
Information Flow Analysis of a Verified In-Order Pipelined

Processor

Ning Dong1, Roberto Guanciale1, Mads Dam1, and Andreas Lööw2

1KTH Royal Institute of Technology, Sweden
2Imperial College London, UK

Abstract

We implement a verified in-order pipelined processor Silver-Pi for the RISC ISA Silver
in the HOL4 interactive theorem prover. The correctness of the processor is established by
exhibiting a trace relation between the circuit and the Silver ISA. Based on the correctness
proof, we prove the conditional noninterference (CNI) of the processor. The CNI formulates
that executing programs on the processor does not leak additional information on the timing
channel than permitted by a leakage function expressed at the ISA level.

1 Introduction

Silver-Pi is a 5-stage in-order pipelined processor for the RISC ISA Silver [2]. The processor is
implemented using the HOL4 Verilog library [2, 3] for formally verified circuits. The correctness
of the processor is proved by exhibiting a trace relation between the pipelined circuit and the
Silver ISA. The trace relation is constructed using a unique scheduling function that indicates the
processed ISA-level instruction in a pipeline stage. The circuit implementation and correctness
proof are formalized in HOL4 [1], and accessible at https://github.com/kth-step/Silver-Pi.

To prevent timing side channels, we define the notion of conditional noninterference (CNI) which
formulates that the processor does not leak more information via the circuit’s timing channel than
what is expected by a leakage model expressed at the ISA level. In this technique report, we
explicitly show the non-mechanized proof of the CNI for Silver-Pi.

The report is constructed as follows:

• Section 2 introduces the background, mainly the processor implementation and correctness
proof.

• Section 3 describes the CNI proof for the processor.

2 Background

This section presents the background of our formalization including circuit implementation and
correctness proof. The definitions and proofs in Section 2 are available in our HOL4 formalisation.

1

https://github.com/kth-step/Silver-Pi

2.1 Silver ISA

The semantics of the Silver ISA is modelled by a state transition relation: s → s′, which represents
the atomic execution of one instruction. The ISA trace σ is produced by → starting from an initial
state s. Formally, σ = s → s′ → s′′ · · · . The σ(n) represents the ISA state after completing n
instructions in σ, i.e., σ(n) = s →n .

The Silver ISA state is a record, s = (PC,M,R,CF,OF,DI,DO,ME). Here, PC , M , and R
are the program counter, memory, and register file respectively. Two flags (CF and OF) are used
to record carry and overflow for the ALU (arithmetic logic unit) add and subtraction computations,
DI and DO are two data ports for I/O operations, and ME is a trace to record memory states but
never used by the ISA. The following items are intermediate fields used by the Silver ISA to process
instructions:

• opc: operation code indicates the current operation of the instruction.

• func: function code indicates the current functionality of ALU or the shift operation SHF.

• Ra, Rb, Rw : data resource fields are followed by their corresponding flags (Fa, Fb, and Fw)
to indicate it as a register address (flag is 0) or an immediate constant (flag is 1).

• Da, Db, Dw : data read from R with their addresses if the flag is 0, otherwise, the constant.

• ad , v : data address and value for memory load and store.

We highlight the following operations in the Silver ISA since they affect the pipeline implemen-
tation and verification:

• JMP and CJMP: unconditional and conditional jumps.

• MLD and MSTR: memory load and store.

• INTR: interrupt.

• ACC: acceleration.

The Silver ISA model completes all instructions internally i.e., without any interaction with the
external environment. However, a Silver processor requires communications with external hardware
components like memory to process some kinds of instructions (including MLD, MSTR, INTR, and ACC).

2.2 Pipelined Circuit

Silver-Pi implements a typical 5-stage pipeline as shown in Figure 1.

2.2.1 Pipeline challenges

The pipelined processor handles common pipeline challenges including data hazards, external delays,
and mispredicted program counters.

Data hazards: The pipeline may process interdependent instructions, for example, a program
of two instructions i0: R1 := R0+1; i1: R2 := R1-2;. The pipeline must prevent i1 from
reading a wrong (old) value for the register R1 in the ID stage, when i0 is still being processed
in the pipeline and its result has not been committed to the register file. Silver-Pi uses pipeline

2

register file

IF ID EX MEM m2wf2d d2e e2m WB

memory

Figure 1: Simplified view of a 5-stage pipeline

stalling by checking whether each register’s address (Ra, Rb, Rw) is affected by instructions in the
EX, MEM, and WB stages. If data hazards are identified, a control unit stalls the instruction in
ID stage until data hazards disappear.

External delays: Requests issued by the MEM stage can take several processor cycles to be
answered. Normally any new request to the same external hardware component will be ignored
during the waiting cycles. For instance, when the MEM stage issues a MLD request to the memory,
the pipeline is stalled until the memory replies the result of MLD to the WB stage, which is then
committed to the register file R. The same approach is applied to the other three kinds of Silver
instructions that communicate with external components and that can take several hardware cycles
to be answered: MSTR, INTR, and ACC.

Mispredicted program counters: The pipeline fetches instructions speculatively for the next cycle
until the next PC is determined. These speculatively fetched instructions can be wrong when an
instruction in the pipeline modifies the program counter (i.e., JMP and CJMP). Consider the example
in Table 1, instructions i0 - i3 are regular operations, and i4 is a JMP. The instructions i4’ and
i4’’ are stored in the next two addresses to i4 in the memory, and i5 is stored at the target
address of i4. The i4’ and i4’’ are speculatively fetched at the cycle t + 1 and t + 2. In Silver
ISA, target addresses of jumps are determined only after the ALU results are available in the EX
stage. In addition, the PC cannot be affected by external hardware components like memory. For
these reasons, we implement a jump handler in the EX circuit. For the example in Table 1, after
the EX circuit computes the target of i4, the instructions i4’ and i4’’ are flushed as NOP (no
operation) and the proper next instruction i5 is fetched at t+ 3.

2.2.2 Circuit states

The processor state c contains all fields used by the pipelined circuit. To process instructions, the
processor communicates with an external environment mainly a memory subsystem and interrupt

IF ID EX MEM WB
t i4(JMP) i3 i2 i1 i0

t+ 1 i4’ i4(JMP) i3 i2 i1

t+ 2 i4’’ i4’ i4(JMP) i3 i2

t+ 3 i5 NOP NOP i4(JMP) i3

Table 1: Processing a jump in the pipeline

3

handler. Since c contains more than 100 fields, we show the following fields that the CNI proof
depends on and omit others.

• PCg , cmdg , irg , adg : the program counter, the command issuing fetch/load/store requests
to the memory, interrupt request, and data address respectively. They are the processor’s
output fields for interacting with the environment.

• stg : the processor’s internal state identifies if the processor is waiting for the response from
the external environment, or working normally.

• astg : the state of the internal accelerator identifies the process of ACC computation.

• exRaid ,memRaid ,wbRaid ,exRbid ,memRbid ,wbRbid ,exRwid ,memRwid ,wbRwid :
these flags check whether the reading addresses (Raid , Rbid , and Rwid) in the ID stage are
affected by instructions in the EX, MEM, WB stages. For simplicity, we use hzdid to
represent them.

• jmpex : a jump flag in the EX stage indicates that a JMP or CJMP modifies the program counter
PCg .

• mldmem , mstrmem , intrmem , accmem : flags in the MEM stage represent the MLD, MSTR, INTR,
and ACC request respectively to the environment or internal accelerator, which may take
several hardware cycles to be answered.

• enableif , enableid , enableex , enablemem , enablewb , flushid , flushex , flushmem : these flags control
the pipeline stages and maintain the instruction processing, called control flags ctrl . The
enable flags enable the corresponding pipeline stage to process a new instruction delivered
from the previous stage. The flush flags flush the stage when certain pipeline challenges
happen (i.e., data hazards, external delays, and mispredicted program counters). The IF
stage does not need a flush flag as the flush is done by modifying the program counter PCg .
The pipelined circuit does not flush the WB stage as flushes are already done in previous
stages.

The environment state is a record, e = (M,DI, inst, data, rdy,mirdy, iack). The M and DI
are the same memory and data port as the ISA state. Other fields excluding M and DI are the
environment’s outputs to the processor. The inst and data are instruction and data values from the
memory, and rdy indicates the memory request is finished and the memory is able to process the next
request. The mirdy means the memory initialization is finished. The iack is an acknowledgement
of the interrupt handler to the processor to inform that the INTR request is finished.

2.3 Correctness

Giving an environment trace β = e → e′ → e′′ · · · , the circuit definition agπ generates the proces-
sor’s execution trace α = c → c′ → c′′ · · · , α(t) and β(t) are the processor and environment state
at the cycle t respectively. By composing the processor and environment, ϕ represents the circuit
execution traces, i.e., traces such that exist α = agπ β and ϕ(t) = (α(t), β(t)).

Environment assumption: The environment trace β in ϕ satisfies an assumption AX that de-
scribes the expected behaviours of the environment’s components including a memory subsystem
mem env , an initialisation controller of memory mem start env , an interrupt handler intr env , and
a data port controller di env . Formally:

4

Definition 1.

mem env ϕ ≜ ∀ t.(α(t).cmdg = fetch ∧ β(t− 1).rdy ⇒
∃m.(∀p ≤ m. β(t+ p).M = β(t− 1).M) ∧

(∀p < m. ¬β(t+ p).rdy) ∧ β(t+m).rdy ∧
β(t+m).inst = β(t).M [α(t).PCg]) ∧
(α(t).cmdg = fetch+ load ∧ β(t− 1).rdy ⇒

∃m.(∀p ≤ m. β(t+ p).M = β(t− 1).M) ∧
(∀p < m. ¬β(t+ p).rdy) ∧ β(t+m).rdy ∧
β(t+m).inst = β(t).M [α(t).PCg] ∧
β(t+m).data = β(t).M [α(t).adg]) ∧
(α(t).cmdg = fetch+ store ∧ β(t− 1).rdy ⇒

∃m.(∀p ≤ m. β(t+ p).M = β(t− 1).M) ∧
(∀p < m. ¬β(t+ p).rdy) ∧ β(t+m).rdy ∧
β(t+m).M = β(t).M⟨|α(t).adg := α(t).vg|⟩ ∧
β(t+m).inst = β(t).M [α(t).PCg]) ∧
(α(t).cmdg = nothing ∧ β(t− 1).rdy ⇒
β(t).rdy ∧ β(t).M = β(t− 1).M ∧
β(t).inst = β(t− 1).inst ∧ β(t).data = β(t− 1).data)

mem start env ϕ ≜ ∃m. β(m).mirdy

intr env ϕ ≜ ∀ t.α(t).irg ∧ β(t− 1).iack ⇒
∃m.(∀p < m. ¬β(t+ p).iack) ∧ β(t+m).iack

di env ϕ ≜ ∀ t.β(t).DI = β(0).DI

AX ϕ ≜ mem env ϕ ∧mem start env ϕ ∧ intr env ϕ ∧ di env ϕ

Scheduling function: The scheduling function I maps the processing instruction in a pipeline
stage k at cycle t, which is defined as follows:

5

Definition 2.

(I(k, 0) = if k = IF then 1 else ⊥) ∧
(I(k, t+ 1) = case k of

IF ⇒ (if ¬α(t).enableif then I(IF, t)

else if α(t).enableif ∧ α(t).jmpex then I(EX, t) + 1

else if α(t).enableif ∧ (is jmpisa σ(I(IF, t)− 1)∨
is jmpisa σ(I(ID, t)− 1)) then ⊥
else I(IF, t) + 1)

ID ⇒ (if ¬α(t).enableid then I(ID, t)

else if α(t).enableid ∧ (α(t).jmpex ∨ is jmpisa σ(I(ID, t)− 1))

then ⊥
else I(IF, t))

EX ⇒ (if ¬α(t).enableex then I(EX, t)

else if α(t).enableex ∧ (α(t).jmpex ∨ α(t).hzdid) then ⊥
else I(ID, t))

MEM ⇒ (if ¬α(t).enablemem then I(MEM, t)

else if α(t).enablemem ∧ (α(t).mldmem ∨ α(t).mstrmem∨
α(t).intrmem ∨ α(t).accmem) then ⊥
else I(EX, t))

WB ⇒ (if ¬α(t).enablewb then I(WB, t)

else I(MEM, t))

The ISA-level function is jmpisa checks JMP and CJMP with its condition, formally is jmpisa s =
(decode opcisa s = JMP) ∨ (decode opcisas = CJMP ∧ cjmp condisa
s), where the function decode opcisa decodes the ISA state’s opc and identifies the current operation,
and the function cjmp condisa generates the condition for CJMP.

Software condition: To prevent self-modifying programs, any software executing on our pipelined
processor must follow the software condition SC that no instruction is modified in the memory
by the previous four instructions being processed in the pipeline (see Definition 3). The circuit
behaviour is undefined when SC is violated.

Definition 3.

SC σ ≜ ∀n. decode opcisa σ(n) = MSTR ∧ n < i < n+ 5 ⇒
σ(i).PC ̸= mem adisa σ(n)

The function mem adisa extracts the data address ad for memory operations.
Relations: To demonstrate the equivalence between the pipelined circuit and ISA, the trace

relation ∼I is defined with the help of the scheduling function I . The initial relation ∼0 guarantees
that the circuit and ISA start from corresponding initial states: ϕ(0) ∼0 σ(0). Because the ∼I and
∼0 argue details of the circuit implementation, we omit the concrete definitions here and refer the
reader to our HOL4 formalization.

6

Theorem 1. If the initial circuit and ISA states are consistent ϕ(0) ∼0 σ(0), the external environ-
ment satisfies AX ϕ, and the program satisfies the software condition SC σ, then the trace relation
is met with a unique scheduling function for ϕ and σ: ϕ ∼I σ.

In the following, we use ≃I to represent that ϕ corresponds to σ: ϕ ≃I σ ≜ AX ϕ ∧ ϕ ∼0

σ ∧ ϕ ∼I σ.

3 Information Flow Security

This section presents additional definitions for information flow analysis and the proof for condi-
tional noninterference of Silver-Pi steply starting from key lemmas to the final theorem.

3.1 Definitions

ISAs serve as the main interface between software and hardware, ensuring the correctness and
security of software. However, ISAs do not capture non-functional aspects of systems, like the
execution time, that can be utilized by an attacker to infer confidential data. To scope our work,
we consider the attacker as an external agent that can monitor the timing channel when outputs are
produced by our system. For Silver, this corresponds to measuring the clock cycles elapsed between
INTR. It is usually infeasible to verify resilience against side channels by taking into account both
software and processor design at the same time. In practice, these analyses are usually done by
using observational models, which extend the ISA with leakage functions that overapproximate
what influences the side channels.

Observation function: The observation function obsag extracts the part of the Silver ISA state
that can affect the execution time of a program, s1 ≈obsag

s2 means that these states are indistin-
guishable by the attacker. Formally,

Definition 4.

s1 ≈obsag
s2 ≜ (s1.PC = s2.PC) ∧ (s1.M [s1.PC] = s2.M [s2.PC])∧

(decode opcisa s1 = MLD ∨ MSTR ⇒
mem adisa s1 = mem adisa s2)∧
(decode opcisa s1 = CJMP ⇒ cjmp condisa s1 = cjmp condisa s2)

These ISA-level functions are defined in our HOL4 formalization and used for correctness
proof. Since obsag requires the two ISA states to process the same instruction, decode opcisa s1 =
decode opcisa s2 directly.

We extend observation equivalence pointwise to ISA traces σ1 ≈obs σ2. Notice that since the
attacker observes the PC , observation equivalent traces have the same length, as is common for
constant time programming.

Conditional noninterference: The strategy is to take the ISA traces as a reference for permitted
information flows: σ1 ≈obs σ2 means that these traces are indistinguishable by the attacker. For
their corresponding circuit traces ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, the circuit is secure if the traces do
not leak more information than the ISA level. To guarantee that, we require I1(k, t) = I2(k, t)
for all pipeline stages k at every cycle, which means that the two circuit traces process the same
instruction at the same stage and therefore have the same time observations. For our attacker

7

model, we need to ensure I1(k, t) = I2(k, t) at the cycle t when INTR happens. To guarantee this,
it is necessary to keep track of instruction processing in the circuit over time. Let Σ be the set of
valid ISA traces that processors can implement, conditional noninterference is defined as follows:

Definition 5. A pipelined circuit is conditional noninterferent with respect to the observation func-
tion obs, written CNI (obs), if for any two ISA traces σ1 and σ2 in Σ such that σ1 ≈obs σ2, for any
circuit trace ϕ1 with a scheduling function I1 satisfying ϕ1 ≃I1 σ1, there exists a circuit trace ϕ2

and scheduling function I2 such that ϕ2 ≃I2 σ2, and ∀k t. I1(k, t) = I2(k, t).

CNI(obs) ≜ ∀σ1 σ2 ϕ1 I1. σ1 ≈obs σ2 ∧ ϕ1 ≃I1 σ1 ⇒
∃ϕ2 I2. ϕ2 ≃I2 σ2 ∧ (∀k t. I1(k, t) = I2(k, t))

Environment constraint: To reason about the circuit’s timing channel, we use an environment
constraint ECag which requires that two environment traces β1 and β2 respond to their processor
traces α1 and α2 respectively at the same cycle t if all processor’s requests before t are identical.
The ECag is defined as follows to constrain the memory subsystem, the interrupt handler, and
the memory initialization controller. The data port controller is excluded as it does not affect the
execution time of programs.

Definition 6.

ECag(ϕ1, ϕ2) ≜ (∀t t′. t′ ⩽ t ∧ α1(t
′).cmdg = α2(t

′).cmdg∧
α1(t

′).PCg = α2(t
′).PCg∧

(α1(t
′).cmdg = load/store ⇒ α1(t

′).adg = α2(t
′).adg) ⇒

β1(t).rdy = β2(t).rdy)∧
(∀t t′. t′ ⩽ t ∧ α1(t

′).irg = α2(t
′).irg ⇒ β1(t).iack = β2(t).iack)∧

(∀t. β1(t).mirdy = β2(t).mirdy)

Circuit low-equivalence: Some circuit fields can either directly affect the scheduling results like
enableex or be observed by the environment like cmdg , and thus impact the execution time of
programs. Therefore, we define the circuit low-equivalence ≈f of these fields between two circuit
traces.

Definition 7.

ϕ1 ≈f ϕ2 ≜ ∀t. α1(t).PCg = α2(t).PCg ∧ α1(t).cmdg = α2(t).cmdg∧
α1(t).adg = α2(t).adg ∧ α1(t).stg = α2(t).stg∧
α1(t).irg = α2(t).irg ∧ α1(t).astg = α2(t).astg∧
α1(t).ctrl = α2(t).ctrl

The PCg is updated by the processor function IF PC update. The next 4 fields are operated
by the processor function agp32 next state that uses the circuit state at the cycle t to update these
fields for the next cycle. The astg is updated by the accelerator acc compute, and the control flags
ctrl are generated by the function Hazard ctrl at a cycle t and then take effect at the next cycle.
As a part of the processor implementation, the above 4 functions are available in our HOL4 code.

8

3.2 Proofs

Lemma 1 shows that if the maximal result of the scheduling function at the cycle t + 1 is less or
equal to n, then the condition is also true for the previous cycle t.

Lemma 1. If ∀k. I(k, t+ 1) ̸= ⊥ ⇒ I(k, t+ 1) ≤ n, then ∀k. I(k, t) ̸= ⊥ ⇒ I(k, t) ≤ n.

Proof. Lemma 1 is proved by checking every pipeline stage. If a pipeline stage is disabled for the
cycle t + 1, i.e. ¬ϕ(t).enablek, then I(k, t + 1) = I(k, t) ̸= ⊥. From the assumption, I(k, t) ≤ n is
proved. When a stage is enabled ϕ(t).enablek, the following applies:

• IF: If a jump happens in the EX stage at the cycle t (ϕ(t).jmpex), then I(IF, t) = ⊥ since the
next two instructions after JMP or CJMP are wrongly fetched. For ⊥, the proof is automatically
done as it violates the assumption. If there is no jump in the EX stage but the ID stage
processed a jump at the cycle t, then I(IF, t) = ⊥ as well. Otherwise for regular cases,
because ∀t. ϕ(t).enableif = ϕ(t).enableid from an internal lemma in Theorem 1, I(ID, t+1) =
I(IF, t) ̸= ⊥, meaning I(IF, t) ≤ n.

• ID: If ϕ(t).jmpex , then I(ID, t) = ⊥. If there is no jump but data hazards are identified at
the cycle t (ϕ(t).hzdid), then the ID stage is disabled for the cycle t+ 1, i.e. ¬ϕ(t).enableid,
which violates the condition and thus can be ignored. Otherwise, because of a lemma,
∀t. ϕ(t).enableid ⇒ ϕ(t).enableex, I(EX, t + 1) = I(ID, t) ̸= ⊥, the proof for this case is
done.

• EX: If there is a request issued by the MEM stage at the cycle t i.e., ϕ(t).mldmem ∨
ϕ(t).mstrmem ∨ϕ(t).intrmem ∨ϕ(t).accmem, then the EX stage is disabled for the cycle t+1,
i.e. ¬ϕ(t).enableex. Otherwise, ∀t. ϕ(t).enableex
⇒ ϕ(t).enablemem, I(MEM, t+ 1) = I(EX, t) ̸= ⊥, so I(EX, t) ≤ n.

• MEM: A lemma shows that ∀t. ϕ(t).enablemem = ϕ(t).enablewb, so I(WB, t + 1) =
I(MEM, t) ̸= ⊥ and I(MEM, t) ≤ n.

• WB: As the above MEM stage mentioned, I(WB, t+1) = I(MEM, t). The proof considers
possible ⊥ cases in the pipeline:

– I(MEM, t) ̸= ⊥: For this case, I(WB, t) ̸= ⊥ ∧ I(WB, t + 1) ̸= ⊥. I(WB, t) <
I(WB, t + 1) according to a lemma in the correctness proof. Since I(WB, t + 1) ≤ n,
I(WB, t) ≤ n.

– I(MEM, t) = ⊥ ∧ I(EX, t) ̸= ⊥: I(WB, t) < I(EX, t) from a correctness lemma,
I(MEM, t + 1) = I(EX, t) ̸= ⊥ because of the pipeline scheduling. So, I(WB, t) <
I(MEM, t+ 1) and I(MEM, t+ 1) ≤ n from the assumption, this case is done.

– I(MEM, t) = ⊥ ∧ I(EX, t) = ⊥ ∧ I(ID, t) ̸= ⊥: Similarly, I(WB, t) < I(ID, t) and
I(EX, t+ 1) = I(ID, t) ̸= ⊥. So, I(WB, t) < I(EX, t+ 1) ≤ n.

– I(MEM, t) = ⊥∧ I(EX, t) = ⊥∧ I(ID, t) = ⊥∧ I(IF, t) ̸= ⊥: I(WB, t) < I(IF, t) and
I(ID, t+ 1) = I(IF, t) ̸= ⊥. So, I(WB, t) < I(ID, t+ 1) ≤ n.

– All stages except for WB are ⊥: this case is impossible since an internal lemma indicates
that ∀t.I(ID, t) = ⊥ ∧ I(EX, t) = ⊥ ⇒ I(IF, t) ̸= ⊥.

9

As Definition 2 demonstrated, pipeline challenges at a cycle t affect the scheduling results for
the next cycle. To ensure the same scheduling results in two circuit traces, Lemma 2, 3 and 4
guarantee that the jmpex , mld/mstr/ intr/accmem , and hzdid in two circuit traces have the same
value at the cycle t respectively.

Lemma 2. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag
σ2, if the programs in two ISA

traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle t,
and ∀k. I(k, t + 1) ̸= ⊥ ⇒ I(k, t + 1) ≤ n where n is the length of ISA traces σ1 and σ2, then
ϕ1(t).jmpex = ϕ2(t).jmpex.

Proof. The proof is related to the EX stage where the jump handler of Silver-Pi is located.
From the assumption ∀k.I1(k, t) = I2(k, t), I1(EX, t) = I2(EX, t). If the scheduling result is
⊥, then ¬ϕ1(t).jmpex ∧ ¬ϕ2(t).jmpex as the correctness theorem 1 shows. Otherwise I1(EX, t) =
I2(EX, t) = m, andm < n from Lemma 1. So, σ1(m−1) ≈obsag σ2(m−1). According to Theorem 1,
ϕ1(t).jmpex = is jmpisa σ1(m− 1) and ϕ2(t).jmpex = is jmpisa σ2(m− 1). As the function obsag
regulates, the two ISA states have the same opc and conditions of CJMP, i.e., decode opcisa σ1(m−
1) = decode opcisa σ2(m − 1) ∧ cjmp condisa σ1(m − 1) = cjmp condisa σ2(m − 1). Therefore,
is jmpisa σ1(m− 1) = is jmpisa σ2(m− 1), and ϕ1(t).jmpex = ϕ2(t).jmpex is proved.

Lemma 3. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag σ2, if the programs in two ISA
traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle
t, and ∀k. I(k, t + 1) ̸= ⊥ ⇒ I(k, t + 1) ≤ n where n is the length of ISA traces σ1 and
σ2, then ϕ1(t).mldmem = ϕ2(t).mldmem ∧ ϕ1(t).mstrmem = ϕ2(t).mstrmem ∧ ϕ1(t).intrmem =
ϕ2(t).intrmem ∧ ϕ1(t).accmem = ϕ2(t).accmem.

Proof. These request fields are based on the operation code in the MEM stage opcmem . For exam-
ple, ϕ1(t).mldmem = (ϕ1(t).opcmem = 4 ∨ ϕ1(t).opcmem = 5). So, the proof is similar to Lemma 2.
From the assumption, I1(MEM, t) = I2(MEM, t). If the scheduling result is ⊥, then all these fields
are false since the NOP instruction is inserted by the pipeline control unit as a result of flush and
does not induce any operations on other parts of the circuit. If I1(MEM, t) = I2(MEM, t) = m,
σ1(m − 1) ≈obsag

σ2(m − 1) because of Lemma 1 and assumptions. From Theorem 1, these
fields are related to the ISA states, e.g., ϕ1(t).mldmem = (decode opcisa σ1(m − 1) = MLD) and
ϕ2(t).mldmem = (decode opcisa σ2(m − 1) = MLD). Because of obsag , decode opcisa σ1(m − 1) =
decode opcisa σ2(m − 1) , and thus ϕ1(t).mldmem = ϕ2(t).mldmem. Accordingly, all request fields
are proved.

Lemma 4. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag
σ2, if the programs in two ISA

traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle t, and
∀k. I(k, t+1) ̸= ⊥ ⇒ I(k, t+1) ≤ n where n is the length of ISA traces σ1 and σ2, and there is no
jump in the pipelined circuit ¬ϕ1(t).jmpex ∧ ¬ϕ2(t).jmpex, then ϕ1(t).hzdid = ϕ2(t).hzdid.

Proof. Lemma 4 has an additional assumption for no jumps in the circuit compared to the previous
two lemmas, because as Table 1 shown at the cycle t + 2, the instruction in the ID stage will be
flushed when a jump is identified by the EX stage. It means the data hazards will be ignored
by the pipeline under a jump at the same cycle. The proof is related to the ID stage where
I1(ID, t) = I2(ID, t). If the scheduling result is ⊥ under the condition ¬ϕ1(t).jmpex∧¬ϕ2(t).jmpex,
Theorem 1 shows that the hazards flags are flushed as false, i.e., ¬ϕ1(t).hzdid ∧ ¬ϕ2(t).hzdid.
Otherwise for a result m, the proof is similar to Lemma 3. The hazard flags hzdid maps to the ISA

10

states and then the observation function obsag ensures the equivalence of hzdid between two circuit
traces at the cycle t.

Lemma 2, 3 and 4 ensure that pipeline challenges are handled in the same way at the cycle t.
Based on them, Theorem 2 shows that the two circuit traces have the same scheduling results for
the next cycle.

Theorem 2. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag σ2, if the programs in two ISA
traces are not self modifying, i.e. SC σ1 and SC σ2 hold, and ∀k.I1(k, t) = I2(k, t) at the cycle
t, and ∀k. I(k, t + 1) ̸= ⊥ ⇒ I(k, t + 1) ≤ n where n is the length of ISA traces σ1 and σ2, and
ϕ1(t) ≈f ϕ2(t), then ∀k.I1(k, t+ 1) = I2(k, t+ 1).

Proof. Theorem 2 is proved by checking every pipeline stage at the cycle t + 1 with the help
of the relation ≈f which contains circuit fields that directly affect the scheduling results. The
relation ≈f means that control flags ctrl have the same value in the two circuit traces. If a pipeline
stage is disabled for the cycle t + 1, i.e. ¬ϕ1(t).enablek ∧ ¬ϕ2(t).enablek, then I1(k, t + 1) =
I1(k, t) ∧ I2(k, t + 1) = I2(k, t). Because of the assumption ∀k. I1(k, t) = I2(k, t), the result
∀k.I1(k, t + 1) = I2(k, t + 1) is proved. When a stage is enabled, the following shows the explicit
proof:

• IF:

– If the EX stage has a jump (i.e., jmpex is true at the cycle t), ϕ1(t).jmpex
∧ϕ2(t).jmpex as Lemma 2 proves. According to Definition 2, I1(IF, t+1) = I1(EX, t)+
1∧I2(IF, t+1) = I2(EX, t)+1. Since I1(EX, t) = I2(EX, t), I1(IF, t+1) = I2(IF, t+1).

– If a jump is in the IF or ID stage, as the obsag requires and the fact I1(IF, t) =
I2(IF, t) ∧ I1(ID, t) = I2(ID, t), the results from decode opcisa are euqal in σ1 and σ2.
So for this case, I1(IF, t+ 1) = I2(IF, t+ 1) = ⊥.

– For the regular case, I1(IF, t + 1) = I1(IF, t) + 1 ∧ I2(IF, t + 1) = I2(IF, t) + 1, and
therefore I1(IF, t+ 1) = I2(IF, t+ 1).

• ID:

– If jmpex is true ϕ1(t).jmpex ∧ ϕ2(t).jmpex, the ID stage is flushed at the cycle t+1. So
I1(ID, t+ 1) = I2(ID, t+ 1) = ⊥.

– If a jump is in the ID stage at the cycle t, then the case is the same as the second case
in the IF stage, I1(ID, t+ 1) = I2(ID, t+ 1) = ⊥.

– Normally, I1(ID, t+ 1) = I1(IF, t) ∧ I2(ID, t+ 1) = I2(IF, t), and I1(IF, t) = I2(IF, t).
So, I1(ID, t+ 1) = I2(ID, t+ 1) is proved.

• EX:

– If jmpex is true ϕ1(t).jmpex ∧ϕ2(t).jmpex, the EX stage is flushed at the cycle t+1. So
I1(EX, t+ 1) = I2(EX, t+ 1) = ⊥.

– If there is no jump but data hazards are created at the cycle t, ϕ1(t).hzdid
∧ϕ2(t).hzdid holds because of Lemma 4. Therefore, the EX stage is flushed at the cycle
t+ 1 as there is no valid instruction to execute, I1(EX, t+ 1) = I2(EX, t+ 1) = ⊥.

11

– Otherwise, I1(EX, t+1) = I1(ID, t)∧I2(EX, t+1) = I2(ID, t), and I1(ID, t) = I2(ID, t).
So, I1(EX, t+ 1) = I2(EX, t+ 1).

• MEM:

– If there is an external request issued by the MEM stage (mldmem , mstrmem , intrmem or
accmem), the request is identical in the two circuit traces as Lemma 3 shows. Then the
MEM stage is flushed at the next cycle, I1(MEM, t+ 1) = I2(MEM, t+ 1) = ⊥

– Otherwise, I1(MEM, t+1) = I1(EX, t)∧ I2(MEM, t+1) = I2(EX, t), and I1(EX, t) =
I2(EX, t), leading to I1(MEM, t+ 1) = I2(MEM, t+ 1).

• WB: The WB stage is straightforward, I1(WB, t + 1) = I1(MEM, t) ∧ I2(WB, t + 1) =
I2(MEM, t), and I1(MEM, t) = I2(MEM, t). Thus, I1(WB, t+ 1) = I2(WB, t+ 1).

Similarly to Lemma 2, 3 and 4, the following lemmas 5, 6, and 7 show the equivalence of
fields handling pipeline challenges for the cycle t + 1 respectively. The additional assumption is
ϕ1(t) ≈f ϕ2(t) which allows us to apply Theorem 2 in the proof. Then, the proof is established in
the same way as the previous lemmas, since the circuit behaviours are still constrained by the ISA
traces at the cycle t+ 1 according to Theorem 1 and Theorem 2.

Lemma 5. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag σ2, if the programs in two ISA
traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle t,
∀k. I(k, t+ 1) ̸= ⊥ ⇒ I(k, t+ 1) ≤ n where n is the length of ISA traces σ1 and σ2, and ϕ1(t) ≈f

ϕ2(t), then ϕ1(t+ 1).jmpex = ϕ2(t+ 1).jmpex.

Lemma 6. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag
σ2, if the programs in two ISA

traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle t,
∀k. I(k, t+ 1) ̸= ⊥ ⇒ I(k, t+ 1) ≤ n where n is the length of ISA traces σ1 and σ2, and ϕ1(t) ≈f

ϕ2(t), then ϕ1(t + 1).mldmem = ϕ2(t + 1).mldmem ∧ ϕ1(t + 1).mstrmem = ϕ2(t + 1).mstrmem ∧
ϕ1(t+ 1).intrmem = ϕ2(t+ 1).intrmem ∧ ϕ1(t+ 1).accmem = ϕ2(t+ 1).accmem.

Lemma 7. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag
σ2, if the programs in two ISA

traces are not self modifying, i.e. SC σ1 and SC σ2 hold, ∀k.I1(k, t) = I2(k, t) at the cycle t,
∀k. I(k, t + 1) ̸= ⊥ ⇒ I(k, t + 1) ≤ n where n is the length of ISA traces σ1 and σ2, ϕ1(t) ≈f

ϕ2(t), and there is no jump in the pipelined circuit ¬ϕ1(t + 1).jmpex ∧ ¬ϕ2(t + 1).jmpex, then
ϕ1(t+ 1).hzdid = ϕ2(t+ 1).hzdid.

Based on Lemma 5, 6, and 7, Theorem 3 shows that the two circuit traces satisfy ≈f for the
next cycle t+1. An additional assumption ECag is needed as the environment responses affect the
circuit fields in ≈f .

Theorem 3. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, with σ1 ≈obsag
σ2, ϕ1(t) ≈f ϕ2(t), if the programs

in two ISA traces are not self modifying, i.e. SC σ1 and SC σ2 hold, and ∀k.I1(k, t) = I2(k, t) at
the cycle t, and ∀k. I(k, t + 1) ̸= ⊥ ⇒ I(k, t + 1) ≤ n where n is the length of ISA traces σ1 and
σ2, and the two circuit traces satisfy ECag(ϕ1, ϕ2), then ϕ1(t+ 1) ≈f ϕ2(t+ 1).

Proof. Based on the assumptions, Theorem 1 and 2 hold. According to Definition 7, the proof
needs to consider the following fields for the cycle t+ 1.

12

• PCg : the PCg at the cycle t+1 depends on the control flag for the IF stage. As ϕ1(t) ≈f ϕ2(t),
ϕ1(t).enableif = ϕ2(t).enableif . If the IF stage is disabled ¬ϕ1(t).enableif ∧¬ϕ2(t).enableif ,
then PCg is unchanged for the cycle t + 1 and the assumption shows that ϕ1(t).PCg =
ϕ2(t).PCg. When the IF stage is enabled, the jmpex at the cycle t affects the PCg . From
Lemma 2, ϕ1(t).jmpex = ϕ2(t).jmpex. If there is a jump, then I1(EX, t) = I2(EX, t) = m
since ⊥ cannot cause a jump as the correctness required, and σ1(m) ≈obsag

σ2(m) from the
obsag assumption. Because of σ1(m) ≈obsag σ2(m), σ1(m).PC = σ2(m).PC. The PCg is the
jump target address as Theorem 1 shows, i.e., ϕ1(t+ 1).PCg = σ1(m).PC ∧ ϕ2(t+ 1).PCg =
σ2(m).PC, and thus has the same value. Otherwise, we have no jumps, so ϕ1(t + 1).PCg =
ϕ1(t).PCg + 4 ∧ ϕ2(t+ 1).PCg = ϕ2(t).PCg + 4. Since ϕ1(t).PCg = ϕ2(t).PCg, the proof for
PCg is done.

• cmdg : the cmdg shows the type of memory requests when the pipeline works normally (i.e.,
stg = 0). From the assumption ϕ1(t) ≈f ϕ2(t), we know that ϕ1(t).stg = ϕ2(t).stg ∧
ϕ1(t).cmdg = ϕ2(t).cmdg. If the pipeline does not work at the cycle t (stg ̸= 0), e.g., be-
cause of waiting for the external response, then the command remains unchanged at the cycle
t + 1, ϕ1(t + 1).cmdg = ϕ1(t).cmdg ∧ ϕ2(t + 1).cmdg = ϕ2(t).cmdg. So, ϕ1(t + 1).cmdg =
ϕ2(t+ 1).cmdg. If the pipeline is working stg = 0, the requests from the MEM stage at the
cycle t are considered, and Lemma 3 guarantees that ϕ1 and ϕ2 have the same value for these
requests. The proof for cmdg is completed straightforwardly.

– mldmem : ϕ1(t+ 1).cmdg = ϕ2(t+ 1).cmdg = load.

– mstrmem : ϕ1(t+ 1).cmdg = ϕ2(t+ 1).cmdg = store.

– intrmem and accmem : ϕ1(t+ 1).cmdg = ϕ2(t+ 1).cmdg = fetch.

• adg : the adg at the cycle t + 1 is updated when the pipeline is in the working state stg = 0
and memory load or store requests are issued at the cycle t.

– mldmem : From the assumptions, ϕ1(t).mldmem = ϕ2(t).mldmem and I1(MEM, t) =
I2(MEM, t). If the scheduling result is ⊥, then ¬mldmem violates the condition. If the
result is m, then Theorem 1 shows ϕ1(t + 1).admem = mem adisa σ1(m − 1) ∧ ϕ2(t +
1).admem = mem adisa σ2

(m − 1). As σ1(m − 1) ≈obsag
σ2(m − 1) and obsag , mem adisa σ1(m − 1) =

mem adisa σ2(m − 1) is guaranteed. Therefore, ϕ1(t + 1).admem = ϕ2(t + 1).admem

is proved.

– mstrmem : The proof is the same as the above case for mldmem .

Otherwise, the adg is not changed ϕ1(t + 1).adg = ϕ1(t).adg ∧ ϕ2(t + 1).adg = ϕ2(t).adg,
leading to ϕ1(t+ 1).adg = ϕ2(t+ 1).adg.

• stg : the stg represents the processor’s internal state to interact with the environment and
the separate accelerator. The assumption ECag is used to prove its equivalence. Since the
processor traces ϕ1 and ϕ2 guarantee the same cmdg , PCg , adg and irg before the cycle
t+ 1, the environment traces β1 and β2 reply in the same way according to ECag . From the
assumption ϕ1(t).stg = ϕ2(t).stg, the following values of stg are considered:

– 0: the processor is working normally at the cycle t. If the environment is not ready
¬β1(t).rdy ∧ ¬β2(t).rdy, or there is a memory or interrupt request to the environment

13

from the processor, then ϕ1(t+1).stg = ϕ2(t+1).stg = 1 to wait for the memory’s reply.
If there is a accmem request, ϕ1(t+1).stg = ϕ2(t+1).stg = 2 to wait for the accelerator.
Otherwise, the state is unchanged ϕ1(t+1).stg = ϕ2(t+1).stg = 0 and the proof is done.

– 1: the processor is waiting for the memory’s rdy signal. If β1(t).rdy ∧ β2(t).rdy and
there is no interrupt request, the processor returns to the working state ϕ1(t+ 1).stg =
ϕ2(t+ 1).stg = 0. If β1(t).rdy ∧ β2(t).rdy and there is an interrupt request, then ϕ1(t+
1).stg = ϕ2(t + 1).stg = 4 and the processor starts to wait for the interrupt handler’s
reply. Otherwise, the memory is not ready, the processor continues with the same state
ϕ1(t+ 1).stg = ϕ2(t+ 1).stg = 1.

– 2: the accelerator takes a certain number of cycles to compute the result for an ACC

instruction since it is defined internally in the agπ. From the assumption ϕ1(t).astg =
ϕ2(t).astg, the accelerator starts and finishes an ACC computation at the same cycle in
ϕ1 and ϕ2. If the computation is done, ϕ1(t + 1).stg = ϕ2(t + 1).stg = 0 to return the
normal state. Otherwise, ϕ1(t+ 1).stg = ϕ2(t+ 1).stg = 2.

– 3: the initial processor state waits for the memory initialization. Since ∀t.β1(t).mirdy =
β2(t).mirdy from ECag , if the initialization is done, ϕ1(t+1).stg = ϕ2(t+1).stg = 0, or
ϕ1(t+ 1).stg = ϕ2(t+ 1).stg = 3 if not.

– 4: this case is similar to stg = 1. If the processor gets the acknowledgement β1(t).iack ∧
β2(t).iack, ϕ1(t+1).stg = ϕ2(t+1).stg = 0. Otherwise, ϕ1(t+1).stg = ϕ2(t+1).stg = 4.

– others: other cases are undefined in the processor, so the states remain unmodified
ϕ1(t+ 1).stg = ϕ1(t).stg ∧ ϕ2(t+ 1).stg = ϕ2(t).stg and the proof is completed.

• irg : the irg is issued by the processor to the interrupt handler when the stg = 1 and there is
a intrmem . From the assumption and Lemma 3, ϕ1 and ϕ2 have the same state and interrupt
request. So when the condition happens, ϕ1(t+ 1).irg ∧ ϕ2(t+ 1).irg. When waiting for the
handler’s reply stg = 4, ¬ϕ1(t + 1).irg ∧ ¬ϕ2(t + 1).irg. Otherwise, the irg is unchanged
ϕ1(t+ 1).irg = ϕ1(t).irg ∧ ϕ2(t+ 1).irg = ϕ2(t).irg, so ϕ1(t+ 1).irg = ϕ2(t+ 1).irg.

• astg : the accelerator’s state is updated when accmem happens. From Lemma 3, ϕ1(t).accmem =
ϕ2(t).accmem. If accmem is true, then ϕ1(t + 1).astg = ϕ1(t + 1).astg = 0. If not, the astg
at the cycle t + 1 depends on astg at the cycle t. If ϕ1(t).astg = ϕ1(t).astg = 0, then
ϕ1(t + 1).astg = ϕ1(t + 1).astg = 1. Otherwise, the astg is unchanged and thus the proof is
done.

• ctrl : the control flags are affected by the fields handling pipeline challenges and stg at the
current cycle. The following cases are considered in the proof:

– stg ̸= 0: the above proof shows ϕ1(t+1).stg = ϕ1(t+1).stg. When the stg is not working,
the pipeline is stalled totally, and ϕ1(t+ 1).ctrl = ϕ1(t+ 1).ctrl.

– ¬rdy: the pipeline continually fetches new instructions but the memory may reply a
¬rdy. If ¬β1(t + 1).rdy ∧ ¬β2(t + 1).rdy, the pipeline also stalls and ϕ1(t + 1).ctrl =
ϕ1(t+ 1).ctrl.

– mldmem ,mstrmem , accmem and intrmem : Lemma 6 shows that these fields have the same
value in ϕ1 and ϕ2. If any request is issued by the MEM stage, the IF, ID and
EX stages are stalled, the MEM stage is flushed, and the WB stage works as usual,
ϕ1(t+ 1).ctrl = ϕ1(t+ 1).ctrl.

14

– jmpex : Lemma 5 shows ϕ1(t + 1).jmpex = ϕ2(t + 1).jmpex. When a jump happens,
the ID and EX stages are flushed and other stages continue to work, ϕ1(t + 1).ctrl =
ϕ1(t+ 1).ctrl.

– hzdid : Lemma 7 proves ϕ1(t+ 1).hzdid = ϕ2(t+ 1).hzdid. If data hazards are identified
in the ID stage, the IF and ID stages are stalled, the EX stage is flushed, and MEM
and WB work normally, ϕ1(t+ 1).ctrl = ϕ1(t+ 1).ctrl.

– normal: if the above cases do not happen, all pipeline stages are enabled and not flushed,
and therefore the proof is completed.

According to Theorem 2 and 3, instructions are processed in the same way by the processor in
the two circuit traces if their ISA traces are indistinguishable, as the following theorem shows.

Theorem 4. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, σ1 ≈obsag
σ2, if the programs in two ISA traces are

not self modifying, i.e. SC σ1 and SC σ2 hold, and the circuit traces ϕ1 and ϕ2 satisfy ECag(ϕ1, ϕ2),
then ∀k t.I1(k, t) = I2(k, t) and ϕ1 ≈f ϕ2.

Proof. Theorem 4 proved by induction on the cycle t. For the initial cycle, I1(k, 0) = I2(k, 0)
directly, and ϕ1(0) ≈f ϕ2(0) because of ∼0 and ≈obsag

. The proof for the induction step is divided
into two parts: I1(k, t+1) = I2(k, t+1) and ϕ1(t+1) ≈f ϕ2(t+1), which are proved by Theorem 2
and 3 respectively.

Theorem 5 shows the existence of ϕ2 and I2 for σ2 when ϕ1 is determined.

Theorem 5. If ϕ1 ≃I1 σ1 and SC σ1, σ1 ≈obsag σ2 and SC σ2, then there exists a circuit trace ϕ2

and scheduling function I2 satisfying ϕ2 ≃I2 σ2, and ECag(ϕ1, ϕ2).

Proof. To construct ϕ2, we compose a processor trace α2 produced by agπ with the following β2.

β2(0) = ⟨|M := σ2(0).M ;DI := σ2(0).DI; rdy := β1(0).rdy; data := ⊥;

inst := ⊥;mirdy := β1(0).mirdy; iack := β1(0).iack|⟩∧
β2(t+ 1) = ⟨|let t′ = lvr(β1, t+ 1) in

M := if α2(t
′).cmdg = store ∧ β1(t+ 1).rdy

then β2(t).M [α2(t
′).adg := α2(t

′).vg] else β2(t).M ;

DI := β2(t).DI; rdy := β1(t+ 1).rdy;

data := if α2(t
′).cmdg = load ∧ β1(t+ 1).rdy

then β2(t).M [α2(t
′).adg] else β2(t).data;

inst := if α2(t
′).cmdg = fetch ∧ β1(t+ 1).rdy

then β2(t).M [α2(t
′).PCg] else β2(t).inst;

mirdy := β1(t+ 1).mirdy; iack := β1(t+ 1).iack|⟩

The function lvr returns the cycle when the latest valid memory request happened in β1 before
the given cycle, defined as follows where MAX SET is a standard HOL4 function that returns the
maximal number in a set.

lvr(β, t) = MAX SET{t′ + 1|β(t′).rdy ∧ (∀t′′.t′ < t′′ < t ⇒ ¬β(t′′).rdy)}

15

The relation ∼0 is fulfilled by β2’s definition for the initial cycle. The ECag is satisfied by β2’s
definition too, since β2 has the same control flow to β1, (i.e., the same value for fields rdy , mirdy ,
and iack).

Since AX constrains the environment traces, we have to prove that β1 and β2 satisfy AX . The
mem start env is proved by β2’s definition for the same mirdy in β1 and β2. The di env is proved
by β2’s definition as DI is always unchanged in β2. The proof is mainly about the mem env and
the intr env is similar to mem env . For the mem env , we take the example for fetch, and other
cases like store and load are proved in the same way. By using induction on t and the relation ≈f

from Theorem 3, the two processor traces issued the last valid fetch request at the same previous
cycle t′. Because of AX ϕ1 and the same rdy in β1 and β2, we apply the response time m in β1 to
β2 and then β2 fulfils the fetch constraint by its definition.

Given AX ϕ2, the correctness and existence of I2 are proved by Theorem 1.

Based on Theorem 4 and 5, the verified Silver-Pi is CNI with respect to obsag if ISA traces in
Σ are valid (i.e. satisfying the SC). As Section 2.3 mentioned, the circuit behaviour is undefined
when executing self modifying programs.

Theorem 6. If all ISA traces in Σ satisfy SC i.e. ∀σ.σ ∈ Σ ⇒ SC σ, then the verified Silver-Pi
is CNI (obsag).

References

[1] HOL development team. HOL interactive theorem prover, 2023.

[2] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abrahamsson, and A. C. J.
Fox. Verified compilation on a verified processor. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,
USA, June 22-26, 2019, pages 1041–1053. ACM, 2019.

[3] A. Lööw and M. O. Myreen. A proof-producing translator for Verilog development in HOL.
In Proceedings of the 7th International Workshop on Formal Methods in Software Engineering,
FormaliSE@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pages 99–108. IEEE / ACM,
2019.

16

	1 Introduction
	2 Background
	2.1 Silver ISA
	2.2 Pipelined Circuit
	2.2.1 Pipeline challenges
	2.2.2 Circuit states

	2.3 Correctness

	3 Information Flow Security
	3.1 Definitions
	3.2 Proofs

	References

