by Ultralytics [10].
Due to the limitation of support of YOLO implementation for Xilinx FPGA, in
this research, we will use YOLOv3-Tiny-3L for bolt detection implementation.

2.1.2 YOLOv3
In 2018, Redmon and Farhadi [11] presented some updates to the YOLO
algorithm by introducing YOLOv3, which has some design changes to make
it better. Even though it is bigger than the previous version, it is still faster
than the comparable model. YOLOv3 achieves 57.5 AP50 in 51 ms, which is
faster than RetinaNet, which achieves 57.5 AP50 in 198 ms when both models
were run on a Titan X.

The YOLOv3 approach views object detection as a form of regression
problem. This approach employs a single, feed-forward convolutional neural
network to directly calculate class probabilities and bounding box adjustments
from entire images. It discards the need for generating region proposals and
feature re-sampling by integrating all stages into a singular network, thereby
realizing a truly end-to-end detection mechanism. The YOLOv3 strategy
partitions the input image into a grid made up of SxS cells. If an object’s
centre point falls within one of these grid cells, that specific cell becomes
responsible for the object’s detection. Each cell is designed to predict the
bounding box location data and determine the ’objectness’ scores associated
with these bounding boxes [12].

With the successful implementation of YOLO as an object detection
algorithm, there is a need for a version with lightweight and more speed.
YOLOv3-tiny was introduced [13] to improve the speed and detection
accuracy. YOLOv3-Tiny achieved more than 200 FPS on the Pascal VOC-
2007 dataset. YOLOv3-tiny is a streamlined network comprised of 13
convolution layers, 6 max-pooling layers, 1 upsampling layer, 1 cascading
layer, and 2 output points. The initial network output measures 13×13×255



Background | 9

and is generated by subjecting the input layer to a sequence of 6 alternating
convolution and pooling layers, followed by an additional 4 convolution layers.
The second network output measures 26×26×255. This is achieved by merging
the fifth convolution layer’s output with the sixth pooling layer’s output, which
is then passed through two more convolution layers [13]. Furthermore, to
improve the accuracy of YOLOv3-tiny, in 2018, Gong et al. [14] introduced
the improved version of YOLOv3-tiny. They added more networks and made
the output from 2 layers into 3 layers. After evaluating their dataset, they
achieved 6.3% better accuracy with a detection speed of 31.8 FPS [14].

2.2 FPGA design platform

2.2.1 PYNQ Platform
PYNQ is an adaptive computing platform that uses Python language and
libraries to program underlying an integrated processor in the FPGA. PYNQ is
developed by AMD for their Xilinx FPGA that has integrated processor Zynq,
Zynq UltraScale+, Zynq RFSoC, Alveo accelerator boards and AWS-F1. The
aim is developers can exploit the benefits of integrating microprocessors and
programmable logic in one chip to expand more possibilities of complex and
exciting electronic systems applications [15].

PYNQ utilizes Python programming with jupyter notebook, which is a
browser-based interactive computing environment. PYNQ is implemented
under the Linux operating system. The programmable logic for the FPGA
is implemented with the concept of overlays. Overlays are the group of files
that consist of bitstream files, design blocks, and device trees from digital logic
design. overlays are loaded in a similar way that Python libraries are loaded
in Python programming.

2.2.2 Vitis AI
Xilinx® Vitis AI is an integrated development environment for accelerating AI
inference on Xilinx platforms. This toolchain provides the user with optimized
Intellectual Property (IP), tools, libraries, and models, as well as resources
such as example designs and tutorials to assist in the development procedure.
It is created with high efficiency and user-friendliness in mind, releasing the
maximum potential of AI acceleration on Xilinx SoC [16].

Vitis AI consists of the following essential elements [16]:



10 | Background

• Deep-learning Processor Units (DPUs) - Configurable computational
engines optimized for neural convolution networks. IP circuits that are
both efficient and scalable and can be tailored to satisfy the requirements
of various applications and devices.

• Model Zoo - An exhaustive collection of pre-trained and pre-optimized
models that are prepared for deployment on Xilinx devices.

• Model Inspector - a tool and methodology for validating model
architecture support for developers.

• Optimizer - An optional, commercially licensed tool that allows users
to refine a model by as much as 90 per cent.

• Quantizer - A potent quantizer that supports the quantization, calibra-
tion, and precise refining of models.

• Compiler - Compiles the quantized model for execution on the DPU
accelerator being targeted.

• Runtime (VART) - An embedded application inference runtime.

• Profiler - Analyzes the effectiveness and utilization of AI inference
implementations on the DPU.

• Library - Provides high-level C++ APIs for embedded and data center
AI applications.

In this research, we will utilize the Vitis AI to quantize the YOLOv3-Tiny-
3L model from the floating point unit into int8-bit data. The quantization
includes a calibration process with training data. After the quantization, we
compile the quantized model into an xmodel file for input into DPU core.

2.2.3 Deep-learning Processing Unit (DPU)
The Xilinx® Deep-Learning Processor Unit (DPU) is a Central Processing
Unit (CPU) or programmable engine that is specifically designed for convo-
lutional neural network calculation and processing. The unit incorporates a
register configure module, data controller module, and convolution computing
module. It uses a specific instruction set for doing the calculation that is
specially designed for doing efficient calculations for multiple Convolution
Neural Networks (CNN) architecture [17].



Background | 11

The DPU is used as an IP-core that is integrated as a block in
programmable logic design. The DPU only supports the development
environment from Xilinx, such as Vivado and Vitis software. it communicates
directly with Random Access Memory (RAM) for storing or fetching data and
instructions. The data machine learning model and instruction are supplied
from the xmodel file from the compiled file Vitis AI. The DPU IP core has
configurable hardware architecture, including B512, B800, B1024, B1152,
B1600, B2304, B3136, and B4096. Those hardware architectures indicate the
number of Multiply-Accumulate (MAC) operation that is used inside the DPU
[17]. In this research, the DPU will be used to implement bolt detection with
the YOLOv3-Tiny-3L model.

2.3 Perspective-n-Points
The term Perspective-n-Point (PnP) was devised by Fischler and Bolles [18]
for the problem of determining the pose of a calibrated camera from n-points
correspondences between three-dimensional reference points and their two-
dimensional projections [19]. Iterative or noniterative strategies are used to
solve the PnP problem. Noniterative approaches are effective, but one of their
drawbacks is instability when there is noise, especially when the number of
points is less than or equal to 5. Since 1841, there have been numerous closed-
form solutions to the 3-point problem, the smallest subset of PnP [18], [19].

Good camera pose estimation is achieved by knowing the correspondences
between 2D points in the image and 3D points in the object. The
transformation matrix cTw is used to define the rotation R and translation
t between object position and camera position [20]. However, it has an
assumption that 3D position points in the object have accurate values. fig. 2.1
illustrates the PnP problem with the camera and object related to world
coordinate points.

cTw =

(
cRw

ctw
01×3 1

)
, (2.1)



12 | Background

Figure 2.1: Perspective-n-Points illustration [21]

The complete relation between perspective projection in the image and the
actual point position of the object is shown by eq. (2.2)

x̄ = K Π cTw
wX, (2.2)

where x̄ = (u, v, 1) is perspective projection coordinates that are expressed
in pixel of the point in the image; wX = (wX, wY , wZ, 1) is 3D points location
with similar correspond to 2D points; K is the intrinsic parameters matrix of
the camera and is defined by [20]:

K =

 px 0 u0

0 py v0
0 0 1

 , (2.3)

The coordinates (u0, v0, 1) represent the principal point, which is where
the optical axis intersects the image plane. The parameters px and py are
influenced by both the focal length of the lens, denoted as f , and the pixel
size. More specifically, px is derived by dividing the lens’s focal length by the
pixel’s width (lx), represented by the formula px = f/lx. Similarly, py is the
ratio of the focal length to the height of a pixel (ly), defined as py = f/ly. in
the case of a perspective projection model, The projection matrix Π is given
by [20]:

Π =

 1 0 0 0

0 1 0 0

0 0 1 0

 .



Background | 13

2.4 Collaborative Robot
The Collaborative Robot (Cobot) is the robot platform that is produced by
Universal Robot. The data from the Cobot can be used as reference pose
data because it contains position and orientation with a fixed reference in
its mounting base. The Cobot has feature data. A feature represents a six-
dimensional pose of an object that contains position and orientation relative
to the robot base. The robot base is located in the base mounting of the robot
that is shown in Figure 2.2. The robot base can be defined as a base feature
whose position and orientation start from zero [22].

Figure 2.2: Cobot based position reference [22]

The Cobot has a tool center point, which is the point that has a pose
relative to the base point. The tool center point has a tool feature which is
a six-dimensional pose (position and orientation) from the mounted tool in
the Cobot. The tool center point can be adjusted to follow the mounting tool
in the Cobot. It is represented by Figure 2.3

Figure 2.3: Device position related to Cobot [22]



14 | Background

2.5 Error State Extended Kalman Filter
The Error-State Extended Kalman Filter (ESEKF) is a variant of the Extended
Kalman Filter (EKF) that estimates the error in states rather than the states
themselves [23]. This approach, which uses linear error state dynamics, allows
for optimal updates in error states and their covariance without the need for
repeated tuning related to noise covariances [23]. The ESEKF demonstrates
superior performance in terms of accuracy when integrating data from a
multi-sensor system, as compared to estimations derived from a single-sensor
state [24]. This highlights its effectiveness in enhancing the precision of
sensor data fusion. Given these advantages, this study employs the ESEKF
to optimally fuse data from visual pose estimation results, inertial sensor data,
and reference from the bolt reference position, aiming to achieve improved
data fusion outcomes.

The fundamental idea behind the ESEKF involves splitting the state vector
into two components: the nominal state, referred to as x, and the error state,
denoted as δx [25]. In the system that consists of IMU data and updated
position, the state consists of position, velocity and orientation. Nominal state
(xk) that is updated in every sampling rate k is represented by

xk = [ pk, vk, qk ]
T ∈ R10 (2.4)

The IMU measurement (uk) that contains specific force (fk) and angular
rate (ωk) measurement is defined by:

uk = [ fk,ωk ]
T ∈ R6 (2.5)

The motion model with k sampling that consist of position update (pk),
velocity update (vk), and orientation update (qk) is represented by:

pk = pk−1 +∆t vk−1 +
∆t2

2
(Cnsfk−1 + g) (2.6)

vk = vk−1 +∆t(Cnsfk−1 + g) (2.7)

qk = qk−1 ⊗ q (ωk−1 ∆t) = Ω(q (ωk−1 ∆t)) qk−1 (2.8)

where ∆t is the delta time between sampling, Cns is the rotation matrix
on previous sampling, and g is gravity. The nominal state moves forward in
time. However, this process does not consider unpredictable elements like



Background | 15

noise and disturbances. The ESEKF algorithm, on the other hand, accounts
for these variations by tracking them in an ’error state vector’. The next phase
involves looking at these errors in a simplified, linear way to understand how
they change over time. The following is the error state (δxk)

δxk = [ δpk, δvk, δΦk ]
T ∈ R9 (2.9)

When it moves in time, it becomes error dynamics that is defined by

δxk = Fk−1 δ xk−1 +Lk−1 nk−1 (2.10)

where nk is measurement noise.

nk ∼ N(0, Qk) (2.11)

Motion model jacobian (Fk−1), Motion model noise jacobian (Lk−1), and
IMU noise covariance (Qk) are defined by

Fk−1 =

I I ·∆t 0

0 I −[Cns fk−1]X ∆t

0 0 I

 (2.12)

Lk−1 =

0 0

I 0

0 I

 (2.13)

Qk = ∆t2
[
I · σ2

acc 0

0 I · σ2
gyro

]
(2.14)

where I is identity matrix 3 by 3. The Jacobian matrices of the motion
model are used to propagate the state uncertainty forward in time. The state
covariance matrix symbolizes the uncertainty in the state. As time progresses,
this uncertainty escalates until it is restrained by incoming measurements. The
predicted state covariance (P̌k) is represented by:

P̌k = Fk−1 Pk−1 F
T
k−1 +Lk−1 Qk−1 L

T
k−1 (2.15)

The measurement update is utilized to update the state of the system. In
the case of measurement, only update one of the variables from the three-state
variable, which is position, the measurement model Jacobian (Hk) and sensor
noise covariance (R) are represented as

Hk = [ I 0 0 ] (2.16)



16 | Background

R = I · σ2
sensor (2.17)

The Kalman gain is computed by state covariance matrix and inverse state
covariance matrix after it is combined with noise covariance and measurement
model Jacobian. Kalman gain (Kk) is represented by:

Kk = P̌k H
T
k (Hk P̌k H

T
k +R)−1 (2.18)

Kalman gain is used to compute the error state. the error state uses the
measurement update position and compares it with the current nominal state
position. The error state (δxk) is represented by:

δxk = Kk(yk − p̌k) (2.19)

The result of error states is utilized to correct the state variable (position,
velocity and orientation). Kalman gain is also utilized to produce corrected
state covariance. the following are corrected state variables and state
covariance.

p̂k = p̌k + δpk (2.20)

v̂k = v̌k + δvk (2.21)

q̂k = q(δ Φk)⊗ q̌k (2.22)

P̂k = (I −Kk Hk) P̌k (2.23)

The corrected state variables and state covariance are used as the saved
variables in time sampling k.

2.6 Related work area

2.6.1 Visual and inertial sensor fusion for mobile X-
ray detector tracking

This paper delves into the domain of object position and orientation estimation,
focusing particularly on the field of medical imaging. The authors highlight
the importance of accurate 3D tracking of medical devices in improving



Background | 17

the quality of medical images, speeding up the imaging workflow, and
paving the way for autonomous imaging and robotic operations. They
further emphasize that in mobile X-ray imaging, accurate pose tracking of
the X-ray detector is crucial for a 2D X-ray imaging system and innovative
3D tomosynthesis systems. The authors scrutinize existing high-accuracy
3D pose tracking techniques, including motion capturing techniques (e.g.,
Vicon and Optitrack systems) and electromagnetic tracking techniques (e.g.,
trakSTAR system). However, they point out the prohibitive cost of these
solutions for many applications. They also explore computer vision methods,
specifically marker-based methods and visual odometry (VO) techniques.
Despite their affordability and wide application in augmented reality, robotics,
and more, these methods are sensitive to occlusion, light condition changes,
and image acquisition errors. To fortify the robustness of vision-based pose
tracking, the authors propose a novel approach that combines visual-inertial
odometry (VIO) with an IMU sensor. They critique existing VIO algorithms
that use the Kalman filter (KF) or extended Kalman filter (EKF) framework,
or loosely-coupled or weighted average approaches, for their dependency on
motion dynamic model or weight parameters and intrusive installation. The
authors present an alternative solution— a novel visual-inertial sensor fusion
framework demonstrated via a real-time implementation of a tightly coupled
sensor fusion algorithm, the inertial perspective-n-point (IPNP) algorithm.
This prototype system integrates visual and inertial sensors, but unlike VIO,
it only requires an IMU sensor attached to the object, making it less intrusive
and reducing payload. This approach also significantly reduces the number of
visual key points required for tracking, compared to the classical perspective-
n-point (PnP) algorithm and the five-point visual odometry algorithm. It only
needs to detect two key points to track all six degrees of freedom of a planar
object, such as a mobile X-ray detector. This results in a 50% reduction in the
required number of key points compared with the vision-based perspective-n-
point algorithm [26].

2.6.2 Using Perspective-n-Point Algorithms for a Lo-
cal Positioning System Based on LEDs and a
QADA Receiver

This paper presents an innovative approach to indoor local positioning systems
(LPS) utilizing LED lighting and a quadrant photodiode angular diversity
aperture (QADA) receiver. The LED lighting is transmitted from a set of
beacons, and the image position of these transmitters is used to determine the



18 | Background

receiver’s 3D pose. This approach essentially frames the receiver’s location
problem as a Perspective-n-Point (PnP) issue, a classical problem in computer
vision and photogrammetry. The researchers designed and validated an
infrared positioning system based on LED lighting and a QADA receiver,
which they modelled as a perspective camera. The system involved three
independent coordinate systems and utilized a synchronized approach with
the receiver and transmitters operating simultaneously. The system employed
a Code-Division Multiple Access (CDMA) technique to differentiate signals
from different beacons. The received signals were then used to calculate the
image points for each beacon. The researchers examined non-iterative and
iterative PnP methods for the PnP problem. Non-iterative methods, such as
Efficient Perspective-n-Point Camera Pose Estimation (EPnP), Robust Non-
Iterative Solution of Perspective-n-Point (RPnP), and Infinitesimal Plane-
Based Pose Estimation (IPPE), were used. Iterative methods were also
examined, known to be more accurate but computationally intensive and
requiring near-optimum initialization. The study employed three well-known
PnP methods (EPnP, RPnP, and IPPE) to ascertain the pose of the receiver
from the image points of each transmitter. Each method provided unique
advantages and limitations in solving the PnP problem. EPnP was used for the
weighted sum of the eigenvectors of a 12 × 12 matrix, RPnP expressed the PnP
problem as a least squares polynomial function, and IPPE exclusively solved
the Planar-PnP problem through a homographic transformation between the
image coordinates and the 3D plane containing the transmitters. The results
of the study showed that the three PnP methods provided accurate localization
of the receiver. The system achieved 3D centimeter accuracy inside intelligent
environments, similar to previous work using triangulation techniques but
with the added advantage of determining the complete pose of the receiver.
The system was also scalable to large spaces of 2 × 2 m x, y, and z, respectively.
The average absolute errors and standard deviations for the estimation of the
receiver’s position at three specific points for roll angles of the receiver of
gamma=0°, 120°, 210°, and 300° obtained using the IPPE algorithm are 4.33
cm, 3.51 cm, and 28.90 cm; and 1.84 cm, 1.17 cm, and 19.80 cm, respectively,
in the coordinates x, y, and z [27].

2.6.3 3-D Positioning System Based QR Code and
Monocular Vision

This paper dives into the world of 3D navigation and positioning, particularly
aimed at unmanned vehicles and robots. The authors stress the significance of



Background | 19

accurate 3D position and pose determination for these autonomous entities
to effectively execute their designed tasks. They further highlight that in
both indoor and outdoor settings, precise tracking of the vehicles’ or robots’
position and orientation is crucial for smooth navigation and operations. The
authors scrutinize existing 2D QR code positioning techniques, such as those
utilized by the Amazon warehouse robot KIVA and other indoor Automatic
Guided Vehicles (AGVs), and highlight their limitations, particularly their
inability to extend to 3D environments. They also address the limitations of
alternative 3D positioning techniques, which require multiple QR codes in
different positions or stereo cameras, thus reducing efficiency and increasing
complexity. To overcome these challenges, the authors propose an innovative
system that integrates a monocular visual system with QR codes to determine
both the autonomous entities’ 3D position and orientation. This novel
approach uses two main modules - an image processing module and a
pose calculation module. The system employs an efficient perspective-
n-point (EPnP) camera pose estimation algorithm in the pose calculation
module, enabling it to determine the 3D position and the Euler angles of
the camera in a physical coordinate system. Unlike previous methods, this
approach only needs a single monocular camera and can work with QR codes
placed anywhere visible to the camera, significantly reducing environmental
restrictions. This design also reduces the complexity and increases the
system’s efficiency, providing a more reliable solution for 3D navigation and
positioning. Experimental testing of this system showed promising results
with an error of Euler angles within 3 degrees and an error of translations
within 60mm, demonstrating its potential for precise 3D navigation and
positioning [28].

2.6.4 Error State Extended Kalman Filter Localization
for Underground Mining Environments

This paper delves into the issue of real-time localization of mobile robotic
platforms in environments that deny access to Global Navigation Satellite
Systems (GNSS). The authors examined the complexities surrounding the
establishment of precise positioning in such areas, especially in underground
mining contexts, that demand continual updating of layout plans and
monitoring of roof subsidence. They underscored the potential of integrating
novel technologies such as computer vision, predictive model control, machine
learning, and neural networks with robotic equipment for advancing the
efficiency of mining operations. To address the localization challenge in



20 | Background

GNSS-denied settings, the authors developed a system fusing data from an
IMU, a magnetometer, and encoders. They chose the Error-state Extended
Kalman Filter (ES EKF) for its ability to generate symmetrical error gauss
distribution for the measurement model, which they posited could lead to
superior performance. The ES EKF system works in two stages: vector
state propagation based on accelerometer and gyroscope data and correction
via measurements from additional sensors. Highlighting the merits of ES
EKF, the authors illustrated its ability to isolate IMU measurements from
additional sensor data, with its subsequent addition in the correction phase.
They found this feature advantageous, as it allows the system to be more
resilient to auxiliary sensor failures, an aspect which distinguishes the ES
EKF from the Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF). Validating their approach, they simulated the Robot Operating System
(ROS) and Gazebo environment using a mathematical model they created.
They generated trajectories for the ES EKF, EKF, and UKF algorithms
and calculated absolute position errors for all trajectories. The authors
demonstrated that the ES EKF system achieved comparable position errors to
those of the EKF and UKF, implying its efficacy in managing localization in
complex environments. The paper concluded by acknowledging that all three
algorithms could benefit from increased localization accuracy [25].



Method | 21

Chapter 3

Method

3.1 Research Process
Figure 3.1 shows the steps conducted in order to carry out this research.

Figure 3.1: Research Process

The research process depicted in Figure 3.1 employs varied colours to
denote distinct types of processes. Yellow signifies software-based processes;
red denotes hardware-based ones; green highlights data acquisition, and blue
indicates data processing and analysis. The following is a detailed explanation
of the research processes:

Step 1 The software and research environment encapsulate hardware im-
plementation on the FPGA, High-Level Synthesis (HLS) process
design, and machine learning deployment. Hardware implementation
necessitates software for IP core building, integration of the IP block
into programmable logic and overlay creation. The HLS process



22 | Method

employs Matlab Simulink to implement the algorithm and translate it
into Register Transfer Level (RTL) language. Machine learning needs
platforms to train the bolt detection data and establish a model for
FPGA implementation.

Step 2 This research employs two sensors: a camera and an IMU. The camera
interfaces via the Universal Serial Bus (USB) protocol, managed
by an ARM processor in the Zynq platform. The IMU interfaces
through the Serial Peripheral Interface (SPI) protocol, capturing 3-
axis accelerometer and gyroscope data. The programmable logic side
of FPGA manages the IMU interface and uses Advanced eXtensible
Interface (AXI)-bus to communicate with the ARM processor.

Step 3 The ESEKF algorithm, implemented on the Programmable Logic (PL)
side, should follow the IP core format. The IP core’s creation entails
building a block diagram in Simulink and validating it. The block
diagram is then converted into RTL language and IP core through
the HLS process, which employs specific settings to adjust the RTL
implementation for optimal hardware utilization and runtime.

Step 4 Machine learning implementation in FPGA uses the DPU IP core
to expedite convolutional neural network computations. The DPU
IP core’s integration relies on Vitis flow, a software-oriented
FPGA development approach, as it automatically adjusts the DPU
connection. The first step is to ready all IP blocks, excluding the
DPU IP core, followed by running the Vitis Flow process to generate
a bitstream.

Step 5 Once hardware implementation is completed, an overlay is created
based on the bitstream and the DPU IP core’s hardware architecture.
The overlay is vital for the PYNQ platform, allowing interfacing
between the Processing System (PS) side and PL side of ZYNQ
using Python programming. The PYNQ platform operates under
the embedded Linux operating system, running on a ZYNQ ARM
processor.

Step 6 Dataset creation amalgamates data from collaborative robots and
sensors. The collaborative robot, holding the camera and IMU,
simulates movement above the bolt placement setup. This setup
comprises a bolt placement sequence of two different types in random
configurations. The dataset is built by acquiring synchronized
timestamp data from the camera, IMU, and collaborative robot
reference during the simulation.



Method | 23

Step 7 Bolt detection accuracy is evaluated by analyzing the sequence of
image results from the dataset, confirming the correct detection of two
distinct bolt types. Localization assessment compares the 6-DoF pose
from camera pose estimation with collaborative robot data.

Step 8 The execution time is evaluated for every function, including sensor
data acquisition, bolt detection with machine learning, camera pose
estimation calculation, prediction and update processes in ESEKF.
Finally, the total execution time is integrated and evaluated against
the set target.

3.2 Data Collection
The data collection is done in the workshop laboratory of the total workstation
at Atlas Copco. the aim is to create the dataset for testing and evaluating the
algorithm. The dataset includes timestamps, position references, orientation
references, 3-axis accelerometers, 3-axis gyroscopes, and images. The
position references and orientation references are taken from collaborative
robots through Transmission Control Protocol (TCP) communication. The
dataset is acquired with the FPGA platform by integrating all of the sensors
and the collaborative robot data. All of the data is synchronized in timestamps
from the SoC FPGA.

3.2.1 Sampling
The data acquisition for this study employs a variety of connections: an
SPI connection for the accelerometer, a USB connection for the camera,
and an Ethernet TCP connection for pose references from the Cobot. Data
collection was conducted with reference to the UNIX timestamp of the SoC
FPGA operating system. The sampling rates for the position references,
orientation references, 3-axis accelerometers, and 3-axis gyroscopes range
from approximately 30Hz to 35Hz. On the other hand, the camera’s sampling
data range is slightly lower, standing between 10Hz and 12Hz. Data
acquisition for the camera operates on an independent thread process, which
stores data in a buffer denoted by a flag status. Data acquisition initiates with
data collection from the IMU. If data is available, the pose data from the Cobot
is also acquired, ideally at a similar timestamp. Subsequently, the process
verifies the data from the camera’s thread process. If the flag status indicates
data availability, the image is captured and saved with a timestamp similar to



24 | Method

when the IMU data was collected. However, in instances where camera data is
unavailable, the process continues with no image being saved. It is important
to note that the speed and efficiency of data acquisition are influenced by the
process of image saving and the latency of intermediary processes, including
SPI, USB, and Ethernet connections.

3.2.2 Sample Size
This research utilizes mathematical calculations to derive results, rendering
the number of samples inconsequential to the outcome’s integrity. Instead,
the sample size mirrors the movement scenarios of the tool represented by
the localization calculation process outcomes. As such, the sample size
was decided upon in collaboration with the industry supervisor to ensure it
adequately represents the system’s operation. The dataset used to evaluate the
algorithm encompasses a total of 8520 data points. This dataset comprises
synchronized timestamps, reference data, IMU data, and camera data. The
collected data corresponds to a total testing duration of 286 seconds, as
determined by the timestamps.

3.2.3 Target Population
The focus of this study is on bolts, selected as the target population. Given the
lack of prior studies addressing this topic, the research utilised a simplified
version, examining only a minimal selection of bolts for object detection
purposes. Consequently, this study incorporates two types of bolts as the target
population. The target populations are

• Black bolt, with reference name ”bolt1”

• Silver bolt, with reference name ”bolt2”

3.3 Experimental design
The experimental design illustration is shown by Figure 3.2



Method | 25

Figure 3.2: Experiment setup

In this study, a collaborative robot is employed to yield precise position
and orientation references during experimental trials and tests. Its role is to
emulate the tightening tool’s movements, mimicking real-world application
scenarios. When required, this robot dispatches reference data to the FPGA
through TCP communication. The FPGA plays a crucial role in acquiring
and consolidating data from different sources. Specifically, it retrieves data
from the camera using USB communication and from the IMU through SPI
communication.

The camera is strategically positioned to cover only the test rig area,
which comprises bolts. As a result, all images captured from this viewpoint
exclusively contain the bolt object, which is central to this research. This
design ensures the accuracy and relevance of the visual data gathered. To
allow full accessibility and functionality, the test rig is located adjacent to the
collaborative robot. This positioning ensures the robot’s ability to reach all
necessary areas during the testing process.

Connectivity between the FPGA and a Personal Computer (PC) is
established through an Ethernet connection. The FPGA, operating on an
embedded Linux operating system and Python Productivity for Zynq (PYNQ)
platform, can be accessed by the PC through Jupyter Notebook. This
accessibility is achieved using a specific Internet Protocol (IP) address and
a given port. Consequently, the PC can control the processes running on the
FPGA and has the capability to upload and modify the code from the PS side
of ZYNQ, providing flexibility and adaptability to the experimental setup.



26 | Method

3.3.1 Test environment
The testing environment for this study is exclusively designed to incorporate
two types of bolts strategically placed within the test rig. The test rig, devised
to simplify and effectively emulate the tightening environment, plays a pivotal
role in our setup. This rig features holes spaced 50mm apart, both horizontally
and vertically, thereby maintaining a consistent structure for our experiments.
Two variants of bolts, black and silver, are incorporated into the testing rig in
a random sequence to reflect diverse and unpredictable real-world scenarios.
A subset of the black bolts is outfitted with a silver ring, positioned randomly
to further enhance the variability of our testing setup.

In order to minimize visual noise and potential distractions during image
capture, we have implemented a simple, effective camouflage strategy. Any
portions of the test rig that are not occupied by bolts are obscured with white
paper. This ensures that our images are focused solely on the bolts, optimizing
the accuracy and efficiency of our object detection processes. The detail of the
test environment is shown by Figure 3.3

Figure 3.3: Environment of bolt position for testing

3.3.2 Hardware and Software
The following is a list of hardware used in the test



Method | 27

• Kria KV260 Vision AI Starter kit as the SoC FPGA that is used for the
implementation and evaluation.

• Camera USB with the type Logitech Brio 4K. The camera is used to
take sequential image data in real-time testing.

• IMU sensor: PMODNav based on LSM9DS1. The IMU sensor is used
to acquire accelerometer and gyroscope data.

• Collaborative Robot UR5e from Universal Robots. The collaborative
robot is utilized to acquire the reference location for the testing and is
used to hold the camera and IMU sensor during the test.

The following is a list of software used in the test

• Ubuntu Linux 22.04 for Kria KV260.

• PYNQ Platform.

• Vitis AI v2.5

3.4 Assessing reliability and validity of the
data collected

Table 3.1 shows all of the data collected, unit, and source of the data.

Table 3.1: The data collected

The data collected Unit Source of data
Position references mm collaborative robot UR5e

Orientation references rad collaborative robot UR5e
3-axis accelerometers m/s2 PmodNav (LSM9DS1)

3-axis gyroscope rad/s PmodNav (LSM9DS1)
RGB images size (800x600) USB camera Logitech BRIO 4K

3.4.1 Validity of method
In this study, we used various methods to ensure the validity of our data
acquisition from multiple sources: the collaborative robot, the IMU sensor,
and the camera. The collaborative robot data was collected using TCP



28 | Method

communication and the officially provided Real-Time Data Exchange (RTDE)
Python client library by the robot’s manufacturer, Universal Robots [29]. To
ensure the validity of this acquisition method, we implemented a handshake
communication procedure prior to data transfer. This process confirmed
a successful connection between the devices, thereby validating the data’s
integrity. For the IMU sensor, we utilized the SPI protocol to communicate
with the FPGA (Field Programmable Gate Array). Since the sensor’s output
data has already been digitized and factory calibrated [30], its accuracy is
assured. We further validated the acquisition method by reading the IMU
sensor’s WHOAMI register and cross-referencing it with the value specified
in the datasheet. This check validated the sensor’s identity and confirmed
successful communication, supporting the method’s validity. Lastly, the
camera data was collected via a USB protocol communicating with the FPGA
using the OpenCV Python library. We validated the camera’s communication
status by checking the USB port before the data acquisition. This preliminary
check ensured a smooth and error-free data transfer from the camera. In
summary, each data acquisition method was meticulously validated, ensuring
the robustness and reliability of the overall data acquisition process.

3.4.2 Reliability of method
The data acquisition process utilized in this study consists of several methods,
each designed for specific tasks and all confirmed to be highly reliable. Firstly,
for the collaborative robot, we employed the RTDE library in Python [29],
coupled with a TCP connection. This approach is not arbitrary but comes
directly recommended by the robot’s manufacturer. Numerous tests have been
conducted to validate this method, where the acquired data was consistently
found to correspond with the robot’s official display readings. This regular
alignment confirms the reliability of this data acquisition method. For the IMU
sensor data, the SPI communication protocol was applied, conforming to the
guidelines outlined in the official datasheet. To maintain the data’s consistency
and accuracy, we instituted a routine check of the WHOAMI register every
time the sensor was accessed. This step guarantees that the sensor functions
correctly and the data acquired is reliable. While an alternative protocol,
the I2C, is available to access IMU data, it was not used due to its inherent
limitations. The I2C operates at a slower clock speed and does not support full-
duplex communication, making it less efficient than the chosen SPI method.
Finally, in regard to camera data acquisition, we adopted the widely used and
accepted OpenCV Python library. This library is known for its reliability and



Method | 29

is a common choice in the field of camera data collection. In summary, each
data acquisition method used in this study - for the collaborative robot, the
IMU sensor, and the camera - has been selected based on its proven reliability
and efficiency, thereby ensuring the credibility of the results obtained.

3.4.3 Data validity
The validity of the data acquired in this study was confirmed through a
careful series of checks and comparisons, ensuring that the data was accurate
and representative of actual conditions. Starting with the collaborative
robot, the collected position and orientation data were validated through
direct comparison with actual data from the official HMI (Human-Machine
Interface) monitor. This procedure entailed gathering data using the Python
library and then cross-referencing it with the data displayed on the HMI
monitor. This comparison assured the accuracy of the collected data, thus
establishing its validity. With regard to the IMU (Inertial Measurement Unit),
the data output was evaluated prior to the data acquisition process. For the
accelerometer, a gravity reference check was conducted. This process ensures
that the accelerometer readings align with the gravitational force, which is
a known constant. Similarly, for the gyroscope, a movement reference check
was performed, assessing whether the output data accurately reflected physical
movements. These reference checks aimed to confirm that the digital output
provided sensible and rational data, thereby verifying its validity. Lastly,
the camera data’s validity was confirmed through real-time output video
analysis from a Jupyter Notebook. This validation process included checking
the output images against specific parameters, such as colour, frame size,
and image results. By ensuring the output images met these criteria, we
confirmed the images accurately represented their subjects, thus validating
the camera data. In summary, each piece of data gathered in this study, from
the collaborative robot, the IMU sensor, and the camera, underwent rigorous
validation procedures. This comprehensive approach ensured the data was
both accurate and reliable, reinforcing the overall validity of the research.

3.4.4 Reliability of data
The reliability of the data shown in Table 3.1 was established using a careful
and systematic approach. Each data source was initially tested more than three
times using the same positions and setup. This repetition ensured that the data
produced was consistent and comparable across each trial, which is crucial



30 | Method

before integrating it into the full data acquisition process. Furthermore, during
each data acquisition, a safeguard was put in place to compare the collected
data against a sample dataset. This step was crucial in spotting any potential
errors in real-time and ensuring the accuracy of the data. By following
this procedure, we could promptly identify and correct any inconsistencies,
reinforcing the dependability of the data. In summary, the comprehensive
validation approach, including the pre-integration tests and ongoing checks
during data acquisition, helped guarantee the data’s reliability. This rigorous
method ensured that the data was both accurate and consistent, providing a
solid foundation for the entire data acquisition process.

3.5 Planned Data Analysis
The output data planned from this research is shown in Table 3.2. The data
analysis will be conducted for two different types of processing that will be
used.

Table 3.2: The data output from processing

Input data Type of processing Output data
3-axis accelerometer, 3-
axis gyroscope, images,
Bolt reference data

localization process 6-DoF pose estimation
(Position and Orienta-
tion)

Images Bolt detection process Type of bolt
3-axis accelerometer, 3-
axis gyroscope, images,
Bolt reference data

timing measurement execution time

3.5.1 Data Analysis Technique
In this study, we employed various data analysis techniques to evaluate
different aspects of the research.

The localization process involved using the Root Mean Square Error
(RMSE) technique for assessing position and translation errors. The RMSE
technique is a standard method for evaluating position and rotation data in
visual-inertial pose estimation, as utilized in Liu et al.’s research [31]. We
applied this technique to the 6-DoF output data, comparing it against the
ground truth. For this study, the ground truth was defined as the position



Method | 31

and orientation of the collaborative robot. The RMSE value thus indicated
the integrated error across the three axes.

The bolt detection performance was assessed using the Mean Average
Precision (mAP) analysis technique. This method is widely used for evaluating
object detection algorithms, as demonstrated in the YOLOv3 paper [11]. The
mAP score provides an average precision across all object classes. This
analysis used test data, which was drawn from a dataset consisting of 50
randomly selected poses with assigned labels.

Finally, execution time was evaluated for each process, including bolt
detection and the update and prediction processes of the ESEKF. The
execution times were aggregated to determine the required time for all
processes to output bolt detection and localization results. The evaluation of
execution time was benchmarked against the research targets set at the study’s
outset.



32 | Method



Algorithm Implementation | 33

Chapter 4

Algorithm Implementation

4.1 Overview System
The entire system’s functionality, including inputs, outputs, and processing
blocks, is illustrated in the system block diagram (Figure 4.1).

Figure 4.1: System Block Diagram

The system overview of bolt detection and visual-inertial localization for
the tightening tool consists of three input elements, two output elements, and
two major processing blocks. The three input elements are an IMU sensor, a
monocular camera, and a bolt reference pose. These inputs provide the raw
data, which is then processed to yield meaningful outcomes. The two output
elements, 6-DoF pose estimation and bolt-type detection, provide insightful
information that is crucial for the functioning of the system. The two major



34 | Algorithm Implementation

processing blocks are the visual front-end processing and the ESEKF. The
visual front-end processing incorporates a machine-learning algorithm that
enables bolt detection and pose estimation using perspective-n-points. This
process allows the system to identify and locate bolts with high precision.
The ESEKF processing integrates predict and update functions, as well as
state estimation from the IMU sensor. These processes together generate
estimations of position, velocity, and orientation, all of which are vital to the
system’s operations.

Given that this system is designed for a tool-tightening application, the bolt
reference pose is essential and is obtained during the actual tool-tightening
process. The position and orientation of the tightening tool at the moment
of tightening define this reference pose. In our study, we incorporated this
bolt reference pose into the ESEKF process as an updated state. It serves
as a real-world reference point to ensure the accuracy of our simulations.
During testing, we made the assumption that this bolt reference pose would be
updated at arbitrary intervals. Specific to this study, we found this particularly
useful when dealing with image sequences that suffer from long delays in data
acquisition, helping to maintain system reliability even under less-than-ideal
conditions.

The system under study is integrated into a SoC FPGA, specifically
the Kria KV260 board from Xilinx. This FPGA board is composed of
a Processing System (PS) ARM processor and Programmable Logic (PL)
FPGA fabric. The ARM processor runs on an embedded Linux system,
which provides the advantage of easily managing network communications
and other interfaces thanks to its Linux compatibility. Furthermore, it operates
under the PYNQ platform that binds the Python environment, allowing for
coordinated operation between the PS and PL. Python brings to the table a
host of benefits, primarily in the form of an extensive library base that includes
OpenCV and numpy, among others. Moreover, the PYNQ platform is also
compatible with the DPU IP core, making it a favourable choice for machine
learning implementation in this research. The DPU IP core is instrumental in
operationalizing the machine learning model in a manner that is both efficient
and fast. The efficiency and speed are attributed to the fact that the operations
are conducted in the PL FPGA fabric. For the actual FPGA implementation,
the DPU IP core utilizes Vitis AI to compile the machine learning model.



Algorithm Implementation | 35

4.2 Bolt Detection using Machine Learning

4.2.1 Building the YOLOv3-Tiny-3L Model
In this research, we simplified bolt detection only with two types of bolts.
Figure 4.2 shows the bolt image for bolt detection. The black bolt is identified
as ”bolt1”, and the silver bolt is identified as ”bolt2”.

Figure 4.2: Type of bolt

For bolt detection, this study employed the YOLOv3-Tiny-3L model
implemented in Darknet [32]. The selection of the YOLOv3 tiny model was
driven by its known compatibility with object detection tasks in embedded
systems. Additionally, the DPU IP core and Vitis AI have demonstrated
effective compatibility with YOLOv3, as evidenced by existing examples
showcasing model compilation.

In the context of this research, the training phase involved using 200
distinct images, which were labelled and extracted separately from the dataset
intended for testing. The model was trained over 8000 iterations to optimize
the accuracy of object detection. The end product of this training phase is a
Darknet-trained model, accompanied by a configuration file and weights file.
The architecture of YOLOv3-Tiny-3L is shown in Table 4.1



36 | Algorithm Implementation

Table 4.1: YOLOv3-Tiny_3L Architecture Configuration

Layer Layer Type
(Activation
Function)

Filters Size/
Stride

Input Output Biases/
Weights

0 Convolutional
(Leaky)

16 3x3/1 416x416x3 416x416x16 16 / 3x16x3x3

1 Maxpool 2x2/2 416x416x16 208x208x16
2 Convolutional

(Leaky)
32 3x3/1 208x208x16 208x208x32 32 /

16x32x3x3
3 Maxpool 2x2/2 208x208x32 104x104x32
4 Convolutional

(Leaky)
64 3x3/1 104x104x32 104x104x64 64 /

32x64x3x3
5 Maxpool 2x2/2 104x104x64 52x52x64
6 Convolutional

(Leaky)
128 3x3/1 52x52x64 52x52x128 128 /

64x128x3x3
7 Maxpool 2x2/2 52x52x128 26x26x128
8 Convolutional

(Leaky)
256 3x3/1 26x26x128 26x26x256 256 /

128x256x3x3
9 Maxpool 2x2/2 26x26x256 13x13x256
10 Convolutional

(Leaky)
512 3x3/1 13x13x256 13x13x512 512 /

256x512x3x3
11 Maxpool 2x2/1 13x13x512 13x13x512
12 Convolutional

(Leaky)
1024 3x3/1 13x13x512 13x13x1024 1024 /

512x1024x3x3
13 Convolutional

(Leaky)
256 1x1/1 13x13x1024 13x13x256 256 /

1024x256x1x1
14 Convolutional

(Leaky)
512 3x3/1 13x13x256 13x13x512 512 /

256x512x3x3
15 Convolutional

(Linear)
27 1x1/1 13x13x512 13x13x27 27 /

512x27x1x1
16 YOLO
17 Route
18 Convolutional

(Leaky)
128 1x1/1 13x13x256 13x13x128 128 /

256x128x1x1
19 Upsample 2x2/1 13x13x128 26x26x128
20 Route

Continued on next page



Algorithm Implementation | 37

Table 4.1 – Continued from previous page
Layer Layer Type

(Activation
Function)

Filters Size/
Stride

Input Output Biases/
Weights

21 Convolutional
(Leaky)

256 3x3/1 26x26x384 26x26x256 256 /
384x256x3x3

22 Convolutional
(Linear)

27 1x1/1 26x26x256 26x26x27 27 /
256x27x1x1

23 YOLO
24 Route
25 Convolutional

(Leaky)
128 1x1/1 26x26x256 26x26x128 128 /

256x128x1x1
26 Upsample 2x2/1 26x26x128 52x52x128
27 Route
28 Convolutional

(Leaky)
128 3x3/1 52x52x128 52x52x128 128 /

256x128x3x3
29 Convolutional

(Linear)
27 1x1/1 52x52x128 52x52x27 27 /

128x27x1x1
30 YOLO

The YOLOv3-Tiny-3L uses a 3-layer output YOLO to achieve more
accurate object detection. The architecture is inspired by [14] and [32]. The
basic YOLOv3-Tiny has a 2-layer output with less hidden layer [11], whereas
the 3-layer version adds the hidden layer to generate the third yolo output layer.
It adds more trained variables and computation time than the default YOLOv3-
tiny but is still smaller than YOLOv3.

4.2.2 Vitis AI Quantize and Compile Model
This research used the Vitis AI version 2.5 to follow the compatible compiler
for DPU in the PYNQ platform. The YOLOv3-Tiny-3L machine-learning
model from the darknet platform consists of configuration (.cfg) and weight
parameters (.weights) files. Since the Vitis AI does not support the input-
trained model from the darknet, the trained model needs to be converted into
the supported file. One of the supported model files is TensorFlow. Figure 4.3
shows the steps for processing the darknet-trained model into a compiled
model that is ready to use for integrating with the DPU IP core. the blue



38 | Algorithm Implementation

colour represents the process of conversion outside the Vitis AI, and the red
colour represents the process inside the Vitis AI.

Figure 4.3: Process of quantization and compilation

The conversion model from darknet into TensorFlow consists of two steps
conversion with intermediate conversion into Keras model. The conversion
used the public repository code from David8862 [33]. The model for input
into the Vitis AI is the TensorFlow model with an extension protocol buffer
(.pb).

The quantization process in Vitis AI converts the trained model from a
floating point 32-bit to an integer 8-bit. Normally, the quantization process
will reduce the accuracy of the trained model. To maintain the accuracy of
the trained model, during the quantization process, the trained model will be
calibrated with train data images. After the quantization process, the accuracy
of the prediction will often have a loss of less than 1% [34]. The quantization
process will produce a file format similar to TensorFlow, which is a protocol
buffer (.pb) with a quantized value.

The compilation process in Vitis AI will convert the quantized model
into the xmodel file. It uses the additional input DPU architecture file with
extension json. the DPU architecture is adjusted with the used architecture in
Table 4.2. Inside the compilation process, there are multiple optimizations,
such as batch normalization operations.

4.2.3 Build DPU IP core
The architecture of the DPU IP core can be adjusted based on the requirement.
Table 4.2 presents the detailed architecture of the DPU for this research.



Algorithm Implementation | 39

Table 4.2: DPU Architecture Configuration

Parameters Value
Number of core 1
Architecture size B3136
UltraRAM Enable
DRAM Disable
RAM Usage Low
Channel Augmentation Enable
ALU parallel Default (1)
CONV RELU Type Configuration RELU, LEAKYRELU, RELU6
ALU RELU Type Configuration RELU, RELU6
DSP48 Usage Configuration High
Power Configuration Low Power Disable
DEVICE Configuration MPSOC

The DPU architecture configuration is prepared for integration into the
overall programmable logic design. The configuration parameters are chosen
based on iteration to adjust the utilization fit with the amount of available
programmable logic resources. The architecture size indicates the number of
MAC units per DPU clock cycle. The machine learning parameters, such as
weights, bias, and intermediate feature maps, are kept on-chip by enabling
UltraRAM and disabling Dynamic Random Access Memory (DRAM) to
reduce power consumption. RAM usage is tried to keep low to reduce the
utilization of block RAM, which impacts reducing the flexibility in handling
the intermediate data inside the core. The channel augmentation is enabled
to improve the efficiency of the core when the number of input channels is
lower than the available channel, but it will cost an additional Look-Up-Tables
(LUTs).

The building process of the programmable logic in this research used
Vitis flow. There are two types of flow that are usually used for building
programmable logic. First is Vivado flow, and second is Vitis Flow. Vivado
flow uses fixed-platform design, which the design has been completed in the
Vivado Design Suite software. All of the IP blocks have been integrated, and
the synthesis and implementation have been done. The output from the fixed-
platform design is a Xilinx Shell Archive (.xsa) or bitstream file. The file
is ready to use for the next development process using Vitis IDE for C/C++
programming or the PYNQ platform for Python programming.

On the other hand, the Vitis flow uses the extensible platform. this platform



40 | Algorithm Implementation

allows the addition of programmable components such as IP core to produce
a complete embedded system design. The design flow utilizes the hardware
container (.xsa) file that is produced by Vivado Design Suite. The extensible
.xsa file provides the base hardware design for the V ++ linker to extend by
updating a dynamic region of the design.

Overall the integration of the DPU IP core is shown in Figure 4.4

Figure 4.4: Process of DPU IP core integration

The Vivado Design Suite consolidates all of the IP cores for the design
except the DPU IP core, such as the SPI, ESEKF, clock wizards, and so on. The
hardware design (.xsa) is imported with a pre-synthesize configuration. The
hardware design is loaded into Vitis IDE, and set up the configuration is set up
as Linux without generating a boot. After the building platform in Vitis IDE,
the extensible platform (.xpfm) file will be generated. The file will be used
for Vitis flow that adds the DPU IP core, does synthesis and implementation
and also produces the final bitstream. The Vitis flow is represented as a blue
colour block in Figure 4.4.

4.3 Visual Localization

4.3.1 Assignment 3D Location for The Bolts
The pairs of a 3D location and a 2D point in the image become important inputs
for visual localization to determine pose estimation with the perspective-n-
points algorithm. The 2D points can easily be acquired from the image,
whereas the 3D location for the bolts becomes another challenge to be
acquired. For a system that has a base reference position, for this research
is a Cobot base reference location; the 3D location of the bolts uses the Cobot



Algorithm Implementation | 41

base reference, so the pose estimation output has a similar base reference.
For implementing the assignment 3D location algorithm for the bolts, the
following are several assumptions that are made for this research

• The location for all the bolts in the first time of operation has been
known.

• The camera data (image) are supplied continuously (more than 5 FPS),
or the 3D position of the bolts in the next image should be reassigned.

• The dimension or the shape of the bolt placement area has been known
before. This research used a flat test rig with holes for bolt placement
that has a distance of 50 mm on the x-axis and y-axis.

The assignment 3D location for the bolts follows the rules below

• The 3D location of the bolt uses the previous sequence of the image to
determine the current image

• the assignment 3D location from detected bolts in the new image, the 2D
points in the new image will be compared to 2D points in the previous
image. If the Euclidean distance between 2D points is below a certain
threshold, the 3D location of the bolt that correlated to the certain 2D
point will be assigned to the nearest 2D point in the new image.

• unassigned bolt points in the new image will be determined with the
knowledge of test rig placement dimension. the new 3D location will
be estimated based on the 2D point location related to the nearest 2D
points. Because the test rig platform has a fixed distance of 50 mm,
the estimation will add or subtract 50 mm on the axis x or y, which is
decided based on the new 2D points in the image.

4.3.2 Camera Pose Estimation
The camera pose estimation within our research will be implemented using the
PnP algorithm. This particular algorithm was chosen due to its relevance and
compatibility with the key point’s bolt positions. The positions of the bolts
give a unique blend of 3D space data and 2D image data. Basically, the PnP
algorithm is meant to figure out the location and angle of a camera in a 3D
space, given sets of matching 3D and 2D points. So, it works out where the
camera is and how it is tilted in the real world by using the 3D coordinates
of certain points and their matching 2D images. It makes the algorithm



42 | Algorithm Implementation

particularly handy when we need to work out the camera’s pose using the data
we have gathered about the bolts. In the context of pose estimation algorithms,
the PnP is commonly adopted for systems that leverage key points equipped
with a 3D location reference and a corresponding set of 2D points in an image
[26], [27], [28]. This makes it a suitable choice for our study, considering our
key point data consists of the bolt’s 3D location and its 2D correlation within
the image.

We have sourced the PnP function from the OpenCV python library,
a reliable resource for image processing and computer vision applications
[21]. It provides a robust implementation of the PnP algorithm, aiding in
simplifying the process of camera pose estimation. To visualize this process,
refer to Figure 4.5, which elucidates the application of the perspective-n-points
calculation in the context of our study. It provides a step-by-step representation
of how we obtain the camera pose estimation through the PnP algorithm,
illustrating the effective transformation of raw 3D and 2D data points into
actionable camera pose information.

Figure 4.5: Perspective-n-Points calculation to get camera pose estimation

The input of perspective-n-points calculation is 2D position bolts in the
image and 3D position bolts in the world reference. The 2D position will
be obtained after the bolt detection process. The middle position of the bolt
detected will become the 2D input position for this calculation. After the bolts
have been detected and got the 2D position, the assignment location for the
bolt will provide the 3D location of each bolt. The location of the bolt uses a
reference from the collaborative robot.

To run the calculation, the input points should be six or more. The
calculation will result in the translation and rotation vector of the object.
The output should be converted into a camera perspective. To convert
the perspective object to the camera, additional calculation is needed. the
translation and rotation vector of the object needs to be multiplied by the
negative transposed rotation matrix from the object.



Algorithm Implementation | 43

4.4 Error State Extended Kalman Filter
The ESEKF algorithm that is explained in Section 2.5 is implemented in FPGA
logic fabric with IP core package for most of the mathematical expression.
The ESEKF implementation is inspired by the Python implementation from
Sanchez [35]. The ESEKF IP core became one of the major IP cores in the
implementation regarding utilization usage. The design process of the ESEKF
IP core used iteration to evaluate the utilization and adjust the implementation
architecture to reduce the utilization. The final design block of the ESEKF IP
core is shown in Figure 4.6.

Figure 4.6: ESEKF IP core design

The predict and update function has a bunch of input and output data.
The IP core is designed to accommodate communication by incorporating the
AXI4 bus. AXI4 is a high-performance memory-mapped data and address
interface that is easily integrated within the Xilinx development environment.
It has the capability to burst access to memory-mapped devices. It is suitable
for high-bandwidth and low-latency IP core design and capable of providing
high-frequency operation [36]. It is important for the ESEKF IP core because
the IP core will handle 9x9 matrix transfer for input and output, and also the
other input and output variables.

The design of the ESEKF IP core consists of shared resources on the input-
output interface and the computation processing. The input-output for both
predict and update functions needs to accommodate predicted state covariance
with the size of a 9x9 matrix. Moreover, the computation for both functions
requires matrix multiplication for a 9x9 matrix. Therefore, the identical
functionalities from both functions are shared because the operation of the



44 | Algorithm Implementation

IP core for both functions is not in parallel. The control signal is provided to
handle the switching between the functions.

The IP core development utilizes the HLS process. It uses the Simulink
Matlab HDL coder. The functionalities system is built with Simulink block
designs that support the HDL coder process. Most of the processes are the
math and logic manipulation functions. In the block design, the targeted
architecture of the RTL design is defined, such as the serial or parallel
process, the pipeline, the usage of Digital Signal Processing (DSP) and so on.
The functionalities of the system are simulated and verified with Simulink.
After all of the operation processes have been verified, the conversion of the
Simulink block into RTL is started. The conversion process can be set to
produce the IP core package directly by defining the targeted device of FPGA.
The generated IP core is then checked with Vivado Design Suite software
to observe the utilization consumption. If the utilization is above the target,
the iteration process is done by defining architecture in the Simulink block to
achieve the targeted resource utilization. In this research, the utilization of the
logic component is a main concern to optimize because of the limited logic
resource of the Kria KV260 FPGA. Whereas the timing is not the problem,
most of the architecture logic in this research utilized serial operation instead
of parallel operation.

The variable type for the ESEKF IP core mostly uses fixed point 16-bit
with fraction 14-bit. The reason is to reduce and simplify the logic design and
save the logic resources. However, the design still uses other variable types,
such as fixed point 32-bit, for some parts of the operation to keep the precision
of the operation. But if the variable can be represented with a fixed point
16-bit without significant loss, the variable will be pushed to use as minimal
resources.

The ESEKF IP core has 2 control variables and 1 status output variable.
The two control variables are the control switch functionality and the start
operation signal. the control switch functionality controls the IP-core for the
predict or update function. The start operation signal needs to be injected with
signal one to indicate that the operation inside the core should be started. the
one status output variable is the status that indicates all of the operations in the
core have been done.

4.4.1 Predict Function ESEKF
All of the mathematical operations in the predict function ESEKF are mapped
into RTL logic except the conversion from gyroscope data times delta time into



Algorithm Implementation | 45

the quaternion format. The following is the input and output variable from the
predict function with its variable type.

Table 4.3: Input and output variables for predict function ESEKF

Variables Direction Type Size
Accelerometer data Input Fixed 32-bit (frac 26-bit) 3

Delta time Input Fixed 32-bit (frac 26-bit) 1
Variance accelerometer Input Fixed 16-bit (frac 14-bit) 1

Variance gyroscope Input Fixed 16-bit (frac 14-bit) 1
Previous quaternion Input Fixed 32-bit (frac 26-bit) 4
Current quaternion Input Fixed 32-bit (frac 26-bit) 4

Previous state covariance Input Fixed 16-bit (frac 14-bit) 81
Predicted position Output Fixed 32-bit (frac 21-bit) 3
Predicted velocity Output Fixed 32-bit (frac 21-bit) 3

Predicted orientation Output Fixed 32-bit (frac 26-bit) 4
Predicted state covariance Output Fixed 16-bit (frac 14-bit) 81

4.4.2 Update Function ESEKF
The update function requires an inverse matrix operation for calculating the
Kalman gain. Since there is no direct support of block operation in Matlab
HDL coder for inverse matrix, the inverse matrix operation is conducted in the
processor with Python numpy library. Another exception is the calculation of
error state compensation for orientation, which is computed in Python code.
The other mathematical expressions are mapped in RTL logic. The following
is the input and output variable from the update function with its variable type.



46 | Algorithm Implementation

Table 4.4: Input and output variables for update function ESEKF

Variables Direction Type Size
Predicted position Input Fixed 32-bit (frac 21-bit) 3
Predicted velocity Input Fixed 32-bit (frac 21-bit) 3
Updated position Input Fixed 32-bit (frac 21-bit) 3
Inverse matrix Input Fixed 32-bit (frac 16-bit) 9

Predicted state covariance Input Fixed 16-bit (frac 14-bit) 81
Corrected position Output Fixed 32-bit (frac 21-bit) 3
Corrected velocity Output Fixed 32-bit (frac 21-bit) 3

error state orientation Output Fixed 32-bit (frac 26-bit) 3
Corrected state covariance Output Fixed 16-bit (frac 14-bit) 81

4.5 System Integration
The system integration integrates all of the IP cores that are used in this
research, such as the ESEKF IP core, SPI IP core, and DPU IP core. The
integration used the Vitis flow, which is explained in Section 4.2.3 and with
Figure 4.4. The Vitis flow integration used the DPU PYNQ script [17]
for automating the process. Vitis flow was chosen because it automatically
integrates the DPU IP core into the platform. Then, it will automatically
start the synthesis, implementation, and generation of a bitstream and the
generation of overlay files. The result of integration is the full schematic of the
SoC FPGA architecture, the FPGA implementation properties, and the overlay
files for the PYNQ platform.



Algorithm Implementation | 47

Figure 4.7: Simplify FPGA schematic

Figure 4.7 shows the simplification of the SoC schematic. The routing
arrow in Figure 4.7 is just a high-level abstraction, whereas the full schematic
can be accessed in Appendix A.1. All of the IP cores are connected to the
ZYNQ ultrascale+ processor via AXI bus connection with AXI interconnect
and AXI smartconnect. The IP cores use several clock configurations, such as
ESEKF and SPI uses 100 Mhz, and DPU uses 300 Mhz and 600 Mhz clock
supply. The clock sources are created by the clock wizard IP core with a single
supply clock output from the ZYNQ processor.



48 | Algorithm Implementation



Results | 49

Chapter 5

Results

5.1 Major results

5.1.1 Bolt Detection Result
The graph below illustrates the training loss of bolt detection on YOLOv3-
Tiny-3L.

Figure 5.1: Training loss of bolt detection model on YOLOv3-Tiny-3L

Figure 5.1 shows that after 8000 iterations, the average loss of the model
is 0.3254. After the training, the trained model was converted into an xmodel
file, which is a compatible file for the DPU IP core. The conversion between



50 | Results

the trained darknet model into the xmodel file is described in Section 4.2.2.
The xmodel file was used to test actual bolt detection in the FPGA. The pictures
below present a comparison of bolt detection between the test dataset and the
result of bolt detection.

(a) (b)

Figure 5.2: (a) Labeled dataset. (b) Bolt detection YOLOv3-Tiny-3L.

Figure 5.2a shows the manually labelled dataset for testing purposes on the
trained model, and Figure 5.2b shows the bolt detection result in The FPGA.
Most of the bolts have been detected correctly. However, the bounding boxes
from Figure 5.2b do not fit fully as a manually labelled dataset, and there is
a missing bolt from detection. Figure 5.2b is the sample result, Whereas the
population of bolt detection are represented in Table 5.1.

Table 5.1: Accuracy of Bolt detection

Precision Classes YOLOv3-Tiny-3L
AP (%) Bolt 1 (Black) 29.43
AP (%) Bolt 2 (Silver) 36.71

mAP (%) 33.07

Table 5.1 provides the result of Average Precision (AP) from two classes
and the mean Average Precision (mAP). The results in Table 5.1 were acquired
with the Intersection over Union (IoU) threshold of 0.5. Overall, these results
indicate that bolt detection with YOLOv3-Tiny-3L has successfully detected
the bolt, whereas the detection accuracy is categorized as low.



Results | 51

5.1.2 Localization Result
The localization result consists of a six-dimensional degree of freedom pose
estimation, which is a 3-axis position and a 3-axis orientation. All of the data
for pose estimation has reference from the base location of the Cobot that is
described in Section 2.4. Figure 5.3 compares the 3D plot of ground truth data
and visual-inertial position estimation.

Figure 5.3: 3D tracking Visual-inertial position estimation

As shown in Figure 5.3, the visual-inertial position estimation overall
follows the ground truth data movement. The test movement object starts and
ends in the marked texts ”start” and ”end” in Figure 5.3. The comparison of
position estimation from each axis is shown in the figures below.



52 | Results

Figure 5.4: X axis comparison for Visual-inertial position estimation

Figure 5.5: Y axis comparison for Visual-inertial position estimation



Results | 53

Figure 5.6: Z axis comparison for Visual-inertial position estimation

Figure 5.4, Figure 5.5 and Figure 5.6 show the difference between the
position estimation in each axis with ground truth for all of the index dataset.
To see the distribution of RMSE from the position, the histogram of RMSE
position data is shown in Figure 5.7.

Figure 5.7: RMSE position histogram

Figure 5.7 provides the RMSE position histogram from visual-inertial
pose estimation and visual pose estimation. The visual pose estimation is



54 | Results

obtained from the calculation of perspective-n-points in the image dataset,
whereas the visual-inertial pose estimation is obtained from the data fusion
between the visual pose estimation and the IMU dataset with the ESEKF
algorithm. From the graph, it can be seen that the visual and visual-inertial
have closely distributed data, where the mean value of RMSE position in
visual-inertial is slightly lower than the mean value of RMSE position in visual
pose estimation. Furthermore, the error orientations from both visual and
visual-inertial pose estimation are shown in the figures below.

Figure 5.8: Error orientation histogram for Visual-Inertial estimation

Figure 5.8 presents the histogram of error orientation from visual-inertial
pose estimation. The histogram shows mostly empty in the middle, with most
of the data in the left part under the 25 degree because there are several outliers
data near the value of 200. Because of the outliers, the distribution of the
histogram becomes unrepresentative.



Results | 55

Figure 5.9: Error orientation histogram for Visual estimation

Figure 5.9 presents the histogram of error orientation from visual pose
estimation. The histogram from Figure 5.9 is more representative than
Figure 5.8 because the outliers are still below the value of 17 degrees.
However, the mean value of error orientation in both configurations has a close
value, whereas the visual pose estimation has a slightly better error with 4.18
degrees.

The overall localization parameters value distribution is shown in
Table 5.2.

Table 5.2: Localization parameter from Visual-Inertial pose estimation

Parameters Mean Standard Deviation
RMSE Position (mm) 39.69 9.90

Absolute Error X-axis (mm) 18.30 8.71
Absolute Error Y-axis (mm) 30.98 8.61
Absolute Error Z-axis (mm) 14.39 4.66
Error Orientation (Degree) 4.80 5.39

Table 5.2 presents the results of localization parameters derived from a
visual-inertial pose estimation system with mean and standard deviation from



56 | Results

position and orientation error. For the RMSE position, the data is distributed
closely from the mean value that is indicated by the standard deviation value
has a value significantly lower than the mean value. Whereas the error
orientation has more distributed data with a standard deviation higher than
the mean value.

5.1.3 Time Execution
Since the system is implemented in SoC FPGA, that means some of the
processes are executed in FPGA logic fabric and DSP slices, and the others
are executed in the processor. The information on time execution can
provide insight into efficiency, bottlenecks, complexity and benchmarking
from every process that is executed in the system. Table 5.3 provides summary
information of time execution from major processes in the system.

Table 5.3: Time execution summary

Function Process Time Execution
DPU for YOLOv3-Tiny-3L (With-
out inference)

FPGA Logic &
DSP Slices

25 ms

Full inference YOLOv3-Tiny-3L
with DPU

FPGA Logic &
DSP Slices &
ARM Processor

85 ms

Full inference YOLOv3-Tiny-3L
with ZYNQ-ARM processor

ARM Processor 1430 ms

ESEKF IP-core internal process
(without AXI4 communication)

FPGA Logic &
DSP Slices

176 µS

Predict function ESEKF (with
AXI4 communication)

FPGA Logic &
DSP Slices &
ARM Processor

8.8 ms

Update function ESEKF (with
AXI4 communication)

FPGA Logic &
DSP Slices &
ARM Processor

10 ms

Pre-pose estimation process (3D
assignment location, etc)

ARM Processor 7 ms

Pose estimation process ARM Processor 2.3 ms

As can be seen from Table 5.3, the execution of the YOLOv3-Tiny-3L
model in the FPGA has a significant time reduction compared to processor



Results | 57

execution. The process inside the DPU IP core or only in FPGA logic fabric
and DSP slices has an even lower time execution. A similar pattern also can
be seen in the ESEKF IP core, where the execution inside the FPGA logic has
significantly lower time execution than the full process with the processor that
includes the AXI4 communication.

5.2 Minor result

5.2.1 FPGA Implementation Result
The FPGA implementation refers to the implementation of architecture that
consists of the ZYNQ processor, the bus connection, and the other IP
cores. The FPGA implementation is described in Section 4.5. The FPGA
implementation results in several important information such as utilization,
timing, and power estimation.

The table below shows the proportion of the utilization in the final
implementation of logic fabric in the FPGA.

Table 5.4: FPGA Utilization

Utilization DPU ESEKF Others Total Percentage
CLB LUTs (117120) 45103 25753 4035 74891 64%

CLB Registers (234240) 80293 59495 4687 144475 62%
CARRY8 (14640) 1018 568 2 1588 11%
F7 Muxes (58560) 2233 1648 3 3884 7%
Block RAM (144) 78 9.5 0 87.5 61%
UltraRAM (64) 40 0 0 40 63%
DSPs (1248) 566 329 0 895 72%

What is interesting about the data in Table 5.4 is that most of the utilization
in the FPGA is utilized by the DPU and ESEKF IP core. The other IP cores,
such as SPI, clock generation, bus interconnect, and so on, use a small portion
of logic utilization. The Configurable Logic Block (CLB) LUT and CLB
registers consume 64% and 62%, respectively, and internal RAM that consists
of block RAM and UltraRAM consume 61% and 63%, respectively. The DSPs
block is utilized more with 72% of utilization.



58 | Results

Figure 5.10: Timing summary

Figure 5.10 shows the timing summary after the implementation process.
After the logic block placement and routing, there is no timing violation in
setup and hold timing. All of the logic can be operated within the default
timing constraints based on defined clocks in full schematic Appendix A.1.

The power analysis uses the default assumption operation of logic without
a defined activity file for the logic blocks. The result of power analysis is
shown in Figure 5.11.

Figure 5.11: Power estimation report

As shown in Figure 5.11 about the power estimation, the dynamic
consumes 5.735 W or 94% of on-chip power, and static consumes 0.350 W
or 6% of on-chip power.



Results | 59

Furthermore, the trained model of YOLOv3-Tiny-3L implementation in
the DPU IP core requires adjustment on the workload. The updated workload
is also determined by the DPU architecture. The workload of the YOLOv3-
Tiny-3L model before and after the implementation in the DPU IP core is
shown in Table 5.5.

Table 5.5: YOLOv3-Tiny_3L workload on DPU IP core

Layer Layer Type
(Activation
Function)

Filters Size/
Stride

Input / Out-
put

Workload
(MAC ops)

Workload on
DPU arch
(MAC ops,
Memory
access)

0 Convolutional
(Leaky)

16 3x3/1 416x416x3 /
416x416x16

152289280 411873280

1 Maxpool 2x2/2 416x416x16 /
208x208x16

2768896 4845568

2 Convolutional
(Leaky)

32 3x3/1 208x208x16 /
208x208x32

400105472 917629440

3 Maxpool 2x2/2 208x208x32 /
104x104x32

1384448 1817088

4 Convolutional
(Leaky)

64 3x3/1 104x104x32 /
104x104x64

399413248 573139840

5 Maxpool 2x2/2 104x104x64 /
52x52x64

692224 757120

6 Convolutional
(Leaky)

128 3x3/1 52x52x64 /
52x52x128

399067136 514084480

7 Maxpool 2x2/2 52x52x128 /
26x26x128

346112 407680

8 Convolutional
(Leaky)

256 3x3/1 26x26x128 /
26x26x256

398894080 557927552

9 Maxpool 2x2/2 26x26x256 /
13x13x256

173056 221312

10 Convolutional
(Leaky)

512 3x3/1 13x13x256 /
13x13x512

398807552 515986016

11 Maxpool 2x2/1 13x13x512 /
13x13x512

346112 430976

Continued on next page



60 | Results

Table 5.5 – Continued from previous page
Layer Layer Type

(Activation
Function)

Filters Size/
Stride

Input / Out-
put

Workload
(MAC ops)

Workload on
DPU arch
(MAC ops,
Memory
access)

12 Convolutional
(Leaky)

1024 3x3/1 13x13x512 /
13x13x1024

1595057152 2009425600

13 Convolutional
(Leaky)

256 1x1/1 13x13x1024 /
13x13x256

88647936 114694944

14 Convolutional
(Leaky)

512 3x3/1 13x13x256 /
13x13x512

398807552 515986016

15 Convolutional
(Linear)

27 1x1/1 13x13x512 /
13x13x27

4677075 6039488

16 YOLO
17 Route
18 Convolutional

(Leaky)
128 1x1/1 13x13x256 /

13x13x128
11097216 15520960

19 Upsample 2x2/1 13x13x128 /
26x26x128

20 Route
21 Convolutional

(Leaky)
256 3x3/1 26x26x384 /

26x26x256
1196336128 1561798784

22 Convolutional
(Linear)

27 1x1/1 26x26x256 /
26x26x27

9363276 12416768

23 YOLO
24 Route
25 Convolutional

(Leaky)
128 1x1/1 26x26x256 /

26x26x128
44388864 62083840

26 Upsample 2x2/1 26x26x128 /
52x52x128

27 Route
28 Convolutional

(Leaky)
128 3x3/1 52x52x128 /

52x52x128
1595230208 1952379520

29 Convolutional
(Linear)

27 1x1/1 52x52x128 /
52x52x27

18763056 22911616

30 YOLO
Continued on next page



Results | 61

Table 5.5 – Continued from previous page
Layer Layer Type

(Activation
Function)

Filters Size/
Stride

Input / Out-
put

Workload
(MAC ops)

Workload on
DPU arch
(MAC ops,
Memory
access)

Total 7116656079 9772377888

As it can be seen in Table 5.5, the workload on DPU architecture has
considerably increased compared to the initial workload on the model. The
workload on the DPU architecture increases in every model layer.



62 | Results



Discussion | 63

Chapter 6

Discussion

6.1 Bolt Detection
This research utilized a relatively small dataset of 200 images for training the
YOLOv3-tiny-3L model. While the training process managed to achieve a low
loss of 0.3254 at 8000 iterations, it is essential to discuss the implications of the
size of the dataset on the model’s performance. With deep learning models,
especially for complex tasks such as object detection, a large dataset is usually
desirable to capture a broad range of variability and prevent overfitting, which
occurs when the model learns the training data too well, including noise or
outliers, compromising its ability to generalize to new data. Although the
achieved loss value suggests that the model fits the training data effectively,
the potential for overfitting is significant, given the limited size of the dataset.
Hence, despite the promising training results, we must proceed with caution.
It is paramount to validate the model on a separate set, consisting of previously
unseen data to evaluate the model’s ability to generalize.

When evaluating our YOLOv3-tiny model on the test dataset of 50 images,
the mAP stood at 33.07% with an IoU threshold of 0.5. This threshold is a
common benchmark for object detection tasks, and it means that a prediction
is considered correct if the overlap between the predicted and actual bounding
box is 50% or more. The value of mAP is categorized as normal for the
tiny yolo model because, in the original model YOLOv3-tiny with COCO
dataset, the mAP value is 33.1 [11] [6]. The mAP value from the bolt detection
successfully achieved the first subgoal for this study in Section 1.4, which is
minimum achieve mAP 33%.

Regarding each class performance, the model achieved an average
precision (AP) of 29.43% for the first class and 36.71% for the second class.



64 | Discussion

This shows that the model is currently more efficient at identifying objects
from the second class than the first one.

Further examination of the test results also revealed that the predicted
bounding boxes by the model were not perfectly aligned with the ground truth
from the labelled dataset, as shown in Figure 5.2b. This could result from
several factors, such as the small size of the training dataset, inadequate variety
in the training samples, or the model’s insufficient capacity to learn complex
patterns. This could also be why the mAP value is lower than the normal
YOLOv3 model [6]. However, for this research aim, the bounding box is not a
problem as long as the bolt still can be detected because the important output
from bolt detection in this research is the middle point of bolts.

Moreover, it was observed that the model failed to detect some instances
of the bolt object in the test images. For instance, in Figure 5.2b shows one
bolt in the right upper corner has missed from detection. This suggests that
the model might be struggling with identifying certain objects, possibly due
to a lack of representative samples in the training data or due to complexities
and similarities in features shared with the background or other objects.

Furthermore, the confidence level of the detected bolts in Figure 5.2b is
categorized as very high, which is near one. It is because the training data
is limited, which is 200 images and the training data was obtained from the
same environment setup as testing data. For further development, the training
should incorporate more data in various environment setups to produce more
representative testing results.

To address these issues, future iterations of this study might consider
expanding the training dataset, particularly with more diverse samples of
the underrepresented or misclassified objects. Using data augmentation
techniques can also enrich the dataset and allow the model to learn from a
wider range of scenarios. Fine-tuning the model parameters and adjusting
the model’s architecture could further improve both object detection and
bounding box precision. Also, experimenting with different IoU thresholds
could potentially lead to more accurate performance metrics, reflecting the
model’s performance more precisely.

6.2 Localization
The result of this study shows that the visual-inertial pose estimation with
perspective-n-points, bolt detection, and Kalman filter can estimate close
results from ground truth data. The Kalman filter fuses the visual pose
estimation, IMU data and bolt references data to get the result of visual-



Discussion | 65

inertial pose estimation. The position results from pose estimations, which are
represented as the blue line in Figure 5.3, can follow the track movement of the
ground truth position. Mostly, the position estimation results are seen to have
a bias from the ground truth, but some of the parts of the position are seen
to move towards the ground truth. Due to the limitation of communication
handling with Cobot as base reference position provider, the red line in
Figure 5.3 as ground truth is observed has several gaps on the movement.
However, since the data acquisition was conducted in synchronisation for all
of the data, for instance, IMU data, images data, and ground truth data, then
after the gap communication in a Cobot, the other data are still valid, the gaps
in the ground truth affect the 3D location assignment of the bolts because of
loss tracking. In this research, the problem was encountered by reassigning the
3D location of the bolt manually. It becomes the limitation of this study that
needs to be solved in further study. In addition, the comparison of ground truth
and visual-inertial estimation in the X, Y and Z axis shows that the position
estimation can follow the movement in ground truth well. These results are
consistent with the 3D tracking result that was discussed earlier.

One interesting finding is that the RMSE of positions is normally
distributed for both visual-inertial pose estimation and visual pose estimation.
The mean value of visual-inertial pose estimation has a slightly better value
than visual pose estimation, with values of 39.69 mm and 41.30 mm,
respectively. The reason is that the data fusion with IMU data and bolt
references position makes the estimation move towards the ground truth. In
the visual inertial pose estimation, some of the errors have values near zero;
that is because the bolt references update to the Kalman filter. The inertial
data still seem insignificant to help the estimation because the data rate of the
IMU in this study is still low, which is around 30 Hz. Further study is expected
can fix it and improve it to get better estimation results. Moreover, the sensor
variance value for visual pose estimation was set quite low, which is 0.001,
which means the confidence of the visual pose estimation is high. Whereas the
variance value for bolt reference update is 0, which means the bolt reference
position has confidence as ground truth. Because of variance from visual pose
estimation is low, the distribution of visual-inertial pose estimation is close to
the visual pose estimation.

For the orientation result, orientation errors for visual-inertial estimation
and visual pose estimation show the normal distribution. However, one
unexpected finding was there are outliers in error orientation from visual-
inertial pose estimation that make the histogram in Figure 5.8 not seen as well
distributed. It is indicated because the Kalman filter uses 16 bits of a fixed



66 | Discussion

point in the state covariance matrix, and there was saturation in the calculation.
The orientation result from visual pose estimation was not used directly in the
Kalman filter update because the reason was to keep the calculation small
in the Kalman gain, but the orientation result was used undirectly in the
update process. Furthermore, the mean value between error orientation in
visual-inertial and visual pose estimation is close. However, the visual-inertial
estimation has a slightly higher error orientation because of the outliers data.

One of the key results of this study is the relatively low mean value of
the RMSE for the position, which stands at 39.69mm. This result aligns
with our second subgoal detailed in Section 1.4. Furthermore, the standard
deviation for RMSE position being lower than its mean value suggests that the
RMSE position values are tightly clustered, reflecting consistent performance
in the model’s localization capability. Variations in performance are observed
upon dividing the absolute inaccuracy in the positional estimates along the
X, Y, and Z axis. The mean absolute error and standard deviation on the X-
axis are 18.30mm and 8.71mm, respectively. A larger mean absolute error
of 30.98mm and an 8.61mm standard deviation are displayed on the Y-axis.
According to the lowest mean absolute error of 14.39mm and the smallest
standard deviation of 4.66mm among them, the model appears to perform
best when estimating positions along the Z-axis. Additionally, our analysis
of the model’s performance in estimating orientation reveals an average error
of 4.80 degrees. However, the standard deviation of 5.39 degrees suggests
a significant spread in the orientation error rates, indicating a possible area
for enhancement. Overall, the Visual-Inertial pose estimation method is
reasonably robust in estimating both position and orientation. Nevertheless,
certain aspects, notably the Y-axis localization and orientation estimation,
show room for improvement. Future iterations of our work could benefit
from fine-tuning the model parameters or incorporating advanced algorithms
to bolster performance in these areas.

Moreover, the visual localization in this study necessitates at least six key
points for the perspective-n-point algorithm, represented by the bolt objects.
This requirement emerges as a constraint of the system. If fewer than six bolts
are detected, the visual localization fails to provide any localization estimates,
compelling the system to rely solely on the inertial sensor’s localization.
However, the potential for future improvements exists in refining the fusion
algorithm between the visual and inertial sensors, which could lessen the
requisite number of key points for localization estimation. Notably, Zhao et
al. [26] proposed an alternative fusion approach for visual and inertial sensors,
which requires fewer key points. They introduced a novel algorithm named



Discussion | 67

Inertial Perspective-n-Point (IPNP), which demands only two key points.
Such an advancement would be highly advantageous in scenarios like bolt
tightening, where the possibility of detecting fewer than six bolts increases as
the tightening tool progresses with the task. Consequently, further exploration
and adaptation of this algorithm could pave the way for a more flexible and
reliable localization process in future iterations of this work. This avenue
of future research could potentially transform the system’s limitations into
opportunities for innovation and efficiency in bolt detection and localization.

6.3 Time Execution
Table 5.3 provides a detailed overview of the time execution for various
processes involved in our object detection and localization task. Starting
with the FPGA logic, the DPU for YOLOv3-Tiny-3L took 25ms to complete,
not including the time for inference. This gives an indication of the base
computational time required by the FPGA for processing the object detection
model without actual inference.

When considering the full inference time, two different systems were
analyzed: FPGA Logic & Processor and the ZYNQ-ARM Processor. Full
inference using the DPU on FPGA Logic & Processor took significantly
less time, 85ms, than the ZYNQ-ARM Processor alone, which required a
substantial 1430ms. This shows a clear advantage in using the DPU with
FPGA for inference regarding execution speed.

Looking at the ESEKF IP-core internal process, without including AXI4
communication, the execution time is quite small at 176 microseconds.
However, when considering the AXI4 communication, the execution time
increases to 8.8ms for the Predict function and 10ms for the Update function.
Moreover, the time spent on the processor for pre-pose estimation and pose
estimation processes is relatively minimal, at 7ms and 2.3ms, respectively.
The total time for bolt detection and localization is 113.1 ms, which integrates
the full inference bolt detection with DPU, predict and update function
ESEKF, pre-pose and pose estimation process. The total time of bolt detection
and localization achieves the third subgoal of this study in Section 1.4, where
the total time of 113.1 ms is less than the target of 150 ms.

Overall, this analysis of time execution emphasizes the efficiency of
using FPGA logic fabric and DSP slices in conjunction with an ARM
processor for inference tasks and also highlights the importance of considering
communication time when dealing with functions that involve external
communication, like the ESEKF Predict and Update functions. Further



68 | Discussion

optimization of these processes could lead to more efficient execution times,
leading to real-time or near-real-time performance, which is often crucial in
object detection and localization tasks.

6.4 FPGA Implementation
Table 5.4 provides a summary of FPGA resource utilization for the DPU,
ESEKF, and other components. The utilization is presented in absolute values
and the corresponding percentage of total available resources. The DPU and
ESEKF together accounted for a substantial majority of the utilized resources
across all categories. For example, in terms of CLB LUTs and Registers,
the DPU and ESEKF used 64% and 62% of the total available resources,
respectively. The high utilization indicates an efficient use of the FPGA’s
resources by these functions, but it also suggests that there is limited room for
adding more complex functionalities without exceeding the FPGA’s resource
capacity. Among other resources, the DSPs were the most utilized, with
72% of the total available DSPs used. This high usage is driven primarily
by the DPU and ESEKF, underlining the computation-intensive nature of
these components. The relatively low usage of the CARRY8 and F7 Muxes,
at 11% and 7%, respectively, suggests these resources are not significantly
required by the current implementation. From the perspective of utilization
percentage, it seems that there is a possibility to enhance the DPU architecture
or increase the complexity of ESEKF computations. Numerous iterations
have been conducted to improve the DPU architecture and augment its overall
complexity. Nevertheless, subsequent to these modifications, issues have
arisen in the routing logic. The present utilization outcomes represent the
optimal and feasible outcomes for execution. In general, this table highlights
the resource efficiency of the current FPGA implementation but also signals
potential limitations for further expansion or complexity increase due to the
already substantial resource usage.

The implementation strategy that was used in the implementation stage
in Vivado design suite software was Congestion_SpreadLogic_low. This
implementation strategy was used to avoid the timing violation. As can be
seen in Figure 5.10, there is no timing violation in hold or setup. When
the implementation strategy used the default, which is Performance_Explorer,
there was a timing violation in the setup. Congestion_SpreadLogic_low
strategy prioritizes reducing congestion by spreading the logic out in the
available FPGA area. It tries to balance logic density and distribution to avoid
high-congestion areas, which can cause timing violations because signals take



Discussion | 69

longer to travel through congested areas. By spreading out the logic and
reducing congestion, the timing of the design could be better controlled, and
timing violations could be avoided.

The power estimation in Figure 5.11 did not incorporate the activity file
or Switching Activity Interchange Format (SAIF) file. Hence, this could be
seen as a preliminary or approximate power estimation. The inherent power
calculation from Vivado incorporates the power drained when the device is
at rest, referred to as static power consumption, and the power consumed
when the device is in active mode, known as dynamic power consumption.
However, it lacks detailed insight into the design’s switching activity, which
could cause disparities from the true power usage. Therefore, while this default
power estimation is a useful starting point, it might not accurately represent the
design’s actual power usage during real-world operation. Since, in this study,
the power is not the main concern, the rough power estimation can be used as
future bench-marking when the system is improved.

The YOLOv3-Tiny-3L workload on the DPU IP core, as displayed in Table
5.5, provides significant insights into the performance of the DPU core during
the execution of different layers. It can be seen that the convolutional layers
bear a significant portion of the total workload, which reaches approximately
7.1 billion operations. However, when executed on a DPU architecture, the
workload rises to nearly 9.8 billion operations. The observed discrepancy
between the workload and workload on the DPU architecture is due to two
main factors. Firstly, the workload on the DPU is influenced by layer-specific
operations, which include convolutions, pooling, and activation functions.
These operations are determined by various parameters such as layer type,
filter size, stride, and the dimensions of the input and output. Secondly, the
DPU architecture adds its own complexities. It considers not just the basic
computational operations of the network layers but also several additional
aspects integral to its architecture. This includes overheads related to loading
weights and biases into memory, transferring data between the CPU and
DPU, managing memory hierarchies, data type conversions, buffer handling,
instruction scheduling, and latency. In addition, the DPU’s parallel processing
model may require synchronization between different processing elements,
contributing to the total workload. This suggests that when deploying a
deep neural network like YOLOv3-Tiny-3L on a DPU, attention must be
given to both network-specific and architecture-specific parameters. Ensuring
optimal execution requires careful consideration of the workload distribution
across layers, the DPU architecture, and potential overheads. It underscores
the importance of hardware-software co-design and co-optimization when



70 | Discussion

deploying deep learning models on specialized hardware like DPU.



Conclusions and Future work | 71

Chapter 7

Conclusions and Future work

In the subsection conclusions, we examine our objectives and assess the
outcomes. Some of the study’s limitations will be mentioned in subsection
limitations. In the section titled ”Future Work”, we outline what we consider
are the study’s reasonable next steps as well as any remaining issues.

7.1 Conclusions
The primary objective of this study was to implement a visual-inertial
localization mechanism incorporating bolt detection with machine learning,
the perspective-n-points algorithm, and data fusion using the Kalman filter.
This research has offered fresh perspectives on the performance and efficient
utilization of Field Programmable Gate Arrays (FPGAs) when employing the
YOLOv3-Tiny-3L and ESEKF algorithms.

The bolt detection implementation using YOLOv3-Tiny-3L yielded an
mAP value of 33.07 for two classes of detection, successfully fulfilling the first
subgoal of this study. Our findings indicate that implementing the YOLOv3-
Tiny-3L model in FPGA using a DPU IP core can drastically reduce execution
time compared to processor-based implementation, from 1430 ms to a notably
quicker 85 ms.

The visual-inertial localization utilizing the ESEKF algorithm yielded
promising results in pose estimation. The average RMSE for the position was
39.69 mm with a standard deviation of 9.9 mm, and the average orientation
error was 4.8 degrees with a standard deviation of 5.39 degrees. Regarding
localization position, the average value of 39.69 mm surpasses the second
subgoal of this study, delivering an accuracy of the position below the targeted
100 mm. Additionally, the total time required for bolt detection through to



72 | Conclusions and Future work

complete localization is a modest 113.1 ms, which is well below the target set
for the third subgoal.

The insight of this study is the FPGA logic implementation can drive
the faster and more efficient execution of object detection and the ESEKF
algorithm. Whereas, faster execution require complex logic implementation,
which drives to use of more utilization resource in FPGA. The balancing
between the performance and hardware resources is important when defining
the target of the study.

7.2 Limitations
This study encountered a limitation pertaining to the generation of a
synchronized dataset. The design of our IMU sensor, camera, and
Cobot communication systems was intended to produce synchronous data
accompanied by a timestamp. However, any latency or overload from any
single device could bottleneck the data from other devices. Consequently,
this study’s dataset only incorporates 10Hz image data and 30Hz IMU data.

Another limiting factor in this study is the available hardware resources
in the FPGA. Due to this constraint, the DPU architecture could not employ
its highest supported variant. Additionally, the hardware resource limitations
hindered the full implementation of the ESEKF algorithm within the FPGA
logic. Some computational aspects within the ESEKF algorithm, including
converting the Euler angle into quaternion and the inverse matrix process, are
still executed outside the FPGA due to these limitations.

Therefore, while this research provides significant insights into the
performance and utilization of FPGA with YOLOv3-Tiny-3L and ESEKF
algorithms, it also underscores the importance of addressing potential
bottlenecks in data synchronization and resource constraints within FPGA
implementations. These findings can guide future efforts to further optimize
the performance and resource utilization of these algorithms on FPGA.

7.3 Future work
Future work in the domain of bolt detection could require the assembly of
a more comprehensive dataset for model training and testing. If feasible,
the inclusion of additional types of bolts could yield more representative
and precise object detection outcomes. Additionally, investigating different
YOLO models and versions for FPGA implementation could yield intriguing



Conclusions and Future work | 73

comparative results with the existing implementation in this study.
In the context of localization, future studies could strive to utilize higher

sampling rates for the camera and IMU, potentially enhancing the accuracy of
estimations. Furthermore, exploring a wider range of camera and IMU sensors
could offer intriguing avenues for further investigation.

Regarding the implementation of the ESEKF algorithm, future work could
expand the calculation model to update not only the position variables but
also the velocity and orientation variables. The state covariance matrix could
also be broadened to encompass additional parameters, thereby enhancing
the precision of the calculation model. However, such expansions would
necessitate a more powerful FPGA device with greater hardware resources.
These prospective directions demonstrate the exciting potential for ongoing
innovation and advancement in this field.

7.3.1 What has been left undone?
The present study did not address the integration and optimization of the
PYNQ platform with Python code to implement all algorithms in real time.
We primarily relied on a dataset for algorithm testing. Consequently, future
research that focuses on integrating these algorithms and conducting tests
with real-time data could constitute a significant advancement in this area
of study. This approach could potentially yield more dynamic and practical
results, thereby offering a comprehensive perspective on the performance of
the algorithms in a real-world scenario.

7.4 Reflections
This study utilized images as visual data that possibly have ethical concerns.
For handling the ethical question, we did not include humans in the frame of
images in the testing process. The images only contain the tightening objects
and will be taken only with the permission of the company host for this project,
which is Atlas Copco. The image data from the dataset is stored safely in the
company computer with secure and limited access. The actual implementation
tools utilized a camera without a saving procedure for the image that has been
taken.

As part of the 2030 Agenda for Sustainable Development, the United
Nations adopted 17 sustainability goals to end poverty, protect the planet,
and ensure peace and prosperity. This research will contribute to Goal 9:
Industries, Innovation, and Infrastructure. The results of this research will



74 | Conclusions and Future work

open the possibility of enhancing the future tightening process for the Atlas
Copco industry with no human error in the tightening process.



References | 75

References

[1] R. Danielsson, “Analysis of Simulation tool for Future Flexible
Assembly lines,” Master’s thesis, Luleå University of Technology,
Sweden, 2022. [Online]. Available: https://urn.kb.se/resolve?urn=urn:
nbn:se:ltu:diva-91545 [Page 1.]

[2] S. Kumakura and K. Saito, “Tightening Sequence for Bolted Flange Joint
Assembly,” in Pressure Vessels and Piping Conference. American
Society of Mechanical Engineers Digital Collection, Aug. 2008.
doi: 10.1115/PVP2003-1867 pp. 9–16. [Online]. Available: https:
//dx.doi.org/10.1115/PVP2003-1867 [Page 1.]

[3] I. Coria, M. Abasolo, J. Aguirrebeitia, and I. Heras, “Study of bolt
load scatter due to tightening sequence,” International Journal of
Pressure Vessels and Piping, vol. 182, p. 104054, May 2020. doi:
10.1016/j.ijpvp.2020.104054. [Online]. Available: https://www.scienc
edirect.com/science/article/pii/S0308016120300326 [Page 1.]

[4] M. Abid, “The effect of bolt tightening methods and sequence on
the performance of gasketed bolted flange joint assembly,” Structural
engineering & mechanics, vol. 46, pp. 843–852, Jun. 2013. doi:
10.12989/sem.2013.46.6.843 [Page 1.]

[5] V. M. S. i. m. e. Soni, “A machine learning optical system to ensure that
human assembly technicians use the specified bolt tightening sequence
in assembly line manufacturing,” Thesis, University of Texas at Austin,
USA, May 2020, accepted: 2021-08-12T18:37:56Z. [Online]. Available:
https://repositories.lib.utexas.edu/handle/2152/86986 [Page 2.]

[6] J. Redmon and A. Farhadi, “YOLO: Real-Time Object Detection.”
[Online]. Available: https://pjreddie.com/darknet/yolo/ [Pages 4, 63,
and 64.]

https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91545
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-91545
https://dx.doi.org/10.1115/PVP2003-1867
https://dx.doi.org/10.1115/PVP2003-1867
https://www.sciencedirect.com/science/article/pii/S0308016120300326
https://www.sciencedirect.com/science/article/pii/S0308016120300326
https://repositories.lib.utexas.edu/handle/2152/86986
https://pjreddie.com/darknet/yolo/


76 | References

[7] Peter Bock, Getting It Right : R&D Methods for Science & Engineering,
1st ed. San Diego: Academic Press, 2001. ISBN 978-0-12-108852-1.
[Online]. Available: https://www.elsevier.com/books/getting-it-right/b
ock/978-0-12-108852-1 [Page 4.]

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” May 2016,
arXiv:1506.02640 [cs]. [Online]. Available: http://arxiv.org/abs/1506.0
2640 [Pages 7 and 8.]

[9] R. Girshick, “Fast R-CNN,” Sep. 2015, arXiv:1504.08083 [cs]. [Online].
Available: http://arxiv.org/abs/1504.08083 [Page 7.]

[10] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,”
Jan. 2023, original-date: 2022-09-11T16:39:45Z. [Online]. Available:
https://github.com/ultralytics/ultralytics [Page 8.]

[11] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
Apr. 2018, arXiv:1804.02767 [cs]. [Online]. Available: http://arxiv.org/
abs/1804.02767 [Pages 8, 31, 37, and 63.]

[12] L. Zhao and S. Li, “Object Detection Algorithm Based on Improved
YOLOv3,” Electronics, vol. 9, no. 3, p. 537, Mar. 2020. doi:
10.3390/electronics9030537 Number: 3 Publisher: Multidisciplinary
Digital Publishing Institute. [Online]. Available: https://www.mdpi.c
om/2079-9292/9/3/537 [Page 8.]

[13] R. Mehta and C. Ozturk, “Object detection at 200 Frames Per
Second,” May 2018, arXiv:1805.06361 [cs]. [Online]. Available:
http://arxiv.org/abs/1805.06361 [Pages 8 and 9.]

[14] H. Gong, H. Li, K. Xu, and Y. Zhang, “Object Detection Based on
Improved YOLOv3-tiny,” in 2019 Chinese Automation Congress (CAC),
Nov. 2019. doi: 10.1109/CAC48633.2019.8996750 pp. 3240–3245,
iSSN: 2688-0938. [Pages 9 and 37.]

[15] Xilinx, “PYNQ,” Jun. 2023, original-date: 2016-01-20T01:16:27Z.
[Online]. Available: https://github.com/Xilinx/PYNQ [Page 9.]

[16] Xilinx, “Vitis AI — Vitis™ AI 3.0 documentation.” [Online]. Available:
https://xilinx.github.io/Vitis-AI/ [Page 9.]

https://www.elsevier.com/books/getting-it-right/bock/978-0-12-108852-1
https://www.elsevier.com/books/getting-it-right/bock/978-0-12-108852-1
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1504.08083
https://github.com/ultralytics/ultralytics
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://www.mdpi.com/2079-9292/9/3/537
https://www.mdpi.com/2079-9292/9/3/537
http://arxiv.org/abs/1805.06361
https://github.com/Xilinx/PYNQ
https://xilinx.github.io/Vitis-AI/


References | 77

[17] Xilinx, “DPU on PYNQ,” May 2023, original-date: 2020-04-
29T23:43:53Z. [Online]. Available: https://github.com/Xilinx/DPU-P
YNQ [Pages 10, 11, and 46.]

[18] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6, pp.
381–395, Jun. 1981. doi: 10.1145/358669.358692. [Online]. Available:
https://dl.acm.org/doi/10.1145/358669.358692 [Page 11.]

[19] S. Li, C. Xu, and M. Xie, “A Robust O(n) Solution to the
Perspective-n-Point Problem,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 7, pp. 1444–1450, Jul. 2012.
doi: 10.1109/TPAMI.2012.41 Conference Name: IEEE Transactions on
Pattern Analysis and Machine Intelligence. [Page 11.]

[20] E. Marchand, H. Uchiyama, and F. Spindler, “Pose Estimation
for Augmented Reality: A Hands-On Survey,” IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 12, p.
2633, 2016. doi: 10.1109/TVCG.2015.2513408. [Online]. Available:
https://inria.hal.science/hal-01246370 [Pages 11 and 12.]

[21] “OpenCV: Perspective-n-Point (PnP) pose computation.” [Online].
Available: https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
[Pages xi, 12, and 42.]

[22] Universal Robots, “Universal Robots e-Series User Manual,” 2022.
[Online]. Available: https://www.universal-robots.com/download/
[Pages xi and 13.]

[23] V. Madyastha, V. Ravindra, S. Mallikarjunan, and A. Goyal, “Extended
Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude
Estimation,” in AIAA Guidance, Navigation, and Control Conference.
Portland, Oregon: American Institute of Aeronautics and Astronautics,
2012. doi: https://doi.org/10.2514/6.2011-6615. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2011-6615 [Page 14.]

[24] L. Marković, M. Kovač, R. Milijas, M. Car, and S. Bogdan, “Error
State Extended Kalman Filter Multi-Sensor Fusion for Unmanned
Aerial Vehicle Localization in GPS and Magnetometer Denied Indoor
Environments,” in 2022 International Conference on Unmanned Aircraft

https://github.com/Xilinx/DPU-PYNQ
https://github.com/Xilinx/DPU-PYNQ
https://dl.acm.org/doi/10.1145/358669.358692
https://inria.hal.science/hal-01246370
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://www.universal-robots.com/download/
https://arc.aiaa.org/doi/abs/10.2514/6.2011-6615


78 | References

Systems (ICUAS), Jun. 2022. doi: 10.1109/ICUAS54217.2022.9836124
pp. 184–190, iSSN: 2575-7296. [Page 14.]

[25] I. Brigadnov, A. Lutonin, and K. Bogdanova, “Error State Extended
Kalman Filter Localization for Underground Mining Environments,”
Symmetry, vol. 15, no. 2, p. 344, Feb. 2023. doi: 10.3390/sym15020344
Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/2073-8994/15/2/344
[Pages 14 and 20.]

[26] Y. Zhao, E. Tkaczyk, and F. Pan, “Visual and inertial sensor
fusion for mobile X-ray detector tracking: demo abstract,” in
Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, ser. SenSys ’20. New York, NY, USA: Association for
Computing Machinery, Nov. 2020. doi: 10.1145/3384419.3430435.
ISBN 978-1-4503-7590-0 pp. 643–644. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3384419.3430435 [Pages 17, 42, and 66.]

[27] E. Aparicio-Esteve, J. Ureña, �. Hernández, D. Pizarro, and D. Moltó,
“Using Perspective-n-Point Algorithms for a Local Positioning System
Based on LEDs and a QADA Receiver,” Sensors, vol. 21, no. 19,
p. 6537, Jan. 2021. doi: 10.3390/s21196537 Number: 19 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1424-8220/21/19/6537 [Pages 18 and 42.]

[28] G. Pan, A. H. Liang, J. Liu, M. Liu, and E. X. Wang, “3-D
Positioning System Based QR Code and Monocular Vision,” in 2020
5th International Conference on Robotics and Automation Engineering
(ICRAE), Nov. 2020. doi: 10.1109/ICRAE50850.2020.9310908 pp. 54–
58. [Pages 19 and 42.]

[29] U. robots, “RTDE client python library.” [Online]. Available: https://gi
thub.com/UniversalRobots/RTDE_Python_Client_Library [Page 28.]

[30] STMicroelectronics, “LSM9DS1 - 9-axis iNEMO inertial module
(IMU): 3D magnetometer, 3D accelerometer, 3D gyroscope with
I2C and SPI - STMicroelectronics,” Mar. 2015. [Online]. Available:
https://www.st.com/en/mems-and-sensors/lsm9ds1.html [Page 28.]

[31] J. Liu, W. Gao, and Z. Hu, “Visual-Inertial Odometry Tightly
Coupled with Wheel Encoder Adopting Robust Initialization and

https://www.mdpi.com/2073-8994/15/2/344
https://dl.acm.org/doi/10.1145/3384419.3430435
https://dl.acm.org/doi/10.1145/3384419.3430435
https://www.mdpi.com/1424-8220/21/19/6537
https://github.com/UniversalRobots/RTDE_Python_Client_Library
https://github.com/UniversalRobots/RTDE_Python_Client_Library
https://www.st.com/en/mems-and-sensors/lsm9ds1.html


References | 79

Online Extrinsic Calibration,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Nov. 2019. doi:
10.1109/IROS40897.2019.8967607 pp. 5391–5397, iSSN: 2153-0866.
[Page 30.]

[32] Alexey, “Yolo v4, v3 and v2 for Windows and Linux,” May
2023, original-date: 2016-12-02T11:14:00Z. [Online]. Available:
https://github.com/AlexeyAB/darknet [Pages 35 and 37.]

[33] David8862, “keras-YOLOv3-model-set.” [Online]. Available: https:
//github.com/david8862/keras-YOLOv3-model-set [Page 38.]

[34] Xilinx, “Developing a Model — Vitis™ AI 3.0 documentation.”
[Online]. Available: https://xilinx.github.io/Vitis-AI/docs/workflow-m
odel-development.html [Page 38.]

[35] A. Sanchez, “Vehicle State Estimation on a Roadway,” Jun. 2023,
original-date: 2020-12-17T04:26:53Z. [Online]. Available: https:
//github.com/jasleon/Vehicle-State-Estimation [Page 43.]

[36] ARM, “AMBA AXI and ACE Protocol Specification AXI3, AXI4, and
AXI4-Lite ACE and ACE-Lite,” 2013. [Online]. Available: https://www.
arm.com/architecture/system-architectures/amba/amba-specifications
[Page 43.]

https://github.com/AlexeyAB/darknet
https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/david8862/keras-YOLOv3-model-set
https://xilinx.github.io/Vitis-AI/docs/workflow-model-development.html
https://xilinx.github.io/Vitis-AI/docs/workflow-model-development.html
https://github.com/jasleon/Vehicle-State-Estimation
https://github.com/jasleon/Vehicle-State-Estimation
https://www.arm.com/architecture/system-architectures/amba/amba-specifications
https://www.arm.com/architecture/system-architectures/amba/amba-specifications


80 | References



Appendix A: FPGA Schematic | 81

Appendix A

FPGA Schematic

A.1 Full FPGA Schematic
The following is a complete schematic of the final FPGA integration results.



D
P

U
C

Z
D

X
8G

_1

D
P

U
C

Z
D

X
8G

_v
1_

0M
_A

X
I_

G
P

0

M
_A

X
I_

H
P

0

M
_A

X
I_

H
P

2

S
_A

X
I_

C
O

N
T

R
O

L

ac
lk

ap
_c

lk
_2

ap
_r

st
_n

_2

ar
es

et
n

in
te

rr
up

t

ax
i_

ic
_p

s_
e_

S
_A

X
I_

H
P

0_
F

P
D

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

ax
i_

ic
_p

s_
e_

S
_A

X
I_

H
P

1_
F

P
D

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

ax
i_

in
tc

_0

A
X

I I
nt

er
ru

pt
 C

on
tr

ol
le

r

s_
ax

i

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

in
tr

[3
1:

0]

irq

ax
i_

in
tc

_0
_i

nt
r_

1_
in

te
rr

up
t_

co
nc

at

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

In
4[

0:
0]

In
5[

0:
0]

In
6[

0:
0]

In
7[

0:
0]

In
8[

0:
0]

In
9[

0:
0]

In
10

[0
:0

]
In

11
[0

:0
]

In
12

[0
:0

]
In

13
[0

:0
]

In
14

[0
:0

]
In

15
[0

:0
]

In
16

[0
:0

]
In

17
[0

:0
]

In
18

[0
:0

]
In

19
[0

:0
]

In
20

[0
:0

]
In

21
[0

:0
]

In
22

[0
:0

]
In

23
[0

:0
]

In
24

[0
:0

]
In

25
[0

:0
]

In
26

[0
:0

]
In

27
[0

:0
]

In
28

[0
:0

]
In

29
[0

:0
]

In
30

[0
:0

]
In

31
[0

:0
]

do
ut

[3
1:

0]

ax
i_

in
te

rc
on

ne
ct

_h
pc

0

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

S
01

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

ax
i_

qu
ad

_s
pi

_0

A
X

I Q
ua

d 
S

P
I

S
P

I_
0

A
X

I_
LI

T
E

ex
t_

sp
i_

cl
k

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

ip
2i

nt
c_

irp
t

ax
i_

re
gi

st
er

_s
lic

e_
0

A
X

I R
eg

is
te

r 
S

lic
eM

_A
X

I

S
_A

X
I

ac
lk

ar
es

et
n

ax
i_

vi
p_

0

A
X

I V
er

ifi
ca

tio
n 

IP

M
_A

X
I

ac
lk

ar
es

et
n

ax
i_

vi
p_

1

A
X

I V
er

ifi
ca

tio
n 

IP

M
_A

X
I

ac
lk

ar
es

et
n

cl
k_

w
iz

_0

C
lo

ck
in

g 
W

iz
ar

d

re
se

tn

cl
k_

in
1

cl
k_

ou
t1

cl
k_

ou
t2

cl
k_

ou
t3

cl
k_

ou
t4

cl
k_

ou
t5

cl
k_

ou
t6

cl
k_

ou
t7

lo
ck

ed

cl
k_

w
iz

_1

C
lo

ck
in

g 
W

iz
ar

d

cl
k_

in
1

cl
k_

ou
t1

lo
ck

ed

es
ek

f_
16

_n
ew

_i
p_

0

es
ek

f_
16

_n
ew

_i
p

A
X

I4

IP
C

O
R

E
_C

LK

IP
C

O
R

E
_R

E
S

E
T

N

A
X

I4
_A

C
LK

A
X

I4
_A

R
E

S
E

T
N

in
te

rc
on

ne
ct

_a
xi

fu
ll

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

in
te

rc
on

ne
ct

_a
xi

hp
m

0f
pd

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N in
te

rc
on

ne
ct

_a
xi

lit
e

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N

irq
_c

on
st

_t
ie

of
f

C
on

st
an

t

do
ut

[0
:0

]

pr
oc

_s
ys

_r
es

et
_0

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_1

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_2

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_3

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_4

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_5

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_6

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

pr
oc

_s
ys

_r
es

et
_7

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

ps
_e

Z
yn

q 
U

ltr
aS

ca
le

+
 M

P
S

oC

M
_A

X
I_

H
P

M
0_

F
P

D

M
_A

X
I_

H
P

M
1_

F
P

D

M
_A

X
I_

H
P

M
0_

LP
D

S
_A

X
I_

H
P

C
0_

F
P

D

S
_A

X
I_

H
P

0_
F

P
D

S
_A

X
I_

H
P

1_
F

P
D

S
_A

X
I_

H
P

3_
F

P
D

m
ax

ih
pm

0_
fp

d_
ac

lk

m
ax

ih
pm

1_
fp

d_
ac

lk

m
ax

ih
pm

0_
lp

d_
ac

lk

sa
xi

hp
c0

_f
pd

_a
cl

k

sa
xi

hp
0_

fp
d_

ac
lk

sa
xi

hp
1_

fp
d_

ac
lk

sa
xi

hp
3_

fp
d_

ac
lk

pl
_p

s_
irq

0[
0:

0]

pl
_r

es
et

n0

pl
_c

lk
0

sm
ar

tc
on

ne
ct

_0

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

sp
i_

rt
l

82 | Appendix A: FPGA Schematic





TRITA-EECS-EX- 2023:746

www.kth.se


	Introduction
	Background
	Problems
	Original problem and definition
	Scientific and engineering issues

	Purposes
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	Object Detection
	You Only Look Once (YOLO)
	YOLOv3

	FPGA design platform
	PYNQ Platform
	Vitis AI
	Deep-learning Processing Unit (DPU)

	Perspective-n-Points
	Collaborative Robot
	Error State Extended Kalman Filter
	Related work area
	Visual and inertial sensor fusion for mobile X-ray detector tracking
	Using Perspective-n-Point Algorithms for a Local Positioning System Based on LEDs and a QADA Receiver
	3-D Positioning System Based QR Code and Monocular Vision
	Error State Extended Kalman Filter Localization for Underground Mining Environments


	Method
	Research Process
	Data Collection
	Sampling
	Sample Size
	Target Population

	Experimental design
	Test environment
	Hardware and Software

	Assessing reliability and validity of the data collected
	Validity of method
	Reliability of method
	Data validity
	Reliability of data

	Planned Data Analysis
	Data Analysis Technique


	Algorithm Implementation
	Overview System
	Bolt Detection using Machine Learning
	Building the YOLOv3-Tiny-3L Model
	Vitis AI Quantize and Compile Model
	Build DPU IP core

	Visual Localization
	Assignment 3D Location for The Bolts
	Camera Pose Estimation

	Error State Extended Kalman Filter
	Predict Function ESEKF
	Update Function ESEKF

	System Integration

	Results
	Major results
	Bolt Detection Result
	Localization Result
	Time Execution

	Minor result
	FPGA Implementation Result


	Discussion
	Bolt Detection
	Localization
	Time Execution
	FPGA Implementation

	Conclusions and Future work
	Conclusions
	Limitations
	Future work
	What has been left undone?

	Reflections

	References
	FPGA Schematic
	Full FPGA Schematic


