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Abstract

Spatial biology is a rapidly growing field that has seen tremendous progress
over the last decade. We are now able to measure how the morphology,
genome, transcriptome, and proteome of a tissue vary across space. Datasets
generated by spatial technologies reflect the complexity of the systems they
measure: They are multi-modal, high-dimensional, and layer an intricate
web of dependencies between biological compartments at different length
scales. To add to this complexity, measurements are often sparse and noisy,
obfuscating the underlying biological signal and making the data difficult
to interpret. In this thesis, we describe how data from spatial biology ex-
periments can be analyzed with methods from deep learning and generative
modeling to accelerate biological discovery. The thesis is divided into two
parts. The first part provides an introduction to the fields of deep learning
and spatial biology, and how the two can be combined to model spatial
biology data. The second part consists of four papers describing methods
that we have developed for this purpose. Paper I presents a method for
inferring spatial gene expression from hematoxylin and eosin stains. The
proposed method offers a data-driven approach to analyzing histopathol-
ogy images without relying on expert annotations and could be a valuable
tool for cancer screening and diagnosis in the clinics. Paper II introduces
a method for jointly modeling spatial gene expression with histology im-
ages. We show that the method can predict super-resolved gene expression
and transcriptionally characterize small-scale anatomical structures. Pa-
per III proposes a method for learning flexible Markov kernels to model
continuous and discrete data distributions. We demonstrate the method
on various image synthesis tasks, including unconditional image generation
and inpainting. Paper IV leverages the techniques introduced in Paper
III to integrate data from different spatial biology experiments. The pro-
posed method can be used for data imputation, super resolution, and cross-
modality data transfer.
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Sammanfattning

Spatial biologi är ett snabbt växande forskningsomr̊ade som har sett en
hög utvecklingstakt under det senaste decenniet. Vi kan idag mäta hur
en vävnads morfologi, genom, transkriptom och proteom varierar i rum-
met. Dataset skapade av spatiala teknologier återspeglar komplexiteten i
de system de mäter: De är multimodala, högdimensionella och är upp-
byggda av ett intrikat nätverk av beroenden mellan biologiska strukturer
som existerar p̊a olika längdskalor. Som om denna komplexitet inte var
nog, är mätningarna ofta b̊ade glesa och brusiga, vilket försv̊arar tolkning-
en av den underliggande biologiska signalen. I denna avhandling beskri-
ver vi hur data fr̊an experiment inom spatial biologi kan analyseras med
hjälp av djupinlärning och generativ modellering för att accelerera biolo-
giska upptäckter. Avhandlingen är uppdelad i tv̊a delar. Den första delen
ger en introduktion till fälten djupinlärning och spatial biologi, och hur des-
sa kan kombineras för att modellera data inom spatial biologi. Den andra
delen best̊ar av fyra artiklar som beskriver metoder som vi har utvecklat
för detta ändam̊al. Artikel I presenterar en metod för att skatta spatialt
genuttryck fr̊an hematoxylin-eosin-färgningar. Den föreslagna metoden er-
bjuder ett datadrivet tillvägag̊angssätt för att analysera histopatologi-bilder
utan användning av expertannoteringar och kan utgöra ett värdefullt verk-
tyg för cancerscreening och diagnos i kliniken. Artikel II introducerar en
metod för sammodellering av spatialt genuttryck och histologibilder. Vi vi-
sar att metoden kan användas för att predicera superupplöst genuttryck
och transkriptionellt karakterisera sm̊askaliga anatomiska strukturer. Ar-
tikel III beskriver en metod för modellering av kontinuerliga och diskreta
datafördelningar med flexibla Markovkärnor. Vi demonstrerar metoden p̊a
olika bildgenereringsuppgifter, inklusive obetingad datagenerering och in-
painting. Artikel IV utnyttjar teknikerna fr̊an Artikel III för att integrera
data fr̊an olika experiment inom spatial biologi. Den föreslagna metoden kan
användas för imputering, superupplösning och dataöverföring mellan olika
modaliteter.
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1 Introduction

Evolution is a messy—albeit powerful—optimization algorithm. While its
solutions to the challenges of life many times are fascinating, the implemen-
tations of those solutions are not always so straightforward to understand.
How can we make sense of the intricate processes governing a biological
system? Answering this question could help us direct the system to a more
favorable state, stabilize it from decay or perturbations, or even create en-
tirely new systems from scratch.

Over the last decades, technologies for measuring biological systems have
seen tremendous progress and allowed us to generate data at an unprece-
dented scale. The sequencing of the first human genome in 2003 took over
a decade to complete and cost 2.7 billion USD. Today, it is possible to se-
quence a human genome in a matter of hours for less than 1000 USD, and
some predict that the cost will drop to 100 USD in the near future. And
while the first human genome was a composite of many individuals, it is
now possible to reconstruct the genome of a single cell. Not only is the
scale and precision of the data that we can generate today staggering, but
the diversity of the data is also increasing: We can now measure not only
the genome but also the RNA and protein composition of a tissue, and even
how that composition varies across space. Given the complexity of biologi-
cal systems, no wonder the data that we can generate from them share that
same complexity!

But what good is complex data if we don’t have the tools to analyze it?
Luckily, in parallel with the development of large-scale measurement tech-
nologies, there has also been tremendous progress in a completely different
field: machine learning. With the advent of deep learning, machine learn-
ing using large artificial neural networks, we can now train models to break
down complexity and find patterns across multitudes of data. It would not
be an exaggeration to say that deep learning-based systems are becoming
an integral part of our daily lives, from serving us the latest playlist recom-
mendations on Spotify to driving our future cars.

My PhD has been focused on developing machine learning methods for
analyzing spatial biology data. Spatial biology is a rapidly evolving field
that aims to understand how biological systems are organized in space.
Data generated in spatial biology can be beautiful, hiding untold mys-
teries of life, much like far-away stars in the night sky. But it is also
high-dimensional, sparse, noisy, biased, heterogeneous, incomplete, and—
sometimes—infuriatingly difficult to make sense of. With the help of mod-
ern machine learning, maybe we can untangle some of that complexity and
uncover some of those mysteries? My hope is that this thesis will give you,
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the reader, a small introduction to the wonderful worlds of machine learning
and spatial biology, and how the two can be combined to help us under-
stand just a little bit more about the complexity of life and, by extension,
the world around us.

The thesis is organized as follows: In Section 2, we give a brief overview
of modern-era machine learning in the form of deep learning. Section 3
focuses on a subfield of machine learning known as generative modeling,
which, as we will see, is an important tool for modeling biological systems.
Next, Section 4 switches gears and gives a brief introduction to cell biology
in multi-cellular organisms, providing the necessary background for under-
standing the data that we will be working with. Section 5 introduces the
field of spatially resolved transcriptomics, which is an important technology
for generating spatial biology data. In Section 6, we describe some of the
most common problems that can be addressed using machine learning in
spatial biology. Section 7 gives a brief overview of the papers included in
this thesis. Finally, in Section 8, we conclude by discussing some of the
challenges and opportunities that lie ahead in the intersection of machine
learning and spatial biology.
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2 Deep Learning

In this section, we will introduce deep learning by describing how neural
networks are constructed and trained. As we will see, the building blocks
of deep neural networks are surprisingly simple. The power of neural net-
works stem from their composability, allowing us to build very capable, deep
networks from small, seemingly mundane parts.

Sections 2.1 and 2.2 introduce the basic tools for building neural networks
by constructing and training a small network. In Section 2.3, we discuss
the problems of overfitting and underfitting. The former is a natural conse-
quence of the flexibility of large neural network, which we briefly discuss in
Section 2.4. Finally, Section 2.5 concludes by introducing some of the most
common building blocks of neural networks and how they can be composed
to build deep architectures.

2.1 The Multi-Layer Perceptron

Suppose we are interested in predicting the age of a patient based on their
blood pressure and resting heart rate. Let X = [x1, x2] be a vector of the
patient’s blood pressure x1 and heart rate x2, and y their age. Our goal is
to find a function f(X) that approximates y from X.

We will use a basic neural network known as a multi-layer perceptron (MLP)
for this task. An MLP consists of a sequence of transformations, known
as layers. Each layer takes the output from the preceding layer, starting
from the input X, and applies a linear transformation to it, followed by an
activation function that allows the network to learn non-linear relationships.
For the purpose of this example, we will use a two-layer MLP and a sigmoid
activation,

σ(x) =
1

1 + e−x
. (2.1)

The first layer of the MLP takes the input X and transforms it into a feature
vector H. This is done by multiplying the input with a matrix of weights
W , adding a vector of biases B, and applying the activation function σ:

H ′ = XW +B (2.2)

H = σ(H ′). (2.3)

The features H are known as hidden units because they are not directly
observed in the data but internal representations of the input used by the
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Figure 1: A multi-layer perceptron. The input X is transformed into a set of hidden features
H by a linear transformation followed by a non-linear activation function. The transformed
hidden featuresH′ are then transformed into the prediction ŷ by another linear transformation.

network to compute the prediction. Finally, the second layer takes the
features H and transforms them into a prediction ŷ of the patient’s age:

ŷ = HV + c, (2.4)

where V and c are weights and biases, respectively, for the second layer.

We now have a complete definition of our neural network:

fθ(X) = σ(XW +B)V + c, (2.5)

where we have used the subscript θ = {W,B, V, c} to denote the set of all
parameters in the network. The full computational graph of the network,
which forms a directed acyclic graph (DAG), is illustrated in Figure 2.

But how do we find good values for the parameters θ? Picking them at
random will clearly not give us any good predictions. In the next section,
we will describe how to learn the parameters from data.

2.2 Gradient Descent

Assume we have a dataset of n patients, each with a measurement of their
blood pressure and heart rate Xi and their age yi. The first step in optimiz-
ing the parameters of the network to fit this data is to define an objective
function that measures how well the network is performing. Here, we will
be using the mean squared error between the prediction and the observed
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age y as our objective:

L(θ) =
1

n

n∑
i=1

(yi − fθ(Xi))
2. (2.6)

Notice that the objective is a function of the parameters θ. Our goal is to
find the parameters θ that minimize this function.

The most common way of optimizing a neural network is to use a method
known as gradient descent. The gradient of a function is a vector that points
in the direction of steepest ascent. Gradient descent follows the opposite
direction of the gradient to iteratively obtain lower and lower values of the
objective until we reach a local minimum:

θt+1 = θt − η∇θL(θt), (2.7)

where η is a hyperparameter known as the learning rate that determines
how large each update step should be.

2.2.1 Backpropagation

To compute the gradient, we use a method known as backpropagation. Back-
propagation computes gradients for every node in the computational graph
of the network by applying the chain rule of calculus. The name comes
from the fact that, in order to compute the gradient of ancestral nodes in
the graph, we first compute the gradient of their descendants. As a result,
the gradient computation inverts the DAG of the forward pass and creates
a flow of gradients that propagates backward. In our example, we first
compute the gradient of the objective with respect to the predictions:

∂L

∂Ŷ
=

2

n
(Ŷ − Y ), (2.8)

where Y is a column vector of the observed ages yi and Ŷ a column vector
of the predictions ŷi. Next, we compute the gradient with respect to the
bias of the second layer:

∂L

∂c
=
∑
i

∂L

∂ŷi

∂ŷi
∂c

= 1
∂L

∂Ŷ
, (2.9)

where 1 is a vector of ones. Eqs. (2.8) and (2.9) tell us that if our average
predictions are too high, we should decrease the bias according to Eq. (2.7),
and vice versa. Continuing in this fashion, we get:

∂L

∂V
= HT ∂L

∂Ŷ
(2.10)
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∂L

∂H
=

∂L

∂Ŷ
V T (2.11)

∂L

∂H ′ = σ(H ′)⊙ (1− σ(H ′))⊙ ∂L

∂H
(2.12)

∂L

∂B
= 1

∂L

∂H ′ (2.13)

∂L

∂W
= XT ∂L

∂H ′ , (2.14)

where ⊙ denotes element-wise multiplication and the nodes X, H ′, and H
are matrices with each row corresponding to a single patient. We now have
gradients for all parameters in the network and can update them according
to Eq. (2.7) to iteratively improve model fit.

2.2.2 Stochastic Gradient Descent and Beyond

In the context of large datasets, it is often not practical to compute the
gradient of the objective function over the entire dataset. Instead, the
gradient can be approximated by computing it over a small subset of the
data, known as a mini-batch. The update step in Eq. (2.7) is then performed
using the approximate gradient instead, a technique known as stochastic
gradient descent (SGD). In a convex optimization setting, SGD is, just like
regular gradient descent, guaranteed to converge to the global minimum
of the objective function, but the path it takes there is more erratic. In
fact, the noisy optimization trajectory of SGD can help it break out of local
minima in the non-convex setting of optimizing neural networks.

Modifications of SGD that allow for momentum and adaptive learning rates
have also been proposed [1]. These methods provide the optimization tra-
jectory with a certain degree of inertia to help it overcome local ridges in
the optimization landscape and adjust the step size depending on how steep
the landscape is.

2.3 Overfitting and Underfitting

When should we stop updating the parameters according to Eq. (2.7)? One
way is to monitor the objective function and stop training when the objec-
tive plateaus. However, this is not always a good idea. Neural networks
are extremely flexible. If trained for too long, they may start to contort
the data space in unnatural ways in order to minimize the objective ever
further. Such models will give good predictions on the training data but
likely not generalize well to new data, a phenomenon known as overfitting.

Various strategies have been proposed to combat overfitting. For example,
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the objective can be augmented with a regularization term that penalizes
large weight values. However, if penalized too strongly, the model may in-
stead become inflexible and underfit the data. Another option is to monitor
the performance of the model on a separate dataset, a validation set, and
stop training when the performance on the validation set starts declining.

Overfitting is mainly a concern on small datasets, where data points in the
training set are far apart and the model is free to do whatever it likes with
the space between them. If training a model on a small dataset, it is there-
fore often a good idea to augment the training data by perturbing it with
noise or other transformations, a technique known as data augmentation, to
fill in gaps in the data manifold [2].

2.4 The Universal Approximation Theorem

While the two-layer perceptron we have used so far is a very basic neural
network, it turns out that it is actually a very powerful one. It can be used
not only for prediction but also for any other task given the right objective
function. And it can learn that task extremely well. In fact, it can be shown
that if we allow the size of the hidden layer to grow very large, the two-layer
perceptron can approximate any function arbitrarily well, a result known
as the universal approximation theorem [3]. In other words, we just have
define an appropriate objective, and we will be able solve all problems that
come our way.

So there you have it: We now have the tools to create artificial general
intelligences that will take our jobs, instigate the singularity, conquer the
world, and enslave all of humanity! Well, not so fast. . . Unfortunately (or
fortunately, depending on your perspective), while the universal approxima-
tion theorem does teach us that the ingredients required for creating very
powerful neural networks are not necessarily that complicated, constructing
efficient networks is not as easy as the theorem may have you believe. The
result only holds in the limit of very large neural networks, which is not an
entirely practical setting. In order to construct an efficient network, it may
be better to compose carefully designed computational units into a deep
neural network. In the next section, we will take a closer look at some of
those building blocks.

2.5 Building Blocks of Deep Neural Networks

Neural networks are incredibly composable. Every computational unit is like
a small brick of LEGO that can be combined with other bricks to form new
structures. A large part of research in deep learning is concerned with how
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to design the computational graph of neural networks for efficient learning.
Which architecture of the network that is best suited for a particular task is
context dependent, and finding it often relies on both intuition and empirical
experimentation. In this section, we will present some of the most common
building blocks of deep neural networks and how they can be composed to
form larger structures.

2.5.1 Convolutions

In our example of predicting the age of a patient from their blood pressure
and heart rate, the data was vector-valued. However, data in spatial biology
is, as the name suggests, often spatially ordered. For example, a microscope
image will have shape H ×W ×C. The first two dimensions are the spatial
dimensions, corresponding to the height H and width W of the image. The
third dimension is the feature dimension, corresponding to the number of
color channels C. It is still possible to transform this data with a fully
connected layer, similar to what we did in our MLP example, by flattening
the image into a vector of size HWC. However, this approach quickly
becomes untenable for anything but very small images, as the number of
connections in the network grows quadratically with the size of the data.

One of the most important building blocks of deep neural networks is the
convolutional layer, which allows us to efficiently transform spatial data.
A convolution is a linear operation that takes an input X with d spatial
dimensions and F feature channels and produces an output Y with d spatial
dimensions and G feature channels by applying a kernel W to all regions
of the input. Specifically, in the case of d = 2, the output elements of a
convolutional layer are computed as

yi,j,g = bg +
K∑

k=1

K∑
l=1

F∑
f=1

xsi+k−1,sj+l−1,fwk,l,f,g, (2.15)

where s is the stride of the convolution, bg is a bias term, and the kernel
W has shape K × K × F × G. In order to retain the size of the input,
the input is typically padded with zeros on both sides and the stride is set
to one. Convolutions can be used to downsample data by using a stride
greater than one, which results in a smaller output volume. Conversely, by
using a fractional stride, which is implemented by inserting zeros between
the elements of the input, they can upsample the data and produce a larger
output volume.

Convolutions are incredibly compute and memory efficient. To illustrate this
efficiency, assume we have a two-dimensional data volume of size H ×W ×
F . Whereas a fully connected layer would need on the order of H2W 2FG
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parameters and operations to compute the output, a convolutional layer
needs only on the order of K2FG parameters and K2HWFG operations.
Since the kernel size K is typically very small—a usual choice is K = 3—
the number of parameters and operations in a convolutional layer is much
smaller than in a fully connected layer.

The efficiency of convolutions comes at a cost, however: the output only
takes into account a small neighborhood of the input, the receptive field of
the kernel. This means that learning long-range dependencies in the data
requires stacking many convolutional layers on top of each other, which, as
will be discussed in Section 2.5.3, can introduce instability in the training
process. On the other hand, since the same kernel is applied to all input
regions, convolutions introduce a form of weight sharing between spatial po-
sitions. This weight sharing forces convolutional layers to learn very general
patterns of the data and make them extremely robust feature extractors.

The local connectivity of convolutions is a form of inductive bias; that is,
an implicit prior that pushes the model toward a certain solution space.
Notably, an interesting property of convolutions is that they are transla-
tionally equivariant. In other words, if we translate the input, the output
will be translated in the same way. A consequence of this equivariance is
that convolutional networks can be applied to inputs of a different size than
the ones they were trained on, which is often very useful as data in the wild
often comes in many different shapes and sizes.

2.5.2 Attention

A widely used building block to model longer-range dependencies is the
attention mechanism [4]. It is the central component of the Transformer
architecture [5] and applied in many state-of-the-art large language models.

Attention is applied to sequences of data. However, in contrast to con-
volutions, the order of the sequences does not hold any special meaning.
Therefore, attention can be applied to spatially arranged data simply by
flattening the spatial dimensions. In some cases, a positional encoding is
added to the inputs in order to retain positional information [5].

The attention layer computes query Q, key K, and value V matrices by
linear projections of the input sequences X1 and X2:

Q = X1WQ (2.16)

K = X2WK (2.17)

V = X2WV , (2.18)
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where X1 has shape n1 × dmodel, X2 has shape n2 × dmodel, and WQ, WK ,
and WV are weight matrices, projecting the data to feature dimensions dk,
dk, and dv, respectively. The keys can be seen as identifiers for the values,
and the query is used to retrieve values based on their similarity to the keys.
A compatibility score S is computed for all pairs of queries and keys and
transformed into attention weights A by applying the softmax function to
each row of S:

S =
QKT

√
dk

(2.19)

Ai =
exp(Si)∑
j exp(sij)

. (2.20)

The output is then computed as an attention-weighted sum of the values
followed by a final projection to the input dimension:

Y = (AV )WY +B, (2.21)

where WY has shape dv × dmodel and B is a bias term.

A common extension of attention is multi-head attention, where the Q, K,
and V matrices are split along the feature dimension into h heads and sepa-
rate attention weights are computed for each head. The attention outputs,
[A1V1, . . . , AhVh], are then concatenated before the final projection. Self-
attention is a special case of attention where the input sequences are the
same; that is, X1 = X2. In contrast, when the input sequences are differ-
ent, the attention layer is typically referred to as a cross-attention layer.
Cross-attention is used to model dependencies between different sequences,
such as the relationship between an image and a caption or between two
sentences in different languages for a machine translation task.

Similar to convolutions, attention layers accept inputs of arbitrary size.
However, they scale quadratically with the length of the input, which makes
them impractical for very long sequences. Alternatives to the attention layer
described above have been proposed that offer improved scalability while
retaining the ability to model long-range dependencies [6, 7, 8].

2.5.3 Normalization and Skip Connections

Robustly propagating the training signal over a very deep network is a dif-
ficult task. Updates to upstream and downstream layers cause constant
changes to the semantics of inputs and outputs, a phenomenon sometimes
referred to as internal covariate shift [9]. Moreover, as the gradient is ac-
cumulated over many layers, it can become very small, which is known as
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Figure 2: Schematic of the U-Net architecture. Blocks represent nodes in the computational
graph. Block heights correspond to the spatial dimension of the data, and block widths
correspond to the size of the feature dimension. Labels indicate how the data is transformed
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the vanishing gradient problem [10]. The vanishing gradient problem is es-
pecially prevalent when activation functions have small bounded gradients,
such as the sigmoid function [11]. Conversely, when activation functions are
unbounded, the gradient can sometimes instead become very large, which
is known as the exploding gradient problem [12].

One way to stabilize gradient propagation through deep networks is to use
normalization layers. A normalization layer takes the output of a layer and
transforms it into a new output with a certain distribution. The normaliza-
tion can be applied over different axes of the data. A common choice is the
batch axis [9]. However, batch statistics can be noisy when the mini-batch
size is small. In this case, an alternative is to normalize the output over the
feature axis instead [13].

Another way to stabilize gradient propagation is to use skip connections. A
skip connection bypasses one or more layers in the network by connecting
the output of a layer directly to an input further downstream. For example,
a common skip connection is the residual connection, y = x+f(x) [14]. Skip
connections introduce shortcuts in the computational graph that reduce the
effective depth of the network and shortens gradient flow.

2.5.4 Putting It Together: The U-Net Architecture

So how can we combine the building blocks described so far into a deep
neural network? A good example of how this can be done is the U-Net ar-
chitecture, which was originally proposed in 2015 for medical image segmen-
tation [15]. A typical implementation, inspired by more recent adaptations
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[16], may look like the schematic in Figure 2. The computational graph is
defined over multiple levels of resolutions, starting at the resolution of the
input data. In the contractive path, the data is successively downsampled
using strided convolutions until it reaches the level of the lowest resolution.
In the expansive path, the data is successively upsampled back to the in-
put resolution using fractionally strided convolutions. The contractive and
expansive paths together form a U-shape, and they are connected at each
level by a skip connection that concatenates the data from the contractive
path to the upsampled data from the lower levels in the expansive path.

The U-Net is designed to capture global features in the lower levels without
sacrificing higher-resolution details thanks to the skip connections at the
upper levels. The network efficiently captures global features at the lower
levels because the receptive fields of the convolutional layers cover a larger
portion of the lower-resolution data volumes. Many implementations also
add a (residual) self-attention layer at the lower levels, where they are com-
putationally less expensive, to further improve the ability of the network to
capture long-range dependencies.

Since the U-Net was introduced, it has become a mainstay architecture in
the computer vision field. It can be used for any task that requires the
output to have the same resolution as the input. Besides segmentation, the
U-Net is commonly used in generative models, which will be the focus of the
next section. Indeed, many of the state-of-the-art generative text-to-image
models that exist today [17, 18, 19] are based on U-Net architectures not
too different from the one described here.
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3 Generative Models

A fundamental approach to solving many types of pattern recognition prob-
lems is to learn the generative process of the data. In this setting, we set
up a model of how the data is produced and observed, and then learn the
parameters of the model from data. If the model is a good approximation
of the true generative process, it can be used to simulate new data points
or, as we will see in Section 6, to infer properties of the generative process
that are not directly observed.

In this section, we will describe some of the most widely used generative
models in deep learning and spatial biology. We begin by describing the
maximum likelihood objective in Section 3.1 and the limitations of learning
generative models using this objective. Our discussion leads us to different
modeling strategies to overcome these limitations, which will be the focus
of Sections 3.2 to 3.5.

3.1 Maximum Likelihood Estimation

Suppose we are interested in modeling a data distribution q(X) from which
we have n observations: D = {X1, . . . , Xn}. In order to do so, we set up a
model p(X). Our goal is to find a model distribution that is as similar to the
data distribution as possible. While there are many ways to measure the
similarity between two distributions, one common way is to use a distance
measure known as the Kullback-Leibler divergence (KL divergence) [20]:

DKL(q(X) || p(X)) =

∫
q(X) log

q(X)

p(X)
dX (3.1)

= EX∼q(X) [log q(X)− log p(X)] . (3.2)

Minimizing the KL divergence can be formalized as the following optimiza-
tion problem:

p(X) = argmin
p∈P

EX∼q(X) [log q(X)− log p(X)] (3.3)

= argmin
p∈P

EX∼q(X) [log q(X)]− EX∼q(X) [log p(X)] (3.4)

= argmax
p∈P

EX∼q(X) [log p(X)] , (3.5)

where P is the family of all possible model distributions; our search space.
Eq. (3.5) states that the model p(X) that minimizes the KL divergence
is the one that maximizes the expected log-density of the data under the
model.
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Before we can proceed, we need to find a suitable search space P amenable
to optimization. Suppose we restrict ourselves to a family of parametric
distributions P = {pθ(X)}θ that are parameterized by θ. Eq. (3.5) then
leads to the following objective function:

L(θ) = −EX∼q(X) [log pθ(X)] (3.6)

≈ − 1

n

n∑
i=1

log pθ(Xi), (3.7)

where we have used Monte Carlo sampling to approximate the expectation.
Eq. (3.7) is the negative log-likelihood of the observed data as a function of
the model parameters θ. Estimating the model parameters by minimizing
this function is known as maximum likelihood estimation (MLE).

A central decision is how to choose a good parameterization of the model
distribution. Knowing how powerful neural networks are, as we have seen
in Section 2, one would be tempted to let log pθ(X) = fθ(X) be a neu-
ral network that takes X as input and outputs a scalar representing the
log-density of X under the model. Unfortunately, this solution is not pos-
sible, as it would not result in a valid probability distribution: probabilities
are bounded between zero and one, which means pθ(X) must integrate to
one over the domain of X, but our neural network does not account for
this constraint. We will explore two different options for how to deal with
this problem: The first is to constrain the parameterization in a way that
guarantees a valid probability distribution. This is the approach taken by
autoregressive models and normalizing flows, which we will discuss in Sec-
tions 3.2 and 3.3. The second option is to change the objective to a slightly
different target, which will be the focus of Sections 3.4 and 3.5, describing
variational auto encoders and diffusion models, respectively.

3.1.1 Generative Models for Prediction

Before we turn to more complex distributions, let us consider the case of
scalar-valued data. A simple choice for pθ could be to use a Gaussian
distribution, which we already know is a valid probability distribution. In
this case, the model can be parameterized by a mean µ and a variance σ2.
Furthermore, suppose we for some reason have good reason to believe that
the data has unit variance, so we are only interested in learning the mean.
We can then write log-likelihood as:

ℓ(µ) =
1

n

n∑
i=1

log
1√
2π

exp

(
−1

2
(xi − µ)2

)
(3.8)
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= log
1√
2π

+
1

n

n∑
i=1

(
−1

2
(xi − µ)2

)
(3.9)

= − 1

2n

n∑
i=1

(xi − µ)2 + C, (3.10)

where C is a constant independent of µ.1 We recognize Eq. (3.10) from
our MLP example in Section 2.2: Maximizing this objective is equivalent to
minimizing the mean squared error. In fact, prediction tasks can generally
be set up as generative modeling problems, where the goal is to learn a
conditional distribution pθ(y | X). The learned distribution can then be
used to predict the value of y given an input X. A significant advantage
of setting up a prediction model in this way is that it allows us to easily
incorporate uncertainty in a principled way. For example, if we would let σ2

be a learned parameter, we could use the variance of the model distribution
to quantify prediction uncertainty.

3.2 Autoregressive Models

Many interesting data types are not scalar-valued but multi-variate, and we
are often interested in understanding the dependencies between the vari-
ables. For instance, consider a dataset of images, where each image is
represented as a vector of n pixels X = [x1, . . . , xn]. The pixels are not
independent—if they were, the images would look like nothing but noise—
but rather exhibit strong spatial correlation. In this case, a unimodal dis-
tribution, like the Gaussian distribution used in Section 3.1.1, is unlikely
to adequately capture the dependency structure of the data. An alterna-
tive is to factorize the joint distribution into a product of n conditional
distributions:

pθ(X) =
n∏

i=1

p
(i)
θ (xi | X<i), (3.11)

whereX<i = [x1, . . . , xi−1]. The conditionals p
(i)
θ can then be parameterized

by simple distributions, such as Gaussians, with parameters computed by a
neural network that takes X<i as input:

pθ(xi | X<i) = N(xi | µi, σi) (3.12)

µi, σi = fθ(X<i). (3.13)

1 The constant C does not affect where the minimum is located. In gradient descent,
it will disappear when computing the gradient.

15



Generative models that use ancestral sampling of observed variables as de-
scribed by Eq. (3.11) are known as autoregressive models. Autoregression is
a powerful strategy that decomposes a complex distribution into tractable
conditionals.

A problem with the autoregressive structure is that Eq. (3.11) suggests that
we need to compute n forward passes, one for each conditional, to evaluate
pθ(X). Autoregressive models typically circumvent this problem by the use
of masking, where all conditionals are computed in parallel using a single
forward pass, but the computation graph is masked so that each conditional
only has access to the variables that are already known. For example, in
attention models, the masking can be implemented by setting the attention
weights for future positions to zero [5]. Nevertheless, while the evaluation of
pθ(X) can be done in an efficient manner by the use of masking strategies,
sampling from pθ(X) still requires us to sample each xi in turn, as we need
to condition on the previous samples X<i that are not yet known.

Autoregressive models have been especially successful in modeling data with
strong sequential dependencies, such as text. They are therefore used in
many natural language processing tasks and widely adopted by current
state-of-the-art large language models [21, 22].

3.3 Normalizing Flows

Another way to model distributions with a strong covariance structure is
to transform a tractable base distribution, such as a multivariate Gaussian,
into a more complex distribution. Suppose we have a continuous base dis-
tribution p(x) and a bijection f : x → y defined on its support, and we
want to compute the density of y. Assume first that f is increasing. The
cumulative distribution function (CDF) of y is then given by:

Fy(a) = p(y ≤ a) = p(f(x) ≤ a) = p(x ≤ f−1(a)) = Fx(f
−1(a)). (3.14)

The density of y is the derivative of the CDF, giving us:

p(y) =
d

dy
Fy(y) (3.15)

=
d

dy
Fx(f

−1(y)) (3.16)

=
d

dx
Fx(x)

d

dy
f−1(y) (3.17)

= p(x) [f ′(x)]
−1

. (3.18)
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If f is decreasing, we can repeat the preceding analysis to find:

p(y) = p(x) [−f ′(x)]
−1

. (3.19)

Combining Eqs. (3.18) and (3.19) gives us the change of variables formula:

p(y) = p(x) |f ′(x)|−1
. (3.20)

Eq. (3.20) modifies the density of the base distribution p(x) by the degree
to which the transformation f either stretches (|f ′(x)| > 1) or compresses
(|f ′(x)| < 1) the data space. The change of variables formula can be ex-
tended to the multi-variate case analogously, in which case the determinant
of the Jacobian replaces the derivative in Eq. (3.20).

A normalizing flow [23, 24] is a sequence of invertible mappings that trans-
form a tractable base distribution p(X0) into a potentially more complex
distribution p(XT ):

X0 ∼ p(X0) (3.21)

Xt = ft(Xt−1), t = 1, . . . , T (3.22)

p(XT ) = p(XT−1)

/∣∣∣∣det ∂fT (XT−1)

∂XT−1

∣∣∣∣︸ ︷︷ ︸
ZT

=
p(X0)∏T
t=1 Zt

. (3.23)

If we parameterize the transformations with a neural network, we can opti-
mize the normalizing flow by MLE.

A difficulty in constructing a normalizing flow is to ensure that every trans-
formation is invertible and that the Jacobian determinant is not too ex-
pensive to compute. A range of different invertible transformations have
been proposed in the literature [25, 26, 27, 28]. For example, the affine
coupling layer [26] is a transformation that partitions the input into two
parts, X = [Xa, Xb], and computes the output as:

Ya = Xa (3.24)

Yb = Xb ⊙ exp(s(Xa)) + t(Xa), (3.25)

where s and t are neural networks that take the first partition Xa as input
and output scale and translation parameters, respectively, that are applied
to the second partition Xb. The coupling layer is invertible, as Xa = Ya

and Xb can be recovered from Yb by applying the inverse of the scaling
and translation operations. The Jacobian is triangular, which means that
the determinant can be efficiently computed by taking the product of the
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diagonal elements:

det
∂Y

∂X
= det

[
I 0

∂Yb

∂Xa

∂Yb

∂Xb

]
=
∏
i

exp(s(Xa))i. (3.26)

The normalizing flow introduces a powerful concept, which is to augment
the model with latent variables that are transformed into data space. Nev-
ertheless, while normalizing flows are flexible enough to approximate any
distribution [24], the constraint that transformations must be invertible
makes them difficult to design and train in practice. Therefore, we will
next look at a class of latent variable models that relaxes this constraint by
targeting a slightly different objective than the MLE objective.

3.4 Variational Auto Encoders

Suppose we have access to a data distribution q(X) that we want to model.
Variational auto encoders (VAEs) [29] consist of two parts, which we will
call the forward model q(X,Z) = q(X)q(Z | X) and the backward model
p(X,Z) = p(Z)p(X | Z).2 The forward model maps data points from the
data distribution q(X) to latent variables Z through an encoder q(Z | X) =
qθ(Z | X) parameterized by a neural network with learnable weights θ.
The backward model works in the opposite direction by mapping latent
variables Z from the base distribution p(Z) to data points X through a
decoder network p(X | Z) = pθ(X | Z).3 The base distribution p(Z) is
a modeling choice but usually chosen to be a well-behaved, parameter-free
distribution, such as a standard Gaussian.

The goal of the VAE is to learn encoder and decoder networks that make
the forward and backward models as similar as possible. If the models are
similar, then their marginals must also be:

pθ(X) =

∫
pθ(X,Z) dZ ≈

∫
qϕ(X,Z) dZ = q(X). (3.27)

Crucially, this means that we can sample new data points that approxi-
mately follow the data distribution simply by sampling from p(Z) and then
applying the decoder.

2 These terms are borrowed from the literature on diffusion models to keep the ter-
minology consistent with Section 3.5.

3 For notational simplicity, we have used θ to denote the union of the parameters of
the encoder and decoder networks. While it is possible to share weights between
them, it is more common to use a separate set of parameters for each.
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In order to learn similar forward and backward models, VAEs are trained
by minimizing the KL divergence between them:

L(θ) = DKL(qθ(X,Z) || pθ(X,Z)) (3.28)

= Eqθ(X,Z) [log qθ(X,Z)− log pθ(X,Z)] (3.29)

= −Eq(X) Eqθ(Z|X) [log pθ(X,Z)− log qθ(Z | X)]︸ ︷︷ ︸
ELBO(X;θ)

+C. (3.30)

Eq. (3.30) tells us that the VAE objective is to maximize the expected
evidence lower bound (ELBO) of the model under the data distribution.
The name of this objective comes from the fact that the ELBO lower bounds
the log-evidence, log pθ(X), of the model since

ELBO(X; θ) = Eqθ(Z|X) [log pθ(X,Z)− log qθ(Z | X)] (3.31)

= log pθ(X) + Eqθ(Z|X)

[
log

pθ(Z | X)

qθ(Z | X)

]
(3.32)

≤ log pθ(X) + logEqθ(Z|X)

[
pθ(Z | X)

qθ(Z | X)

]
(3.33)

= log pθ(X) + log

∫
pθ(Z | X) dZ (3.34)

= log pθ(X), (3.35)

where Eq. (3.33) follows from Jensen’s inequality [30]. In other words, while
the MLE objective in autoregressive models and normalizing flows directly
maximizes pθ(X), the objective in VAEs maximizes only a lower bound of
pθ(X). In fact, in the VAE, computing pθ(X) is intractable, as it requires
us to integrate over all possible values of Z. In a way, this is the price we
had to pay for relaxing the invertibility constraint of normalizing flows!

To learn the parameters of the encoder and decoder networks with gradient
descent, we need to compute the gradient of Eq. (3.30):

∇L(θ) = Eq(X)∇Eqθ(Z|X) [log qθ(Z | X)− log pθ(X,Z)] . (3.36)

The outer expectation can be approximated by Monte Carlo sampling, sim-
ilar to what we did with the MLE objective in Section 3.1. However, we
are still left with the inner expectation, which is intractable. To solve this,
VAEs use a reparameterization trick [29]. The idea is to define Z = gθ(ϵ)
as a transformation of parameter-free noise ϵ. For example, if qθ(Z | X) is
a diagonal Gaussian with mean µθ(X) and standard deviation σθ(X), we
can let Z = µθ(X) + σθ(X) ⊙ ϵ, where ϵ ∼ N (0, I). Using the law of total
expectation, Eq. (3.36) can then be rewritten as:

∇L(θ) = Eq(X)∇Eq(ϵ)Eqθ(Z|X,ϵ) [log qθ(Z | X)− log pθ(X,Z)] (3.37)

19



= Eq(X)Eq(ϵ) [∇ log qθ(Z = gθ(ϵ) | X)−∇ log pθ(X,Z = gθ(ϵ))]
(3.38)

≈ 1

n

n∑
i=1

(∇ log qθ(Z = gθ(ϵi) | Xi)−∇ log pθ(Xi, Z = gθ(ϵi))) ,

(3.39)

where ϵi ∼ q(ϵ) and Xi ∼ q(X).

To increase the expressiveness of VAEs, different designs of the encoder
and decoder networks have been proposed. For example, normalizing flows
have successfully been used as encoders [25, 31]. Another promising line of
research is to use hierarchical encoders and decoders [32, 33]. Hierarchical
VAEs have been shown to be effective image synthesizers [34, 35, 36].

3.5 Diffusion Models

A diffusion model can be seen as a type of hierarchical VAE that uses a fixed
forward model that gradually adds noise to the data [37, 16] (Figure 3).
Letting X0 ∼ q(X0) be a sample from the data distribution, the forward
model is defined over a sequence of T steps:

q(X0, X1, . . . , XT ) = q(X0)
T∏

t=1

q(Xt | Xt−1) (3.40)

q(Xt | Xt−1) = N (Xt |
√

1− βtXt−1, βtI), t = 1, . . . , T, (3.41)

where the coefficients βt are hyperparameters that define the noise schedule
of the diffusion process. The noise schedule is chosen so that the final step of
the chain roughly corresponds to isotropic Gaussian noise, q(XT ) ≈ N (XT |
0, I). The backward model is defined as:

p(X0, X1, . . . , XT ) = p(XT )
T∏

t=1

p(Xt−1 | Xt) (3.42)

p(XT ) = N (XT | 0, I) (3.43)

pθ(Xt−1 | Xt) = N (Xt−1 | µθ(Xt, t), βtI), t = 1, . . . , T, (3.44)

where µθ(Xt, t) is a neural network that predicts Xt−1 from Xt. The opti-
mization objective of the diffusion model follows from Eq. (3.30):

L(θ) = Eq [log q(X1, . . . , XT | X0)− log pθ(X0, . . . , XT )] + C (3.45)

= Eq[− log pθ(X0 | X1)]︸ ︷︷ ︸
L0

+
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Figure 3: The diffusion noise process. A fixed forward model q gradually adds noise to the
data. A backward model pθ is trained to reverse the forward process.

+

T∑
t=2

Eq [log q(Xt−1 | Xt, X0)− log pθ(Xt−1 | Xt)]︸ ︷︷ ︸
Lt−1

+C. (3.46)

Any state Xt can be sampled from the forward model without computing
the intermediate states, since the distributions q(Xt | X0) are tractable:

q(Xt | X0) =

∫ t∏
i=1

q(Xi | Xi−1) dX1 . . . dXt−1 (3.47)

= N (Xt |
√
αtX0, (1− αt)I), (3.48)

where αt =
∏t

i=1(1 − βi). This allows us to efficiently train very long
diffusion chains by approximating the objective function not only with ran-
dom samples of the data distribution but also random samples of the loss
components Lt−1.

4

By reparameterizing Eq. (3.48) as Xt = Xt(X0, ϵ) =
√
αtX0 +

√
1− αtϵ,

where ϵ ∼ N (0, I), and defining µθ(Xt, t) to predict Xt−1 by estimating ϵ,
it can be shown [16] that the loss components can be rewritten as:

Lt−1 =
βt

2(1− βt)(1− αt)
EX0∼q(X0)Eϵ∼N (0,I) ∥ϵ− ϵθ(Xt(X0, ϵ), t)∥2 + C.

(3.49)

The gradient of Eq. (3.49) can be approximated by Monte Carlo sampling
and used to train the model.

Eq. (3.49) corresponds to the denoising score matching objective [38, 16].
Training a diffusion model therefore amounts to learning the score function,
the gradient of the log-density of the data, over different noise levels. An

4 The contribution of L0 to the objective will usually be very small in long diffusion
chains, so we can safely omit it when training the model.
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interesting consequence is that the learned model can be used for sampling
not only with the backward model in Eq. (3.44) but also with score-based
samplers. For example, it can be incorporated in a continuous-time diffu-
sion process that can be sampled from by solving a reverse-time stochastic
differential equation (SDE) [39]. Furthermore, the marginal distributions
of the SDE can be computed from a corresponding continuous normalizing
flow [28], enabling exact evaluation of pθ(X0) [39].

Diffusion models have been extended to discrete data by using alternative
noise processes [40, 41]. A disadvantage of diffusion models is that sampling
can be computationally expensive, as the diffusion chain is typically several
hundred steps long. Recent work has therefore focused on reducing the
number of required sampling steps, for example by learning an auxiliary
network that can jump between time points of the diffusion process [42, 43].
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4 A Modeller’s Guide to Cell Biology

In order to construct good models of biological systems, it is important to
first have a basic understanding of how such systems work. In this section,
we will therefore give a short introduction to cell biology in multi-cellular
organisms. Section 4.1 gives a brief overview of the determinants of cell
function. Section 4.2 discusses how cells can be classified into different
types and states. Finally, in Section 4.3, we describe how cells develop,
communicate, and organize to form tissues and organs.

4.1 Cell Function

Our bodies are made up of trillions of cells, each with its own shape and
function. Yet, despite their differences, all cells in the body share the same
genetic code. How is this possible? To answer this question, let’s take a
step back and look at the machinery of the cell.

Living organisms are composed of cells, which are the basic building blocks
of all life on earth. Cells in multi-cellular organisms are made up of a number
of different components, including a cell membrane, which separates the cell
from its surroundings, the cytoplasm, which is a gel-like substance that fills
the cell, and a nucleus, which contains the genetic code. The genetic code is
stored in deoxyribonucleic acid, a long polymer more commonly known as
DNA, which is made up of the four nucleotides adenine (A), cytosine (C),
guanine (G), and thymine (T). The nucleotides are arranged in a double-
stranded helix, each strand consisting of a sequence of nucleotides that bind
complementarily to the other strand through hydrogen bonds: A to T and
C to G. The sequence of these nucleotides in the DNA, which is unique to
each individual, is what we refer to as the genome.

The genome is not directly involved in the day-to-day operations of the
cell. In fact, the main functional effectors of the cell are proteins, which are
large amino acid chains that are involved in almost all cellular processes.
The genome directs protein production through a process known as protein
synthesis, which consists of two steps: transcription and translation.

During protein synthesis, the DNA of a gene—a particular segment of the
genetic code—is first transcribed into ribonucleic acid (RNA) by an enzyme
known as RNA polymerase. The RNA molecule carries the same genetic
information as the transcribed gene. Its structure is similar to DNA, but
it is only single-stranded and contains the nucleotide uracil (U) instead of
thymine (T). After transcription, the RNA molecule, which is referred to
as messenger RNA (mRNA) to emphasize its role as a carrier of genetic
information, is exported from the nucleus to the cytoplasm, where it is
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picked up by an organelle known as the ribosome. The ribosome then
translates the mRNA into a protein by reading the mRNA sequence three
nucleotides at a time. Each nucleotide triplet, known as a codon, codes for
a particular amino acid, which is added to the growing protein chain.

We are now ready to answer the question of how cells with the same genetic
code can have vastly different shapes and functions: The genome is not the
only determinant of protein synthesis and, ultimately, cell function; instead,
any mechanism that influences the transcription of mRNA or the translation
of mRNA into protein will also play an important role. These mechanisms,
collectively known as gene regulation, determine which proteins are pro-
duced in a cell and to what extent. For example, the epigenome is a set
of chemical modifications to the DNA and the proteins that package the
DNA, known as histones, that can influence how accessible the DNA is to
RNA polymerase. There are also other regulators that influence transcrip-
tion and, in the end, determine the transcriptome of the cell: the set of
all RNA molecules. Similarly, yet other mechanisms exist that affect the
translation of mRNA into protein and the fate of the protein once it has
been produced, determining the proteome of the cell: the set of all proteins.
Therefore, while different cells may share the same genome, they can have
different transcriptomes and proteomes, which influence how they function.

It is important to mention that cell function is not only determined by the
protein-coding genes but many other factors as well. Notably, the impor-
tance of RNA molecules that do not code for proteins, known as non-coding
RNA, has become increasingly clear in recent years and is today an active
area of research [44]. Therefore, when studying cell function, we often talk
about the gene expression of a cell, which refers to the process by which ge-
netic information is translated into any functional gene product, including
both proteins and non-coding RNA.

4.2 Cell Types and Cell States

Cells in the human body are highly diverse. For example, some cells measure
only a few micrometer in size, like the red blood cells, while other cells, like
the neurons that form the spinal cord, can be over one meter in length. The
shapes of cells also vary greatly, from the round shape of an egg cell to the
long, thin shape of a muscle cell. The morphology of the cell is intimately
linked to its function. Some cells, such as the immune cells, are highly
mobile and can move around in the body in order to detect and fight off
pathogens, while other cells, such as the epithelial cells that line the surface
of the skin, are stationary, forming a protective barrier against the outside
world.
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Cells can differ along many biological axes, and it is therefore often useful to
talk about discrete categories of cells, or cell types. A cell type is a taxonomic
unit that groups cells based on shared attributes. The appropriate grouping
of cells into cell types depends on the context in which the groups are
studied. For example, when characterizing the tumor microenvironment,
it may sometimes be useful to group cells into very broad categories, such
as tumor cells on the one hand and immune cells on the other. In other
cases, if we are interested more specifically in how the immune system is
responding to a tumor, it may be appropriate to divide the immune cells
into subcategories, such as B cells and T cells, or even further into finer
subtypes, like CD4+ and CD8+ T cells. In general, there is not a single
correct way to group cells into types; a cell type should be understood
mostly as an abstraction that allows us to reason about a biological system
in a more structured way.

Whichever grouping of cells into types we end up using for our research
question, it is important to keep in mind that cells within each type will
not be homogeneous. It is therefore helpful to also talk about a related
concept to the cell type: the cell state. While this word has been used in
many different ways in the literature, we will use it here to refer to a point
in a continuous, high-dimensional space that exhaustively characterizes the
internal properties of a cell. In this framework, a cell type can, for example,
be seen as a particular region in cell state space that circumscribes cells
with a certain set of features.

4.3 Cell Development and the Organization of Tissues

All multi-cellular organisms start their existence as a single cell, yet develop
into complex organisms composed of many different cell types. The process
by which cells develop into more specialized types is known as differentia-
tion. It is a stochastic process that is influenced by both the cell’s internal
state and its environment.

The British biologist Conrad Waddington famously described cell differenti-
ation as a marble rolling down a hill, the so called Waddington’s epigenetic
landscape [45] (Figure 4). The marble, which represents the cell, starts from
the top of the hill, in a state of high potential energy. At the top, it can see
land extending in all directions. In this state, the cell is pluripotent. The
marble can go anywhere, become anything; the possibilities are seemingly
endless. As the marble begins rolling down the hill, however, its potential
energy starts being converted into kinetic energy. The marble loses altitude
and gains momentum. The cell starts changing. It jumps about, all over
the place. It settles into a grove, representing a cell trajectory, but bounces
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Figure 4: Waddington’s epigenetic landscape. Adaptation of the original illustration by Con-
rad Waddington [45] generated with SDXL [19].

into a different one. Soon, it finds itself at a branching point. There, it
collides with a tree and turns into yet another direction, a new trajectory,
and then another. Eventually, friction starts slowing the marble down as it
is approaching the bottom of the hill. Both its potential and kinetic energy
are quickly being exhausted and the marble finally stops, completely: The
cell has found its end state, its cell fate.

Waddington’s landscape is a colorful metaphor for understanding how cells
develop into different types. The concept of mapping cell states to an energy
landscape is a useful model of how states can be more or less stable and of
how perturbations to cells can push them to overcome energy barriers and
transition to new states. Nevertheless, to the extent that this model is a re-
alistic one, the energy landscape is at least much less static than historically
thought. Notably, environmental factors in the surroundings of the cell can
cause drastic changes in the landscape. For example, while differentiation
is often thought of as a one-way process, as suggested by the sloping hills of
Waddington’s landscape, where cells develop from a pluripotent state into
a more specialized one, we now know that differentiation in many cases is
reversible through a process known as dedifferentiation. In fact, dediffer-
entiation plays an important role, for instance, in wound healing [46] and
metastatic tumor growth [47]. It is also possible to artificially induce dedif-
ferentiation in the lab by exposing cells to specific environmental cues [48].

Cells both affect and are affected by their environment. Based on envi-
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ronmental cues from other cells and external stimuli, cells organize to form
tissues, which are groups of cells with similar structure and function. Differ-
ent tissues, in turn, combine to form organs, which are collections of tissues
that work together to perform a more complex function. For example, the
heart is an organ composed of several different tissues, including cardiac
muscle tissue, which is responsible for pumping blood through the body,
and connective tissue, which provides structural support for the chambers
and valves of the heart. The process by which communities of cells organize
to form larger structures is known as morphogenesis. It is an important
component not only in the development of organisms but also in tissue
repair and maintenance.

In a mature tissue, the complex interplay between cells and their environ-
ment is full of negative feedback loops that keep tissue growth in check and
make sure that the composition and function of the tissue remains stable.
Some of the most devastating diseases are characterized by a breakdown of
those feedback loops. The breakdown can be initiated by a single cell but,
due to the interconnectedness of the cells in the tissue, quickly spreads and
affects the entire system. For example, in cancer, a single cell can acquire
a mutation that causes it to divide and grow uncontrollably. The onset of
this rapid growth may cause the dividing cells to secrete growth factors that
stimulate the recruitment and growth of other cells, triggering a cascade of
events that ultimately leads to the formation of a tumor [49].

In many ways, cells are like sailors on a boat; they depend on each other to
stay afloat. Their actions and the outcome of those actions can be under-
stood only in the context of their collective existence.
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5 Spatially Resolved Transcriptomics

Considering the importance of spatial organization in biology, it is not sur-
prising that there is a large interest in the research community of measuring
biological systems in a spatially resolved manner. Indeed, studying the or-
ganization of tissues has been a central focus of biological research for cen-
turies, dating back to the early days of microscopy, when Robert Hooke and
Antonie van Leeuwenhoek observed the first cells in the 17th century [50,
51]. Modern microscopes are much more powerful than those used by Hooke
and van Leeuwenhoek, but the technology has not changed much since then
and is still an invaluable tool in the field of histology : the study of small-
scale tissue anatomy. Indeed, histological microscopy images are routinely
used in the clinics for diagnosing disease and guiding treatment decisions.

While morphology is highly informative about the state of a tissue, it may
not be sufficient for fully characterizing it. Importantly, as discussed in
Section 4.1, cell function is largely governed by gene expression. Quanti-
fying gene expression is therefore a powerful tool for understanding how a
biological system works. One common way of profiling gene expression is to
quantify the transcriptome of cells by measuring the abundance of different
RNA molecules. When the measurement has a spatial component, profil-
ing different regions of the same tissue, we refer to it as spatially resolved
transcriptomics (SRT).

In this section, we will give an overview of the two main approaches to SRT:
Section 5.1 discusses what we will refer to as imaging-based SRT, which uses
microscopy to measure the abundance of RNA molecules. In Section 5.2, we
introduce sequencing-based SRT, which tags the RNA molecules with spatial
barcodes before reading them with a technology known as next-generation
sequencing (NGS). Finally, in Section 5.3, we conclude by discussing the
trade-offs between imaging- and sequencing-based SRT.

5.1 Imaging-based SRT

Imaging-based SRT relies on a technique known as in situ hybridization
(ISH), which was first developed in the 1960s [52]. ISH experiments are
conducted on tissue sections, which are thin slices of tissue that are com-
monly 5–20 micrometer thick. In a typical workflow, labeled probes are
first deposited on the tissue surface. The probes are short DNA or RNA
fragments designed to bind complementarily to a target sequence in the
RNA of interest and labeled with a molecule that can be detected with a
microscope. The most common labeling molecule is a fluorophore, which
emits light when excited with a specific wavelength of light, but other types
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Figure 5: Spatially resolved transcriptomics. a. Imaging-based SRT workflow. The tissue is
first sectioned and stained with fluorescent probes that bind to the targeted RNA molecules.
The tissue is then imaged with a microscope, and the images are analyzed to localize the RNA
molecules. The final output is a table listing the spatial coordinates of each RNA molecule.
b. Sequencing-based SRT capture slide. Top: DNA capture probes are printed or otherwise
deposited on a solid surface, such as a glass slide. Each probe has a poly(T) sequence that
binds the RNA and a spatial barcode, which is associated to a specific region of the tissue.
Bottom: Captured RNA (i) is incorporated into the probe by reverse transcription (ii) and
replaced by a second strand of DNA (iii). The final DNA product (iv), which includes the
spatial barcode, is then cleaved from the surface and ready for sequencing. c. Sequencing-
based SRT workflow for fresh-frozen tissue. The tissue is first sectioned and placed on the
capture slide, where it can be imaged with brightfield microscopy to visualize its morphology.
The tissue is then lysed and the RNA molecules diffuse to the surface of the slide, where they
are captured. The captured molecules are sequenced, and the spatial barcodes are used to
assign each molecule to a specific region of the tissue. The final output is a count matrix,
quantifying the RNA molecules found in each tissue region.
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of labels, such as radioactive isotopes, have also been used [52]. After de-
positing the probes, excess probes are washed away and the tissue is imaged
with a microscope. The resulting image is subsequently analyzed to localize
the probes in the tissue, producing a table listing the spatial coordinates of
each detected probe, and, by extension, the RNA molecules that they bind
to (Figure 5a).

The number of genes that can be detected in a single ISH experiment is de-
termined by the labeling scheme. The first fluorescent ISH experiments used
a single probe to detect a single RNA species [53]. Later methods have used
probes emitting different colors of light that target separate RNA species,
allowing experiments to be multiplexed over 10–20 genes simultaneously
[54]. Recently, methods have been developed that use combinatorial label-
ing to associate different RNA species with a unique binary code. First, the
RNA molecules are labeled with a set of encoding probes, each containing a
target sequence for the RNA and a readout sequence. Each position in the
binary code encodes the presence or absence of a specific readout sequence.
The code is then read out by sequentially hybridizing the tissue with fluores-
cent probes targeting the readout sequences in turn and imaging the tissue
after every hybridization round. Depending on the number of hybridization
rounds used, thousands of genes can be profiled in a single experiment [55].
Experiments can also be multiplexed over multiple fluorescent channels to
support larger gene panels [56].

5.2 Sequencing-based SRT

While imaging-based SRT quantifies the RNA molecules directly on the
tissue section, sequencing-based SRT first extracts the molecules from the
tissue. Instead of designing specific probes for each gene, the identities of
the genes are determined by sequencing the extracted molecules; that is, by
directly reading the nucleotide sequence using next-generation sequencing
(NGS) [57].

Sequencing-based SRT was first introduced in 2016 [58]. In the original
method, DNA probes are printed in small circular regions on a glass slide
(Figure 5b). Each region is 100µm in diameter and spaced in a regular
grid with a center-to-center distance of 200µm. The probes consist of a
spatial barcode, identifying the region where the probe is located, and a
poly(T) sequence (a sequence of repeating T nucleotides). In a typical
workflow, a tissue section is placed on the glass slide and imaged with
brightfield microscopy to visualize its morphology. Next, the tissue is lysed,
which releases the RNA molecules from the cells and allows them to diffuse
down to the surface of the slide. RNAs with a poly(A) tail bind to the
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poly(T) sequence of the probes, and the molecules are combined into a single
complementary DNA (cDNA) product by reverse transcription. The cDNA
is cleaved from the slide and sequenced with NGS, providing a readout
of both the spatial barcode from the probe and the gene sequence from
the RNA (Figure 5c). Since most mRNA undergo a process known as
polyadenylation after transcription, where a poly(A) tail is added to the
end of the RNA molecule, sequencing-based SRT can be used to profile
almost all protein-coding genes in the transcriptome in a single experiment.

Sequencing-based SRT was originally designed for fresh-frozen tissue, which
is tissue that has been preserved by freezing it immediately after excision.
It has since also been adapted for formalin-fixed paraffin-embedded (FFPE)
tissue [59], which is more common in clinical settings. In FFPE tissue, RNA
molecules are often fragmented, preventing poly(T) capture. Therefore, in
order to capture the mRNAs on the slide surface, they are first hybridized
with a set of probes targeting specific gene sequences and carrying a poly(A)
tail for binding to the surface probes. This modified workflow also allows
sequencing-based SRT to be extended to non-polyadenylated RNA species,
such as many non-coding RNAs.

Recent methods have experimented with different strategies for assigning
barcodes to the capture probes in order to increase the spatial resolution of
the measurements. A common strategy is to assign random barcodes to the
probes and to sequence the barcode once the probes have been deposited
on the slide. Since the positions of the barcodes are determined post-hoc,
any imprecisions in the manufacturing process of the slide are nullified.
Methods using this strategy have been able to achieve a center-to-center
distance between measurements of 0.5µm to 10µm [60, 61, 62].

5.3 Limitations of Current SRT Technologies

Given the multitude of SRT technologies available today, how should one go
about choosing which one to use for a particular experiment? As with many
things in life, the age-old adage of “it depends” applies. Importantly, SRT
technologies differ along three main axes: sensitivity, spatial resolution,
and multiplexing capacity. Historically, imaging-based technologies have
excelled in sensitivity and spatial resolution but have been limited to the
detection of very few genes. Conversely, sequencing-based technologies have
been able to detect many genes at once but have had lower sensitivity and
spatial resolution.

As we have seen in Section 5.1, recent imaging-based methods can be mul-
tiplexed to support the detection of larger gene panels. However, as more
genes are included, the number of RNA molecules targeted per tissue area
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also becomes increasingly higher. Consequently, individual molecules may
become difficult to resolve in the microscope, an effect known as molecular
crowding, leading to a loss in sensitivity. Combinatorial labeling partially
alleviates this problem, since only a subset of the genes will be visible in each
hybridization round. However, as more hybridization rounds are used, the
time required for imaging the tissue increases, making highly multiplexed
experiments impractical in many settings.

Conversely, as noted in Section 5.2, sequencing-based methods have seen a
rapid increase in spatial resolution over the last few years. However, the
fact that they rely on diffusion of the RNA molecules or probes down to
the capture slide introduces two fundamental limitations: First, diffusion
may not only be vertical but also lateral, limiting how spatially precise the
measurements can be. Studies have estimated lateral diffusion to be on
the order of a few micrometer [58, 62, 63]. Second, sterical hindrance may
prevent the RNA molecules from reaching the capture surface, leading to a
loss in sensitivity.

In sum, the SRT methods that exist today still trade off between two com-
peting attributes: sensitivity and multiplexing capacity. Therefore, choos-
ing which method to use for a particular experiment will depend on the
desired trade-off between these two attributes. For example, if the goal is
to map out the different domains of a tissue, it may be important to fully
characterize the transcriptome of each domain in a data-driven manner,
without having to choose which genes to target beforehand. In this case,
a sequencing-based method may be preferable. On the other hand, if the
goal is to identify rare cell types, it may be more important to optimize
for capturing as many RNA molecules of a certain set of marker genes as
possible. In this case, an imaging-based method may be preferable.

It should be noted that some imaging-based methods are non-destructive
[59], meaning that the tissue, to a large extent, stays intact after the ex-
periment. These methods can be combined with other types of experiments
on the same tissue section, including, for example, histological staining and
sequencing-based SRT.

Finally, as an alternative to experimentally scaling up SRT to measuring
large gene panels at a high sensitivity, it is also possible to computationally
infer such measurements from sparse data. But this, among other topics,
will be the focus of the next section.
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6 Modeling Spatial Biology Data

In this section we will discuss how to construct models of spatial biology
data and how those models can be applied to effectively analyze biological
systems. We begin by describing a common data type in computational
biology, count data, and how such data can be modeled in Section 6.1.
Section 6.2 then discusses how to account for expression rate heterogeneity
by modeling the cell state as a latent variable. In Sections 6.3 and 6.4 we
describe how to decompose mixed expression signals, which is a common
feature of sequencing-based SRT data. Section 6.5 proceeds by discussing
how to integrate data from different technologies in order to synthesize
knowledge across several data sources. Finally, Section 6.6 concludes with
a brief discussion about some of the topics that we have not yet covered.

6.1 Count Data

A common data type in biology is count data; data that is made up of
natural numbers indicating the number of occurrences of a particular event
or object. For example, as we saw in Section 5, sequencing-based SRT
produces a count matrix, where each entry represents the number of RNA
molecules of a certain kind that were detected in a specific region of the
tissue. To illustrate how such data can be modeled, we will in this section
construct a model for transcript data. Our analysis is not limited to RNA
molecules, however; some of the principles that we will discuss can also be
applied to other types of data, including, for example, protein expression.

6.1.1 A Basic Model for Count Data

Suppose we are interested in quantifying the expression of a certain gene,
say TP53, a known tumor suppressor [64], in a population of cells. We
will assume that every cell randomly transcribes TP53 at rate ν, that the
mRNA molecules randomly degrade at rate γ, and that all transcription and
degradation events are independent. Then, at every moment, the number of
TP53 mRNAmolecules, x, in a given cell increases with rate ν and decreases
with rate xγ.5 Note that x will fluctuate around some steady-state mean:
When x is small, the transcription rate will exceed the degradation rate,

5 Stochastic processes of this kind are studied in a branch of statistics known as
queueing theory. This particular case is an M/M/∞ queue, a birth-death process
with constant birth rate and linear death rate (in our case, ν and xγ, respectively).
The first part of the name, M/M , refers to the fact that the transcription and
degradation processes are memoryless—they depend only on the current state—
and the last part, ∞, refers to the fact that there is no limit to the number of
molecules subjected to degradation at any time; i.e., the degradation process cannot
be saturated.
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Figure 6: The number of RNA molecules of a certain transcript in a cell can be modeled as
a stochastic process governed by the transcription rate ν and degradation rate γ. In steady
state, transcription events among cells with k − 1 molecules are balanced by degradation
events among cells with k molecules (dashed line).

leading in expectation to an increase in the number of TP53 molecules, and
vice versa.

What is the distribution of x across a large cell population in steady state?
To see how x is distributed, denote by nk the number of cells with k TP53
mRNA molecules. At steady state, the rate by which the population of cells
with at least k molecules increases equals the rate by which it decreases
(Figure 6); in other words,

νnk−1 = kγnk. (6.1)

Eq. (6.1) gives rise to the recursion

nk =
ν/γ

k
nk−1 =

(ν/γ)2

k(k − 1)
nk−2 = · · · = (ν/γ)k

k!
n0. (6.2)

Let πk be the proportion of cells with k TP53 molecules. Using nk =
πk

∑
i ni, Eq. (6.2) can be written in terms of proportions:

πk =
(ν/γ)k

k!
π0. (6.3)

Since the proportions sum to one, it must be the case that

1 =
∞∑
k=0

πk = π0

∞∑
k=0

(ν/γ)k

k!
= π0e

ν/γ (6.4)

=⇒ π0 = e−ν/γ , (6.5)

where we have used the Taylor series expansion of the exponential function
in Eq. (6.4). Finally, plugging Eq. (6.5) into Eq. (6.3) gives us

πk =
(ν/γ)k

k!
e−ν/γ . (6.6)
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Therefore, if we pick a cell from the population at random, the distribution
of the number of TP53 molecules in the cell will be given by the mass
function p(x = k) = πk for k ∈ N. This distribution is known as the
Poisson distribution, named after Siméon Denis Poisson, who first studied
it in the early 19th century [65]. It is parameterized by the rate λ = ν/γ,
which we will refer to as the expression rate of TP53 in the context of our
model.

The expression rate corresponds to the average number of TP53 molecules
in a cell, since

E[x] =
∞∑
k=0

k
λk

k!
e−λ = λ

∞∑
k=1

λk−1

(k − 1)!
e−λ = λ

∞∑
k=0

πk = λ. (6.7)

An interesting implication of our model is that the variance of the number
of TP53 molecules is also equal to λ:

Var[x] = E[x2]− E[x]2 (6.8)

=
∞∑
k=0

k2
λk

k!
e−λ − λ2 (6.9)

= λ
∞∑
k=0

(k(k − 1) + k)
λk

k!
e−λ − λ2 (6.10)

= λ2
∞∑
k=2

λk−2

(k − 2)!
e−λ + λ

∞∑
k=1

λk−1

(k − 1)!
e−λ − λ2 (6.11)

= λ2 + λ− λ2 = λ. (6.12)

We will revisit this property in Section 6.1.4.

6.1.2 Estimating the Expression Rate

Armed with our model, we can now ask the question: given a set of inde-
pendently observed counts x1, . . . , xN of TP53 from N cells, how can we
estimate the expression rate λ? In Section 3.1, we described how to estimate
the parameters of a model by optimizing the log-likelihood function, which
in our case is given by

ℓ(λ) = log pλ(x1, . . . , xN ) =
N∑
i=1

log Poisson(xi | λ) =
N∑
i=1

xi log λ−Nλ+ C,

(6.13)
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where C is constant with respect to λ. Whereas Section 3.1 turned to
gradient-based optimization, our model has a closed form solution:

d

dλ
ℓ(λ)

∣∣∣∣
λ=λ∗

=
1

λ∗

N∑
i=1

xi −N = 0 =⇒ λ∗ =
1

N

N∑
i=1

xi. (6.14)

Note that λ∗ maximizes ℓ(λ), since the second derivative is negative for all
λ > 0. The estimator λ∗ is unbiased:

E[λ∗] = E

[
1

N

N∑
i=1

xi

]
=

1

N

N∑
i=1

E[xi] =
1

N

N∑
i=1

λ = λ. (6.15)

We can also see that the variance of this estimator is inversely proportional
to the sample size:

Var[λ∗] = Var

[
1

N

N∑
i=1

xi

]
=

1

N2

N∑
i=1

Var[xi] =
λ

N
. (6.16)

Let us take a step back and consider what we have achieved so far. We
have set up a model x ∼ Poisson(λ) for TP53 expression in a cell and fitted
it to observed data by maximum likelihood estimation. Given that our
assumptions about the transcription and degradation processes are correct,
we have thereby learned an unbiased estimate of the expression rate of TP53,
which is the relative rate of transcription and degradation. In other words,
our model has allowed us to transform observed data into new knowledge
about the underlying biological system. Pretty neat, right? But before we
get too carried away, let us first dive a little deeper into the assumptions
we have made, and what they mean for our model.

6.1.3 Limited Measurement Efficiency

The preceding section assumes that we can observe all TP53 molecules in a
cell. In reality, however, we typically only observe a fraction of the molecules
due to inefficiencies in the measurement process. For example, as we saw in
Section 5.2, sequencing-based SRT relies on diffusion of the RNA molecules
down to the capture slide. During this process, some molecules may get
stuck and fail to reach the surface.

To model these inefficiencies, let y be the observed number of molecules.
Assume that a cell contains x molecules and that we only observe each
molecule with probability ε, the efficiency of the measurement technology.
Let ik be a random variable indicating whether molecule k is observed and
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assume that all observation events ik are independent. Then, the probability
of the sequence (i1, . . . , ix) is given by the product

p(i1, . . . , ix | x) =
∏
k

εik(1− ε)1−ik = ε
∑

k ik(1− ε)x−
∑

k ik . (6.17)

The conditional distribution of y given x is therefore

p(y | x) = Ei1,...,ix|x [p(y | i1, . . . , ix)] =
∑

∑
k ik=y

p(i1, . . . , ix | x) (6.18)

=
x!

y!(x− y)!
εy(1− ε)x−y =

(
x

y

)
εy(1− ε)x−y, (6.19)

which is the binomial distribution. The expression
(
x
y

)
is the binomial coef-

ficient, and it counts the number of ways the y observed molecules can be
picked from the x molecules present in the cell.

We can now compute the unconditional distribution of y:

p(y) =
∞∑
x=0

p(y | x)p(x) =
∞∑

x=y

(
x

y

)
εy(1− ε)x−y λ

x

x!
e−λ (6.20)

=
εyλy

y!
e−λ

∞∑
x=y

λx−y(1− ε)x−y

(x− y)!
(6.21)

=
(ελ)y

y!
e−λ

∞∑
x=0

(λ(1− ε))
x

x!
(6.22)

=
(ελ)y

y!
e−λeλ(1−ε) =

(ελ)y

y!
e−ελ = Poisson(y | ελ). (6.23)

Therefore, we can see that even with limited measurement efficiency, the
observed counts are still Poisson distributed. However, our estimation pro-
cedure in Section 6.1.2 will now not quite find the actual expression rate
λ but rather an attenuated rate ελ. Nonetheless, this is typically not a
big problem in practice for two reasons: First, if we have an idea of the
efficiency, we can simply divide the estimated rate by ε to recover the ac-
tual rate. Second, we are often not interested in the absolute value of the
expression rate but rather the relative rates between, for example, differ-
ent biological conditions or, in SRT data, different spatial regions. Such
comparisons will still be valid as long as the efficiency is constant.

6.1.4 Expression Rate Heterogeneity

So far, we have assumed that all cells in the population have the same
transcription and degradation rates. This is clearly a simplification: Even
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if we study cells of a single cell type, their cell states will not be identical
and their expression rates of a given gene are likely to vary. What does this
mean for our model? Suppose a cell can have one of K different expression
rates, λ1, . . . , λK , with probabilities p1, . . . , pK , respectively. Then, the
distribution of the number of TP53 molecules in a cell will be given by
the mixture distribution

p(x) =
K∑

k=1

pkPoisson(x | λk). (6.24)

Let us consider the mean and variance of this distribution. First, note that
we can parameterize x as

x =

K∑
k=1

ikxk, (6.25)

where ik is an element of the one-hot vector I = (i1, . . . , iK) indicating which
of the K expression rates the cell has and xk ∼ Poisson(λk). Therefore,

E[x] = E
K∑

k=1

ikxk =
K∑

k=1

E[ikxk] =
K∑

k=1

E[ik]E[xk] =
K∑

k=1

pkλk = λ̄ (6.26)

Var[x] = E
[(
x− λ̄

)2]
= EIEx|I

[(
x− λ̄

)2]
(6.27)

=

K∑
k=1

pkExk

[(
xk − λ̄

)2]
(6.28)

=
K∑

k=1

pkExk

[(
(xk − λk) + (λk − λ̄)

)2]
(6.29)

=
K∑

k=1

pkExk

[
(xk − λk)

2 + 2(xk − λk)(λk − λ̄) + (λk − λ̄)2
]

(6.30)

=
K∑

k=1

pk
(
Var[xk] + 2(λk − λk)(λk − λ̄) + (λk − λ̄)2

)
(6.31)

= λ̄+

K∑
k=1

pk(λk − λ̄)2, (6.32)

where the third equality in Eq. (6.26) follows from independence of ik and
xk. Eq. (6.32) implies that the variance of x is always at least as large as
the mean. Hence, if we model the data using a Poisson distribution with
expression rate λ = λ̄, we would have underestimated the variance of the
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data distribution; in this case, the data is said to be overdispersed relative
to the model.

One common way to account for overdispersion is to base our model on a
negative binomial distribution instead of a Poisson distribution [66]. The
negative binomial distribution arises naturally as the marginal distribution
of a Poisson distribution with a gamma-distributed rate [67]. For a cer-
tain sequence of parameters, the gamma distribution converges to a point
mass. This means that the negative binomial distribution can model both
data with Poisson variance (point mass expression rate) and data that is
overdispersed relative to a Poisson model (non-point mass rate).

While the negative binomial distribution is a straightforward way of ac-
counting for overdispersion, the rationale for why the rate parameter would
be gamma distributed is not clear. For example, the gamma distribution is
a unimodal distribution and may therefore not be able to capture expression
rates across a population of cell types with disjoint rates. Moreover, overdis-
persion may have causes other than expression rate heterogeneity, such as,
for instance, technical noise in the measurement process [66, 68]. In gen-
eral, the specific shape of excess variability captured by a negative binomial
model may not match the process by which the variance is generated, which
could result in a biased model all the same.

At this point, it should also be noted that gene expression is a highly com-
plex stochastic process. In particular, our assumption of independent tran-
scription and degradation events is unlikely to be true. For example, tran-
scription events are known to occur in bursts, where the gene is transcribed
at a high rate for a short period of time followed by a period of inactivity
[69]. Additionally, the constant influx of signals from external stimuli may
cause perturbations to both transcription and degradation. Gene expres-
sion is therefore seldom in steady state, and the distribution of the number
of RNA molecules of a certain transcript is likely much more complex than
what either the Poisson or negative binomial distributions can capture.

Although it is a good idea to be mindful of the assumptions encoded in
the models we use—and their implications for potential bias in subsequent
analyses—it is also important to remember that useful models need not be
perfect representations of reality but just good enough abstractions thereof.
Indeed, as we will see in the next few sections, the Poisson model discussed
so far can be extended to capture a wide range of biological phenomena,
and similar models have been used to great effect for solving many different
analysis tasks in biology.
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6.2 Cell State Models

In the last section, we described how to model the number of TP53 molecules
in a cell using a Poisson distribution, and we saw that expression rate het-
erogeneity can cause issues with overdispersion. One way to address this
issue would be to model the expression rate not of a population of cells but
of individual cells. However, as shown by Eq. (6.16), if we estimate the ex-
pression rate based on a single count value, we will be left with a very noisy
estimate. Therefore, we need to find a way to share information across cells
or genes in order to obtain more robust results.

One idea is to model the cell state as a latent variable. Let X be a vector of
observed counts for a cell. This vector includes counts for all genes in the
transcriptome, including TP53. Let Z be the corresponding cell state, which
is unobserved. The cell state does not correspond to any physical property
of the cell but is simply an abstract construct, so we are free to choose how
the marginal p(Z) should look like. A typical choice is to let Z follow some
well-behaved, tractable distribution, such as a diagonal Gaussian. We can
then set up a joint model p(X,Z) = p(Z)p(X | Z) for the cell state and
observed counts where

Z ∼ p(Z) (6.33)

λg = fg(Z) (6.34)

Xg | Z ∼ Poisson(λg). (6.35)

The function fg maps the cell state to the expression rate of gene g. We can
parameterize fg as a neural network with weights θ, for example by letting

fg(Z) = [fθ(Z)]g , (6.36)

where we have used the notation [·]g to denote the gth element of a vector.
Note that the parameters of this model, θ, will be shared both across cells
and across genes. If we learn θ by maximizing the likelihood of the model,
we may therefore be able to decode the posterior cell state, pθ(Z | X), into
robust estimates of the expression rates of individual genes in individual
cells. The learned cell state embedding is also interesting in its own right,
since it encodes a representation of the cell that can be used for downstream
analyses, such as clustering and visualization [70, 71].

This idea runs into a problem, however: In order to compute the log-
likelihood, Eq. (3.7), or the posterior, pθ(Z | X) = pθ(X,Z)/pθ(X), we
need to be able to evaluate an integral over all possible cell states, since

pθ(X) =

∫
p(Z = z)pθ(X | Z = z) dz (6.37)

42



=

∫
p(Z = z)

G∏
g=1

Poisson(Xg | [fθ(z)]g) dz. (6.38)

This integral is intractable for all but the simplest definitions of p(Z) and
fg. So, how can we proceed? Going back to Section 3.4, one approach is
to set up the model as a VAE. In this case, we couple our model pθ(X,Z)
with an approximate posterior qθ(Z | X) and learn both distributions by
maximizing the evidence lower bound, Eq. (3.30), instead of the likelihood.

Several extensions of this model have been proposed in the literature. For
example, the rate in Eq. (6.34) can be augmented with additional covariates
to control for batch effects [70]. Another extension is to use a prior distri-
bution p(Z) with multiple modes, allowing the model to associate distinct
high-density regions of cell state space to different cell types [71].

6.2.1 The Expression Rate Distribution

A consequence of modeling the expression rate as a random variable is that
we can now ask questions about how it is distributed. For example, we may
be interested in the posterior distribution of the expression rate given an
observation X:

pθ(λg | X) =

∫
pθ(λg | Z)pθ(Z | X) dZ. (6.39)

Eq. (6.39) is, just like the integral in Eq. (6.38), intractable. Nonetheless, we
can approximate it with a mixture of point mass distributions by sampling
from the approximate posterior qθ(Z | X):

pθ(λg | X) ≈
∫

pθ(λg | Z)qθ(Z | X) dZ (6.40)

≈ 6

∫
δfg(Z)(λg)

N∑
i=1

δZi(Z) dZ (6.41)

=
1

N

N∑
i=1

δfg(Zi)(λg), (6.42)

where δx is the Dirac delta distribution centered at x (a deterministic dis-
tribution that always takes on the value x), and we have drawn N samples
Z1, . . . , ZN from qθ(Z | X).

6 The approximatively equal sign here indicates that the left and right hand side den-
sities have similar cumulative distribution functions, not that they are numerically
close. This is because the right hand side is not a regular function of λg but a
generalized function that evaluates to infinity at some points and zero elsewhere.
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We can also extend our model to ask questions about how expression rates
differ between different conditions. One way to do so would be to augment
the latent state with a learnable embedding Ec for each condition c in order
to learn a conditional expression model,

Z ∼ p(Z) (6.43)

λcg = fg(Z + Ec) (6.44)

Xg | Z, c ∼ Poisson(λcg). (6.45)

After optimizing this model, we can estimate the expression rate distribu-
tions of each condition:

p(λcg) = EZ∼p(Z)[p(λcg | Z)] ≈ 1

N

N∑
i=1

δfg(Zi+Ec)(λcg). (6.46)

By comparing the rate distributions of different conditions, we can identify
genes that are upregulated in, for instance, certain cell types or in response
to certain stimuli. Estimating the expression difference between cell pop-
ulations is generally known as differential gene expression analysis. Both
latent variable models similar to the one above [70] and other techniques
based on, for example, hypothesis testing [72, 66] have been proposed for
this purpose.

6.3 Factorization

So far, we have discussed how to model the gene expression of individ-
ual cells. Nonetheless, similar models can also be used for spatial data.
In spatial models, we can incorporate spatial dependencies in the model
by, for instance, using a prior that encourages neighboring observations to
have similar expression profiles [73] or non-parametrically by replacing fg in
Eq. (6.34) with a convolutional neural network applied to a grid of spatially
ordered latent states [74].

In sequencing-based SRT data, there is, however, one big caveat that we
need to deal with first: Each measurement region may capture RNA from
multiple cells, giving us a mixed expression signal from cells with potentially
very different expression rates. To formalize this, suppose the expression
signal in a region i comes from T expression components,

xitg ∼ Poisson(λitg), (6.47)

where t ∈ {1, . . . , T} indexes the components and g is a gene index. The
observed counts yig is the sum of the expression components:

yig =

T∑
t=1

xitg. (6.48)
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To derive the distribution of yig, consider first the sum of two Poisson ran-
dom variables y = x1 + x2, where x1 ∼ Poisson(λ1) and x2 ∼ Poisson(λ2):

p(y) =
∞∑
k=0

p(x1 = k)p(y | x1 = k) (6.49)

=
∞∑
k=0

p(x1 = k)p(x2 = y − k) (6.50)

=

y∑
k=0

Poisson(k | λ1)Poisson(y − k | λ2) (6.51)

=

y∑
k=0

λk
1

k!
e−λ1

λy−k
2

(y − k)!
e−λ2 (6.52)

=
(λ1 + λ2)

y

y!
e−(λ1+λ2)

y∑
k=0

y!

k!(y − k)!

λk
1λ

y−k
2

(λ1 + λ2)y
(6.53)

=
(λ1 + λ2)

y

y!
e−(λ1+λ2)

y∑
k=0

(
y

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)y−k

(6.54)

=
(λ1 + λ2)

y

y!
e−(λ1+λ2)

(
λ1 + λ2

λ1 + λ2

)y

(6.55)

=
(λ1 + λ2)

y

y!
e−(λ1+λ2) = Poisson(y | λ1 + λ2), (6.56)

where we have used the binomial theorem in Eq. (6.55). By induction, it
follows that

xi1g + xi2g ∼ Poisson(λi1g + λi2g) (6.57)

(xi1g + xi2g) + xi3g ∼ Poisson ((λi1g + λi2g) + λi3g) (6.58)

...

yig =
T∑

t=1

xitg ∼ Poisson

(
T∑

t=1

λitg

)
. (6.59)

Eq. (6.59) implies that the observed counts yig are Poisson distributed,
just like the component distributions, with a rate equal to the sum of the
component rates. Therefore, the likelihood is tractable and we can fit this
model just as we have done before to learn the rates of the expression
components.

Without additional structure, the model defined by Eq. (6.59) is clearly
overparameterized, however, since there are T times more component rates
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Figure 7: Expression rate models. a. Base model (Section 6.1.2). b. Cell state model
(Section 6.2). c. Factorized model (Section 6.3). Indices i, g, and t denote the unit of
observation (cell or measurement region), gene, and factor, respectively.

λitg than observed counts yig. One way to constrain the model is to assume
that the component rates factorize into a spatial term λit and a gene term
λtg [75]:

λitg = λitλtg. (6.60)

In this framework, the components t are typically referred to as factors
or metagenes. The spatial term λit defines the spatial distribution of the
factors over the measurement regions, and the gene term λtg defines the
expression profiles of the factors. Factors can be understood as recurrent
gene expression patterns and are typically associated with specific cell types
or biological processes [76]. Factor models therefore provide a way to in-
terpret gene expression data by decomposing it into biologically meaningful
components.

A graphical summary of the models discussed so far is shown in Figure 7.

6.4 Cell Type Deconvolution

The factorized expression model introduced in Section 6.3 presents an ex-
citing opportunity: What if we could learn the expression profiles of the
factors from a non-spatial data source profiling the expression of individual
cells? The factors would then correspond to known cell types, and we could
transfer the expression profiles of the factors to the sequencing-based SRT
data in order to deconvolve the expression signal into cell types [77]. For-
mally, the way this could be set up is to use the single-cell data to pretrain
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a conditional expression model,

Xig | T = t ∼ Poisson(siλtg), (6.61)

where i and g are cell and gene indices, respectively, and si is a scaling factor
to control for differences in sequencing depth between cells. This allows us
to learn the gene expression profiles λtg of T different cell types. We can
then train a model similar to the one defined in Section 6.3 but fixing the
gene term λ̄tg = λtg to the pre-trained profiles:

xitg ∼ Poisson(sgλitλ̄tg), (6.62)

where we have added a gene-wise scaling factor sg to capture bias in the cap-
ture efficiency of different genes between the single-cell and SRT technolo-
gies. Letting λitg = sgλitλ̄tg and λig =

∑
t λitg, the posterior component

counts are given by

p(xi1g, . . . , xiTg | yig) =
p(xi1g, . . . , xiTg)

p(yig)
=

p(xi1g) · · · p(xiTg)

p(yig)
(6.63)

=

λ
xi1g
i1g

xi1g!
e−λi1g · · · λ

xiTg
iTg

xiTg!
e−λiTg

λ
yig
ig

yig !
e−λig

(6.64)

=
yig!

xi1g! · · ·xiTg!

λ
xi1g

i1g · · ·λxiTg

iTg

λ
yig

ig

(6.65)

=

(
yig

xi1g, . . . , xiTg

) T∏
t=1

(
λitg

λig

)xitg

, (6.66)

which is a multinomial distribution with yig trials and event probabilities
λitg/λig. The posterior mean proportion of counts contributed by cell type
t in region i is therefore given by

E

[∑
g xitg∑
g yig

∣∣∣∣ yi1, . . . , yiG
]
=

∑
g E[xitg | yig]∑

g yig
=

∑
g

λitg

λig
yig∑

g yig
. (6.67)

Estimating cell type proportions from a mixed expression signal is known
as cell type deconvolution. A wide range of methods have been proposed for
this task, including probabilistic inference methods in much the same spirit
as what has been described above [77, 78, 79] as well as other estimation
strategies [60, 80, 81, 82].
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6.5 Multi-Modal Models

The ideas presented in the last few sections illustrate how we can use weight
sharing across multiple observations to ameliorate the effects of sparsity and
noise in order to obtain more robust estimates. Multi-modal weight sharing,
where we have integrated observations from different types of data sources,
can be especially effective, since different modalities may be better at char-
acterizing certain aspects of the data or offer other complementary advan-
tages. For example, in the cell type decomposition model of Section 6.5, we
leveraged cell-level data from a non-spatial source to inform the SRT data
analysis by defining cell-type-specific expression profiles. The potential of
cross-modality data transfer is not limited to cell type decomposition, how-
ever, and there are many other data types that can be integrated for this
purpose.

As mentioned in Section 5, many SRT protocols are compatible with histo-
logical staining, producing a dataset of paired spatial gene expression and
histology. Intriguingly, it has been shown that it is possible to predict gene
expression from histology images [83], suggesting that these modalities have
overlapping information content.

One strong differentiator of imaging data compared to sequencing-based
SRT data is that it has a much higher resolution, limited only by the diffrac-
tion limit of the microscope. This opens up the possibility of transfering
higher-resolution information from the imaging data to the SRT data by
embedding the datasets in a shared latent space [74, 84]. To formalize this
idea, we can set up a cell state model that decodes the shared embedding
Z into pixel-level expression rates λxyg and the image data Y ,

Z ∼ p(Z) (6.68)

λxyg = [fθ(Z)]xyg (6.69)

xxyg | Z ∼ Poisson(λxyg) (6.70)

xig =
∑

(x,y)∈Ri

xxyg (6.71)

Y | Z ∼ p(Y | Z), (6.72)

where xxyg is the count for gene g in pixel (x, y) and Ri is the set of pixels in
region i. Note that the shared embedding Z encodes the information content
in both modalities and is therefore a high-resolution representation of the
data. Moreover, from the divisibility of the Poisson distribution described
in Section 6.3, it follows that xig | Z ∼ Poisson(

∑
(x,y)∈Ri

λxyg). With an

appropriate image model p(Y | Z), we can therefore optimize this model in
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Figure 8: Cross-modality data transfer for scaling up SRT experiments. A tissue is sectioned
into sequential tissue slices. All slices are stained and imaged, and SRT is carried out on
a small subset of them. A prediction model is trained to predict the SRT data from the
stains and then used to infer spatial gene expression on slices that were not subjected to
SRT. The resulting data can be stacked to form a three-dimensional expression map of the
tissue. Image from: Julia Chen et al. “Single-cell spatial landscapes of cancers: insights and
opportunities”. In revision.

the same way as the cell state model of Section 6.2, allowing us to infer the
super-resolved expression rates λxyg.

Besides super resolution, multi-modal models also offer a promising means
for scaling SRT by inferring experimental outcomes from histology images.
To illustrate why this is useful, note that SRT technologies are typically
both costly and time-consuming to run. This can, for example, be an im-
pediment to creating three-dimensional expression maps constructed from
serial experiments on thin tissue sections: Since each section is only around
10 µm thick, a 1 cm tissue would require around 1000 sections to cover and
cost well over 1Me by most SRT providers in 2023. In contrast, histol-
ogy images can be acquired much more quickly and cheaply. By training a
model to predict SRT data from histology images, large-scale experiments
can be carried out by performing SRT on a small subset of the sections
and then using the model to infer the expression of the remaining sections
(Figure 8), thereby making it practically much more feasible to characterize
three-dimensional transcriptomes.

Recently, several new experimental protocols have been proposed for simul-
taneously characterizing not only the transcriptome but also the genome
[73], proteome [85], and metabolome [86] on the same or adjacent sections.
Integrating these data sources promises to provide an even more compre-

49



hensive picture of the spatial biology of tissues.

6.6 So That’s It?

In the preceding sections, we have discussed a number of common analysis
tasks in spatial biology, focusing on the ones most relevant to the papers
presented in this thesis. However, there are many topics that we have not
covered. For example, an important problem for large-scale spatial analyses
is how to associate tissue regions across experiments. This can be done by
finding a common coordinate framework that maps the regions to a shared
reference space [87, 88]. A related problem is how to register multiple
sections from the same biopsy to each other, which is necessary for three-
dimensional analyses [89, 90, 91]. Moreover, in exploratory analyses, it may
be useful to find connected spatial regions with similar expression profiles, a
task known as domain segmentation [73, 92]. Identifying smaller structures,
such as individual cells, is a common analysis task when analyzing higher-
resolution SRT data, and both morphology-based [93] and gene expression-
based [94, 95] methods have been proposed for this purpose. In order to
reduce the search space across genes, methods have also been developed to
identify spatially variable genes; that is, genes that have a high degree of
spatial structure in their expression and therefore are likely to be involved in
localized functions [96, 97, 98]. Yet another central topic in spatial biology
is how to model how cells interact, cell-cell communication, which is crucial
for understanding many biological processes [99, 100, 101].

Furthermore, our treatment has focused on how to analyze biological sys-
tems using probabilistic models. While probabilistic modeling has been
applied effectively to many tasks in spatial biology, it should be noted that
it is not the only approach and it is not always the best. For example, one
drawback of many inference algorithms in probabilistic models, including
those discussed in this thesis, is that they are usually computationally quite
expensive. Therefore, in exploratory analyses, where the goal may be to
iterate over many different biological hypotheses to quickly get a sense of
the data, it may be more appropriate to use faster methods.

Considering the diversity of life, it is not surprising that the problems that
arise in analyzing biological data—and the solutions to those problems—
are equally diverse. So, while my hope is that this thesis has given you
an introduction to the topic at hand, there is much left to learn and much
more to be explored. And as the technologies to generate biological data
progress, new methods will need to be developed to analyze that data. We
have only really started to scratch the surface of the possibilities that lie
ahead and await us. And, hey, how boring would it not be otherwise?
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7 Present Investigation

Paper I: Integrating Spatial Gene Expression and Breast Tumour Morphol-
ogy via Deep Learning

In Paper I paper, we explore the link between tissue anatomy, as charac-
terized by histology images, and spatially resolved gene expression. We
construct a deep learning model that predicts spatial gene expression from
histology images and train the model on a dataset of 68 Spatial Transcrip-
tomics sections with paired hematoxylin and eosin stains from 23 breast
cancer patients. Using leave-one-patient-out cross validation, we show that
the model can predict the expression of over 100 genes at a resolution of 100
micrometer. The identified genes include known biomarkers for breast can-
cer, immune activation, and other clinically relevant processes. The results
generalize to other breast cancer datasets, including The Cancer Genome
Atlas. We further demonstrate that there is a strong connection between
the expression of certain tumor-related genes and atypical morphological
features, such as enlarged nuclei. Based on these findings, we conclude that
deep learning models trained on spatial gene expression data could consti-
tute a powerful framework for cancer screening and diagnosis in the clinics.
Crucially, such models do not require annotated reference images, which are
costly and difficult to curate, but are fully data-driven and therefore offer
significant scaling advantages.

Paper II: Super-Resolved Spatial Transcriptomics by Deep Data Fusion

Experimental methods for spatially resolved transcriptomics can be char-
acterized on a spectrum that trades sensitivity and spatial resolution for
multiplexing capacity. On one end of the spectrum, imaging-based meth-
ods, such as those based on fluorescence in situ hybridization, typically have
higher sensitivity and resolution, but are limited in the number of genes that
can be measured simultaneously. On the other end, sequencing-based meth-
ods, such as 10x Visium, can measure genes from the entire transcriptome
in a single experiment, but are limited in sensitivity and resolution. In pa-
per II, we explore the idea of jointly modeling sequencing-based spatially
resolved transcriptomics data with high-resolution histology images from
the same tissue section. We propose that morphology and gene expression
can be seen as observable effects of an underlying tissue state, and show
that histology images can be used to increase the resolution of sequencing-
based technologies, unlocking the potential of finer-grained analysis of spa-
tial transcriptomes. Additionally, we show that the proposed method can
use reference experiments to predict spatial transcriptomes from histology
images without paired gene expression data. We propose that this type of
analysis, which we term in silico spatial transcriptomics, can be used to re-
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duce experimental burden in multi-section experiments, and paves the way
for larger-scale studies of spatial transcriptomes.

Paper III: Learning Stationary Markov Processes with Contrastive Adjust-
ment

Paper III introduces contrastive adjustment, an optimization algorithm for
learning Markov transition kernels whose stationary distribution matches
the data distribution. The learned transition kernel is a stationary gen-
erative model; by starting from an arbitrary state, sampling the kernel to
iteratively generate new states yields a sequence of incrementally modified
states that collectively follow the data distribution. Contrastive adjustment
can be used to learn transition models in both continuous and discrete state
spaces and is not restricted to a particular family of transition distributions.
Additionally, inspired by recent work on diffusion-based generative models,
we propose the noise kernel, a transition model of noisy data that generates
new states by alternating between removing and adding back noise to the
data. We demonstrate noise kernels trained by contrastive adjustment on
a variety of computer vision tasks, including image synthesis, inpainting,
and variant generation. We suggest that contrastive adjustment could be a
powerful tool for human-computer design processes, as the stationarity of
the learned Markov chain enables local exploration of the data manifold and
makes it possible to iteratively refine outputs by means of human feedback.
Such design processes may be highly valuable not only in the creative arts
but also, for example, for accelerating discovery of new biomolecules in drug
development.

Paper IV: Multi-Modal Modeling of Spatial Biology Data

Spatial biology encompasses a wide range of experimental technologies that
measure different aspects of tissue anatomy, such as its morphology, gene
expression, and protein composition. Comprehensively characterizing tis-
sues therefore requires combining several modalities in the same experiment,
but doing so is often prohibitively challenging or costly. Furthermore, mea-
surements from spatial biology experiments are often sparse, noisy, or in-
complete, impeding downstream analysis. Paper IV leverages the flexibility
of contrastive adjustment and noise kernel transition models, as introduced
in Paper III, to construct a multi-modal generative model of spatial biol-
ogy data. The model integrates data from diverse modalities by forming a
joint embedding space that enables information sharing across both different
modalities and different experiments. By combining information from mul-
tiple modalities and experiments in a single analysis, it becomes possible to
strengthen the signal when data is noisy, sparse, or degraded. Moreover, the
proposed model can be used to infer missing data or to recast experiments
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of one modality into another for improved interpretability or compatibil-
ity with other data. We show that the proposed method outperforms our
previous work, presented in Paper II, on histology-guided gene expression
imputation and super resolution. Additionally, not being limited to joint
modeling of histology images and sequencing-based spatially resolved tran-
scriptomics data, we demonstrate that the proposed method can be used
to impute missing features in high-resolution in situ experiments, offering
to computationally scale imaging-based technologies to larger gene panels.
We posit that integrative models of spatial biology will become increasingly
important in the coming years as datasets grow in size and complexity.
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8 Future Outlook

Coming from a background in economics, which has a lot of intricacies in
its own right, I am the first to admit that biological systems are tremen-
dously complex. Making sense of this complexity is, to say the least, a
daunting task (shout out to my fellow colleagues whose deep knowledge
of biotechnology and its endless applications never ceases to amaze me!).
Fortunately, large-scale machine learning systems, for example embodied
by recent advances in large language models, have proven to be immensely
powerful abstraction tools. Such foundation models learn complex patterns
from vast bodies of data and can draw on that information to solve new
problems without task-specific training.

In the coming years, large-scale machine learning models are likely to not
only play an increasingly important role in biological research, improving
our understanding of how biological systems function and accelerating the
discovery of new treatments, but also unlock an array of new possibilities
for personalized healthcare and precision medicine that require integrating
information from many different data sources. For example, one such idea
is the concept of a digital twin: a digital representation of a patient that is
continually updated with biometric data from, for example, fitness watches,
blood tests, and other health monitoring tools. Today, diagnosis is predom-
inantly carried out once a patient has developed clinical signs of a disease,
which is sometimes too late for effective treatment. Moreover, anamnesis is
often based on limited data and self-reported symptoms, which can be an
unreliable source of information that makes accurate diagnosis challenging.
In contrast, by integrating data both longitudinally and across many dif-
ferent biometrical measurements, a digital twin could provide a continuous,
data-driven assessment of a patient’s health status, enabling early disease
detection and personalized treatment plans, which ultimately promises bet-
ter health outcomes.

The development of large-scale models for biology should not be taken for
granted, however. The diverse types of data generated by experimental
methods pose challenges for how we encode and represent that data in our
models. And even if we find good representations, large-scale models still
need large-scale datasets to train on. Here, reference atlases of human biol-
ogy, such as the Human Cell Atlas and the Human Protein Atlas, provide
invaluable training resources. However, current atlases are still limited in
their size and scope, only encompassing an incomplete set of modalities, tis-
sues, and disease states. Moreover, finding ways to train models on sensitive
information, such as genetic data, without compromising patient privacy re-
mains a major challenge in the development of larger-scale models.
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While computational methods for analyzing healthcare data are likely to
play an increasingly important role in the clinics and every day life, we
are also likely to see progress in the methods that generate such data. For
instance, over recent years, we have seen spatially resolved transcriptomics
technologies evolve from measuring only a handful of genes in a single ex-
periment to transcriptome-scale measurements at an ever finer spatial res-
olution. What’s next? I think we will see a continued trend toward more
modalities, higher multiplexing, and higher resolution, but also a shift to-
ward characterizing tissues in three dimensions. The latter will likely rely
on generative models for synthesizing parts of the tissue due to experimental
constraints, at least in the beginning.

Further ahead, one of the most exciting research prospects will be to extend
spatial biology to the fourth dimension: time. Understanding how a system
works is, in a way, to understand its causal structure. At the same time,
understanding causality without time is like trying to understand a movie by
looking at a single frame. It is not until we see the movie in its entirety that
we know how the story unfolds. The same holds true for biological systems:
to understand the effectors of disease progression and of how tissues develop
and self-organize, we need to be able observe how the system changes over
time and responds to perturbations. To this end, we will need to develop
new experimental methods for dynamically profiling biological systems and
new computational methods for analyzing such data. While this is likely to
be a difficult endeavor, I am convinced that it will be worth the effort.

Looking back at my time as a graduate student, I have had the fortune to
study biology and generative artificial intelligence during a time when both
fields have seen tremendous progress. Undoubtedly, few people at the start
of my studies would have predicted the rapid development that we have seen
over the past few years in both fields. In such a fast-moving environment,
it is ultimately very difficult to know what tomorrow will bring. Therefore,
I would like to conclude this thesis with a quote from the late physicist
Richard Feynman, who once said:

“I can live with doubt and uncertainty and not knowing. I think
it’s much more interesting to live not knowing than to have an-
swers which might be wrong.”

Whatever the future holds, I am curious to find out and excited to be but
a small part of it.
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