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Rigid particles in a Stokesian fluid experience an increasingly strong lubrication resistance as 
particle gaps narrow. Numerically, resolving these lubrication forces comes at an intractably 
large cost, even for moderate system sizes. Hence, it can typically not be guaranteed that artificial 
particle collisions and overlaps do not occur in a dynamic simulation, independently of the choice 
of method to solve the Stokes equations. In this work, the potentially large set of non-overlap 
constraints, in terms of the Euclidean distance between boundary points on disjoint particles, are 
efficiently represented via a barrier energy. We solve for the minimum magnitudes of repelling 
contact forces and torques between any particle pair in contact to correct for overlaps by enforcing 
a zero barrier energy at the next time level, given a contact-free configuration at a previous 
instance in time. Robustness for the method is illustrated using a multiblob method to solve the 
mobility problem in Stokes flow, applied to suspensions of spheres, rods and boomerang shaped 
particles. Collision free configurations are obtained at all instances in time, and considerably 
larger time-steps can be taken than without the technique. The effect of the contact forces on the 
collective order of a set of rods in a background flow that naturally promote particle interactions 
is also illustrated.

1. Introduction

We present an algorithm for contact forces and torques between rigid particles with smooth surfaces immersed in an unbounded 
viscous fluid in 3D. The forces and torques are introduced only when needed to avoid particle collisions and overlaps. In this paper, 
we consider the ideal case in the zero Reynolds number limit, where the Stokes equations describe the fluid flow and there are 
no additional interaction forces between particles. Full hydrodynamic interaction is accounted for, meaning that there is a global 
coupling between all the particles in the system. In time dependent simulations of such systems, artificial collisions commonly occur 
due to hard-to-avoid numerical artefacts and a contact algorithm has to be introduced to avoid such collisions.

The hydrodynamic interactions are computed with a cheap and fast technique: the so called rigid multiblob method, as carefully 
described in [1,2]. Note that this is only one of many numerical methods for Stokes flows, and the contact avoiding strategy that we 
develop can be used also in combination with other techniques. The multiblob method is based on the idea that a rigid body can 
be modelled by a collection of spheres or “blobs” and has been used in a very large number of works, see e.g. [3–7] and references 
therein. Each blob interacts hydrodynamically with all other blobs in the system in a pairwise manner and blobs belonging to the 
same particle are constrained to move as a rigid body via forces applied at each blob centre, such that the blob forces sum to the net 
force and torque on the particle. Mathematically, one could view this as a regularised single layer boundary integral formulation, 
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Fig. 1. Multiblob particles in a Stokesian fluid. Colours indicate the depth in the figures. (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

with the blob radius the regularisation parameter. Example multiblob geometries are displayed in Fig. 1. For each instance in time, 
we solve the Stokes mobility problem, that is, given assigned external forces and torques on the particles, such as e.g. gravity or 
some electrostatic forcing, the resulting particle translational and rotational velocities are computed. The inertia of the particles is 
typically negligible in the Stokes regime, and hence, the computed rigid body velocities can be used to update the particle positions, 
applying some suitable time-stepping scheme, and the configuration of particles can in this way be studied dynamically. By choosing 
the regularisation parameter and the surface where blobs are placed in relation to the true surface of the particle as the solution to 
a small off-line optimisation problem for each (axisymmetric) particle type, good accuracy in the particle velocities can be obtained 
for moderately separated particles even with coarse grids of the particle surfaces [2].

As particles get closer, however, their interactions become increasingly difficult to accurately resolve. In the multiblob framework, 
accuracy is suffering for particles close to being in contact. Note, though, that this is a challenge independently of the choice of 
Stokes solver. Insufficient treatment of close interactions, caused either by numerical errors due to insufficient spatial resolution of 
the particle grid or by accumulated errors from the time-stepping scheme of the moving particles, can in the worst case lead to 
particle collisions and overlaps not dictated by the hydrodynamic equations. Even if close interactions are resolved, and an adaptive 
time-stepping scheme is used, another unwanted effect is stalling, where the adaptive time-step size becomes increasingly small as 
the time-step is adjusted to the stiff problem of particles in close proximity affected by increasingly strong repulsive forces.

There is a discussion in the literature concerning the applicability of the Stokes equations in specific scenarios, such as when 
dealing with dense particle suspensions undergoing prolonged shear. Such scenarios would allow for inter-particle gaps of sub-

atomic scales – scales where the continuum approximation is no longer valid [8–11]. Hence, in such cases, it is questionable if it is 
meaningful to strive to accurately continue to resolve the Stokes equations as gaps narrow. In physical systems, additional short-range 
interaction forces would typically be present e.g. due to polymer coats or charges on the particle surfaces [10,11]. Under the same 
conditions as smooth particles stay apart, surface roughness or corners could introduce contact through a rupture of the lubrication 
layer, such that frictional forces become important. The details of contact between particles in sheared suspensions remain poorly 
understood, but it is clear that interactions over microscopic length scales in the gap between particles have a pronounced impact on 
the rheology of concentrated suspensions, such as the phenomenon of shear thickening [11].

If one desires to perform simulations based on the Stokes equations without inclusion of additional interaction forces, it is 
inevitable that small inter-particle distances will arise, and with this, large lubrication forces that can only be resolved using 
high fidelity methods with fine spatial discretisation of the surfaces of the particles [12]. Both accurate temporal and spatial 
discretisation however come at a large computational cost, while underresolved simulations in general will result in artificial 
collisions and overlaps. Enforcing a minimum distance between particles within the system alleviates the resolution require-

ments, making simulations more computationally efficient. To achieve this, the implementation of a contact avoiding strategy is 
needed.

As many numerical methods used for solving the Stokes equations break when particles overlap, a contact avoiding strat-

egy is also instrumental in enabling the exploration of particle suspensions over extended time periods. This is essential 
to facilitate the collection of data for the study of a diverse range of both linear and nonlinear phenomena. These phe-

nomena encompass aspects such as transport and mixing, effective viscosity in sheared suspensions of particles of varying 
shapes and densities [13], phase transitions in liquid chrystals [14], or rotational diffusion over long time-scales in sys-

tems with Brownian motion imperative to understand collective order and self-assembly for biological or synthetic particles 
[15].

Contact forces and torques introduced as part of the contact avoiding strategy are artificial to the system and introduced only 
to decrease the impact from the equally artificial numerical errors difficult to avoid for particles in close proximity. Hence, it is 
desired to find the smallest possible contact forces for particles to stay apart. At the same time, we also want to avoid introducing 
stiffness in the system, and eliminate the risk of having to take very small time-steps. Such stiffness is often the drawback of applying 
a strongly repelling potential to avoid particle overlaps, as an alternative to contact resolution algorithms. Potentials of this type 
2

include Lennard-Jones or e.g. a potential based on Hard Gaussian Overlap (HGO), which is designed for ellipsoids [16] and discussed 
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for rods in [17].1 Due to the problem with stiffness, it is difficult to guarantee non-overlapping particles with a potential-based 
method, and there is a risk that particles become “soft” [18].

Contact problems with particles without hydrodynamic interactions have a richer literature [19–23] with more benchmarks 
available. An overview of techniques for contact dynamic problems is found in [24]. There is also a body of work in computer 
graphics [25,26], and of most relevance to this work, the recently introduced method of Incremental Potential Contact (IPC), which 
is a penalty method where colliding and overlapping configurations are penalised by a barrier energy [27–29].

Different contact resolution techniques have been suggested to better resolve particle collisions in Stokes flow, see e.g. the works 
[30–34], where no-slip boundary conditions are imposed at the point of contact, constraining the colliding particles to move with 
equal speed at the collision point. A complementarity formulation is favoured in [35,14,36–39], where the idea is to solve a nonlinear 
complementarity problem for contact force and torque magnitudes, given some definition of particle separation. The difficult-to-solve 
nonlinear problem is in turn approximated by one or a sequence of linear complementarity problems (LCPs) that can be solved more 
easily. One method in this class is presented in the works by Yan et al., [14,36,38], and has the advantages that it is easily applicable 
to any hydrodynamic solver and is based on a geometric formulation that fulfils Newton’s third law (forces on every pair of particles 
are balanced). In addition, the collision stress and mechanical pressure can be computed directly from the contact forces. One 
drawback, however, is that the method cannot guarantee non-overlapping configurations at the end of each time-step, as the solution 
of a single LCP does not imply a solution to the original nonlinear problem. A second drawback is that non-convex particles cannot be 
handled. Another method of the same flavour for Stokesian fluids is based on so called Space-Time Interference Volumes (STIV), as 
in Lu et al. [35,40] and Bystricky et al. [37]. The STIV technique is inspired by the work of Harmon et al. [26] in computer graphics. 
The general idea is to consider the Stokes equations in variational form and, after a candidate time-step, compute the volume in 
space-time swept out by the trajectories of the particles in contact. If the volume is negative, particles overlap. Enforcing this volume 
to be zero, by determining appropriate repulsion forces, gives rise to a complementarity problem. In an STIV approach, no-collision 
is obtained even for large time-steps by solving sequences of LCPs and particles that pass through each other during one time-step 
can be detected and the corresponding time-step corrected. However, each STIV-formulation is strongly linked to a specific Stokes 
solver, the method is not easily applicable to general geometries, and in 3D, the interference volume has to be efficiently computed 
in four dimensions [40,35]. Another difficulty is that using the STIV, contact forces are not automatically balanced and balanced 
forces are difficult to obtain (Newton’s third law is not satisfied) [41].

We choose to approach the contact problem by introducing repelling contact forces and torques to particles that come too close 
to each other in terms of the Euclidean distance. Key features of the method are that all contact forces are balanced via Newton’s 
third law and that the next time-step in a sequence of time-steps is guaranteed to be contact free (in fact, by construction, a minimum 
separation distance is guaranteed between particles). The method is strongly inspired by the work of Yan et al. [14,36,38] in how 
contact forces and torques are geometrically motivated and by the work of Zorin and co-authors in the work on IPC, [27,29,28], in 
how non-overlapping constraints are set up. However, instead of penalising contact by a barrier energy as in [27,29,28], a barrier 
energy is rather used to represent both a large number of non-overlap constraints and the complementarity condition with the 
associated contact force/torque magnitude. In the work on IPC, [27,29,28], a tetrahedral or triangular mesh of the surface of each 
particle is considered, where distances are computed between all pairs of edges and points to triangles respectively. In our work, 
particles are rigid and smooth, and we can utilise the known parameterisation of the particle surfaces to compute distances robustly; 
given a set of points defining the grid of a particle surface, and for each surface grid node within some set threshold of the other 
particle, we flag the closest point of contact on the neighbouring particle to be part of the collision handling. This is possible to 
do as we are not dependent on second order derivatives of the distances in solving the optimisation problem with our formulation, 
in contrast to IPC; gradients of the distances with respect to particle coordinates suffice. The handling of the geometry and the 
constraints is also in contrast to the geometric approach by Yan et al., where only a single point of contact or “the most overlapping 
point” has to be determined, and more similar to the STIV technique, where multiple segments of the surface can be flagged for 
the same particle contact pair. This is a beneficial property especially for non-convex particle geometries, or if surfaces are close to 
parallel, where the computed contact torque otherwise becomes very sensitive to the choice of contact point. Details are outlined in 
Section 2.1. Other differences in our work compared to [27,29,28] are that particles are immersed in a Stokesian fluid, where inertia 
is negligible, and we solve for contact force/torque magnitudes. For rigid bodies with IPC, on the other hand, one solves for the 
particle coordinates in an implicit time-step [28]. The dimension of the optimisation variable in the resulting optimisation problem 
hence becomes smaller here than in IPC. Keeping the rigidity of the particles is a non-issue (no additional constraints have to be 
enforced, in contrast to what is discussed in [28]). We utilise the linearity of the Stokes equations and formulate a minimisation 
problem for contact force magnitudes to be solved in every time-step where contact occurs. Note specifically that we do not minimise 
a combined, weighted, energy formulation as in IPC [27,29,28]. Hence, there are no parameters to tune in our formulation for the 
importance of the collision constraints relative to the minimisation of other contributions to the total energy of the system.

The time-stepping schemes used both for STIV and the geometric approach by Yan et al. are explicit (to avoid a large cost at 
every time-step) and of low order [42,14,36,38]. The repulsion forces and torques are assumed to be constant over the course of 
one time-step, and the basis for both types of contact algorithms in their vanilla version is explicit Euler. This is the time-stepping 
method that will be used for demonstration also in this work. An additional motivation to this choice is in settings where the contact 
resolution algorithm is coupled to Brownian motion, modelled by a stochastic differential equation, where it is difficult to obtain 

1 For multiblob particles of a more general geometry, one could construct a potential from an HGO-potential centred on each individual blob building up the 
3
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anything better than first order accuracy in time. Note however that there is nothing that prevents a higher order time-stepping 
scheme from being used if contact avoiding is applied in a deterministic setting. The most straight-forward idea is then to use a 
higher order time-stepping method for the particles not involved in any contacts. For particles to which repulsive forcing is added in 
a certain time-step, there is no expected gain in using a high order method.

1.1. The Stokes mobility problem

Before introducing the optimisation problem, we start with some preliminaries. Each 3D particle in the fluid suspension can be 
described by its centre coordinates 𝒙𝑖 ∈ℝ3 and rotation quaternion2 𝒒𝑖 ∈ℝ4. We collect these generalised coordinates for all the 𝑁
particles in the system in the vector Q such that

Q =
[
𝒙𝑇
1 ,𝒒

𝑇
1 ,𝒙

𝑇
2 ,𝒒

𝑇
2 ,… ,𝒙𝑇

𝑁
,𝒒𝑇

𝑁

]𝑇
. (1)

Let U be a vector of all rigid body velocities of the particles in the system, where 𝒖𝑖 ∈ℝ3 is the translational velocity and 𝝎𝑖 ∈ℝ3

the rotational velocity of particle 𝑖. Similarly, let F ext be a vector of all the externally applied forces 𝒇 𝑖 ∈ℝ3 and torques 𝒕𝑖 ∈ℝ3 on 
the particles in the system:

U =
[
𝒖𝑇1 𝝎𝑇

1 𝒖𝑇2 𝝎𝑇
2 … 𝒖𝑇

𝑁
𝝎𝑇
𝑁

]𝑇
, F ext =

[
𝒇𝑇
1 𝒕𝑇1 𝒇𝑇

2 𝒕𝑇2 … 𝒇𝑇
𝑁

𝒕𝑇
𝑁

]𝑇
. (2)

Now, the Stokes mobility problem can be stated as

U =Ubg +UBrownian +MF ext, (3)

where M is the mobility matrix of size 6𝑁 × 6𝑁 , with each 6 × 6 block corresponding to the interaction between a specific pair of 
particles. The vector Ubg is the velocity contribution to the particles from an eventual background flow and UBrownian is a vector 
of stochastic velocities included if thermal fluctuations are considered. Note that implementation-wise, M is only to be interpreted 
symbolically and MF ext corresponds to solving Stokes equations along with no-slip boundary conditions using the multiblob method 
as described in [2], given forces and torques for all particles, stacked in F ext. Hence, MF ext is the vector of rigid body velocities 
that results from F ext.

With no contact forces present, Q is related to the velocities in U as

Q̇ =𝚿(Q)U , (4)

with 𝚿(Q) ∈ℝ7𝑁 ×ℝ6𝑁 a geometry-dependent matrix relating velocities to particle positions and quaternions. To be more specific, 
the role of 𝚿(Q) is mainly to relate quaternion updates to angular velocities. The matrix 𝚿(Q) only contains non-zero blocks on the 
diagonal and for particle 𝑖, this block takes the form2

[
𝑰 𝟎
𝟎 1

2𝑸(𝒒𝑖)

]
, where 𝑸(𝒒𝑖) =

⎡⎢⎢⎢⎣
−𝑝1

𝑖
−𝑝2

𝑖
−𝑝3

𝑖

𝑠𝑖 𝑝3
𝑖

−𝑝2
𝑖

−𝑝3
𝑖

𝑠𝑖 𝑝1
𝑖

𝑝2
𝑖

−𝑝1
𝑖

𝑠𝑖

⎤⎥⎥⎥⎦ . (5)

The role of the matrix 𝑸(𝒒𝑖) is to locally preserve the norm of the unit quaternion 𝒒𝑖 [3,43].

When particles are in contact, the velocities are corrected using the action of a vector of contact forces and torques F 𝑐 , such that

Q̇ =𝚿U +𝚿MF 𝑐 , (6)

with

F 𝑐 =D𝝀. (7)

The matrix D ∈ ℝ6𝑁 × ℝ𝑁𝑐 determines the direction of contact forces and torques and depends on the particle configuration and 
geometries and the vector 𝝀 ∈ℝ𝑁𝑐 determines the contact force/torque magnitudes, with 𝑁𝑐 the number of particle pairs in contact. 
From now on, we sometimes for simplicity write only “contact force”. This should always be read as a contact force/torque pair. 
Ideally, we would like to determine contact forces such that if contact forces are needed for particles to stay apart during the time-

step, the force should be active and the corresponding force magnitude 𝜆𝑖 positive. On the other hand, if the particles stay separate 
without contact forces, the contact force magnitude 𝜆𝑖 should be zero and the contact force passive. The nature of the contact problem 
is hence a complementarity problem. It is also a nonlinear problem, as the distances at the next instance of time depend nonlinearly 
on the contact force magnitudes 𝝀.

2 The quaternion vector takes the form 𝒒𝑖 ∶= (𝑠𝑖, 𝒑𝑖), where the scalar, 𝑠, specifies a rotation magnitude and 𝒑 ∈ ℝ3 specifies a vector around which the rotation 
4

takes place.
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2. A barrier method for particles in contact

In practice, it is not advisable to let particles come arbitrarily close to each other, due to limitations in all numerical solvers for 
particles in Stokes flow – the accuracy for almost touching particles is suffering if the resolution of the particles is not excessively 
high. For this reason, we define a contact to occur if the distance 𝑑 between a pair of particles is smaller than a set buffer distance 
𝑑. The parameter 𝑑 is typically set to ensure a prescribed accepted accuracy in the Stokes solver.3 We want to find contact force 
magnitudes 𝝀 such that this separation distance is guaranteed at the next time-step, i.e.

𝑑𝑖
(
Q𝑡+Δ𝑡(𝝀)

)
> 𝑑, for all 𝑖 distances measured between distinct particles, (8)

with 𝑑𝑖 depending non-linearly on Q𝑡+Δ𝑡, the particle configuration in the next time step. The set of relevant distances for each particle 
pair is properly defined in Section 2.1. The complementarity conditions for the particle distances and contact force magnitudes take 
the form

𝜆𝑘max
(
0,min

𝑖

{
𝑑𝑖(Q𝑡+Δ𝑡) − 𝑑

})
= 0, 𝑖 associated with particle contact pair 𝑘 and 𝜆𝑘 ≥ 0. (9)

Instead of solving this (modified) nonlinear complementarity problem exactly, we will set up an optimisation problem to fulfil all 
constraints in (8) and still approximately solve (9). Note that depending on the number and concentration of particles in the system 
and their geometries, the number of constraints in (8) might be very large. This section explains how an optimisation problem can 
be formulated and discusses modelling choices for the objective function, the constraints and the direction of the contact forces and 
torques. The constraints in (8) can be represented via a minimisation of a sum of indicator functions [44]:

min
𝝀≥𝟎

∑
𝑖

𝐼(𝑑𝑖
(
Q𝑡+Δ𝑡(𝝀)

)
− 𝑑), with 𝐼(𝑠) =

{
0, 𝑠 ≥ 0,

∞, 𝑠 < 0.
(10)

This representation is however difficult to work with, and we therefore replace (10) with a smoother counterpart. The formulation 
is based on a so-called barrier function, 𝑏, that is zero for sufficiently large distances 𝑑 and increasingly large for distances smaller 
than the set threshold 𝑑:

𝑏(𝑑,𝑑) =

{
−(𝑑 − 𝑑)2 ln

(
𝑑∕𝑑

)
, 0 < 𝑑 < 𝑑,

0, 𝑑 ≥ 𝑑.
(11)

We can collect all the non-overlapping constraints in (8) into what we define as a barrier energy, mimicking the sum of indicators in 
(10). A non-overlapping configuration is one with non-negative contact force magnitudes 𝝀 applied for 𝑡 ∈ [𝑡, 𝑡 +Δ𝑡] that minimises 
the barrier energy,

min
𝝀≥𝟎

∑
𝑖

𝑏
(
𝑑𝑖(Q𝑡+Δ𝑡(𝝀)), 𝑑

)
, (12)

with the summation being over all geometries in contact (corresponding to all constraints in (8)). In a Stokesian fluid, the particle 
coordinates then evolve with time according to

Q̇ =𝚿 (U +MD𝝀) , (13)

where D𝝀 is a force/torque vector and MD𝝀 results in a velocity vector, as in (6). If we discretise this equation in time, we can 
express Q𝑡+Δ𝑡 in terms of previous, known, coordinate vectors. With the forward Euler method, the minimisation problem becomes

min
𝝀≥𝟎

∑
𝑖

𝑏
(
𝑑𝑖(Q𝑡+Δ𝑡(𝝀)), 𝑑

)
,

s.t. Q𝑡+Δ𝑡 =Q𝑡 +Δ𝑡𝚿 (U +MD𝝀) .
(14)

This is a constrained minimisation problem to solve for 𝝀 ∈ℝ𝑁𝑐 , i.e. with a scalar contact force/torque magnitude per particle pair 
in contact. Note however that for some particle configurations, any vector 𝝀 with sufficiently large magnitude would solve (14). We 
hence need to constrain the solution by penalising large 𝝀, with a natural choice being

min
𝝀≥𝟎

‖𝝀‖+ 𝛼
∑
𝑖

𝑏
(
𝑑𝑖

(
Q𝑡 +Δ𝑡𝚿 (U +MD𝝀)

)
, 𝑑

)
, (15)

where 𝛼 is a parameter that has to be set to balance the minimisation of the barrier energy at the next time-step and the minimisation 
of contact forces. The parameter 𝛼 also has the role of enforcing the complementarity condition between the contact forces and 
contact distances (relative to the buffer region) in (9). A different way of saying the same thing is that we would like to pick 𝜆𝑘
sufficiently small so that non-overlap is obtained, but where the force is active, the minimum contact distance should not be larger 
than 𝑑 after applying the contact forces.
5

3 One could also consider to set 𝑑 in relation to any inhomogeneities on the surfaces of the physical particles modelled by our smooth particles.
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For the choice of norm in (15), we have two options: A 1-norm penalty of the contact force magnitudes, 
∑

𝑖 𝜆𝑖, penalises the forces 
at all contacts to an equal extent and not only those where the magnitude is large. One could also choose the norm 

(
𝝀𝑇D𝑇MD𝝀

)1∕2
, 

or its square, corresponding to the dissipated energy induced by the contact forces. As a main goal is to minimise the impact of the 
artificial repulsive forces on the system, the dissipated energy due to the introduced contact forces could physically be a reasonable 
choice of objective function. For our Stokes solver, the rigid multiblob method, it is however a known problem that the accuracy 
in M is suffering a lot for closely interacting particles [2]. The same holds true for many numerical methods to solve the Stokes 
equations. Hence, 𝝀D𝑇MD𝝀 is a very crude approximation to the true dissipated energy and a large error is associated with this 
quantity. For this reason, we will use 

∑
𝑖 𝜆𝑖 as our objective function of choice. See section 3.1.2 for a numerical comparison of the 

two options that will further motivate our choice.

Note that it is not trivial to find the best choice of 𝛼 in (15) for general applicability, as the magnitude of both 𝝀 and the barrier 
energy depends on the number of pairs of particles in contact and how much overlap a non-corrected time-step would yield. A 
suitable level of 𝛼 also depends on the tolerance chosen as stopping criterion when solving the problem in (15). This is a similar 
problem as the one encountered when minimising the energy formulation in the work on IPC, where a penalty has to be chosen 
in an adaptive manner to give the barrier energy the proper weight; see the supplementary in [27]. Here, we would like to avoid 
such hyperparameter tuning. What is known, is that the barrier energy is identically zero for a non-overlapping configuration. An 
alternative formulation of the minimisation problem in (15) is therefore

min
𝝀≥𝟎

∑
𝑖

𝜆𝑖,

s.t.
∑
𝑖

𝑏
(
𝑑𝑖

(
Q𝑡 +Δ𝑡𝚿 (U +MD𝝀)

)
, 𝑑

)
= 0,

(16)

where contact force magnitudes are minimised while enforcing a zero barrier energy. The formulation in (16) is simpler than (15) in 
the sense that one hyperparameter is reduced, but possibly more challenging as a nonlinear equality constraint has been added. Note 
that the Lagrangians of (15) and (16) are identical, but in the case of (16), the parameter 𝛼 is a Lagrange multiplier to be solved for 
instead of a set parameter. In the remaining of this work, we will consider the formulation in (16) for determining contact forces.

Remark 1. In contrast to in the work on IPC by Zorin et al., the value of the barrier energy itself is not used explicitly in the 
formulation presented in this paper but necessary for

1. Imposing a large number of constraints on minimum distances as a collapsed single constraint. This allows us to seek minimum 
force/torque magnitudes 𝝀 only where the barrier energy is zero. What is gained is that we do not have to deal with the large 
number of original constraints explicitly, and are hence able to solve smaller optimisation problems in every time-step where 
contact occurs, with just a single dual variable instead of one per colliding particle pair.

2. Obtaining a direction of the contact force and torque that takes more information into account: by using the barrier energy, a 
large number of pairs of contact points are weighted by their distance to give a net force and torque direction (more on this in 
Section 2.1). This is more robust than considering only one pair of points per contact pair.

An alternative formulation for the same set of constraints is min𝑖 𝑑𝑖 ≥ 𝑑. For a large class of optimisation methods, the interior point 
methods, such a problem requires a feasible starting guess, 𝝀 ≥ 𝟎 with all non-overlap constraints satisfied, which might be very 
hard to obtain even for systems containing a few particles. Rewriting the non-overlap constraints in (8) as a barrier energy is hence 
necessary for robustness.

Remark 2. Care has to be taken in the forward Euler update in (14) for rotational degrees of freedom. Quaternions have to be 
updated by means of rotations to guarantee that their unit norm is preserved. As a linearisation, (14) holds, but practically, the 
angular update Δ𝑡𝝎𝑖 is expressed as a unit quaternion of the form

[cos
Δ𝑡‖𝝎𝑖‖

2
,

𝝎𝑖‖𝝎𝑖‖ sin
Δ𝑡‖𝝎𝑖‖

2
]𝑇 . (17)

The updated quaternion 𝒒𝑖𝑡+Δ𝑡 is obtained via a rotation of the old quaternion 𝒒𝑖𝑡 so that

𝒒𝑖𝑡+Δ𝑡 = Rot(Δ𝑡‖𝝎𝑖‖,𝝎𝑖)𝒒𝑖𝑡, (18)

where Rot(𝒒) represents a quaternion rotation from the left [3,43], and, with 𝒒 ∶= (𝑠, 𝒑),

Rot(𝒒) =
⎡⎢⎢
𝑠 −𝑝1 −𝑝2 −𝑝3
𝑝1 𝑠 −𝑝3 𝑝2

𝑝2 𝑝3 𝑠 −𝑝1

⎤⎥⎥ . (19)
6

⎢⎣𝑝3 −𝑝2 𝑝1 𝑠
⎥⎦
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Fig. 2. Illustration of the two types of contact distances, 𝑑p

𝑖
and 𝑑s

𝑖𝑘
, for two fat rods close to contact in pair 𝑖. Surface-node-to-particle distances 𝑑s

𝑖𝑘
are the distances 

from each surface grid node on one particle (black dots) to the closest point on the other particle, less than a set threshold (buffer region indicated in yellow). Closest 
points are determined from the shortest distance to the centre line segment of the other particle (blue line). Pairs of grid nodes and computed points are marked with 
red dots, with red lines drawn in between displaying the distances. The shortest particle-particle distance 𝑑p

𝑖
, on the other hand, is given by the length of the cyan 

line drawn between the closest points on the two surfaces, computed from the closest distance between the two centre line segments, and subtracting 2𝑅rod.

2.1. Defining the contact distance and contact force

Let us now focus on the Euclidean contact distances 𝑑𝑖 between points on the surfaces of two particles in close proximity. We 
make a distinction between 𝑑p and 𝑑s, with 𝑑p the shortest distance between particles and 𝑑s the shortest distance between a pair of 
surface points on two particles. In principle, 𝑑𝑖 in the constrained optimisation problem (16) can denote either 𝑑p

𝑖
or 𝑑s

𝑖
. Practically, 

we compute 𝑑p directly using known parameterisations of the particles, while the surface-node-to-particle distance 𝑑s is based on 
discretisations of the particle surfaces, described by a distribution of points. To be more precise, for each node on the surface of one 
particle in a pair sufficiently close to contact, we then use the known parameterisation of the centre line of the other particle to 
determine the closest point on this line. The particle surfaces considered in this work are all one radius away from the particle centre 
line, and the surface-node-to-particle distance can hence easily be computed. Fig. 2 visualises 𝑑𝑝 and 𝑑𝑠 for a configuration of two 
rods. Geometric considerations determine if we choose to use 𝑑p or 𝑑s:

1. The particle-particle distance 𝑑p may be a good choice if the particle shapes are simple enough, such as e.g. for spheres or 
axisymmetric rods with semi-spherical caps. In the latter case, we solve an equation to determine the closest distance between 
two line segments, following [45,46], and subtract 2𝑅rod to determine the closest distance between particles.

2. The surface-point-to-surface-point distance, 𝑑s, is especially beneficial in two different cases: i.) For close to parallel surfaces, 
such that it is hard to define a single point of contact and ii.) For non-convex particles. We will focus most of our attention on 
this case. Note that a requirement for robustness is that the surface nodes well resolve the curvature of the particles.

We think of the contact forces as a (hopefully small) correction to the trial time-step Q∗
𝑡+Δ𝑡

, i.e. the time-step without contact 
forces, given by

Q∗
𝑡+Δ𝑡

=Q𝑡 +Δ𝑡𝚿U . (20)

Let 𝐵𝑖(Q∗
𝑡+Δ𝑡

, 𝑑try) be the modified barrier energy associated with the particle contact pair 𝑖 aggregated over all relevant particle-

particle distances at the trial time-step, with the threshold 𝑑try chosen so that 𝑑try > 𝑑. This means that 𝐵𝑖(Q∗
𝑡+Δ𝑡

, 𝑑try) is the sum 
in (12), but for a single particle pair and with a modified threshold. Then, we define the contact force potential, 

∑
𝑖

𝜆𝑖𝐵𝑖(Q∗
𝑡+Δ𝑡

, 𝑑try), 

a weighted sum of the barrier energy in the trial time-step, and let the contact forces and torques be given by the gradient of this 
contact force potential. Some care has to be taken when differentiating with respect to quaternions and we therefore express F 𝑐 as

F 𝑐 = −𝚿𝑇∇Q∗
𝑡+Δ𝑡

(∑
𝑖

𝜆𝑖𝐵𝑖

(
Q∗

𝑡+Δ𝑡
, 𝑑try

))
. (21)

The matrix 𝚿𝑇 here is needed to map derivatives with respect to quaternions to torques. As stated in (6)-(7), we may write the 
contact forces on the form F 𝑐 =D𝝀. Let 𝑩 ∈ℝ𝑁𝑐 be a vector of all the modified barrier energies for the 𝑁𝑐 particle pairs in contact. 
The sparse matrix D ∈ℝ6𝑁×𝑁𝑐 , representing contact force and torque directions, depends on the geometry of the particles and their 
locations at the trial time-step. From (21) we identify that D is given by

D = −𝚿𝑇∇Q∗
𝑡+Δ𝑡

𝑩(Q∗
𝑡+Δ𝑡

, 𝑑try). (22)

The matrix has the structure

D =
[
𝑫1 𝑫2 … 𝑫𝑁𝑐

]
, (23)
7

where 𝑫𝑖 represents contact 𝑖, between particle 𝑗 and 𝑘, and is given by
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Fig. 3. Illustration of the contact force directions corresponding to using the contact distance 𝑑𝑠
𝑖𝑘

or 𝑑𝑝

𝑖
for two fat rods close to contact in pair 𝑖. The corresponding 

distances are visualised in Fig. 2. The direction of the contact torques induced by the contact forces is indicated in magenta. The directions of the contact torques are 
such that the particles rotate away from the point of closest approach; the rightmost particle in the pair will rotate clock-wise, while the left-most particle will rotate 
counter-clockwise. Shadowed arrows indicate a scaling of the contact force and torque determined by 𝜆𝑖.

𝑫𝑖 =
[
0 … 0 �̂�

𝑐

𝑖

𝑇
�̂�
𝑐

𝑖𝑗

𝑇 0 … 0 −�̂� 𝑐

𝑖

𝑇
�̂�
𝑐

𝑖𝑘

𝑇 0 … 0
]𝑇

. (24)

Here, �̂� 𝑐

𝑖
, �̂�𝑐

𝑖𝑗
and �̂�𝑐

𝑖𝑘
represent force and torque directions; see [22] for a detailed motivation. For robustness, we rescale and redefine 

𝑫𝑖 as

𝑫𝑖 =

[
0 … 0

�̂�
𝑐

𝑖

𝑇

‖�̂� 𝑐

𝑖
‖ �̂�

𝑐

𝑖𝑗

𝑇

‖�̂� 𝑐

𝑖
‖ 0 … 0 −

�̂�
𝑐

𝑖

𝑇

‖�̂� 𝑐

𝑖
‖ �̂�

𝑐

𝑖𝑘

𝑇

‖�̂� 𝑐

𝑖
‖ 0 … 0

]𝑇

. (25)

From (25) and the relation F 𝑐 =D𝝀, it is clear that the forces applied to the two particles in pair 𝑖 are equal in magnitude (with 
the magnitude given by 𝜆𝑖), and differ only in sign, due to Newton’s third law. In the contact force potential, all particles or grid 
nodes closer to each other than a tolerance 𝑑try are flagged from the trial configuration that might come into contact in the corrected 
time step. All these flagged points are considered when setting up D and determine the direction of contact forces and torques. 
The threshold 𝑑try is chosen to set up a buffer, not to miss any colliding particles and sets at the same time the dimension of the 
optimisation problem, i.e. the number of colliding particle pairs 𝑁𝑐 . The contact force potential and the force definition in (21)

allows for contact force complementarity with respect to 𝑑try at the trial time-step, meaning that we allow for a non-zero contact force 
for pair 𝑖 only if there is a contact distance at the trial time-step such that 𝑑𝑖(Q∗

𝑡+Δ𝑡
) < 𝑑try.

Remark 3. We could also choose to construct the contact force potential at the previous, contact free time-step, from Q𝑡. Note that 
this would require a larger 𝑑try, as particles are expected to move more in a full time-step than with only the correction from contact 
forces.

Remark 4. Even if we have written the forces and torques as the gradient of a barrier energy, it is not the gradient of a conservative 
potential as also 𝝀 depends on Q∗

𝑡+Δ𝑡
, implicitly.

Next, we will compare using 𝑑p(Q∗
𝑡+Δ𝑡

) or 𝑑s(Q∗
𝑡+Δ𝑡

) in the contact force potential and hence when assembling D. The differences 
are also outlined in Fig. 3. In the case of a contact force direction determined for the particle pair in contact 𝑖, corresponding to using 
𝑑

p

𝑖
as the definition of contact distance, we identify that 𝐵𝑖(Q∗

𝑡+Δ𝑡
, 𝑑try) = 𝑏(𝑑𝑝

𝑖
(Q∗

𝑡+Δ𝑡
), 𝑑try). Let 𝒏𝑖 be the outward unit normal from 

the particle in the contact pair with the lowest index (pointing away from the contact) in the trial time-step. We then let

�̂�
𝑐

𝑖
= −

𝜕𝑏(𝑥,𝑑try)
𝜕𝑑𝑖

|||𝑑p
𝑖
(Q∗

𝑡+Δ𝑡
)
𝒏𝑖,

�̂�
𝑐

𝑖𝑗
= −

𝜕𝑏(𝑥,𝑑try)
𝜕𝑑𝑖

|||𝑑p
𝑖
(Q∗

𝑡+Δ𝑡
)

(
𝒔𝑖𝑗 × 𝒏𝑖

)
�̂�
𝑐

𝑖𝑘
=

𝜕𝑏(𝑥,𝑑try)
𝜕𝑑𝑖

|||𝑑p
𝑖
(Q∗

𝑡+Δ𝑡
)
(𝒔𝑖𝑘 × 𝒏𝑖),

(26)

where 𝒔𝑖𝑗 and 𝒔𝑖𝑘 are the vectors from the centre of each particle to the point of contact, in the global reference frame. Here, we 
remark that similarly to what is done by Yan et al. in [14], the contact stress and mechanical pressure can be computed from the 
contact forces.

We can also choose to build D for all pairs of surface points in contact, with 𝑑s the definition of separation used in the contact 
force potential. Let 𝑙𝑗 be the index of a surface point on particle 𝑗, 𝑙𝑘 an index of a surface point on particle 𝑘 and 𝒓𝑙 denote a surface 
8

point. Then, let C𝑖 denote the set of surface point pairs on different particles that are within a distance 𝑑try from each other. In this 
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setting, the modified barrier energy 𝐵𝑖(Q∗
𝑡+Δ𝑡

, 𝑑try) denotes the barrier energy for all surface points involved in the collision for the 
contact pair 𝑖, so that

𝐵𝑖(Q∗
𝑡+Δ𝑡

) =
∑
𝑙∈C𝑖

𝑏
(
𝑑s
𝑙
(Q∗

𝑡+Δ𝑡
), 𝑑try

)
. (27)

Following (22), this means that the direction of the force will be given by the sum of the “normal directions” for each pair of 
grid nodes close to contact, 

(
𝒓𝑙𝑗 − 𝒓𝑙𝑘

)
∕‖𝒓𝑙𝑗 − 𝒓𝑙𝑘‖, weighted by the corresponding derivative of the barrier function. All in all, the 

components of 𝑫 𝑖 take the form

�̂�
𝑐

𝑖
= −

∑
(𝑙𝑗 ,𝑙𝑘)∈C𝑖

(
𝜕𝑏(𝑥,𝑑try)

𝜕𝑥

|||𝑥=‖𝒓𝑙𝑗 −𝒓𝑙𝑘 ‖
)

𝒓𝑙𝑗 − 𝒓𝑙𝑘‖𝒓𝑙𝑗 − 𝒓𝑙𝑘‖ , (28a)

�̂�
𝑐

𝑖𝑗
= −

∑
(𝑙𝑗 ,𝑙𝑘)∈C𝑖

(
𝜕𝑏(𝑥,𝑑try)

𝜕𝑥

|||𝑥=‖𝒓𝑙𝑗 −𝒓𝑙𝑘 ‖
)⎛⎜⎜⎜⎝

(
𝒓𝑙𝑗 − 𝒙𝑗

)
×

(
𝒓𝑙𝑗 − 𝒓𝑙𝑘

)
‖𝒓𝑙𝑗 − 𝒓𝑙𝑘‖

⎞⎟⎟⎟⎠ , (28b)

�̂�
𝑐

𝑖𝑘
=

∑
(𝑙𝑗 ,𝑙𝑘)∈C𝑖

(
𝜕𝑏(𝑥,𝑑try)

𝜕𝑥

|||𝑥=‖𝒓𝑙𝑗 −𝒓𝑙𝑘 ‖
)⎛⎜⎜⎜⎝

(
𝒓𝑙𝑘 − 𝒙𝑘

)
×

(
𝒓𝑙𝑗 − 𝒓𝑙𝑘

)
‖𝒓𝑙𝑗 − 𝒓𝑙𝑘‖

⎞⎟⎟⎟⎠ . (28c)

This means that a certain force direction 
(
𝒓𝑙𝑗 − 𝒓𝑙𝑘

)
∕‖𝒓𝑙𝑗 −𝒓𝑙𝑘‖ has a larger weight if the corresponding distance ‖𝒓𝑙𝑗 −𝒓𝑙𝑘‖ is smaller 

and the “overlap” relative to the minimum allowed distance 𝑑 larger. Distances very close to 𝑑 give only very small contributions to 
the sums representing force and torque directions in (28).

Note that alternatives could be considered for the barrier function, such as

𝑏0(𝑑,𝑑) =

{
−ln

(
𝑑∕𝑑

)
, 0 < 𝑑 < 𝑑,

0, 𝑑 ≥ 𝑑,
or 𝑏1(𝑑,𝑑) =

{
(𝑑 − 𝑑) ln

(
𝑑∕𝑑

)
, 0 < 𝑑 < 𝑑,

0, 𝑑 ≥ 𝑑,
(29)

with regularity 𝐶0 and 𝐶1 respectively and discussed also in [27]. We choose the barrier function 𝑏 in (11) due to its smooth transition 
at 𝑑 = 𝑑 (𝑏 has regularity 𝐶2). This makes 𝑏 well-suited for the optimisation problem in (16), especially for computing derivatives of 
the barrier function, which has to be done in any iterative method to solve (16). For determining the contact force direction at the 
trial time-step via (28), we have no such regularity demand and choose the 𝐶0 function 𝑏0, for which the weight to the force and 
torque from the derivative of the barrier function is the reciprocal of the distance ‖𝒓𝑙𝑗 − 𝒓𝑙𝑘‖.

Remark 5. Note that particles might not only violate the threshold 𝑑 but also overlap, with 𝑑𝑖 < 0, before a contact force of the right 
magnitude is applied. Even if this is not the case at the trial time-step, it can happen in the iterative optimisation procedure to solve 
(16). We can, however, not evaluate the barrier function 𝑏 in (11) with a negative argument. One solution is to map 𝑑𝑖 → 𝑑𝑖 + 𝜖reg

and 𝑑 → 𝑑 + 𝜖reg, with 𝜖reg a parameter to be chosen. Note that if 𝜖reg is chosen large, the gradient of the barrier function is small 
also for small 𝑑𝑖 relative to 𝑑, which might have an impact on the performance of solving the optimisation problem. Note also that in 
a Brownian setting, we may need to choose a large 𝜖reg if a large time-step size is used (depending on how repelling the conservative 
potential is that gives rise to external forces and torques). A different idea to avoid a large 𝜖reg is to map all 𝑑𝑖 < 𝜖cap linearly such 
that the barrier function at 𝑑𝑖 = 𝜖cap is 𝐶1 and extended to a linear function, with a typical choice of 𝜖cap being a small fraction of 𝑑, 
e.g. 𝜖cap = 10−2𝑑. The three alternative barrier functions in (11) and (29) and their regularisations are visualised in Fig. 4, with the 
remapping of distances via 𝜖reg in Fig. 4a and the linear extension of 𝑏 in Fig. 4b. In numerical experiments in Section 3, we employ 
the strategy with 𝜖reg, as we numerically have observed a reduced number of iterations for solving the optimisation problem with 
this choice, as gradients of 𝑏 are smaller and hence easier to handle.

2.2. Connection to a complementarity formulation

For comparison to complementarity techniques in the literature, as in [35,14,36–39], the accumulated non-overlap constraints 
in 

∑
𝑖

𝐵𝑖(𝝀) = 0 can equivalently be expressed as a complementarity problem for the barrier energy of each contact pair and the 

corresponding contact force magnitude:

𝟎 ≤ −𝑩(Q∗
𝑡+Δ𝑡

+Δ𝑡𝚿MD𝝀, 𝑑) ⟂ 𝝀 ≥ 𝟎. (30)

Note that the formulation in (30) holds despite the fact that the barrier function 𝑏 never takes negative values. The problem in (30)

can be solved by first linearising about the trial time-step so that

∗
(

𝑇
( ∗ )

𝑇
( ∗ ))

9

𝟎 ≤ −𝑩(Q
𝑡+Δ𝑡

, 𝑑) + ∇Q∗
𝑡+Δ𝑡

𝑩 Q
𝑡+Δ𝑡

, 𝑑 Δ𝑡𝚿M𝚿 ∇Q∗
𝑡+Δ𝑡

𝑩 Q
𝑡+Δ𝑡

, 𝑑try 𝝀⟂ 𝝀 ≥ 𝟎 (31)
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Fig. 4. Barrier functions as defined in (11) and (29) are smooth approximations of the indicator function. Here, the barrier function is modified to be defined for 
negative inter-particle distances, as particles might overlap in the trial time-step and in iterations of the optimisation method before contact forces of the right 
magnitudes are found.

and techniques for LCPs may be used as in [47]. To guarantee a solution to the original nonlinear problem in (30), a sequence of 
linear problems of the form in (31) have to be solved, each with an update of the trial time-step, Q∗

𝑡+Δ𝑡
, containing already computed 

position updates by an accumulated contact force.

The equation in (30) is reduced to the formulation by Yan et al. in [14,36,38] if only one point is involved in the contact per 
particle per contact pair so that

𝟎 ≤ 𝒅𝑝(Q∗
𝑡+Δ𝑡

(𝝀)) − 𝑑 ⟂ 𝝀 ≥ 𝟎, 𝒅𝑝 ∈ℝ𝑁𝑐 . (32)

The only difference is then that we view contact forces as a correction to a trial time-step at 𝑡 +Δ𝑡 and linearise about Q∗
𝑡+Δ𝑡

instead 
of linearising about the previous coordinate vector Q𝑡, which is done in [14,36,38]. At Q𝑡, the configuration is contact free. That is 
however not guaranteed at Q∗

𝑡+Δ𝑡
, which likely affect the speed of convergence of the optimisation problem, as we are likely to start 

with an infeasible initial guess. In this work, in contrast to the work by Yan et al., we find a solution to the nonlinear complementarity 
problem in (30) by computing a solution vector 𝝀 satisfying 

∑
𝑖

𝐵𝑖(𝝀) = 0, instead of considering a linearised problem. Note that it is 

not possible to strictly solve (30), as it is possible to have a configuration with 𝑩(Q∗
𝑡+Δ𝑡

+Δ𝑡𝚿MD𝝀, 𝑑) = 𝟎 and 𝝀 = 𝟎 simultaneously

and hence we allow for some relaxation in the complementarity condition. We leave it to later work for a more thorough comparison 
between the nonlinear barrier method presented in this paper and versions of solving linear complementarity problems of the form 
in (31) and as discussed in [35,14,36–39].

Remark 6. With the choice 𝑑try = 𝑑, methods for Quadratic Programming problems (QPs) [48,49] are eligible to solve (31), as the 
matrix in the LCP in (31) is symmetric positive semi-definite [14]. However, with such a small choice of the buffer region at the 
trial time-step (implied by choosing 𝑑try to be as small as the natural choice of 𝑑), there is a risk of missing potential contacts in the 
corrected time-step, leading to a long sequence of linear complementarity problems to be solved to eventually converge to a solution 
to the nonlinear complementarity problem. On the other hand, if 𝑑 is instead increased to be as large as the natural choice of 𝑑try, to 
get equality between the two parameters, we would have a very large buffer region around each particle at the corrected time-step, 
with resulting contact forces heavily affecting the physics of the suspension.

If the dissipative energy induced by contact forces is chosen as objective function, the Lagrangian in our nonlinear optimisation 
problem (16) takes on a similar form as in the works by Yan et al., in which a QP on the form

min
𝝀≥𝟎

𝝀𝑇D𝑇MD𝝀+𝑮𝑇 𝝀, (33)

with 𝑮 a specified vector is considered. For this QP, the first order optimality conditions constitute an LCP for the contact distances 
at the known time-step Q𝑡 and the force magnitudes 𝝀. The difference in this paper is that we consider a problem with nonlinear 
constraints in 𝝀 and the second term in the Lagrangian of (16) is therefore nonlinear, in contrast to in (33). Solving the problem 
becomes harder in our setting, but in contrast to the work by Yan et al., non-overlaps can be guaranteed.

2.3. Solution strategy and basic examples

The problem (16) is solved with fmincon, an inbuilt solver for constrained minimisation in MATLAB 2021a, employing an 
interior-point method. In this and any other iterative method that could be considered for solving the problem, a full Stokes solve 
10

is required for each evaluation of the barrier energy, requiring as much work as one time-step without contact handling. A large 
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number of such iterations hence become intractably expensive, and it is important to keep the number of iterations as low as possible. 
This number is determined by a set of parameters that have to be carefully set. The time-step size, Δ𝑡, is set a priori depending on 
the typical magnitudes of the computed rigid body velocities in the problem, which depend on the type of background flow and the 
magnitude of applied forces and torques, so that the spatial updates of the particles per time-step are reasonable in magnitude. To 
demonstrate the robustness of the method, we will in this work vary the threshold 𝑑 , determining the minimum allowed distance 
between particles and the non-zero contribution to the barrier energy at the new time-step. In a general application, we however 
recommend picking 𝑑 as a fraction of the particle radius, e.g. 𝑑 = 10−2𝑅. As a rule of thumb for the remaining parameters, we pick:

• The stopping criterion for minimising contact force magnitudes,

max
𝑖

|𝜆𝑘+1
𝑖

− 𝜆𝑘
𝑖
| < 10−2‖𝝀‖∞. (34)

• The threshold 𝑑try determining both the 𝑁𝑐 particle pairs to potentially be assigned contact forces and the contact force and 
torque directions for these pairs assembled in the matrix D. For rods and boomerangs with a given Δ𝑡, we set 𝑑try adaptively in 
each time-step as

𝑑try = 𝑑 +Δ𝑡 max
𝑖=1,…,𝑁

(
𝒖𝑖 + (𝐿∕2)𝒔𝑖 ×𝝎𝑖

)
, (35)

where the expression in the parenthesis is the tip velocity of a particle, with 𝒔𝑖 the unit direction along the axis of particle 𝑖 and 
𝐿 the particle length. For spheres, we pick

𝑑try = 𝑑 +Δ𝑡 max
𝑖=1,…,𝑁

𝒖𝑖. (36)

• The regularisation parameter 𝜖reg for the barrier function as 𝜖reg = 𝑑try.

Numerical examples are reported in Section 3 and the influence of the parameter choices will specifically be considered in Sec-

tion 3.1.2. We however first consider two introductory examples where contact forces and torques are computed for two rods of the 
type illustrated in Fig. 3. The aim is to highlight the effect of different choices of 𝑑 in a simplified setting. In example 1, a single 
time-step is considered, and in example 2, we look at how a trajectory over time is affected by the contact handling.

Set-up for two rods in example 1:

• Two rodlike particles of length 𝐿rod = 2 and radius 𝑅rod = 𝐿rod∕4 with particle orientations given by 𝒒1 = [0, 0, 0, 1]𝑇 and 
𝒒2 = [

√
2∕2, 1∕4, 1∕4, 0]𝑇 , such that the first particle points in the positive 𝑧-direction and the second has spherical coordinates 

𝜃 = 𝜋∕4, 𝜙 = 𝜋∕4.

• Fixed position of the first particle at the origin, 𝒙1 = 𝟎. The centre coordinate of the second particle is varied, with 𝒙2 = 𝛽𝒅, 
where 𝒅 is a direction vector given by 𝒅 = [cos(𝛼), 0, sin(𝛼)]𝑇 . The angle 𝛼 is varied in the range [0, 𝜋∕2] and the parameter 𝛽 is 
adjusted such that the particle-particle distance is 𝑑.

• Each particle is assigned a unit translational velocity in the direction of the other particle such that they are pushed together 
and the contact algorithm is triggered. See the particle configuration and velocities in Fig. 5a.

• Contact forces and torques are determined only for a single time-step, with Δ𝑡 = 0.01.

In Figs. 5b-5d, three things are displayed: the magnitude 𝜆 of the contact force and torque, the 𝑥-component of the contact force on 
particle 1 and the 𝑦-component of the contact torque on the same particle. All quantities are smooth in 𝛼 and the largest contact 
force/torque magnitudes are obtained for the smallest choices of 𝑑. This is natural, as for a smaller inter-particle distance, a larger 
force and torque are required to balance the assigned translational velocities that make the particles come too close to contact. 
Furthermore, the curves in each of the Figs. 5b-5d coincide for the smallest 𝑑, meaning that slight changes to 𝑑 do not impact the 
contact handling.

Set-up for two rods in example 2:

• Particles of the same type as in example 1 are affected by gravity and studied over time.

• One rod aligned with a horizontal axis is placed below another rod aligned with the vertical axis, but with a small horizontal 
off-set 𝛿 from the centre-line of the top rod, as illustrated in Fig. 6a.

• With time, the top particle will approach the bottom particle, as more drag is experienced by the bottom particle. A periodic 
kiss-and-tumble motion then follows, provided that the initial distance 𝑑start and the off-set 𝛿 are chosen not very large. Similar 
phenomena are discussed e.g. by Guazzelli & Morris in [50].

The behaviour for the off-set 𝛿 = 0.3 and a few initial centre-centre distances 𝑑start is illustrated in Fig. 6b, with the centre-centre 
distance and particle-particle alignment as functions of time. In our example, very coarse multiblob grids are used to represent the 
11

particles, with only 128 grid points per particle, and the contact algorithm is needed to prevent particle overlaps. The qualitative 
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Fig. 5. A demonstration of the robustness for the computed contact forces and torques in a single time-step, as the relative position of two closely interacting rods 
is varied. With the first particle centred at the origin, the angle 𝛼 (indicated on the 𝑥-axes) together with the initial inter-particle distance 𝑑 determines the centre

coordinate of the second particle. For small 𝑑, the computed quantities collapse onto the same curve.

Fig. 6. Two rods fall in a gravitational field from the initial configuration in (a). The top particle experiences less drag than the bottom one and therefore initially 
falls faster and approaches the second particle. The particles then follow a periodic kiss-and-tumble motion. The on-set of the periodic motion depends on the initial 
distance between the particles, 𝑑start and the off-set between their centre-lines, 𝛿. The contact algorithm aids in preventing overlaps between the particles. Only small 
differences can be noted for different choices of the parameter 𝑑, given the same combination of (𝛿, 𝑑start).

behaviour of the tumbling of the particles is not affected by small changes in the parameter 𝑑 , despite the fact that the particles are 
studied over a long time-span, with the time-step size set to Δ𝑡 = 0.01.

3. Numerical results

The two small examples illustrated in Section 2.3 demonstrate robustness in the computed contact forces and torques. In this 
section, we perform more elaborate numerical experiments with spheres, rods and boomerangs, with larger particle numbers and 
therefore more complex contact scenarios. Despite the result demonstrated in Fig. 5, it is generally difficult to study the performance 
of the contact algorithm dynamically, as a small error in the time-discretisation or small differences in the contact forces might 
result in completely different particle trajectories after a sufficiently long time. No standard benchmarks are available for systems of 
multiple particles. For this purpose, we choose to focus on two different types of tests that:

1. Investigate the ability of the contact resolution strategy to find contact force/torque magnitudes that maintain the allowed 
distance 𝑑. This is a test of the complementarity condition, stating that a non-zero force and torque should be applied if and 
only if the contact is “active”. The test is performed for geometries where the particles are pushed to come into contact by an 
external force, starting from a contact free configuration.

2. Investigate the ability to preserve symmetries in a background flow that naturally enhance particle interactions to quantify the 
12

impact of different choices of 𝑑 and Δ𝑡.
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Fig. 7. Contact forces are computed for all particle pairs that violate 𝑑try among 500 randomly positioned spheres in a cube, where the packing density is 24% and 
12% respectively. The spheres are affected by external forces with directions randomly drawn from the unit sphere and ‖𝒇 𝑖‖ = 100, and a single time-step is taken 
with Δ𝑡 = 0.01. Particles are in contact if they are closer to each other than 𝑑, here picked for each random configuration as the minimum separation distance at 
the previous, contact-free time-step. Minimum separation distances 𝑑 are respected with the contact forces, and moreover, the forces do not drastically change the 
inter-particle distances for the closest particles, meaning that the forces are not unnecessarily large.

In some examples, we will exaggerate Δ𝑡 and/or external force magnitudes and magnitudes of the background flow to trigger the 
contact avoiding algorithm, with the purpose of demonstrating its robustness.

3.1. Spheres

3.1.1. A random suspension of spheres

We perform an experiment with configurations of 500 non-overlapping unit spheres randomly distributed in a cube of length 𝐿, 
suspended in a fluid of unit viscosity. The geometry is exemplified in Figs. 7a and 7b for the packing densities 24% and 12%. In each of 
200 configurations for each density, 𝑑 is set to be the minimum separation distance. The spheres are then assigned external forces uni-

formly sampled from a sphere and scaled so that ‖𝒇 𝑖‖ = 100. A trial time-step with Δ𝑡 = 0.01 is taken and for spheres that have come 
too close, contact forces are computed with 𝑑𝑖 determined at the particle level (𝑑p

𝑖
is used). Note that contact torques are not computed 

for spheres, as normal collision forces induce no torques for spheres. Among all the corrected particle pairs, the smallest distance at 
the next time-level is reported vs 𝑑 in Fig. 7d. In Figs. 7c and 7e, normalised distances are displayed for the particles flagged to po-

tentially be in contact during the time-step, before and after applying the contact forces and scaled relative to 𝑑try and 𝑑 respectively. 
In conclusion, the forces do not artificially push the network of particles apart, but approximately keep the original inter-particle 
distances, except for the particle-pairs that have come too close, for which the “overlap” is avoided by applying a contact force.

3.1.2. Hyperparameter robustness test
We perform the same test as for the dense suspension in Section 3.1.1 but vary two parameters: 𝑑try, that determines the buffer 
13

region around each particle in the trial time-step and the number of particle pairs flagged to potentially come in contact during 
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Fig. 8. Almost all contact forces are small in magnitude relative to the external force, which implies that only the pair or pairs that actually violate the set minimum 
allowed distance 𝑑 are assigned a significant contact force, even if more particle pairs are flagged to be part of the contact optimisation. For each hyperparameter 
combination (𝑑try , TOL), statistics are collected from all flagged contacts in 200 random configurations of spheres with packing density 24%. The same behaviour is 
noted for all hyperparameter combinations.

Table 1

Mean squared deviation (MSD) and max difference of contact forces with different hyperparameter combinations 
(𝑑try , TOL). The differences are computed relative to the reference 𝑑try = 𝑑∗

try
and TOL = 5 ⋅ 10−6 over all three 

components of the contact force for all spheres in 200 random configurations.

(a) MSD of contact force

𝑑try / TOL 1 ⋅ 10−2 5 ⋅ 10−3 5 ⋅ 10−6
𝑑∗

try
2.45 ⋅ 10−6 6.63 ⋅ 10−7 Reference

1.1𝑑∗
try

3.76 ⋅ 10−3 9.60 ⋅ 10−6 8.84 ⋅ 10−6

1.2𝑑∗
try

3.86 ⋅ 10−3 1.03 ⋅ 10−5 9.72 ⋅ 10−6

(b) Max (relative) difference of contact force

𝑑try / TOL 1 ⋅ 10−2 5 ⋅ 10−3 5 ⋅ 10−6
𝑑∗

try
0.14 0.14 Reference

1.1𝑑∗
try

0.15 0.16 0.16
1.2𝑑∗

try
0.16 0.17 0.17

the time-step, and the stopping criterion in the contact force optimisation, TOL, where the iterative optimisation method is stopped 
if max

𝑖
|𝜆𝑘+1

𝑖
− 𝜆𝑘

𝑖
| < TOL‖𝝀‖∞. The experiment is repeated with 𝑑try ∈ {𝑑∗

try
, 1.1𝑑∗

try
, 1.2𝑑∗

try
}, with 𝑑∗

try
defined in (36) and TOL ∈

{10−2, 5 ⋅ 10−3, 5 ⋅ 10−6}. As for the stopping criterion, one would expect that with a more restrictive TOL, the number of non-

negligible contact forces is reduced. In practice, the dependence on TOL for the magnitude of the contact force is however very 
small, as visualised in Fig. 8a. As the number of iterations required to solve (16) is increased with a stricter tolerance (iteration count 
not shown), it is hence preferable to choose TOL less strict. By viewing the statistics in Fig. 8a, one can also conclude that only the 
elements of 𝝀 corresponding to particle pairs that would overlap without a contact correction get assigned a larger contact force and 
all the other magnitudes are small, for all tested combinations of hyperparameters. In Fig. 8b, the histogram shows the contact force 
magnitudes only for the pairs flagged with 𝑑try > 𝑑∗

try
that are not flagged with 𝑑try = 𝑑∗

try
, relative to the magnitude of the external 

forces pushing particles together. Even if more particle pairs are flagged within the time-step using a larger 𝑑try, we show that all 
the extra contact forces computed with a larger buffer region are small in magnitude. In Table 1, the mean squared deviation and 
max relative difference in the three components of the contact force for any particle in 200 configurations are presented versus the 
setting with 𝑑try = 𝑑∗

try
and TOL = 5 ⋅ 10−6.

We end this section with a discussion on the choice of objective function. If we redo the random sphere experiment with TOL =
5 ⋅ 10−6 and 𝑑try ∈ {𝑑∗

try
, 1.1𝑑∗

try
, 1.2𝑑∗

try
}, but change the objective function to the approximated dissipative energy 𝝀𝑇D𝑇MD𝝀, 

the “extra” flagged particle pairs for larger 𝑑try will get assigned a larger contact force magnitude, relative to choosing the 1-norm 
objective function. The force magnitudes for these particle pairs are reported in Fig. 9 and can be compared to Fig. 8b.

3.2. Rods

3.2.1. Geometric considerations

Rods constituting of a central cylindrical part and semi-spherical caps at both ends are considered. The surface of the rod is 
everywhere one radius from its centre line segment and inter-particle distances 𝑑p

𝑖
can hence be determined by computing the 

shortest distance between two line segments and subtracting 2𝑅rod, see [45,46]. The surface-node-to-particle distances 𝑑s
𝑖𝑘

are 
14

determined by computing the shortest distance between each source grid node belonging to a grid on particle 1 and the line segment 
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Fig. 9. As in Fig. 8b, but using the objective function 𝝀𝑇DMD𝝀 and the strict stopping criterion TOL = 5 ⋅ 10−6 . A lot of the extra contact forces resulting from 
𝑑try > 𝑑∗

try
are not small in magnitude. We therefore conclude that this choice of objective function is not as robust as ∑𝑖 𝜆𝑖 . Results are in both cases normalised by 

the size of the external force, ‖𝒇 𝑖‖.

of particle 2. A new target surface node is introduced on particle 2 where the vector of shortest distance cuts the surface of the 
particle. This source/target pair is added to the list of surface points that will be used to form the elements in the matrix D in (28). 
The procedure is repeated for all points sufficiently close to the other particle on the resolved surfaces of both particles. Finally, the 
closest points of contact as defined by 𝑑p

𝑖
are added to the list not to underestimate the closest distance between the particles, as for 

all grid node pairs 𝑘, 𝑑s
𝑖𝑘
≤ 𝑑

p

𝑖
.

3.2.2. A chain of rods

Chains of rods of length 𝐿rod = 0.5 and radius 𝑅rod =𝐿rod∕20 are considered, where for each chain, a unit direction vector 𝒕 ∈ℝ3

and rotation (𝜃, 𝜙) are drawn at random from the first orthant. The chain is constructed with the first rod placed at the origin with 
orientation coinciding with the 𝑧-axis. The consecutive rods are obtained from the previous by rotating the particle by (𝜃, 𝜙) and 
then translating the centre coordinate by 𝛽(𝑑)𝒕 in the coordinate frame of the previous particle, with the constant 𝛽(𝑑) determining 
the magnitude of the translation such that the smallest distance between a pair of particles is 𝑑. Example geometries are visualised 
in Fig. 10a.

Every rod in each chain is assigned a force in the direction of the next particle so that a collision is caused in the next time-step (d̂ 
is violated) with no contact handling. The given set of external forces on the chain configuration is then corrected with contact forces 
and torques. Statistics for the resulting particle-particle distances 𝑑(𝝀), upon applying contact forcing, are reported versus 𝑑 for a 
large range of 𝑑 in Fig. 10b. Note that (i) the largest 𝑑 values do not represent realistic choices for a dynamic simulation, but rather 
demonstrate the robustness of the method, and (ii) that the choices of 𝑑try depend on Δ𝑡 and therefore do not follow the curve for 
𝑑. By comparing 𝑑(𝝀) to the reference distance 𝑑, it can be concluded that the minimum allowed distance 𝑑 is respected for almost 
all particles in all chains. Statistics for 

(
𝑑(𝝀) − 𝑑

)
∕𝑑 are illustrated for all chains before and after contact in Fig. 10c. In Fig. 10d, 

histograms display probable contact force/torque magnitudes on any rod in any chain for fixed 𝑑 relative to the magnitude of the 
external force triggering the contact avoiding algorithm. Contact forces are comparable in magnitude to the external forces.

For reproducibility, the time-step size is set to Δ𝑡 = 0.05 and the force magnitude is ‖𝒇 𝑖‖ = 2𝑑1∕3 (this particular choice was made 
to promote collisions for the entire range of 𝑑 considered in the test).

3.2.3. Rods in a biaxial compression flow

Consider a 2D grid of 30 rods of length 𝐿rod = 2 and radius 𝑅rod = 𝐿rod∕4 arranged as in Figs. 11a-11b and affected by a 
background biaxial compression flow Ubg as indicated in the figure, given by

Ubg =
[
(𝑬𝒙1)𝑇 ,𝟎, (𝑬𝒙2)𝑇 ,𝟎,… , (𝑬𝒙𝑛)𝑇 ,𝟎

]𝑇
, with 𝑬 =

⎡⎢⎢⎣
�̇� 0 0
0 −�̇�∕2 0
0 0 −�̇�∕2

⎤⎥⎥⎦ , and �̇� = 1. (37)

We choose different minimum allowed distances 𝑑 and a hierarchy of time-step sizes Δ𝑡 and discretise the dynamics of the system 
with forward Euler with one hyperparameter setting (𝑑, Δ𝑡) at a time. Whenever the smallest allowed distance 𝑑 is violated at the end 
of the time-step, contact forces and torques are computed for particles considered sufficiently close to contact at the trial time-step, as 
given by 𝑑try. Due to the contractile nature of the background flow, the contact avoiding algorithm will be triggered in almost every 
time-step, see Table 2. In Fig. 11c, the change in coordinate position per time-step is displayed for all particles until the particles 
start to diverge along the 𝑥-axis (where the background flow is diverging) and the simulation is stopped. The contact loading causes 
no drastic jumps in the particle trajectories, and a vast majority of the coordinate updates are very close to zero. Table 2 indicates 
that contacts are robustly handled for a long sequence of time-steps. The maximum deviation along the 𝑥-axis for the particles is 
displayed as function of time in Fig. 11e. A smaller time-step allows for a slightly smaller deviation than a larger time-step. Note 
15

however that for all hyperparameters, particles stay in the 𝑦𝑧-plane.
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Fig. 10. Chains of 40 rods are forced to come into contact by externally applied forces towards the next particle in the chain. By finding optimal magnitudes of contact 
forces and torques, the minimum separation distance 𝑑 can be kept. For each 𝑑, the experiment is repeated with 100 randomly generated chains.

Table 2

Rods in a biaxial compression flow: Number of time-steps where the contact algorithm is 
triggered for the different time-step sizes Δ𝑡, together with the total number of steps taken. 
Here, 𝑇𝑆 is the time up until which the order parameter 𝑆 is displayed in Fig. 11d and 
𝑇end the time when particles start to diverge along the 𝑥-axis (where the background flow is 
diverging).

# contact time-steps # contact time-steps total # steps

Time-step Δ𝑡 as 𝑑 = 0.01𝑅rod 𝑑 = 0.1𝑅rod

fraction of Δ𝑡∗ = 0.02 𝑇end = 9 (𝑇𝑆 = 4.36) 𝑇end (𝑇𝑆 ) 𝑇end (𝑇𝑆 )

Δ𝑡∗ 410 (178) 412 (180) 450 (218)

Δ𝑡∗∕2 819 (357) 824 (362) 900 (436)

Δ𝑡∗∕4 1639 (715) 1647 (723) 1800 (872)

If all symmetries of the problem were kept, the particles would not only stay in the same plane, but also keep the alignment with 
16

the 𝑧-axis. The alignment can be quantified with the Onsager order parameter 𝑆 defined by [51]



Journal of Computational Physics 497 (2024) 112648A. Broms and A.-K. Tornberg

Fig. 11. A grid of 30 rods affected by a biaxial compression flow. Contact forces and torques are robustly computed whenever the minimum allowed distance 𝑑 is 
violated. The symmetry of the configuration is broken, but this happens after a large number of time-steps. Despite the challenging setting with the background flow 
pushing particles together, the particles stay in the original 2D-grid for a relatively long time.

𝑆 = 1
𝑁

𝑁∑
𝑖

{
3∕2

(
𝒆𝑧 ⋅ 𝒔𝑖

)2 − 1∕2
}
, (38)

with 𝒔𝑖 the unit vector representing the symmetry axis for particle 𝑖. If 𝑆 = 1, the particles are perfectly aligned with the 𝑧-axis 
and if 𝑆 = −1∕2, particles are all perpendicular to the 𝑧-axis. The order parameter is visualised for two choices of the parameter 
𝑑 in Fig. 11d. We expect the order parameter to be 𝑆(𝑡) = 1 throughout the simulation, but numerically this only holds up until 
some point in time when the alignment is broken for some particles and 𝑆(𝑡) decreases. With varying choices of 𝑑 and Δ𝑡, the same 
qualitative behaviour can be noted for the order parameter; The particles are initially ordered symmetrically and the background 
flow is symmetric, then, particles first start to come in contact in the vertical direction and later both vertically and horizontally. 
Due to contact forces and torques not being perfectly symmetric, the alignment is broken. This is a consequence of the general 
fact while-timestepping that after a large number of steps, errors will accumulate. The divergence of the order-parameter however 
happens after a large number of time-steps for all (𝑑, Δ𝑡), from which we can conclude that the contact handling is robust.

3.3. Boomerangs

3.3.1. Geometric considerations

We consider boomerang particles of the type displayed in Fig. 1b. Such a boomerang is constructed by dividing a rod of aspect 
ratio 𝐿rod∕𝑅rod = 8 and radius 𝑅rod = 0.5 as described in Section 3.2.1 into two equal pieces, each with a cylindrical part and a 
semi-spherical cap at one end. One of these half-rods is placed vertically and one placed horizontally so that the corners of the cut 
area of the two pieces touch. A circle is rotated around this point so that the two rod pieces are joined into one particle. The centre 
17

coordinate 𝒙 is defined to be the mass centre of the particle.
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Fig. 12. Contact avoidance for 200 random configurations of 40 boomerangs.

For the barrier energy and the direction of contact forces and torques in D, the contact distance 𝑑s, based on surface-node-to-

particle distances, is used, as the particle geometry is non-convex. For this purpose, the centre curve of each particle is considered, 
given by two line segments and a quarter of a circle joining the two segments. For each point on the discretised surface of particle 
1, we may easily compute the shortest distance to the centre curve of particle 2, subtracting one particle radius to give the shortest 
distance between the surfaces. The corresponding source/target pair of surface points is added to the list of surface nodes used to 
construct the matrix D in (28). The procedure is repeated with reversed numbering of the two particles in the pair. Note that for 
small 𝑑, a fine representation of the surface has to be used.

3.3.2. A random suspension of boomerangs

Systems of 40 randomly positioned boomerangs in a cube of length 𝐿 = 12 are considered, as exemplified in Fig. 12a. The 
boomerangs are generated one at the time with a uniformly sampled centre coordinate 𝒙 and quaternion 𝒒 such that the distance 
to any other particle is larger than 𝛿 = 10−2. We perform the same type of test as for the spheres in Section 3.1: For each generated 
configuration of 40 boomerangs, the minimum separation distance is computed and 𝑑 is chosen to be this distance. The boomerangs 
are then assigned forces and torques randomly sampled from a sphere with ‖F ext‖ = 100 so that in a trial time-step with Δ𝑡 = 0.01, 
some particles violate the constraints for the surface-node-to-particle distances. For these particle pairs, correcting contact forces 
and torques are computed. Among all the particle pairs flagged to potentially be assigned a contact correction, the smallest distance 
obtained with a contact correction at time 𝑡 +Δ𝑡 is reported vs 𝑑 in Fig. 12b. All distances for the flagged pairs are reported before 
and after applying contact forces and torques in Fig. 12c. It can be concluded that contact forces and torques do not push particles 
apart unnecessarily far. Note also that the parameter 𝑑try is chosen large relative to 𝑑 not to miss any collisions. Despite the non-

convex particle shape and the risk of particles getting stuck in locked configurations, 𝑑 can be maintained for all the boomerangs in 
all of the 200 configurations.

4. A discussion on the computational cost

Despite the increased cost in any time-step with contacts, a lot can be gained in terms of computational cost by applying the 
contact avoiding algorithm presented in this paper, as a much larger time-step can be considered for dynamical simulations than 
what would be allowed in a simulation without contact handling – time-step sizes used for the numerical experiments in this work 
are excessively large, but the contact algorithm is still robust.

The main cost of finding optimal contact force and torque magnitudes is the need for determining the matrix-matrix product MD
in the computation of the gradient of the barrier energy with respect to the vector of contact force magnitudes, which is needed in 
the interior point method used for solving the optimisation problem in (16). The matrix-matrix product MD has to be computed 
and stored once per time-step where contact occurs, as M depends on Q𝑡 and D depends on Q∗

𝑡+Δ𝑡
– there is no dependence on 

𝝀. For the multiblob method, the mobility matrix M can easily be computed explicitly if the total number of particles is small. For 
larger particle systems, evaluating MD would amount to solving 𝑁𝑐 Stokes mobility problems, the cost of which is determined by 
𝑑try that will set 𝑁𝑐 , which of course also depends on the particle density in the system. One Stokes mobility problem also has to be 
solved for every evaluation of the action of the contact loading, MD𝝀, that enters in the barrier energy. The number of such solves 
depends on the number of iterations to solve the optimisation problem (16) with the interior-point method, which, in turn, depends 
on the particle type, the time-step size and a few hyperparameters as discussed in Section 2.3. Choices that need to be made are

e.g. how to regularise the barrier function, i.e. how to handle negative distances between boundaries, and what stopping criterion

to pick when solving for minimum contact magnitudes in (16). From numerical experiments in this paper, it is expected that the 
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number of mobility solves MD𝝀 at least is in the range 10-20. The number of iterations is larger if the stopping criterion is very 
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strict and smaller if the stopping criterion is less strict, which could be allowed by choosing a slightly larger buffer region 𝑑 than 
required for sufficient accuracy in M, as dictated by the Stokes solver. We may compare the number of iterations to what is reported 
in the literature for the LCP technique in the work of Yan and collaborators, but at the same time emphasise that the iteration count 
will vary depending on the setting: Yan et al. report ≈ 20 extra Stokes solves per time-step for spheres in [36] and 5-10 iterations for 
dilute suspensions of spherocylinders in [14], but O(1000) close to the random-close-packing limit.

The first order interior-point method combined with the constrained minimisation problem considered in this work also has 
benefits over second order methods, e.g. based on Newton’s method as applied to the non-constrained IPC-formulation [27]. In 
contrast to an IPC-formulation, we are not dependent on second order derivatives of the distances with respect to the particle 
coordinates and also avoid solving large linear systems – other than the Stokes mobility problem – while iteratively updating the 
solution vector in the optimisation problem. The matrix in the linear system in an IPC-formulation of the problem would be a function 
of M, but also depend on the gradient of external forces and torques and on the Hessian of the distances with respect to both particle 
centre coordinates and quaternions. The structure of this matrix is not trivially investigated for the general case a priori, and the 
matrix has to be projected onto the cone of non-negative matrices for Newton’s method to converge. Moreover, fast matrix-vector 
techniques do not apply as for the Stokes mobility problem (applying MF , for some vector F ) [1]. Because of these difficulties, the 
current formulation coupled to a first order method, such as the interior-point method, is especially beneficial in very large particle 
systems, where we neither want to compute M explicitly nor want to repeatedly solve a large linear system that is a non-trivial 
function of M.4

5. Conclusions

We have presented an optimisation procedure to guarantee non-overlapping configurations of 3D particles in an unbounded 
Stokesian fluid. The method is based on a barrier formulation where non-overlapping constraints are rewritten as a barrier energy, 
constrained to be zero for non-overlapping configurations. Numerical examples are provided for spheres, rod-like particles with 
semi-spherical caps and boomerangs. The numerical examples show the performance of the contact algorithm for dense suspensions 
of particles deliberately pushed together by external forces or a background flow. In all examples, the highlighted property of the 
proposed method is its ability to keep a set minimum separation distance 𝑑 . Discrete complementarity is obtained at the trial time-

step between the force/torque magnitude vector 𝝀 and the modified barrier energy (with parameter 𝑑try). We have numerically 
shown that the method is robust for different choices of 𝑑, particle shapes and flow scenarios. The magnitudes of external forces, 
background flows and time-step sizes are in this work deliberately chosen to force particles to come too close to each other and 
in a realistic simulation, contact will occur less frequently and 𝑑 is supposed to be small. Strengths of the method are its simple 
formulation, its ability of handling non-convex particles, the no-collision guarantee of the formulation and the minimum impact on 
the system by contact forces, as these are balanced and their magnitudes are minimised. By solving for force/torque magnitudes 
explicitly, as we do here, a penalisation parameter can be omitted, which otherwise has to be carefully tuned. Moreover, the size of 
the optimisation problem is much more moderate in the number of primal variables (at least for moderately crowded systems) than 
if all particle coordinates are solved for implicitly, as in Incremental Potential Contact (IPC) [27]. Only one dual variable has to be 
solved for in a primal-dual approach.

For future work, we identify two directions:

1. Approximation of the action of the mobility matrix: There is a global coupling between all particles in the suspension in the 
mobility matrix, M. Motivated by the fact that close interactions are dominating, one option is to build an approximation to the 
action of M for matrix-vector multiplies MF constructed only from all pairs of particles in contact, instead of applying the full 
matrix. An issue is however that a contact force/torque vector determined with such an approximation not necessarily has to 
lead to a non-overlapping configuration, as in the true system, all particles have an impact on the hydrodynamic interactions and 
all these interactions are not captured if M is modified. A workaround could be to introduce a small buffer for the minimum 
allowed distance so that 𝑑 → 𝑑(1 + 𝛿) or to use the approximated solution vector for contact force/torque magnitudes as an 
initial guess for iterations with the full mobility matrix. Along similar lines, separated clusters of particles could be considered 
to compute contact forcing locally.

2. A continuous contact force potential: In this work, a discrete version of the contact force potential is considered, computed from 
all points on the particle surfaces sufficiently close to each other. One could also consider a continuously defined potential for 
two particles in contact, where the barrier energy at the trial time-step is expressed in terms of integrals over the particle surfaces 
close to contact. The asymmetry of the contact forces and torques noted in the experiment with a biaxial compression flow in 
Section 3.2.3 has two explanations: To start with, the discrete surface grid on the particles results in different barrier energies 
for seemingly similar relative rotations and particle-particle distances for different colliding pairs. The reason is that a different 
number of grid nodes may be flagged for collision depending on rotations of the particles around their own axis. Furthermore, 
the shortest particle-particle distance 𝑑p is sensitive to slight differences in orientation when particles are close to parallel. One 
benefit of a continuous contact force potential could be to better preserve symmetries. We leave this approach for future work 
starting in 2D.

4 An option for larger particle systems could potentially be to solve the problem by employing the sparse nonlinear optimiser provided in the SNOPT package [52]. 
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Care however has to be taken for how second order derivatives are computed.
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We end with a note on the optimisation algorithm: In this work, the inbuilt optimisation procedure fmincon in MATLAB has 
been used to solve the optimisation problem for the contact force/torque magnitude vector 𝝀, employing a highly tuned interior 
point method. The fact that a standard solver in MATLAB can be used off-the-shelf is a strength of the method. We are satisfied with 
a possibly local optimum as long as a zero barrier energy is reached, implying sufficiently separated particles.
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