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Abstract

Learning flow functions of continuous-time control systems is considered in
this thesis. The flow function is the operator mapping initial states and
control inputs to the state trajectories, and the problem is to find a suitable
neural network architecture to learn this infinite-dimensional operator from
measurements of state trajectories. The main motivation is the construction
of continuous-time simulation models for such systems. The contribution is
threefold.

We first study the design of neural network architectures for this problem,
when the control inputs have a certain discrete-time structure, inspired by
the classes of control inputs commonly used in applications. We provide a
mathematical formulation of the problem and show that, under the considered
input class, the flow function can be represented exactly in discrete time.
Based on this representation, we propose a discrete-time recurrent neural
network architecture. We evaluate the architecture experimentally on data
from models of two nonlinear oscillators, namely the Van der Pol oscillator
and the FitzHugh-Nagumo oscillator. In both cases, we show that we can
train models which closely reproduce the trajectories of the two systems.

Secondly, we consider an application to spiking systems. Conductance-
based models of biological neurons are the prototypical examples of this type
of system. Because of their multi-timescale dynamics and high-frequency
response, continuous-time representations which are efficient to simulate are
desirable. We formulate a framework for surrogate modelling of spiking systems
from trajectory data, based on learning the flow function of the system. The
framework is demonstrated on data from models of a single biological neuron
and of the interconnection of two neurons. The results show that we are able
to accurately replicate the spiking behaviour.

Finally, we prove an universal approximation theorem for the proposed
recurrent neural network architecture. First, general conditions are given
on the flow function and the control inputs which guarantee that the archi-
tecture is able to approximate the flow function of any control system with
arbitrary accuracy. Then, we specialise to systems with dynamics given by
a controlled ordinary differential equation, showing that the conditions are
satisfied whenever the equation has a continuously differentiable right-hand
side, for the control input classes of interest.



Sammanfattning

Denna avhandling studerar maskininlärningsmetoder för tidskontinuerliga
reglersystem. Vi utgår från en abstrakt systemrepresentation med en lösnings-
operator, som avbildar systemets initialtillstånd och insignal på motsvarande
tillståndstrajektorian. Målet är att undersöka inlärning av tidskontinuerliga
simuleringsmodeller utifrån tillståndsmätningar. Avhandlingen består av tre
huvudbidrag.

Vi undersöker först arkitekturer baserade på neurala nätverk, för klasser av
insignaler som är brukliga i tillämpningar och har en viss tidsdiskret struktur.
Vi formulerar problemet matematiskt, och visar att lösningsoperatorn kan
representeras exakt av ett tidsdiskret system. Detta leder till en arkitektur
baserad på ett återkopplande neuralt nätverk (RNN), som vi utförligt beskriver,
analyserar och validerar med hjälp av data från två modeller av icke-linjära
oscillatorer, nämligen Van der Pol oscillatorn och FitzHugh-Nagumo oscillatorn.
I båda fall visar vi att vi kan träna modeller som noggrant reproducerar
systemens lösningsbanor.

Därefter studerar vi en tillämpning på system vars tillståndstrajektorier
kännetecknas av förekomsten av snabba oscillationer i form av impulser, såsom
modeller av biologiska neuroner. Denna klass av system karakteriseras av
ett flerskaligt och högfrekvent tidssvar, vilket gör det önskvärt att ta fram
tidskontinuerliga modeller som är lätta att simulera. Vi lägger fram ett ramverk
för inlärning av surrogatmodeller av sådana system från data. Ramverket
demonstreras med hjälp av data från en modell av en biologisk neuron och
en modell av två kopplade biologiska neuroner, och resultaten visar att våra
modeller noggrant reproducerar systemens beteende.

Slutligen tar vi fram ett bevis för ett approximationsteorem för inlärning
av lösningsoperatorer av tidskontinuerliga system. Vi visar att den RNN-
arkitektur som vi har tagit fram kan approximera godtyckliga reglersystem
under vissa villkor som vi först formulerar abstrakt. Sedan bevisar att regler-
system som beskrivs av ordinära differentialekvationer uppfyller dessa villkor,
vilket betyder att de kan approximeras av den studerade arkitekturen.



Acknowledgements

I wish first and foremost to express my deepest gratitude to my supervisor,
Karl Henrik Johansson. His encouragement, guidance and enduring patience
have been crucial for the completion of the work presented here. A similar word
of thanks is due to my co-supervisor João Sousa, whose advice I have been for-
tunate to profit from since I first started doing research. It has been a pleasure
to work on the material presented below in collaboration with Amritam Das, to
whom I am grateful for his enthusiasm and availability through many hours of
enriching discussions. Discussions with Matthieu Barreau and Ingvar Ziemann
were also important in the development of this research direction. I would like
to extend my sincere thanks to Maarten Schoukens for graciously accepting
to review this thesis, and to Mikael Johansson for the readiness to serve as
advance reviewer and examiner. I am moreover indebted to Jacob Lindbäck,
Braghadeesh Lakshminarayanan and Daniel Selvaratnam for their availability
to help in proofreading parts of this thesis, and to Robert Bereza for help
with some last-minute logistics. This work was supported by the Swedish
Research Council Distinguished Professor Grant 2017-01078 and a Knut and
Alice Wallenberg Foundation Wallenberg Scholar Grant. The computations
were enabled by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS) at C3SE, partially funded by the
Swedish Research Council through grant agreement no. 2022-06725.

Many thanks are owed to my past and present colleagues at the Division
for Decision and Control Systems, in particular those who I’ve been fortunate
to collaborate with on research and teaching, my office companions Mayank
Sewlia and Pedro Roque, and all who regularly grace the kitchen with their
presence at lunchtime.

I also sincerely thank my friends in Stockholm, Porto and elsewhere. A
particular word of appreciation is due to Jesper Provoost for his constancy
and generosity in friendship. Saint Eugenia’s church in Stockholm has been
an essential place of recollection and solace; I dearly thank all involved in the
parish community, in particular Fr. Dominik Terstriep SJ.

I wish to thank my family for invariably welcoming me back home and
ensuring that I do not stray too far from the Portuguese culinary tradition.
In particular, my parents have often been an indispensable help and I am
grateful for their listening ear and advice.

My fiancée Agnes has been a source of inspiration and peace in abundance.
I thank her deeply for the encouragement, understanding and her patient love,
as well as for making sure my sugar and caffeine levels were kept acceptably
high during the writing of this document.

Finally, I give thanks to God, my consolation, for the grace of being able
to do this work and for placing all those mentioned above in my path. Send
forth thy light and thy truth: they have conducted me, and brought me unto
thy holy hill, and into thy tabernacles.





Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 An architecture for flow function learning 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Numerical evaluation: Van der Pol oscillator . . . . . . . . . . . . . . . . . . . . . 28
2.6 Numerical evaluation: FitzHugh-Nagumo oscillator . . . . . . . . . . . . . . . . . 36
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Surrogate modelling of spiking systems 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 A universal approximation theorem 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Architecture definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Universal approximation of flow functions . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Flows of controlled ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Conclusions 71
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 75

1





Chapter 1

Introduction

In this chapter we introduce the topic addressed in this thesis. We begin by
motivating the work and describing some application examples. Thereafter we
formulate the problem studied in the thesis and the specific research questions
addressed in each chapter. This is followed by a background section where we
provide a literature review. Finally, we give an outline of the thesis and describe
the contributions in each of the chapters.

1.1 Motivation

Simulation of dynamical systems is an essential aspect of engineering practice in
a large number of application domains. Across engineering disciplines, computer
simulations are extensively used for validation, and increasingly integrated as part
of the design process itself (Koziel and Leifsson, 2016, ch. 1). Predictive control, in
which a simulation model of the system to be controlled is an essential component,
has established itself as a standard method (Schwenzer et al., 2021). The drive for
holistic digitalisation in systems design, manufacturing and operation through the
use of digital twin technology (Semeraro et al., 2021) implies that simulation will
play an ever more prominent role. Hence, there is a growing need for simulation
models, which not only are computationally efficient and fast to evaluate, but also
possible to integrate in optimisation algorithms.

As the complexity of engineering systems increases, modelling based on first prin-
ciples becomes infeasible. Even in cases where first-principles models are available,
they might be too complex to be useful for simulation, due to large state spaces,
complex nonlinearities and geometries, or spatiotemporal dynamics. Increasing
capabilities for data collection and storage, in tandem with greater availability of
high-performance computing resources, have motivated a surge of research attention
on data-driven modelling of dynamical systems (Ghadami and Epureanu, 2022).
Machine learning algorithms, especially those based on neural network architectures,
have been a point of particular interest. While this comprehends a large collection of
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4 1. Introduction

methods, a common thread is that the resulting models are computationally efficient
to simulate. Additionally, since automatic differentiation is the backbone of these
algorithms, the outputs of the simulation can be easily and efficiently differentiated,
allowing for their integration in optimisation algorithms. Furthermore, machine
learning methods are supported by a large software ecosystem and mature toolchains,
facilitating performant implementations (Azizzadenesheli et al., 2024).

In this thesis, we address the problem of constructing simulation models of
dynamical systems, focusing in particular on continuous-time control systems. We
adopt the flow function representation of such systems, and study the application
of machine learning techniques for learning continuous-time models from data. In
what follows, we illustrate the discussion thus far by three application examples.

Aircraft wing shape optimisation

(a) (b)

Figure 1.1: (a) Illustration of an aerofoil as a cross-section of an aeroplane wing.
Image source: https://commons.wikimedia.org/wiki/File:1915ca_abger_fluegel_
(cropped_and_mirrored).jpg, authored by DLR under a CC-BY 3.0 licence. (b) Flow
around an aerofoil in a wind tunnel. Image source: https://commons.wikimedia.
org/wiki/File:Airfoil_cross_section.jpg, authored by J Doug McLean at Eng-
lish Wikipedia.

Consider the problem of designing the shape of an aerofoil section of a fixed-wing
aircraft (Leifsson and Koziel, 2015, ch. 1, 2 and 10). A typical objective is to obtain
an aerofoil shape that maximises the lift while satisfying drag and area constraints.
The shape may be parameterised by a spline curve, and the design problem then
has a natural formulation as a constrained minimisation problem. However, the
computation of the lift and drag coefficients associated to a given shape calls for
running a computational fluid dynamics (CFD) simulation, requiring computation
times in the order of hours to days.

While simulation-based design has successfully replaced expensive experimental
tests in the initial stages of the aircraft design process, design optimisation using

https://commons.wikimedia.org/wiki/File:1915ca_abger_fluegel_(cropped_and_mirrored).jpg
https://commons.wikimedia.org/wiki/File:1915ca_abger_fluegel_(cropped_and_mirrored).jpg
https://commons.wikimedia.org/wiki/File:Airfoil_cross_section.jpg
https://commons.wikimedia.org/wiki/File:Airfoil_cross_section.jpg
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CFD simulations presents a challenge, as iterative optimisation solvers will typically
require a large number of evaluations of the cost function and its gradient, both of
which are prohibitively costly in terms of computation time.

One solution is the replacement of the fluid dynamics model with a so-called
surrogate model that provides an approximation of the high-fidelity CFD model.
The surrogate model is computationally less costly to evaluate and differentiate.
Though there exists a variety of ways to construct surrogate models (Frangos et
al., 2010), a class of methods with particularly interesting properties is that of
neural operators, which have been shown to be able to accurately approximate
solution operators of partial differential equations, including those arising in fluid
dynamics (Azizzadenesheli et al., 2024). Furthermore, these models are fast to
evaluate and, because they are based on layered neural network architectures,
gradients can be efficiently computed using automatic differentiation.

Biophysical neural networks

(a) (b)

Figure 1.2: (a) Illustration of a neuron cell. Image source: https://commons.
wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png, authored by Bruce
Blaus. (b) Current input (I) and corresponding voltage output (V) in a spiking
system. Figure taken from https://arxiv.org/pdf/1704.04989.pdf.

Consider the problem of simulating the biophysical dynamics of networks of
biological neurons, as well as that of designing electronic components which replicate
behaviours encountered in these networks.

The principal means of communication between neuron cells are spikes or action
potentials, a rapid change in the voltage across the neuron membrane which is
propagated to other cells through an elongated portion of the neuron called the
axon (Izhikevich, 2006, ch. 1). By means of a voltage clamp experiment performed
on the squid giant axon, Hodgkin and Huxley (1952) showed that the fundamental
properties of the action potential produced in the axon membrane can be explained
by the dynamics of sodium and potassium ionic currents in the axon (Nelson, 2005).
Furthermore, they identified an equivalent circuit model of the axon, where the

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://arxiv.org/pdf/1704.04989.pdf
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mechanisms responsible for the ionic currents are represented by nonlinear conduct-
ances. Conductance-based models have since then become the main paradigm for
modelling the dynamics of individual neurons; moreover, these can be interconnec-
ted to model networks of several neurons coupled through electrical and chemical
synapses, see (Giannari and Astolfi, 2022) and references therein.

The differential equations corresponding to such circuit equivalents of neurons
and their interconnections are highly nonlinear and stiff, with dynamics exhibiting
multiple timescales, input-dependent stability properties and high-frequency signals,
meaning that the simulation of the network dynamics through direct integration of
the corresponding system of differential equations is computationally challenging.
These issues, combined with the fact that the models do not possess fading memory
with respect to the input currents, imply that parameter identification is nontrivial,
even for models of a single neuron (Burghi, 2020; Almog and Korngreen, 2016;
Stiefel and Brooks, 2019).

These circuit models make it possible to fabricate electronic devices which
operate in the same way as biological neural networks (Indiveri et al., 2011; Ribar
and Sepulchre, 2021), presenting an efficient alternative to traditional computing.
The design of such systems thus poses the problem of tuning the network topology
and the conductance parameters of individual neurons, such that the circuit exhibits
the desired behaviours (Sepulchre, 2022).

In Chapter 3, we address the construction of surrogate models for this class of
systems, focusing on the problem of simulating their dynamics.

Control of building HVAC systems

Figure 1.3: Block diagram of a model predictive control loop for a building HVAC
system. Figure taken from (Drgoňa et al., 2020).

Building heat, ventilation and air conditioning (HVAC) systems, traditionally
controlled by rule-based controllers, are responsible for a large portion of the energy
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use in buildings, and these in turn constitute a significant amount of global energy
expenditure (Drgoňa et al., 2020). Predictive control has been proposed as a way to
improve energy efficiency, and several studies have suggested that significant gains
can be obtained by way of enhancing the control strategies used in these systems.

Drgoňa et al. (2020) name modelling as one of the main challenges in the use
of predictive control in HVAC systems. Indeed, the goal in predictive control is
to optimise, at each time instant, an objective which depends on the predicted
state trajectory of the system over a given time horizon. Hence, this requires the
availability of a model to simulate the state of the system forward in time from the
current measured state. Typically, discrete-time dynamics models are incorporated
into the optimisation problem as constraints. This presents a twofold challenge.
Because of the highly nonlinear dynamics of HVAC systems, complex models are
required to represent the process accurately, and these are hard to obtain from
first principles. At the same time, the use of too complex a model will increase the
difficulty of solving the optimisation problem, or even render it intractable.

The use of simulation models based on flow functions, such as those we propose
in this thesis, thus provides an interesting alternative to traditional models in this
application. These models can be obtained from data, and, as the trajectories of
the system may be evaluated directly, one can do away with nonlinear constraints
related to the dynamics of the system. Furthermore, the gradient of the state
with respect to the control input can be computed by automatic differentiation, an
advantage when using such models in optimisation formulations, as is the case in
predictive control.

1.2 Problem formulation

We consider continuous-time time-invariant control systems described by a flow
function φ. As illustrated in Figure 1.4, for a time instant t ≥ 0, initial state x and
input signal u, the flow φ maps the triple (t, x, u) into the value of the state of the
system at time t. In other words, the function of time ξ given by

ξ(t) = φ(t, x, u), t ≥ 0

is the state trajectory of the system with the initial state x, under the input u. The
flow function is characterised by two fundamental properties, namely the identity
property and the semigroup property. The identity property states that ξ(0) = x,
that is, that the initial state of the trajectory φ(·, x, u) is indeed x. The semigroup
property describes the behaviour of the system under concatenation of inputs, and
is the expression of the fact that the state ξ(t) at time t summarises all the past
behaviour of the system.

We first consider how to learn an approximation of φ from measurements ξik of
the state taken at discrete time instants tik from different trajectories:

ξik = φ(tik, xi, ui) + vik, (1.1)
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• Identity:
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• Semigroup:

Figure 1.4: Illustration of the flow function of a control system. A control input u is
applied for t units of time starting from the state x. The system state travels along
the green trajectory curve from x to z = φ(t, x, u). Afterwards, a control input v is
applied for s units of time, and the system state is transferred along the blue curve
to φ(s, z, v).

where xi, ui are known initial conditions and inputs and vik is measurement noise.
Given an approximation φ̂ of φ, we can quantify how close it is to the true flow
function using a mean squared error measure

ℓT (φ̂) = Ex,u
1

T

∫ T

0

∥φ(t, x, u)− φ̂(t, x, u)∥2 dt,

for a given time horizon T > 0 and probability distributions of the initial state x
and the control input u. The overarching problem considered in this thesis thus
consists in finding such an approximation φ̂ which minimises ℓT , given a collection
of measurements as in (1.1).

Solving the learning problem requires the definition of an hypothesis space H,
that is, a space of models from which an approximation φ̂ ∈ H should be selected.
The hypothesis space should contain functions close to the true flow function, so
that a low value of ℓT can be attained. At the same time, it must be practical to
optimise ℓT over H. We thus state our first research question as follows.

Question 1. What is an appropriate hypothesis space for solving the flow function
learning problem?
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Question 1 is addressed in Chapter 2.
We consider in particular an application of flow function learning to spiking

systems. As described in the previous section, simulating these systems is a nontrivial
task, due to their multi-timescale and high-frequency response. Conductance-based
models are the prototypical examples of such systems, and provide a state-space
model of spiking behaviour. We thus focus on the following question.

Question 2. How can we learn a surrogate model of a spiking system from samples
of state trajectories?

Chapter 3 addresses this question, and we propose a solution based on our flow
function learning approach.

Our results regarding Question 1 indicate that a hypothesis space based on a
discrete-time recurrent neural network architecture is able to solve the learning
problem. This motivates a theoretical investigation of the approximation capabilities
of the architecture.

Question 3. Under what conditions do discrete-time recurrent neural networks
universally approximate flow functions of continuous-time control systems?

Our contribution towards this question is found in Chapter 4, where we provide
conditions on the flow function and the input signal class for the architecture to
approximate the flow function arbitrarily well, both in a general setting and in
the special case of systems with dynamics given by controlled ordinary differential
equations.

1.3 Background

In this section, we provide an overview of the literature related to the topic considered
in this thesis. The problem of simulating dynamical systems has a long history
and has been approached from many perspectives and in many application areas.
Therefore, our goal is not to present an exhaustive review of the literature concerning
this topic, and we focus on the fields closest to the work we present here, namely,
inverse problems and optimal design, system identification, and machine learning.
Moreover, we are primarily concerned with continuous-time methods and control
applications.

Concerning the general role of simulation in the fields of dynamical systems
and control, as differential equations are the original ‘mother tongue’ for modelling
dynamical systems (Holmes, 1990), simulation is historically closely linked to the
field of numerical integration (Cellier and Kofman, 2006). Naturally, then, the
relevance of simulation in engineering has grown concurrently with the generalised
availability of computers, which was the main cause for the development of numerical
analysis methods in the 20th century (Brezinski and Wuytack, 2001). In control
engineering, simulation has long played an important role, particularly in the design
process. The most detailed model available of a system is typically too complex
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for control design, so a controller is designed for a simplified (e.g. linearised or
lower-order) model and validated by simulation on the full system model (Atherton,
1987; Otter and Cellier, 2000).

Efficient simulation of dynamical systems is crucial in inverse problems and design
optimisation, as both require a large number of simulation runs. For many systems,
first-principles models can be too complex to simulate efficiently, and a surrogate
model is used instead in these applications. A surrogate model is an approximated
model intended to replace a high-fidelity model while being less expensive to simulate.
Two broad classes of methods exist for constructing such models. Physics-based
surrogate models are application-dependent and exploit simplifications or coarser
discretisations of the equations which define the high-fidelity model. Data-fit models,
on the other hand, use a general-purpose interpolation or regression method, such as
a Gaussian process or a neural network, to fit data generated using the high-fidelity
model. In surrogate-based design optimisation, an iterative process is used where
a design is first optimised using the surrogate model and then validated on the
high-fidelity model. The data from the validation process can then be used to update
the surrogate model, and the optimisation may thus be repeated on the improved
surrogate. We refer to (Frangos et al., 2010; Koziel, Ciaurri and Leifsson, 2011)
for a survey of these methods and their use in inverse problems and optimisation,
respectively.

System identification addresses the data-driven construction of models for con-
trol systems. An extensive exposition of classical and modern techniques is given
in (Ljung, 1999), focusing on time-domain prediction-error methods. In this ap-
proach, the prediction error of the identified model with respect to the observed data
is optimised. Pintelon and Schoukens (2012) address methods for identification in
the frequency domain. Early work on system identification focused on linear models,
but a variety of methods have been proposed for nonlinear systems. A description
of the main issues in nonlinear identification as well as an extensive survey can be
found in (Schoukens and Ljung, 2019). The above references focus for the most part
on discrete-time models. Concerning identification of continuous-time models, two
main classes of methods can be distinguished: indirect methods, based upon the
identification of a discrete-time model from the data which is then converted into a
continuous-time model; and direct methods, which provide a continuous-time model
directly; see (Garnier, 2015; González, 2022) for literature surveys.

The field of machine learning comports a large number of methods for construct-
ing prediction models from examples, an overview is given in (Hardt and Recht,
2022, ch. 1). Driven by the increase in computing power, especially the use of
graphical processing units for general computing purposes, and the ability to store
and process ever larger volumes of data, a number of these methods have become
widely popular, in particular those based on deep learning techniques. These are
broadly characterised by the use of layered neural network architectures to solve
empirical risk minimisation problems by stochastic gradient methods. The structure
of these architectures, resulting from the composition of general-purpose parametric
nonlinearities, endows them with approximation capabilities obviating the need for
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engineering problem-specific features, formerly the common practice. Furthermore,
the layered structure is amenable to the use of efficient automatic differentiation
methods, considerably facilitating the process of optimising these models. We refer
to (Hardt and Recht, 2022, ch. 7) for a recent detailed overview of the theory and
practice of deep learning.

Deep learning methods have been used in prediction and analysis of dynamical
systems (Ghadami and Epureanu, 2022) and in system identification (Pillonetto
et al., 2023). A research direction which has received much attention, usually
called physics-informed machine learning, addresses the integration of physical or
system-theoretical constraints in these algorithms. A survey of such approaches
with applications in control is given in (Nghiem et al., 2023). Regarding continuous-
time methods, we can distinguish three main approaches. A first class of methods
consist in parameterising the right-hand side of an ordinary differential equation
by a neural network (Chen et al., 2018). Related methods have been proposed
for continuous-time system identification (Forgione and Piga, 2021; Rahman et al.,
2022; Beintema, Schoukens and Tóth, 2023). The second approach consists in
using a neural network architecture to approximate solution operators of differential
equations. These architectures, called neural operators, provide differentiable,
discretisation-independent approximations of infinite-dimensional operators which
are efficient to simulate, since simulation amounts to the evaluation of a nonlinear
map, properties which are attractive in inverse and design optimisation problems.
Additionally, these methods are purely data-driven in the sense that they do not
require knowledge of the dynamics of the system being approximated. An overview
of neural operator methods is given in (Azizzadenesheli et al., 2024). Bhan, Shi and
Krstic (2023) describe applications of neural operators in nonlinear adaptive control
design. The architecture for flow function learning we propose in Chapter 2 belongs
to this class of methods. Finally, physics-informed neural network methods are
typically applied in forward and inverse problems in partial differential equations.
In both cases, a neural network is used to parameterise a single solution of the
differential equation, as a function of time and space. The equation residual is used
as a regulariser in a regression problem, which in a forward problem consists in
fitting the network to data for the boundary values, while in an inverse problem the
network is fit to measurements of a solution. We refer to (Karniadakis et al., 2021)
for a survey of these methods.
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1.4 Contributions and outline

The remainder of this thesis is organised as follows. Chapter 2 describes and analyses
a recurrent neural network architecture for learning flow functions. Chapter 3 con-
siders the application of such an architecture to the problem of surrogate modelling
of spiking systems. Chapter 4 formulates and proves a universal approximation
theorem for the proposed architecture. Finally, in Chapter 5 we summarise the
thesis and describe future research directions.

Below, we give a summary of Chapters 2, 3 and 4 and the contributions therein.

Chapter 2

In Chapter 2 we propose a recurrent neural network (RNN) based architecture to
learn the flow function of a causal, time-invariant and continuous-time control system
from trajectory data. By exploiting the structure of the classes of inputs commonly
used in practice, we show that learning the flow function is equivalent to learning the
input-to-state map of a discrete-time dynamical system. This motivates the use of an
RNN together with encoder and decoder networks which map the state of the system
to the hidden state of the RNN and back. We experimentally validate the proposed
method using models of the Van der Pol and FitzHugh-Nagumo oscillators. In both
cases, the results demonstrate that the architecture is able to closely reproduce
the trajectories of these two systems. For the Van der Pol oscillator, we further
provide an extensive study of the capabilities of the trained models to simulate
trajectories outside of the training distribution, as well as the sensitivity of the
training algorithm to measurement noise and the amount of measurements.

The chapter is partly based on the following publication:

• M. Aguiar, A. Das and K. H. Johansson (2023a). ‘Learning Flow Functions
from Data with Applications to Nonlinear Oscillators’. In: Proceedings of the
22nd IFAC World Congress.

Chapter 3

In Chapter 3 we propose a framework for surrogate modelling of spiking systems.
These systems are often described by stiff differential equations with high-amplitude
oscillations and multi-timescale dynamics, making surrogate models an attractive
tool for system design and simulation. We parameterise the flow function of a
spiking system using a recurrent neural network architecture, allowing for a direct
continuous-time representation of the state trajectories. The spiking nature of the
signals makes for a data-heavy and computationally hard training process, and we
describe two methods to mitigate these difficulties. We demonstrate the framework
numerically on two conductance-based models of biological neurons, showing that we
are able to train surrogate models which accurately replicate the spiking behaviour.
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This chapter is based on the following publication:

• M. Aguiar, A. Das and K. H. Johansson (2023b). ‘Learning Flow Functions of
Spiking Systems’. In: arXiv e-prints arXiv:2312.11913. Submitted to the 6th
Annual Learning for Dynamics & Control Conference.

Chapter 4

In Chapter 4 we consider the problem of approximating flow functions of continuous-
time dynamical systems with inputs. We prove that an architecture based on discrete-
time recurrent neural networks universally approximates flows of such systems. The
considered class of inputs, modelling signals commonly used in practice as control
inputs, is shown to induce a discrete structure in the flow function, which we exploit.
We first obtain the result in an abstract setting, where it is demonstrated to hold
under certain assumptions on the flow function. We then specialise to systems whose
dynamics are well-behaved controlled ordinary differential equations, showing by
system-theoretic arguments that the required assumptions hold.

This chapter is based on the following publication:

• M. Aguiar, A. Das and K. H. Johansson (2023c). ‘Universal Approximation
of Flows of Control Systems by Recurrent Neural Networks’. In: 2023 62nd
IEEE Conference on Decision and Control (CDC).





Chapter 2

An architecture for flow function
learning

In this chapter we propose a recurrent neural network architecture for learning
flow functions of time-invariant continuous-time control systems from measurements
of state trajectories. By considering the classes of control inputs most commonly
used in practical applications, we show that a discrete-time structure is induced
in the flow function, which we exploit to derive our architecture. We demonstrate
the architecture on data from the Van der Pol and FitzHugh-Nagumo oscillators,
highlighting its generalisation capabilities.

2.1 Introduction

Motivation

Models play a vital role in control engineering. For instance, in predictive control,
the model is used to predict the future evolution of the state variables and acts as
a constraint in the formulation of the optimal control problem. With increasing
complexity, the curse of dimensionality limits the usefulness of standard first-principle
models. This limitation has motivated research on data-driven approximation of
such physical models, in particular using methods from machine learning. Besides
fast simulation for arbitrary initial conditions, many learning methods allow for
efficient computation of the gradients of the model with respect to initial conditions,
parameters or input signals, which is an attractive property when using these models
in inverse problems and design optimisation, for instance.

The advantage of modelling continuous-time dynamical systems directly in
continuous time has been pointed out in a number of recent works (Chen et al.,
2018; De Brouwer et al., 2019; Beintema, Schoukens and Tóth, 2023). Such models
naturally handle irregularly sampled or missing data, and are the natural model
class for most physical systems.

15
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This motivates the search for a corresponding learning scheme for continuous-
time control system where inputs are present. However, this is a nontrivial problem
since the domain of the solution operator of a continuous-time control system is
infinite-dimensional, as the control inputs are functions of time.

Related work

Some approaches for continuous-time identification have been proposed (Garnier,
2015), but for nonlinear systems the majority of research concentrates on discrete-
time models (Schoukens and Ljung, 2019). A number of modelling approaches have
arisen using ideas and model classes from classical and deep machine learning.

Neural ordinary differential equations (Neural ODEs) (Chen et al., 2018) are a
particular class of continuous-time models proposed to replace standard network
layers appearing in models used for common learning tasks, and have been shown
to be competitive with state-of-the-art models in system identification (Rahman
et al., 2022). In (Forgione and Piga, 2021) some specific architectures and learning
methods for identifying differential equation models of control systems using neural
networks are presented, and Beintema, Schoukens and Tóth (2023) present an
framework for continuous-time identification from noisy input-output data. As the
dynamics correspond to the time derivative of the flow, a neural ODE must be
integrated through an ODE solver to obtain the system trajectories, representing
an extra computational burden both for prediction and for computing gradients.
Furthermore, errors in the learned dynamics will accumulate over time when the
dynamics are integrated, and the error in the simulated trajectory can become
unbounded.

An assortment of related methods have been proposed for modelling autonomous
systems with applications in the physical sciences (Geneva and Zabaras, 2022;
Floryan and Graham, 2022; Brunton, Proctor and Kutz, 2016). For methods based
on Koopman operator approximation in particular, extensions to certain classes of
systems with inputs are possible (Bevanda, Sosnowski and Hirche, 2021). Physics-
informed neural networks have also emerged as a paradigm for learning solutions
of ordinary and partial differential equations from data (Raissi, Perdikaris and
Karniadakis, 2019; Karniadakis et al., 2021). These methods incorporate a set of
differential equations known to be satisfied by the data as a regulariser in the loss
function used to train the network, and can also be used to identify parameters in
the equations.

In contrast to the majority of these approaches, the class of methods known
as neural operator methods attempt to directly learn the solution operator of a
differential equation, that is, the operator mapping initial conditions, forcing terms
and parameters to the corresponding solution, rather than identifying the governing
equations (Kissas et al., 2022; Li, Kovachki et al., 2021; Lu et al., 2021). The focus
is then on engineering architectures with the appropriate inductive biases for a
particular class of problems. Biloš et al. (2021) propose a method in this vein for
learning the flow function of an autonomous dynamical system. Related methods for
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learning the one-step-ahead map of a non-autonomous system have been considered
in (Qin et al., 2021; Lin, Moya and Zhang, 2023).

Contribution

The contributions in this chapter are a recurrent neural network architecture for
learning flow functions of continuous-time control systems and a detailed exper-
imental demonstration of the performance and generalisation capabilities of the
proposed architecture in predicting the response of nonlinear oscillators. We provide
a mathematical formulation of the problem of learning the flow function of a control
system, showing that it can be reduced to a tractable optimisation problem. The
inputs are restricted to a class of signals which are parameterised by a sequence
of parameters, corresponding to the type of inputs commonly used in practice.
We show that, for these input signals, the continuous-time flow function can be
efficiently approximated by a discrete-time recurrent neural network-based architec-
ture. We demonstrate the capabilities of the proposed architecture in predicting the
input-dependent response of the Van der Pol and FitzHugh-Nagumo oscillators.

This approach has a number of advantages in comparison with methods based on
learning the right-hand side of a differential equation. Errors in the learned dynamics
can be propagated and affect long-term prediction performance. When the flow is
directly approximated, the need for integration is obviated. This has the additional
advantage of reducing the computational burden at both training and prediction
time. In effect, under our formulation, the problem of learning a flow function
amounts to a standard regression problem, and thus enables the use of off-the-shelf
learning frameworks for training the model. At prediction time, one can query
the solution map at any time instant, and, since the model uses standard neural
network components, gradients of the flow with respect to, e.g. initial conditions
or control values can be computed in a straightforward manner through automatic
differentiation. Furthermore, the approach is able to accommodate more general
classes of systems than those with dynamics given by controlled ODEs.

Outline

The remainder of this chapter is organised as follows. In Section 2.2, we describe
the notion of a flow function for the class of dynamical systems under study, specify
the class of control inputs and give a mathematical formulation of the flow function
learning problem. In Section 2.3 we motivate and present the proposed architecture,
and in Section 2.4 we describe the training procedure which is used in the two
following sections. Sections 2.5 and 2.6 present results from numerical experiments on
data from models of the Van der Pol and FitzHugh-Nagumo oscillators, respectively.
Finally, Section 2.7 summarises the chapter.
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2.2 Problem formulation

In this section, we formulate the problem addressed in this chapter. We first give
a definition of the flow function of a control system and describe its properties.
Thereafter, we define the class of inputs which we consider in the remainder of the
chapter. We then state the problem under consideration.

Flow functions

A time-invariant control system Σ is defined by a triple

Σ = (X ,U, φ), (2.1)

where the set X is the state space of the system and U is a set of input functions
u : R≥0 → U , where U is a set of input values. The flow function φ : R≥0×X×U → X
is a map dictating the temporal evolution of the system state under inputs from
U. The trajectory of Σ with initial state x ∈ X and input u ∈ U is the function
ξ : R≥0 → X given by

ξ(t) = φ(t, x, u), t ≥ 0.

The flow function φ satisfies the following properties:

1. Identity : For any state x ∈ X and input u ∈ U, it holds that φ(0, x, u) = x.

2. Semigroup: Let t ≥ 0 and u, v ∈ U. Let the concatenation of u and v at time
t, u ∧

t
v be defined by

[
u ∧

t
v
]
(s) =

{
u(s), 0 ≤ s < t

v(s− t), s ≥ t
.

Then u ∧
t
v ∈ U and

φ(t+ s, x, u ∧
t
v) = φ(s, φ(t, x, u), v) (2.2)

for all s ≥ 0 and x ∈ X .

The semigroup property implies a form of causality for the flow function: taking
s = 0 in (2.2) we get

φ(t, x, u ∧
t
v) = φ(t, x, u), v ∈ U,

in other words, the state at time t depends only on the values of the input on [0, t).
In this chapter we restrict our attention to finite-dimensional dynamical systems.

Hence, in (2.1), X ⊂ Rdx , U ⊂ Rdu , and U = L∞(R≥0,U) is the set of measurable
and essentially bounded functions u : R≥0 → U . We will assume that trajectories
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of Σ are continuous, that is, for each x ∈ X and u ∈ U, the function t 7→ φ(t, x, u)
is continuous.

The flow function representation we make use of is well-known in the mathemat-
ical theory of autonomous dynamical systems (Arnol’d, 1991), and is not foreign to
control theory, see (Sontag, 1998, ch. 2 and references therein). Our formulation is
similar to that of Willems (1972), but we simplify the notation as we take initial
conditions to always hold at t = 0. The more routine representation of a system in
terms of a controlled ordinary differential equation ξ̇ = f(ξ, u) is subsumed under
the flow function representation, but the latter also includes more general classes of
systems, such as systems with switched dynamics. However, the continuity condition
excludes hybrid systems with jumps, for instance.

Class of inputs

The problem of approximating the flow function φ of a system naturally requires
specifying the set of (t, x, u) over which such an approximation should hold. The
choice of inputs u is particularly sensitive, as u is a function and hence the set of
inputs U is typically a subset of an infinite-dimensional space. In practice, however,
the inputs applied to a control system are often the output of a digital-to-analogue
converter which generates a continuous-time input signal u from some discrete-time
sequence of parameters through an interpolation scheme. The most common case is
that of piecewise-constant input signals, where the interpolation is performed by a
zero-order hold. In other cases, higher-order polynomial or spline representations
may be used. We consider a general parameterisation of the control inputs which
encompasses all of these cases. The main requirement is that each control input can
be represented by a sequence of parameters in such a way that the causality of the
flow φ is preserved when φ is seen as a function of this sequence.

More precisely, let ∆ > 0, let Ωp =
{
(ωk)k∈Z≥0

: ωk ∈ Rp
}

be the set of Rp-
valued sequences, and α : Rp × R≥0 → U be periodic with period 1 in its second
argument. We say that an input u : R≥0 → U is causally parameterised by α with
period ∆ if there is a sequence of parameters (ωk)k∈Z≥0

∈ Ωp such that

u(t) = α

(
ωkt ,

t

∆

)
,

for all t ≥ 0, where kt := ⌊t/∆⌋.
To give some examples, α(ω, t) = ω corresponds to the case of piecewise constant

inputs with period ∆, and α((ωa, ωb), t) = (1− t)ωa + tωb corresponds to piecewise
linear inputs, as illustrated in Figure 2.1.

Now, assume that a control period ∆ and a function α as above have been fixed.
Any u which is causally parameterised by α with period ∆ can be written

u(t) = Cα,∆[(ωk)](t) :=

∞∑

k=0

α

(
ωk,

t

∆

)
1[k∆,(k+1)∆)(t) (2.3)
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Figure 2.1: Illustration of the considered input parameterisation for the case of
piecewise linear inputs.

for some sequence (ωk) ∈ Ωp, where Cα,∆ : Ωp → UR≥0 maps the sequence (ωk) to
the input signal u. We thus restrict our attention to the set of inputs Uα,∆, defined
as the image of Cα,∆:

Uα,∆ := Cα,∆[Ωp] = {Cα,∆[(ωk)] : (ωk) ∈ Ωp} . (2.4)

We assume that α is bounded and measurable, so that Uα,∆ ⊂ U.

Problem statement

We consider the problem of approximating a given flow function φ from measurement
data on the time interval [0, T ]. The approximation is to be selected from a hypothesis
class H ⊂ {φ̂ : R≥0 ×X × Uα,∆ → X}, and we define for φ̂ ∈ H the loss function

ℓT (φ̂) := Ex,u

[
1

T

∫ T

0

∥φ̂(t, x, u)− φ(t, x, u)∥2 dt
]
, (2.5)

where the input signal u and initial condition x are independent and drawn from
probability distributions Pu on Uα,∆ and Px on X , respectively. These distributions
define the initial conditions and input signals of interest.

Remark 1. Through the mapping Cα,∆ in (2.3), the distribution Pu induces a
distribution on sequences of parameters (ωk). In practice we do not sample a signal
u on R≥0, but only the restriction u|[0,T ) of u to a finite interval of the form [0, T ).
Thus, we are interested in the probability Pu(A) for sets A ⊂ Uα,∆ which satisfy

u ∈ A and v|[0,T ) = u|[0,T ) =⇒ v ∈ A, (2.6)
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i.e. whether u ∈ A depends only on the values of u(t) for t ∈ [0, T ). Then we can
write

Pu(A) = Pu

({
u : u = Cα,∆

[
(ωk)k∈Z≥0

]
∈ A, (ωk)k∈Z≥0

∈ Ωp

})

= Pu

({
Cα,∆

[
(ωk)k∈Z≥0

]
: (ωk)k∈Z≥0

∈ C−1
α,∆(A)

})
.

Note that (2.6) and (2.3) imply

(ωk)k∈Z≥0
∈ C−1

α,∆(A) and ω′
k = ωk, k = 0, . . . , kT =⇒ (ω′

k)k∈Z≥0
∈ C−1

α,∆(A)

(recall that kT = ⌊T/∆⌋). Thus, letting Πj : Ωp → Rj+1 denote the projection on
coordinates 0, . . . , j, that is,

Πj

(
(ωk)k∈Z≥0

)
= (ω0, . . . , ωj),

we may write

(ωk)k∈Z≥0
∈ C−1

α,∆(A) ⇐⇒ (ω0, . . . , ωkT
) ∈ ΠkT

(
C−1
α,∆(A)

)
.

Hence, we can define a distribution on (ω0, . . . , ωkT
) as

P (kT )
ω (S) = Pu

({
Cα,∆

[
(ωk)k∈Z≥0

]
: (ω0, . . . , ωkT

) ∈ S
})
,

and sampling from P
(kT )
ω is equivalent to sampling inputs on [0, T ) from Pu.

In practice, one can often directly define a distribution on sequences of parameters
ωk and let Pu be defined through Cα,∆. As we have shown here this entails no loss
of generality, but for simplicity of notation we take the abstract view and work with
Pu directly.

Remark 2. If we do not require that x and u in (2.5) are independent, the approach
accommodates the case where the inputs are given by a feedback law. To be precise,
consider the case where the inputs are given by a sampled feedback law of the
form u(t) = κ(x((k − 1)∆), t) for t ∈ [k∆, (k + 1)∆), where κ is ∆-periodic in t.
Denote by φκ : T × X → X the (autonomous) flow function of the system under
this feedback law. For each initial condition x, define the input signal

ux(t) = κ(φκ(k∆, x), t), t ∈ [k∆, (k + 1)∆).

Then ux ∈ Uα,∆, where α in (2.3) is given by α(z, t) = κ(z, t∆). The control ux is
parameterised by the sequence zk := φκ(k∆, x), k ∈ Z≥0, and we have

φκ(t, x) = φ(t, x, ux), t ∈ T , x ∈ X ,

so that sampling (x, u) in (2.5) with x ∼ Px and u = ux gives the distribution of
controls corresponding to the feedback law κ, as desired. We will focus here on open
loop inputs.



22 2. An architecture for flow function learning

We propose to find an approximation of φ by minimising the loss function ℓT
over H. Let LT (φ̂, x, u) denote the loss for a single trajectory:

LT (φ̂, x, u) :=
1

T

∫ T

0

∥φ̂(t, x, u)− φ(t, x, u)∥2 dt, (2.7)

so that ℓT (φ̂) = E LT (φ̂, x, u). If we measureN trajectories φ(·, xi, ui), i = 1, . . . , N ,
where (xi, ui) are independent draws from Px × Pu, we can minimise the empirical
mean estimate of ℓT :

ℓT (φ̂) ≈
1

N

N∑

i=1

LT (φ̂, x
i, ui).

In practice, the data consists of discrete-time samples of the trajectories:

ξik = φ(tik, x
i, ui) + vik, k = 1, . . . ,K, i = 1, . . . , N, (2.8)

where K is the number of samples of each trajectory, tik ∈ [0, T ] is an increasing
sequence of time samples and vik is measurement noise. As

1

K

K∑

k=1

∥∥ξik − φ̂(tik, x
i, ui)

∥∥2 ≈ LT (φ̂, x
i, ui),

we define the empirical loss function ℓ̂T as

ℓ̂T (φ̂) :=
1

N

N∑

i=1

1

K

K∑

k=1

∥∥ξik − φ̂(tik, x
i, ui)

∥∥2. (2.9)

Remark 3. There is no assumption on the structure of the sequences
{
tik
}K
k=1

,
but not all samples should coincide with the control sample instants, so that the
inter-sample behaviour can be captured.

Our objective is to define a hypothesis space H which renders the problem of
minimising ℓ̂T tractable. Furthermore, we would like to obtain a good approximation
of the flow function while preserving at least some of its properties.
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2.3 Methodology

In this section we propose a neural network architecture appropriate for solving the
problem described above. We first show how the flow function of a system with
inputs in Uα,∆ can be exactly represented by a discrete-time dynamical system.
Thereafter, we exploit this representation to design the architecture, and discuss
some of its system-theoretic properties.

A discrete-time representation of the flow function

Let u ∈ Uα,∆ be such that u = Cα,∆

[
(ωk)k∈Z≥0

]
. Due to the causality of φ and the

structure of Uα,∆, the flow φ(s, x, u) at a time instant s ≥ 0 depends only on the
finite sequence of parameters (ωk)

ks

k=0, where as before ks = ⌊s/∆⌋. In particular,
for s ∈ [0,∆),

φ(s, x, u) = φ(s, x, uω0
),

where uω0
(t) := α(ω0,

t
∆ ). Let us thus define

Φ : [0, 1]×X × Rp → X
Φ(τ, x, ω) := φ(τ∆, x, uω).

The function Φ allows us to compute the flow φ on a single control period, but
unlike φ it has a finite dimensional domain. Define also the map d∆ : s 7→ (τk)

ks

k=0,
where

τk =




1, k < ks
s− ks∆

∆
, k = ks

,

that is, τi is the relative amount of time that the input parameter ωi is in effect. As
illustrated in Figure 2.2a, for an arbitrary time instant s > 0, we can compute the
value of φ(s, x, u) by iterating Φ as follows:

x0 = x,

xk+1 = Φ(τk, xk, ωk), k ≤ ks
(2.10)

so that xks+1 = φ(s, x, u), by the semigroup property. Let F map the initial state
and input sequences to the final state of the dynamical system (2.10), i.e.

F(x0, (τk)
n
k=0, (ωk)

n
k=0) := xn+1. (2.11)

We can then write

φ(s, x,Cα,∆[(ωk)]) = F
(
x0, d∆(s), (ωk)

ks

k=0

)
(2.12)

for all s ≥ 0, x ∈ X and (ωk)k∈Z≥0
∈ Ωp. That is, trajectories of φ can be

equivalently represented by the trajectories of a discrete-time dynamical system
with inputs (τk, ωk).
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Proposed architecture

The representation of φ as a discrete-time state-space dynamical system in (2.12)
motivates the use of recurrent neural network (RNN) models to approximate F , as
they are universal approximators of this type of mapping (Schäfer and Zimmermann,
2006). An RNN model has the same structure as the mapping F , where Φ is replaced
by a parametric function defined by the RNN architecture and xi is the hidden
state sequence.

However, the map Φ is in general complex and likely difficult to approximate
directly. Furthermore, directly approximating (2.10) by an RNN model would
imply that the hidden state dimension is fixed and equal to the dimension of X .
To increase the flexibility of the model, we first map the initial state to a feature
space Z using a deep neural network (DNN) called the encoder network. Denote by
henc the input-output map of the network. Letting fRNN be the one-step map of
the RNN, we thus have

z0 = henc(x)

zk+1 = fRNN(zk, τk, ωk), k = 0, . . . , kt,

where zi ∈ Z are the hidden states of the RNN. Define the corresponding sequence-
to-sequence map

(z0, z1, . . . , zkt+1) = hRNN

(
z0, (τk)

kt

k=0, (ωk)
kt

k=0

)
.

In order to ensure that the flow approximation is continuous in time, we let the
output z̃ of the RNN be given by a combination of the last two states as follows:

z̃ = hint

(
(τk)

kt

k=0, (zk)
kt+1
k=0

)
:= (1− τkt

)zkt
+ τkt

zkt+1 (2.13)

Note that the mapping hint does not amount to a linear interpolation of the states
since zkt+1 depends on τkt . Because φ(·, x, u) is a continuous function, we want to
enforce that if τkt is small then the output z̃ is close to zkt , and this is achieved
by (2.13).

To map the output z̃ back to a state vector in X we use another DNN, the decoder
network, whose input-output map we denote by hdec. As shown in Figure 2.2b, the
application of hdec to ẑ yields the approximated flow φ̂ at the time instant t, i.e.

φ̂(t, x,Cα,∆[(ωk)]) = hdec(z̃)

= hdec

(
hint

(
d∆(t), hRNN

(
henc(x), d∆(t), (ωk)

kt

k=0

)))
.

(2.14)

We thus take our hypothesis space to be the set of functions φ̂ defined in this way
for different values of the parameters of the RNN and the encoder and decoder
networks.
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Figure 2.2: (a) Schematic illustration of the true flow function φ for the input plotted
in red parameterised by {ωk, τk}3k=0. (b) Corresponding model for the approximated
flow φ̂. In the approximated model, we first map the initial condition x to the
encoded state z0 ∈ Z through a feedforward encoder network. Then, the encoded
state is propagated in time through an RNN. Each cell of the RNN sequentially
takes (ωk, τk) as inputs. The two last hidden states are interpolated and mapped
back to X through another feedforward decoder network.
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Another interpretation of the architecture may be given as follows. The RNN
together with (2.13) can be seen as the flow of the continuous-time system

ζ̇(s) = fRNN(v(s), τ(s), ω(s))− v(s)

under discrete-time feedback

v(s) = ζ(k), s ∈ [k, k + 1), k ≥ 0,

and with the piecewise-constant inputs

τ(s) = τk, ω(s) = ωk, s ∈ [k, k + 1).

With ζ(0) = henc(x), we have that the sequence of hidden states is given by zk = ζ(k),
k ≤ kt, and zkt+1 = ζ(kt + τkt

) = ζ(t/∆). Hence, letting ψ denote the flow of this
system, we may write

φ̂(t, x,Cα,∆[(ωk)]) = hdec(ψ(t/∆, henc(x), τ, ω)).

Properties

At this point, we would like to briefly discuss some properties of the architecture just
described, starting with the properties of the flow function considered in Section 2.2.
Concerning the identity property, we have

φ̂(0, x, u) = hdec(henc(x)),

so that the identity property of the flow function will hold if the decoder is a left
inverse of the encoder. This is in general hard to enforce, but implies the necessary
condition that the space Z be of greater dimension than the state space X .

Although the semigroup property is is general not satisfied, causality as formu-
lated in Section 2.2 is seen to hold. Indeed, by (2.14), the value of φ̂ at time t
depends only on the control parameters ωk for k = 0, . . . , kt, or, equivalently, on
the input u(s) for s ∈ [0, t).

From (2.13), we see that φ̂(·, x, u) is continuous in time, but in general not
differentiable at t = k∆, k ∈ Z≥0. This concurs with a case of practical interest:
suppose that φ is the flow of a system defined by a controlled ordinary differential
equation

ξ̇(t) = f(ξ(t), u(t)), ξ(0) = x,

so that ξ(t) = φ(t, x, u), t ≥ 0. Assuming for simplicity that f is smooth, the state
trajectory ξ then possesses one more degree of smoothness than the input u (Sontag,
1998, Proposition C.3.11). For instance, if u is piecewise constant, ξ is in general
not differentiable everywhere (only absolutely continuous). Thus, in this case it is
appropriate to enforce only continuity in time of φ̂, as opposed to a higher degree
of smoothness. Note in addition that for this special case, if α(·, ω) is continuous on
[0, 1), then ξ is differentiable on each interval (k∆, (k+1)∆) and differentiable from
the right at t = k∆, k ∈ Z≥0, which also holds for φ̂.

In Chapter 4 we formulate and prove an universal approximation property for
this architecture.
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2.4 Training procedure

In this section we discuss the training procedure for the proposed architecture. This
procedure will be used in the Sections 2.5 and 2.6 for the experimental evaluation
of the architecture.

Data generation

We consider piecewise-constant control inputs, i.e. we take α(ω, t) = ω for t ∈ R,
ω ∈ Rp. Recall that the data is given by a collection of measurements from
trajectories of the system as in (2.8). In all experiments below, the data is generated
by numerically integrating the dynamics of the system under consideration. The
measurement time instants tik are generated using Latin Hypercube sampling. The
collected trajectories are divided into train, validation and test sets using a random
60-20-20% split. When training different models on the same data, the dataset is
always split in the same way. When measurement noise is considered, it is added to
the train and validation trajectory datasets only.

Network architecture

We use a long short-term memory (LSTM) network to realise the map hRNN. The
encoder and decoder networks are standard feedforward neural networks with tanh
activations.

The state of the LSTM cells has two components, the cell state and the hidden
state. In these experiments we set the initial cell state to zero, and only the initial
hidden state is learned by the encoder network. Similarly, the decoder takes the
final hidden state as an input.

Training process

All models are trained using the Adam optimisation algorithm with a batch size
of 512 on a cluster node with an NVIDIA T4 GPU and an Intel® Xeon® Gold 6226R
CPU @ 2.90GHz. We will refer to the empirical mean square loss (2.9) as the train,
validation, and test loss according to the data set from which the measurements used
to compute the loss are taken from. The learning rate is decreased by a factor of 10
whenever the validation loss does not decrease for 5 consecutive epochs, and the
training is interrupted if the validation loss does not decrease more than 1× 10−6

for 15 consecutive decades.
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2.5 Numerical evaluation: Van der Pol oscillator

In this section we consider the Van der Pol oscillator with external input. While
having low state dimension and being well-understood, making it an attractive
candidate to explore the capabilities of the architecture, this system exhibits rich
and complex behaviour (Guckenheimer, Hoffman and Weckesser, 2003; Bold et al.,
2003). We begin by examining the selection of the architecture hyperparameters
and their impact on the loss value. This is followed by a study of the simulation
performance of the system under the training distribution as well as for long time
horizons and a different distribution of the input signals. Finally, we investigate the
sensitivity of the training algorithm with respect to the measurement noise, as well
as the influence of the number of training samples on the simulation performance.

The system is described by the system of ordinary differential equations

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) +
(
1− x1(t)

2
)
µx2(t) + u(t).

(2.15)

We take µ = 1 and x(0) ∼ N(0, I), i.e. a standard normal distribution. The control
input sampling time is ∆ = 0.2 and the inputs considered are square wave inputs
with period 5∆ and amplitudes sampled i.i.d. from N(0, σ = 5), i.e.

ω1+5k ∼ N(0, 5),

ωj+5k = ω1+5k, j = 2, 3, 4, 5

holds for all k ≥ 0.
We integrate (2.15) over the time interval [0, 15] with a RK45 solver. A total of

N = 300 trajectories are generated and, for each trajectory, K = 200 time points
tik are sampled. The measurement noise in (2.8) is zero-mean Gaussian noise with
standard deviation of 0.1.

Hyperparameter selection

We begin by investigating the choice of some of the architecture hyperparameters.
Figure 2.3 shows the validation loss as a function of the learning rate and the size
of the LSTM’s hidden state. For each of the shown values of the hyperparameters,
20 models were trained on the same data. In all cases, the encoder and decoder
have 2 hidden layers with depth equal to the number of hidden states of the LSTM,
and a single-layer LSTM is used.

The results indicate that an LSTM with 24 hidden states and a learning rate
of 1× 10−3 are optimal for this system, attaining rather low validation loss in the
order of 1×10−2. Note that, for all considered choices of the hyperparameter values,
the validation loss values are of the same order of magnitude as the noise values,
and two orders of magnitude smaller than the amplitude of the state trajectories.
Thus, the proposed training procedure is able to minimise the empirical training
loss robustly with respect to the initial choice of the network parameters, and to
variations in the hyperparameters in the ranges here considered.
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Figure 2.3: Validation loss as a function of learning rate and hidden state size for
the Van der Pol system
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Figure 2.4: Evolution of the train, validation and test losses during training. The
red line indicates the last epoch where there was an improvement in the validation
loss.
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Figure 2.5: Actual (blue, dashed) and simulated (orange) trajectories of the Van
der Pol model with initial conditions and inputs drawn from the corresponding
distributions.
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Simulation performance

Among the models considered above, we select that which exhibits the lowest value
of the validation loss. The selected model thus has a validation loss of approximately
3.7 × 10−2 and test loss approximately equal to 2.9 × 10−2 (recall that the test
dataset is noiseless). The corresponding training time is just under 182 seconds.

Figure 2.4 shows the evolution of the three loss functions during training, showing
that convergence is obtained after about 75 epochs with a small gap between the
test and train losses. The red line shows the last epoch after which no improvement
was detected in the validation loss, so that the model obtained at this epoch is saved
and regarded as the optimum.

Figure 2.5 shows the output of the model for 6 new (i.e. not seen during training)
inputs and initial conditions drawn from the same distributions Px and Pu used to
generate the data, where it is seen that the model can faithfully reproduce the true
state trajectory of the system.

Long-time simulation performance

Because of the recurrent and time-invariant structure of the architecture and the
stability of the Van der Pol oscillator, we expect that the model considered in the
previous subsection exhibit good simulation performance even for times larger than
the length T of the trajectories used for training the model.

Suppose we have trained a model φ̂T with data from trajectories on [0, T ]. In
order to assess how the trained model generalises to t > T we can investigate how the
loss ℓt(φ̂T ) grows as t grows larger. To do this, we generate new sets of trajectories
on [0, t] for different values of t ≥ T and estimate the mean and variance of the
single-trajectory loss Lt(φ̂T , x, u) as defined in (2.7), with x ∼ Px and u ∼ Pu, as
before.

In Figure 2.6a the estimate of ℓt(φ̂T ) = E Lt(φ̂T ) as a function of t for the
model φ̂T considered in the previous subsection (with T = 15) is shown, with the
coloured area representing the 95% confidence interval approximated using the
empirical variance of Lt(φ̂T ). We observe that ℓt remains approximately constant
as t increases, indicating that the model gives reliable predictions for t much larger
than the value of T used for the training trajectories, as expected. This is further
confirmed in Figure 2.6b, where two simulated trajectories on the time interval
[0, 100] are shown, and we observe that they closely follow the true state trajectory.
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Figure 2.6: (a) Estimate of ℓt as a function of t for the Van der Pol oscillator; (b)
actual (blue, dashed) and simulated (orange) trajectories for the Van der Pol model
on the time interval [0, 100]
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Changing the input distribution

In order to evaluate the generalisation of the model with respect to the input
distribution Pu, we choose another distribution Qu and compute the empirical
loss (2.9) with respect to this distribution. We consider here the distribution Qu on
sinusoidal inputs with random amplitude and frequency passed through a zero-order
hold, so that

ωk = Asin(Ωk),

where A ∼ LogNormal(0, 1) (i.e. A = exp ν, where ν is a standard normal random
variable) and Ω ∼ Uniform

(
0, 2π10

)
. Equivalently,

u(t) = Asin

(
Ω

⌊
t

∆

⌋)
,

corresponding to signals with maximum frequency 1
10∆ Hz, i.e. 20% of the Nyquist

frequency. Figure 2.7 shows the distribution of the single-trajectory loss LT when
the input is distributed according to Pu and Qu. As expected, the loss increases
on average and is less concentrated but remains comparable with the loss values
obtained from Pu. This is illustrated in Figure 2.8 which shows four predicted
trajectories with inputs drawn from Qu over the time interval [0, 30].

Pu Qu

Input distribution

10 2

10 1

100

101

Lo
ss

Figure 2.7: Distribution of LT with the training input distribution (Pu) and a
different input distribution (Qu).
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Figure 2.8: Real and predicted trajectories for the Van der Pol model with sinusoidal
inputs.

Sensitivity with respect to measurement noise

We study the dependence of the test loss ℓ̂T on the measurement noise. Assume the vik
in (2.8) to be i.i.d. zero-mean random variables with covariance σ2I, and let φ̂σ be a
model trained with the data (2.8). We would like to understand how the performance
of the model deteriorates as σ increases. Let δσ(t, x, u) = φ(t, x, u) − φ̂σ(t, x, u).
Taking an expectation with respect to test data (xi, ui) and ξik,

E ℓ̂T (φ̂σ) =
1

N

N∑

i=1

1

K

K∑

k=1

E
∥∥δσ(tik, xi, ui) + vik

∥∥2

=
1

N

N∑

i=1

1

K

K∑

k=1

E
[∥∥δσ(tik, xi, ui)

∥∥2 + 2δσ(t
i
k, x

i, ui)T vik +
∥∥vik
∥∥2
]

= σ2 +Ex,u
1

N

N∑

i=1

1

K

K∑

k=1

∥∥δσ(tik, x, u)
∥∥2

≈ σ2 + ℓT (φ̂σ).
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The first term is independent of the hypothesis class and the learning algorithm, so
the true model performance is captured by the second term.
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Figure 2.9: Sensitivity of the training algorithm with respect to noise.

In order to estimate the value of ℓT (φ̂σ) we can train models on the same
data injected with different noise levels, and test these different models on a single
noiseless dataset. In Figure 2.9, we plot an estimate of σ−2ℓT (φ̂σ) as a function of
σ. For each value of σ, 20 models φ̂σ are trained on the dataset described in the
beginning of this section, where the noise is resampled with vik ∼ N(0, σ) (a different
noise realisation is used for each model). The result shows that the performance on
the test data is robust with respect to the measurement noise.

Impact of the amount of measurements

Finally, we study the dependence of the loss on the number of trajectories in the
training data set and the number of samples per trajectory. To this end, we generate
datasets as in (2.8), with vik = 0, for different values of N and K, and train 20 models
for each pair of (N,K) values. All models are tested on a single noiseless test dataset
with 400 trajectories and 800 samples per trajectory, and the numbers shown in
Figure 2.10 indicate the loss of of the best model in each group on this dataset. Note
that the values in the vertical axis correspond to the total number N of collected
trajectories, so that the number of trajectories in each training dataset is equal
to 60% of the shown values.

As expected, we observe a trade-off between the number of trajectories and
the number of samples, but we see also that the number of trajectories N has
a significantly larger influence on the test loss than the number of samples. For
instance, datasets corresponding to the pairs of values (N,K) = (400, 100) and
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Figure 2.10: Test loss as a function of the number of trajectories N and the number
of samples K.

(50, 800) contain the same number of samples, but the best model trained on the
latter dataset has a test loss of more than double that of the best model trained on
the former. This is partly to be expected, since the initial condition is one of the
inputs of the flow function.

2.6 Numerical evaluation: FitzHugh-Nagumo oscillator

The second system under study is the FitzHugh-Nagumo oscillator, whose trajectories
either converge to a stable equilibrium or to a limit cycle, depending on the input
amplitude. This phenomenon is termed excitability (FitzHugh, 1961). We investigate
whether our architecture is capable of capturing this behaviour.

The FitzHugh-Nagumo oscillator is described by the following system of nonlinear
differential equations:

ηẋ1(t) = x1(t)− x1(t)
3 − x2(t) + u(t)

ητ ẋ2(t) = x1(t) + a− bx2(t),
(2.16)

where η, τ, a and b are positive constants, which we choose as η = 1/50, τ = 40,
a = 0.3, b = 1.4.

As before, we take x(0) ∼ N(0, I). The control period is ∆ = 0.1 and the input
distribution Pu is given by

ω1+40k
i.i.d.∼ LogNormal(µ = log(0.2), σ = 0.5),

ωj+40k = ω1+40k, j = 2, . . . , 40
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for all k ≥ 0. This is chosen so that the excitable behaviour of the oscillator is
observed, as with the given parameters, the system enters into a limit cycle for a
narrow band of input amplitudes around u = 0.2.

We generated N = 300 trajectories on [0, 20] using a backward differentiation
formula solver, sampling K = 300 time points from each trajectory using Latin
hypercube sampling. The measurement noise in (2.8) is zero-mean Gaussian noise
with standard deviation equal to 0.05.

Running a search over the architecture hyperparameters in the same way as
described in the previous section, we arrive at the result shown in Figure 2.11. The
optimal model has 24 hidden states and is trained with a learning rate of 1× 10−2,
but we observe that the loss values are two orders of magnitude smaller than the
amplitude of the state trajectories over the entire hyperparameter range. As before,
for all models the encoder and decoder have 2 hidden layers with 24 nodes each.
The optimal model took 598 seconds to train.
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Figure 2.11: Validation loss as a function of learning rate and hidden state size for
the FitzHugh-Nagumo system

Figure 2.12 shows two predicted trajectories on [0, 40] for two new pairs of initial
conditions and inputs drawn from Px and Pu (i.e. unseen during training), and we
can see that the model is able to faithfully reproduce the state trajectories of the
system. Additionally, as we can observe in Figure 2.12a at about t = 5, although
the trained model may fail to predict the peak value of the oscillations, it is able to
recover from the error.
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Figure 2.12: Actual (blue, dashed) and simulated (orange) trajectories of the
FitzHugh-Nagumo model with initial conditions and inputs drawn from the corres-
ponding distributions.
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Figure 2.13: In (a) and (b), actual (blue, dashed) and predicted (black) trajectories
demonstrate two distinct cases of excitability for the FitzHugh-Nagumo oscillator.
Excitable regions are shaded in grey.
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Finally, Figure 2.13 shows the state trajectories for two inputs chosen to exhibit
the transition between the resting and excitable modes of the oscillator. In Fig-
ure 2.13a, we see that the learned model correctly predicts that, as the amplitude
of the input is gradually decreased over time, the oscillator’s response traverses
from a higher resting state (constant response), passes through the excitable region
(periodic spike train), and returns to a lower resting potential (constant response). In
Figure 2.13b, the model correctly simulates the occurrence of two distinct excitable
regions with two sets of spike trains.

2.7 Summary

We presented a recurrent neural network architecture to learn the flow of a time-
invariant control system in continuous time from trajectory data. Exploiting the
structure of the classes of control inputs commonly used in practice, we showed that
the problem of learning the flow function can be cast as the problem of learning a
discrete-time dynamical system, motivating the use of an RNN-based architecture.
Our experimental results on the Van der Pol and FitzHugh-Nagumo oscillators show
that the learned model has good prediction performance, and demonstrate that the
model is able to generalise to longer prediction time horizons and new classes of
input signals.





Chapter 3

Surrogate modelling of spiking
systems

In this chapter we consider the problem of learning surrogate models of spiking
systems from samples of state trajectories. Spiking behaviours abound in dynamical
system models of biological neurons, and there is significant interest in reproducing
such behaviour in electronic devices. We propose a data-driven framework based on
a recurrent neural network (RNN) architecture to approximate the flow function of
conductance-based state-space models of spiking systems in continuous time.

3.1 Introduction

Motivation

Spiking systems (Sepulchre, 2022) are dynamical systems whose stability behaviour
is highly input-dependent. Determined by the input excitation, the state typically
either remains close to an equilibrium or enters into a limit cycle with large-amplitude
oscillations called spikes. Whether the input excites the system into the oscillatory
regime and how many spikes are emitted depends on both the input amplitude
and frequency (Sepulchre, Drion and Franci, 2018). These systems thus possess a
mixed continuous–discrete character, as the spikes can be seen as encoding digital
information into a continuous-time signal. Models of biological neurons provide
prototypical examples of spiking systems, where the input is a current and the
spiking phenomenon is observed in the membrane potential.

Significant effort in computational neuroscience has been devoted to modelling
the spiking behaviour of neurons. Hodgkin and Huxley (1952) proposed modelling
the relationship between the membrane voltage and the applied current as a parallel
interconnection of nonlinear conductances, which can be identified using a voltage-
clamp experiment, which Burghi, Schoukens and Sepulchre (2021) relate to a general
output-feedback system identification scheme. The parameter identification problem

41
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is shown to be tractable thanks to stability properties of the inverse dynamics of
the conductance-based models.

Circuit-theoretic models of biological neurons suggest the possibility of building
electronic devices with spiking behaviour, conceivably combining the best features of
analogue and digital electronics in a single physical device (Mead, 1990; DeWeerth
et al., 1991; Sepulchre, 2022). Using these biologically-inspired components in
circuit design requires the ability to efficiently simulate their behaviour numeric-
ally, possibly in interconnection with many other circuit elements. However, the
differential equations models of these systems are typically stiff, which suggests that
surrogate models may provide computational advantages over direct integration
of the differential equations. Furthermore, continuous-time representations are
desirable, due to the possibly input-dependent nature of the periodicity of the spike
trains, the high-frequency nature of the spike signals, and the multiple time scales
involved in the dynamics.

Related work

Machine learning offers an attractive array of methods for constructing surrogate
models of dynamical systems. Focusing on continuous-time models, we can dis-
tinguish between two approaches in the literature: those methods that attempt
to learn a model of the system dynamics from data, and those where the goal is
to directly learn a solution operator associated to the system. In the first class of
methods, a neural network is typically used to parameterise the right-hand side of
an ordinary differential equation (ODE), resulting in a class of models known as
neural ODEs. This requires a way to automatically compute gradients of trajectory
values with respect to network parameters during training, which may be done by
differentiating through an ODE solver or using an adjoint method (Chen et al., 2018).
In a surrogate modelling context, Yang et al. (2022) propose a neural ODE method
for learning models of complex circuit elements, and derive a parameterisation of
the network that guarantees input-to-state stability. Regarding the application
of these models in system identification, Forgione and Piga (2021) discuss model
structures and fitting criteria, and Beintema, Schoukens and Tóth (2023) propose
an architecture and estimation method shown to compete with state-of-the-art
nonlinear identification methods. The second group of methods, broadly known as
operator learning, attempt instead to directly learn the solution map of a differential
equation, i.e. the mapping from initial conditions, parameters, and external inputs
to the solution. Directly parameterising the solution allows for fast evaluation for
new inputs, and provided that standard deep learning toolchains are used, gradients
with respect to the inputs of the model also become easy to compute. A great
deal of research attention has focused on learning solution operators of partial
differential equations using integral kernel parameterisations composed with neural
networks (Lu et al., 2021; Li, Kovachki et al., 2021; Kissas et al., 2022). Lin, Moya
and Zhang (2023) use one such parameterisation in a recursive architecture to
predict trajectories of dynamical systems with external inputs. In a similar context,
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Qin et al. (2021) suggest a residual network-based architecture to approximate the
one-step-ahead map of a dynamical system. Biloš et al. (2021) suggest a number of
architectures inspired by flow functions of autonomous systems as a substitute for
neural ODEs.

Contribution

Our main contribution is an operator learning framework for constructing continuous-
time input–output surrogate models of spiking systems from samples of state
trajectories. Starting from the flow function description of the spiking system, we
directly parameterise its state trajectories. This is particularly suited for systems
exhibiting spiking behaviour, as it allows for a continuous-time description of the
state trajectories, while not requiring sampling the derivatives of the states (which
due to the spikes can widely vary in amplitude). Indeed, from the flow function point
of view the problem can be formulated as a standard (albeit infinite-dimensional)
regression problem. Furthermore, by imposing the non-restrictive assumption that
the input signal is piecewise constant, we show that there is an exact correspondence
between the flow function and a discrete-time dynamical system. This suggests that
one can approximate the flow function by an RNN, resulting in an architecture that
uses only standard learning components and can be easily implemented and trained
with established deep learning toolchains. Due to the nature of the spike signals,
the trajectories must be densely sampled in order to correctly capture the timing
and height of each spike. We propose a simple data reduction method based on
rejection sampling, which enables a significant reduction of the required amount
of time samples per trajectory by focusing on the most important regions of the
signal. This is made possible by our continuous-time approach, which naturally
allows for data that is irregularly sampled in time. Moreover, we show how the
complexity of the optimisation problem can be subdued by considering segments of
trajectories, using the properties of the flow function. We numerically evaluate the
approach through simulations of conductance-based models of a single neuron and
an interconnection of two neurons.

Outline

The remainder of the chapter is organised as follows. In Section 3.2 we introduce
conductance-based neuron models in state-space form as a prototype for spiking
behaviours, define the concept of flow function of a control system, and formulate
the problem of constructing a surrogate model of such a system as an optimisation
problem. In Section 3.3 we describe the proposed architecture and two methods for
reducing the complexity of the training process. Finally, in Section 3.4 we report
and discuss results from numerical experiments, and in Section 3.5 we summarise
the chapter.
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3.2 Problem formulation

We begin by introducing a class of state-space models of biological neurons and
their interconnections, which serve as prototypical examples of systems exhibiting
spiking behaviour, before introducing the definition of the flow function of a control
system and the mathematical formulation of the surrogate modelling problem for
these systems.

Conductance-based models

The general conductance-based model of a neuron is given by the system of differential
equations (Burghi, Schoukens and Sepulchre, 2021)

CmV̇ (t) = u(t)− gleak(V (t)− Vleak)−
NI∑

k=1

Ik(V (t),mk(t), nk(t))

ṁ(t) = Am(V (t))m(t) + bm(V (t))

ṅ(t) = An(V (t))n(t) + bn(V (t)),

(3.1)

where V is the membrane potential, u the external (input) current, Cm > 0 the
membrane capacitance, gleak the leak conductance, and Vleak the reversal potential.
The gating variables m,n ∈ [0, 1]NI are dimensionless, and Am(V ), An(V ) are
diagonal matrices depending on V . The ionic currents are given by

Ik(V,mk, nk) = gkm
αk

k nβk

k (V − VIk),

where gk > 0 and VIk ∈ R are constants and αk, βk are nonnegative integers. A
detailed description of this class of models and their biological motivation is given
in Hodgkin and Huxley (1952) and Pospischil et al. (2008). These models are
prototypes of spiking systems: for certain choices of the input current one observes
spiking behaviour in the membrane potential signal V (Sepulchre, Drion and Franci,
2018).

One can interconnect several neuron models (3.1) to obtain more complex
spiking behaviours (Giannari and Astolfi, 2022). In particular, we can model the
interconnection of nV neurons through electrical synapses

Ci
mV̇i(t) = ui(t)− gileak(Vi(t)− V i

leak)

−
Ni

I∑

k=1

Iik(Vi(t),m
i
k, n

i
k) +

nV∑

j=1

ϵij(Vj(t)− Vi(t))

ṁi(t) = Ai
m(Vi(t))m

i(t) + bim(Vi(t))

ṅi(t) = Ai
n(Vi(t))n(t) + bin(Vi(t)),

(3.2)

for each i ∈ {1, . . . , nV } and the variables and dynamics of each individual neuron
have the same meaning as described above for the case nV = 1. The weight of the
electrical synapse from neuron j to neuron i is given by ϵij ≥ 0.
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Flow functions

Consider a dynamical system described in state-space form by

ξ̇(t) = f(ξ(t), u(t)), ξ(0) = x

η(t) = h(ξ(t)),
(3.3)

with state ξ(t) ∈ Rdx , input u(t) ∈ Rdu and output η(t) ∈ Rdy . Assume that f
is such that solutions to (3.3) exist on R≥0 for x ∈ X , with X ⊂ Rdx being an
invariant set, and u : R≥0 → U , U ⊂ Rdu , is measurable and essentially bounded.
Define a map φ : R≥0 ×X × U → X , U := L∞(R≥0,U), such that for any such x
and u it holds that ξ(t) = φ(t, x, u), t ≥ 0. The map φ is called the flow function
of (3.3). The flow function satisfies the identity property: for any ξ ∈ X and u ∈ U,
φ(0, x, u) = x; and the semigroup property: for any x ∈ X , t, s ≥ 0 and u, v ∈ U,
φ(t+ s, x, u∧

s
v) = φ(t, φ(s, x, u), v). Here u∧

s
v denotes the concatenation of u and

v at time s ≥ 0, defined as

[u ∧
s
v](t) =

{
u(t) 0 ≤ t < s

v(t− s) t ≥ s
.

Henceforth we assume that the considered controls are piecewise constant with
sampling period ∆ > 0. Thus, let U0

∆ ⊂ U, where ∆ > 0 and u ∈ U0
∆ if and only if

there exists a sequence (ωk)
∞
k=0 ⊂ U such that

u(k∆+ t) = ωk, k ≥ 1, t ∈ [0,∆).

We restrict φ to the set
U∆ :=

⋃

s≥0

σs(U0
∆),

where σ is the time-shift operator defined by (σsu)(t) = u(t+ s) for s ≥ 0. Thus,
U∆ is the set of piecewise constant controls with sampling period ∆, where the
first period does not necessarily start at t = 0. If u ∈ U∆, u = σsv with s ≥ 0
and v ∈ U0

∆, we may write s = k∆+ δ for some k ∈ Z≥0 and δ ∈ [0,∆), so that
u = σδ(σk∆v). Since σk∆v ∈ U0

∆, we have that U∆ =
⋃

s∈[0,∆) σ
s(U0

∆).
The conductance-based models (3.1) and (3.2) can be written in the form (3.3),

with the state ξ given by the membrane potentials (V1, . . . , VnV
) together with the

respective gating variables mi
k, n

i
k, i = 1, . . . , nV , k = 1, . . . , N i

I , and the input signal
given by the collection of input currents, u = (u1, . . . , unV

). We take the output to
be the collection of membrane potentials, η = h(ξ) = (V1, . . . , VnV

), as these are the
spiking signals we are interested in simulating and, as in (3.2), the relevant signals
when interconnecting neuron models.
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Problem statement

Let us now state the problem considered in this chapter. Let

y(t, x, u) := h(φ(t, x, u))

be the trajectory of the output signal. We define the problem of obtaining a surrogate
model of the system (3.3) as that of solving the optimisation problem

minimise
ŷ∈H

ℓT (ŷ) := Ex,u
1

T

∫ T

0

∥y(t, x, u)− ŷ(t, x, u)∥1 dt, (3.4)

where x, u are assumed to be independent and distributed according to probability
distributions Px and Pu, describing the initial conditions and control inputs of
interest, respectively. The distribution Pu has its support in U∆, so that sampling
the values of a control u ∼ Pu on [0, T ] is equivalent to sampling a finite sequence
of control values. We use the 1-norm to measure the approximation error in (3.4),
since the spikes have a very short duration in time, and so the non-smoothness of
the loss is beneficial for correctly capturing the shape of the signal. The set H is the
hypothesis class from which the surrogate model ŷ is to be selected. We consider a
hypothesis class given by the RNN architecture described in the following section.

3.3 Methodology

In this section, we first motivate the approximation of the flow function by an RNN
and describe the proposed architecture. We then discuss the data collection process
and two issues arising in the training of the RNN architecture, as well as methods
to mitigate them.

Architecture

Fix t ≥ 0, x ∈ X and u ∈ U0
∆. Let (ωk) be the sequence of values of u, and define

for ω ∈ U the constant control uω through uω(t) := ω. With kt := ⌊t/∆⌋, the value
of φ(t, x, u) can be evaluated recursively as follows:

x0 = x

xk+1 = φ(∆, xk, uωk
), 0 ≤ k < kt

xkt+1 = φ(t− kt∆, xkt , uωkt
).

(3.5)

By the semigroup property, we then have xkt+1 = φ(t, x, u). Defining the function

Φ : [0, 1]×X × U → X
Φ(τ, x, ω) = φ(τ∆, x, uω),
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and τk, k = 0, . . . , kt by

τk =

{
1, k < kt

(t− kt∆)/∆, k = kt

we can rewrite (3.5) as

xk+1 = Φ(τk, xk, ωk), 0 ≤ k ≤ kt.

More generally, if u ∈ U∆, there is some v ∈ U0
∆ and δ ∈ [0,∆) such that u = σδv,

and by the semigroup property φ(t, x, u) = φ(t − δ, φ(δ, x, uω0), σ
∆v) for t ≥ δ.

Thus, since σ∆v, uω0 ∈ U∆, one can proceed as above also in this case. This shows
that the flow can be exactly computed at any time instant by a discrete-time
finite-dimensional dynamical system (with inputs (τ, ω)), suggesting that one can
approximate φ (and thus y) through this representation.
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Figure 3.1: Schematic of the proposed architecture for kt = 3.

The previous derivation motivates the choice of the hypothesis class H given
by a parameterisation of ŷ based on the composition of an RNN with a pair of
encoder–decoder networks, as illustrated in Figure 3.1.
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Data collection

To generate training data, we integrateN trajectories of the differential equation (3.3)
with initial conditions xi and inputs ui, i = 1, . . . , N , sampled from Px and Pu,
respectively, obtaining samples

ξik = φ(tik, xi, ui), k = 1, . . . ,K, i = 1, . . . , N, (3.6)

where tik are sampled uniformly on [0, T ] and increasing in k. Using these samples,
we construct an approximation of ℓT in (3.4) as

ℓ̂T (ŷ) :=
1

N

1

K

∑

i,k

∥h(ξik)− ŷ(tik, xi, ui)∥1 . (3.7)

Because φ is the flow of a spiking system, the optimisation of (3.7) is not without
challenges. The spikes can be very thin, which can imply that a large number
of samples are required when the sampling times tik are uniformly distributed,
increasing the computational load during training. Furthermore, the spikes might
be relatively infrequent, and consequently underrepresented in the data, which can
make it harder to learn the spiking behaviour properly. In the next subsection we
describe a simple rejection sampling algorithm that alleviates these issues.

Rejection sampling for data reduction

We propose a method that simultaneously reduces the amount of samples per
trajectory needed to represent the spike signal and weights the loss function in
order to emphasise learning the spiking behaviour. This is done as follows: first,
sample data (3.6) with tik uniform and dense, and then use rejection sampling to
‘prune’ the data, i.e. select which samples to remove so that the remaining tik have
a distribution which favours learning the spiking behaviour correctly.

Consider first the case of a single output, i.e. y is scalar-valued. Roughly speaking,
the output signal y(·, x, u) has higher frequency content when its amplitude is higher
(i.e. when a spike is emitted). One should thus sample more densely when the value
of y(·, x, u) is higher. In other words, we would like that the sampling times tik be
distributed according to the density function

p(t, xi, ui) ∝
[
y(t, xi, ui)− min

s∈[0,T ]
y(s, xi, ui)

]

(or, more generally, p ∝ α(y), where α is an increasing function). If tik are sampled
with this density, ℓ̂T in (3.7) is the empirical estimate of the weighted loss function

Ex,u
1

T

∫ T

0

p(t, x, u) ∥y(t, x, u)− ŷ(t, x, u)∥1 dt,

giving higher weight to parts of the trajectories where spiking occurs.
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In our case, where tik are given a priori and uniformly distributed, we can use
rejection sampling (Ross, 2013) to discard certain samples so that the remaining tik
are distributed approximately according to p. This implies the following procedure
for each time sample tik:

• Draw Υik ∼ Uniform([0, 1]);

• If Υik >
p(tik, xi, ui)

Mi
, where Mi := maxk p(tik, xi, ui), remove the sample.

After a single pass through the dataset, the undiscarded tik will be approximately dis-
tributed with density p(·, xi, ui). Furthermore, the probability of accepting a sample
from the ith trajectory is approximately equal to 1/Mi, giving the approximate
fraction of samples which will be retained.

We are thus at once able to reduce the volume of data while preserving a faithful
representation of the spiking signals, and to increase the weight of the spiking regions
in the loss function. Other choices of p, e.g. involving the derivative or frequency
content of the output signal, could of course also be used.

If there are several outputs, so y is vector-valued, one may combine the out-
puts into a scalar signal that contains the spikes of all outputs, for instance,
p(t, x, u) ∝ maxi=1,...,dy

αi(yi(t, x, u)), where αi are monotone functions to ensure
that yi, i = 1, . . . , dy, are normalised to the same range.

Windowed loss using the semigroup property

The complexity of optimising the empirical loss (3.7) with an RNN is highly de-
pendent on the length of the input sequences. This dependence is twofold: the
computational effort of the forward and backward passes through the recurrent
network depends linearly on the simulation length, and simultaneously the loss func-
tion becomes less smooth with respect to the network parameters as the sequence
length increases (Ribeiro et al., 2020). We describe here how this issue can be
addressed in the context of our method, by reducing the length of input sequences
while still making use of all training data. In a similar way to Ribeiro et al. (2020)
and Beintema, Schoukens and Tóth (2023), we construct a new loss function by
considering shorter segments of output trajectories. This is easy to do in our setting,
as we can take advantage of properties of the flow function.

It follows from the semigroup property of φ that for k ≤ j ≤ K we have

ξij = φ(tij − tik, ξik, σ
tikui).

Hence, with the same training data we can construct the loss function

ℓ̂win(ŷ) :=
1

N

1

K

∑

i,k

1

|Jik|
∑

j∈Jik

∥∥h(ξij)− ŷ(tij − tik, ξik, σ
tikui)

∥∥
1
,

where Jik are sets of indices such that Jik ⊂ [k,K], and |Jik| denotes the cardinality
of Jik. In this case, the maximum length of the input sequences is given by
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L := 1 + maxi,k maxj∈Jik
⌊ tij−tik

∆ ⌋, which we can choose by appropriate selection of
the index sets Jik. This allows for controlling the time complexity of the training
epochs and the smoothness of the loss function. Of course, it is not necessarily the
case that ℓ̂win is the empirical mean approximation of ℓT , so care must be taken to
avoid overfitting.

3.4 Numerical experiments

We perform two experiments with data from simulations of two conductance-based
models: a single neuron model, and a model of the feedforward interconnection of
two neurons with an electrical synapse.

Model of a single fast-spiking neuron
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Figure 3.2: Predictions of output trajectories for a single fast-spiking neuron. The
surrogate model prediction is shown in orange; the real output is plotted in blue
(dashed). Note that the surrogate model closely reproduces the spiking behaviour
of the neuron model, and is able recover from errors in the prediction of the initial
condition.

Dynamics We consider a conductance-based model of a single neuron as in (3.1)
with a sodium current,

I1(V,m1, n1) = g1m
3
1n1(V − V1),

and a potassium ionic current,

I2(V,m2, n2) = g2n
4
2(V − V2),

so that NI = 2. The model can be described with four states, since α2 = 0 and so
the equation for m2 can be removed. This corresponds to a fast-spiking neuron,



3.4. Numerical experiments 51

and is identical to the model structure originally proposed in Hodgkin and Huxley
(1952). The full equations and parameter values may be found in Giannari and
Astolfi (2022).

Data collection We integrate N = 800 state trajectories of the model over
t ∈ [0, T ], T = 500 ms, using a backwards differentiation formula integrator, and
collect K = 50000 samples from each trajectory, with tik sampled uniformly using
Latin hypercube sampling. The initial conditions are sampled uniformly with
V (0) ∼ Uniform([−100, 100]) mV and mk(0), nk(0) ∼ Uniform([0, 1]). The control
inputs have period ∆ = 10 ms and input values are sampled according to

ω10k
i.i.d.∼ Uniform([0, 1]) µA, k ≥ 0

ω10k+j = ω10k, k ≥ 0, 0 ≤ j < 10,

i.e. the input changes every 100 ms.
We reduce the dataset using the rejection sampling method described above,

sampling according to the density p(t, x, u) ∝ ỹ(t, x, u), where ỹ is the normalisation
of the output y to [0, 1]. We ensure that the local maxima of the signal (i.e. the
spike peaks) and the initial state are included in the final dataset. The resulting
sampled trajectories are split into training, validation, and testing sets according to
a 60/20/20% random split.

Architecture and training We train 10 models with the architecture described
in 3.3. Each RNN is a long short-term memory (LSTM) network with 24 hidden
states. The encoder and decoder are feedforward networks with tanh activations and
three hidden layers. The encoder network maps the initial condition to the initial
hidden state of the LSTM. The cell state of the LSTM is always zero-initialised.

We apply the windowing technique described in Section 3.3, where Jik has at
most 5 elements drawn uniformly (without repetition) from {k, . . . , k + 20}, so that
the input sequences to the RNN have maximum length L = 20. The windowed
empirical loss is minimised using the Adam algorithm with an initial learning
rate of 1 × 10−3. The learning rate is reduced by a factor of 10 whenever the
empirical loss (3.7) constructed with the validation data does not decrease for
5 consecutive epochs. Training is stopped when the validation loss does not decrease
for 15 consecutive epochs.

Results Figure 3.2 shows two trajectory predictions with unseen test inputs and
initial conditions from the model with the smallest validation loss among the 10
models. We observe that the surrogate model is able to closely capture the timing
and height of the spikes. In the right-hand side figure, we see that the model is
not able to predict the initial condition of the system correctly and consequently
misses the timing of the first few spikes, but nonetheless correctly captures the
spikes emitted after t = 400 ms. It is interesting to note that although the system
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does not have fading memory, i.e. the effect of initial conditions does not necessarily
disappear as t→ ∞, the error in the initial conditions is not persistent in the output
of the surrogate model. Figure 3.3a shows the distributions of the losses for the 10
models, and we observe that the training procedure is robust to the initialisation of
the network parameters.
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Figure 3.3: Plot of the loss distributions for the 10 models trained with data from
each system: (a) single fast-spiking neuron; (b) feedforward interconnection of two
neurons.

Feedforward interconnection of two neuron models

Dynamics We consider a model of the form (3.2) with n = 2. Each of the neurons
has NI = 3 with I1, I2 as in the previous subsection and an additional potassium
current given by

I3(V,m3, n3) = g3n3(V − V3),

so that each neuron has 5 states, and thus the interconnection results in a model
with 10 states. We take ϵ12 = 0.1 S, ϵ21 = 0 S, and u2 ≡ 0, corresponding to a
feedforward interconnection of two regular spiking with adaptation type neurons, as
described in Giannari and Astolfi (2022).

Data collection We follow the procedure described in the previous subsection,
collecting 200 trajectories on the time interval [0, 1000] ms, with the same distribu-
tions for the initial conditions of the membrane voltages and the gating variables,
and the same distribution for the current input u = u1. The rejection sampling is
performed with the density p(t, x, u) ∝ maxi=1,2 ỹi(t, x, u).

Architecture and training The details of the architecture and training procedure
are as in the previous subsection, the sole difference being that the LSTM network
now has 32 hidden states.
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Results Figure 3.4 shows two trajectory predictions with unseen test inputs and
initial conditions. As in the previous subsection, we observe that the surrogate
model faithfully reproduces the behaviour of the spiking system. Similarly, in
Figure 3.3b we verify the robustness of the training procedure with respect to the
training parameters.
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Figure 3.4: Predictions of output trajectories for the feedforward interconnection of
two neurons. The surrogate model prediction is shown in orange; the real output is
plotted in blue (dashed).

3.5 Summary

We proposed a framework for surrogate modelling of spiking systems based on
approximating the flow function of a class of state-space models exhibiting spiking
behaviour. The flow function approximation was performed using an RNN archi-
tecture which allows for a direct continuous-time parameterisation of the output
trajectories. We discussed two issues which arise when training this architecture
on data from a spiking system, namely, the amount of data required to accurately
represent the spike signals and the complexity of the optimisation problem, and show
how these can be addressed in the context of our method. Finally, we presented
results from two numerical experiments which illustrate the feasibility of using our
framework for constructing surrogate models of spiking systems.





Chapter 4

A universal approximation theorem

In this chapter, we consider the problem of approximating the flow function of a
dynamical system by a discrete-time recurrent neural network. We give conditions
under which the architecture proposed in Chapter 2 is a universal approximator
of flows of a general control system. We further study the case of systems with
dynamics given by controlled ordinary differential equations.

4.1 Introduction

Motivation

A hypothesis space is said to possess the universal approximation property if it
is dense in a function space of interest. This means that, excluding the presence
of other errors, a target function in that function space may be arbitrarily well
approximated by elements of the hypothesis space. Thus, this notion corresponds
to a form of well-posedness for a learning problem.

In Chapter 2 we proposed an architecture based on a discrete-time recurrent
neural network for solving the flow function learning problem, hinging on a discrete
structure induced in the flow function when considering the most commonly used
classes of input signals. The results of the two previous chapters have confirmed
the practical applicability of the architecture. Here, we approach the problem
theoretically and ask under which conditions the architecture is able to approximate
the flow function of an arbitrary control system.

Related work

A general discussion of universal approximation is given in (Kratsios, 2021). Hornik
(1991) proves universal approximation properties for neural networks with mul-
tiple layers. For residual networks, Tabuada and Gharesifard (2022) establish a
relationship between universal approximation and controllability of a related dy-
namical system. Schäfer and Zimmermann (2006) show that discrete-time recurrent

55
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neural networks are universal approximators of discrete-time controlled dynamical
systems. In (Hanson and Raginsky, 2019), it is shown that convolutional architec-
tures approximate discrete-time input-output operators possessing a property called
approximately finite memory. This property is connected to the fading memory
property, which in (Boyd and Chua, 1985) is shown to be related to universal
approximation of input-output systems by Volterra series.

It is well known that continuous-time recurrent neural networks can approximate
large classes of continuous-time dynamical systems with inputs, see (Sontag, 1992; Li,
Ho and Chow, 2005) and references therein. Hanson and Raginsky (2020) show that
these networks are able to approximate flows of incrementally stable continuous-time
control systems on unbounded time intervals. Approximation of general continuous-
time input-output operators by these networks is studied in (Hanson, Raginsky and
Sontag, 2021).

A discussion of universal approximation properties of neural ordinary differential
equations may be found in (Kidger, 2021); Veeravalli and Raginsky (2023) consider
the reverse problem of studying the function class generated by a stochastic neural
ordinary differential equation. Universal approximation properties of neural operator
architectures are discussed in (Kovachki, Lanthaler and Mishra, 2021; Lu et al.,
2021; Kissas et al., 2022).

Contribution

The contribution is twofold. Firstly, we prove that the architecture proposed in
Chapter 2 is a universal approximator of flow functions of control systems, which
implies that the learning problem we have formulated there is well-posed. Secondly,
we show by system-theoretic arguments that the required assumptions hold for
systems whose dynamics are given by well-behaved ordinary differential equations
(ODEs), with rather general and practically relevant classes of input signals.

Outline

The remainder of this chapter is organised as follows. Section 4.2 introduces notation
and some basic definitions. In Section 4.3 we describe the proposed architecture
and the considered class of input signals. This is followed by the statement and
proof of the main result, Theorem 1, in Section 4.4. Section 4.5 treats the case of
flows of controlled ODEs and the assumptions of Theorem 1 are shown to hold in
that setting. A summary of the chapter is given in Section 4.6.
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4.2 Preliminaries

Notation

The indicator function of a set A is written 1A, and the identity function on A
is written idA. Sequences are written (zk)

∞
k=0, or in short-hand (zk). The space

of sequences with values in A is written S(A) := {(zk)∞k=0 : zk ∈ A}. The space of
continuous functions f : A→ Rn on a compact set A ⊂ Rm is written Cn(A). For
A ⊂ Rn and ε > 0, Nε(A) denotes the (closed) ε-neighbourhood of A, i.e. the set of
points at most ε distance away from A. If A is compact, then so is Nε(A). Vectors
v ∈ Rd are written v = (v1, . . . , vd). We denote by ∥·∥ the Euclidean norm on Rd,
and for a matrix M ∈ Rm×n, ∥M∥ denotes the induced operator norm.

Flow functions

We consider finite-dimensional time-invariant control systems in continuous time
with state evolving in an open set X ⊂ Rdx . Such systems can be described
abstractly by a flow function

φ : R≥0 ×X × U → X (4.1)

where U is a given set of control inputs u : R≥0 → Rdu . The flow satisfies the
following properties (Sontag, 1998, Chapter 2):

• Identity: φ(0, x, u) = x

• Semigroup: φ(s+ t, x, u) = φ(t, φ(s, x, u), us)

for all x ∈ X, u ∈ U and s, t ≥ 0. Here us ∈ U denotes the input u shifted by s > 0
time units, i.e. us(t) := u(t+ s). The function t 7→ φ(t, x, u), t ≥ 0 is the trajectory
of the system with initial state x when the applied control is u.

Neural networks as function approximators

In this chapter, a (feedforward) neural network is any function h : Rm → Rn which
can be written as

h(x) = Cσp(Ax+ b) + d, x ∈ Rm (4.2)

for A ∈ Rp×m, b ∈ Rp, C ∈ Rn×p, d ∈ Rn. Here σp : Rp → Rp is a diagonal
mapping such that the activation function σ : R → R is applied to each coordinate,
i.e. σp(v) = (σ(v1), . . . , σ(vp)) for v ∈ Rp. In practical applications, these are usually
known as networks with one hidden layer.

We let Nm,n
σ,p be the class of such networks and define

Nm,n
σ :=

∞⋃

p=1

Nm,n
σ,p .
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Throughout the chapter, we shall assume that σ : R → R is a fixed bounded, con-
tinuous and nonconstant function. Under this assumption it is well-known (Hornik,
1991) that Nm,n

σ is dense in Cn(K) for any compact set K ⊂ Rm. That is, for any
continuous function f : K → Rn and ε > 0 there is a network h ∈ Nm,n

σ such that

sup
x∈K

∥f(x)− h(x)∥ < ε.

Let N0
σ,p ⊂ ∪q≥pN

q,p
σ,p be the class of feedforward networks for which C = I and

d = 0 in (4.2). A Recurrent Neural Network (RNN) is then simply a difference
equation whose right-hand side is a network in N0

σ,p for some p ≥ 0:

Definition 1 (RNN). An RNN is a difference equation of the form

zk+1 = σdz
(Azk +Buk + b), k ∈ Z≥0,

where z ∈ Rdz , u ∈ Rdu , A ∈ Rdz×dz , B ∈ Rdz×du , and b ∈ Rdz .

4.3 Architecture definition

In this section we define a discrete-time RNN-based architecture to approximate
flow functions of continuous-time dynamical systems. We focus in particular on
systems for which the trajectories t 7→ φ(t, x, u) are continuous in time t. This is
the case when φ arises from a differential equation, but excludes e.g. hybrid systems
with state jumps. We shall show that φ can be approximated by a function φ̂ on
a finite time interval, where φ̂(t, x, u) is computed by an RNN. In the following
sections we make this precise.

Class of inputs

In order to approximate φ, we must impose some structure on U. In practice, the
majority of systems are controlled by a computer with a zero-order hold digital-to-
analog converter, so that the input signal will be piecewise constant, with the control
value changing at regular time instants with some period ∆ > 0. Occasionally,
first- or higher-order polynomial parameterisations are also used. In this chapter we
consider a general parameterisation of control inputs which encompasses all of these
cases. Namely, we assume that the control can be parameterised by a sequence of
finite-dimensional parameters (ωk)

∞
k=0 ⊂ Rdω as follows:

u(t) =
∞∑

k=0

α

(
ωk,

t

∆

)
1[k∆,(k+1)∆)(t), t ≥ 0. (4.3)

Here α : Rdω × R≥0 → Rdu is periodic with period 1 in its second argument. In
other words, we have for each k ≥ 0

u(t) = α(ωk, t/∆), k∆ ≤ t < (k + 1)∆.
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Throughout the chapter we assume that ∆ and the function α are fixed and
known. For a set Ω ⊂ Rdω we define the set U(Ω) of controls u parameterised by
sequences in S(Ω) according to (4.3), i.e.

U(Ω) :=
{
u : R≥0 → Rdu : (ωk)

∞
k=0 ∈ S(Ω),

u(t) =
∞∑

k=0

α

(
ωk,

t

∆

)
1[k∆,(k+1)∆)(t)

}
.

(4.4)

Representing flows by discrete-time systems

We let uω be the control generated by the constant sequence with value ω, so that
uω(t) = α(ω, t/∆), t ≥ 0 and define the function Φ : [0, 1]×X × Rdω → X by

Φ(τ, x, ω) := φ(τ∆, x, uω).

Fix t ∈ R≥0 and define kt := ⌊t/∆⌋, τt := (t− kt∆)/∆. The value of φ(t, x, u) can
be computed recursively by Φ as follows:

x0 = x

xk+1 = Φ(1, xk, ωk), 0 ≤ k < kt

xkt+1 = Φ(τt, xkt
, ωkt

) = φ(t, x, u).

(4.5)

This can be seen as representing φ by a discrete-time system with inputs
(τ, ω) ∈ [0, 1]× Rdω . Note that such a representation does not amount to a dis-
cretisation of φ, so that no loss of information or generality is incurred, and we are
able to compute the flow φ at any instant of time through this correspondence.

The discrete-time system defined by (4.5) can be approximated by an RNN as
follows. Let x ∈ X, t ≥ 0 and u ∈ U be parameterised according to (4.3) by a
sequence (ωk). Fixing networks h ∈ N0

σ,dz
, β ∈ Ndx,dz

σ and γ ∈ Ndz,dx
σ , compute the

sequence
z0 = β(x)

zk+1 = h(1, zk, ωk), 0 ≤ k < kt

zkt+1 = h(τt, zkt , ωkt)

(4.6)

and set
φ̂(t, x, u) = γ((1− τt)zkt

+ τtzkt+1).

The interpolation guarantees that φ̂ is continuous in t. Note that it does not amount
to a linear interpolation, as zkt+1 depends on τt.

In order to express φ̂ explicitly, the following definition is useful, and will be
used throughout the following sections.

Definition 2 (Recursion map). Let f : A×B → A. The associated recursion map
ρf : Z≥0 ×A× S(B) → A is defined as

ρf (0, x, (uk)) = x,

ρf (n+ 1, x, (uk)) = f(ρf (n, x, (uk)), un), n ≥ 0.
(4.7)
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Now let (ttk)
∞
k=0 ∈ S([0, 1]) be defined by

ttk =





1, 0 ≤ k < kt

τt, k = kt

0, k > kt.

(4.8)

Then we can rewrite (4.6) as zk = ρh(k, β(x), (t
t
k, ωk)), k ≥ 0, where, with a slight

abuse of notation, we interpret h as a function mapping Rdz × ([0, 1]× Rdω ) to Rdz .
Hence, φ̂ can be written

φ̂(t, x, u) = γ[(1− τt)ρh(kt, β(x), (t
t
k, ωk)) + τtρh(kt + 1, β(x), (ttk, ωk))].

We let H denote the set of functions φ̂ : R≥0 ×X × U → Rdx defined in this way,
that is,

H :=

{
φ̂ : R≥0 ×X × U → Rdx : dz ∈ Z≥0,

γ ∈ Ndz,dx
σ , h ∈ N0

σ,dz
, β ∈ Ndx,dz

σ ,

φ̂(t, x, u) = γ[(1− τt)ρh(kt, β(x), (t
t
k, ωk))

+ τtρh(kt + 1, β(x), (ttk, ωk))]

}
.

(4.9)

4.4 Universal approximation of flow functions

We are now able to state the main result in this chapter.

Theorem 1. Suppose the flow of a control system φ : R≥0 ×X × U → X satisfies
the following assumptions:

1. Given a compact set Kω ⊂ Rdω , define U(Kω) according to (4.4). Then
U(Kω) ⊂ U, i.e. for any u ∈ U(Kω), the corresponding trajectory φ(·, x, u) is
well-defined for all x ∈ X.

2. The function Φ : [0, 1]×X × Rdω → X defined as

Φ(τ, x, ω) := φ(τ∆, x, uω), uω(t) = α(ω, t/∆)

is right-differentiable at τ = 0 for every (x, ω) ∈ X × Rdω .

3. The function Ψ : [0, 1]×X × Rdω defined as

Ψ(τ, x, ω) :=




x+ τ−1(Φ(τ, x, ω)− x), τ ∈ (0, 1]

lim
t↓0

[
x+ t−1(Φ(t, x, ω)− x)

]
, τ = 0

(4.10)

is continuous and locally Lipschitz in x.
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Then, for any ε > 0, T ≥ 0 and compact sets Kx ⊂ X, Kω ⊂ Rdω , there exists
φ̂ ∈ H, defined according to (4.9), such that ∥φ(t, x, u)− φ̂(t, x, u)∥ < ε holds for
all t ∈ [0, T ], x ∈ Kx and u ∈ U(Kω). Furthermore, γ and β in (4.9) can be chosen
to be affine with γ ◦ β = idRdx .

Note that assumptions 2 and 3 implicitly represent assumptions on φ and α.
In Section 4.5 we shall give conditions under which they are satisfied for flows of
differential equations. The proof of Theorem 1 will require the following result on
universal approximation of discrete-time systems using RNNs.

Theorem 2 (Universal approximation for discrete-time dynamical systems). Let
f : Rdx × Rdu → Rdx be a continuous function that is locally Lipschitz in the first
variable, in the sense that for any compact set K ⊂ Rdx there exists a locally bounded
function νK : Rdu → R≥0 such that

∥f(x2, u)− f(x1, u)∥ ≤ νK(u) ∥x2 − x1∥ , x1, x2 ∈ K.

Then for any ε > 0, N ∈ Z≥0 and compact sets Kx ⊂ Rdx and Ku ⊂ Rdu there
exist networks h ∈ N0

σ,dz
, γ ∈ Ndz,dx

σ and β ∈ Ndx,dz
σ such that for any x ∈ Kx and

u ∈ S(Ku) we have

∥ρf (n, x, u)− γ(ρh(n, β(x), u))∥ < ε, n = 0, . . . , N, (4.11)

where ρf is defined as in (4.7). Furthermore, γ and β can be chosen to be affine
with γ ◦ β = idRdx .

That RNNs are universal approximators of discrete-time dynamical systems is
well-known (Sontag, 1992; Schäfer and Zimmermann, 2006). However, we have
stated it here in the form most appropriate for the proof of Theorem 1, and for the
sake of completeness we provide a proof in Section 4.7.

Proof of Theorem 1. We begin with some intuition on the definition of Ψ in (4.10)
and the stated assumptions. Fix φ̂ ∈ H and let β, h, γ be the corresponding networks
as in (4.9). Assume for the moment that γ = β = idRdx . In the first control period,
i.e. for 0 < τ ≤ 1 it holds that

φ(τ∆, x, uω)− φ̂(τ∆, x, uω) = Φ(τ, x, ω)− [(1− τ)x+ τh(τ, x, ω)]

= τ
(
h(τ, x, ω)−

[
x+ τ−1(Φ(τ, x, ω)− x)

])

= τ(h(τ, x, ω)−Ψ(τ, x, ω)).

Furthermore, note that Φ(1, x, ω) = Ψ(1, x, ω), so if we replace Φ by Ψ in (4.5) we
get the same result, provided we interpolate the final state, that is,

φ(t, x, u) = Φ(τt, xkt
, ωkt

) = (1− τt)xkt
+ τtΨ(τt, xkt

, ωkt
).
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This motivates the idea that we should approximate the discrete dynamical system
obtained by iterating Ψ:

xk+1 = Ψ(τk, xk, ωk), k ≥ 0.

Using the recursion map notation, we can equivalently write

xk = ρΨ(k, x0, (τk, ωk)
∞
k=0).

By Theorem 2, there exists a network h ∈ N0
σ,dz

and affine maps γ, β such that

∥γ(ρh(n, β(x), (τk, ωk)))− ρΨ(n, x, (τk, ωk))∥ < ε (4.12)

for n = 0, . . . , kT + 1 and any x ∈ Kx and (τk, ωk) ∈ S([0, 1]×Kω). Let φ̂ ∈ H
be defined by these three networks according to (4.9), and recall that γ, β may be
chosen so that γ ◦ β = idRdx .

Fix x ∈ Kx, u ∈ U(Kω) and t ∈ [0, T ]. Let (ωk) be a sequence parameterising
the control u and define

z0 = β(x)

zk+1 = h(1, zk, ωk), 0 ≤ k < kt

zkt+1 = h(τt, zkt
, ωkt

).

Then, as before
zn = ρh(n, β(x), (t

t
k, ωk)), 0 ≤ n ≤ kt + 1

(recall the definition of (ttk) in (4.8)). It follows from (4.12) that

∥φ(k∆, x, u)− γ(zk)∥ < ε

for k = 0, . . . , kt and with xkt
:= φ(kt∆, x, u)

∥Ψ(τt, xkt , ωkt)− γ(zkt+1)∥ < ε.

Write

φ(t, x, u)− φ̂(t, x, u) = φ(t, x, u)− γ((1− τt)zkt
+ τtzkt+1)

= Φ(τt, xkt
, ωkt

)− γ((1− τt)zkt
+ τtzkt+1)

= xkt
+ τt(Ψ(τt, xkt

, ωkt
)− xkt

)− γ((1− τt)zkt
+ τtzkt+1)

= (1− τt)xkt
+ τtΨ(τt, xkt

, ωkt
)− (1− τt)γ(zkt

)− τtγ(zkt+1)

= (1− τt)(xkt
− γ(zkt

)) + τt(Ψ(τt, xkt
, ωkt

)− γ(zkt+1)).

If t < ∆ then kt = 0, so that

φ(t, x, u)− φ̂(t, x, u) = (1− τt)(x− γ(z0)) + τt(Ψ(τt, x, ω0)− γ(z1))

= (1− τt)(x− γ(β(x))) + τt(Ψ(τt, x, ω0)− γ(z1))

= τt(Ψ(τt, x, ω0)− γ(z1)),
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and thus

∥φ(t, x, u)− φ̂(t, x, u)∥ = τt∥Ψ(τt, x, ω0)− γ(z0)∥ < ετt ≤ ε.

For t ≥ ∆, we have

∥φ(t, x, u)− φ̂(t, x, u)∥ ≤ (1− τt)∥xkt − γ(zkt)∥+ τt∥Ψ(τt, xkt , ωkt)− γ(zkt+1)∥
< ε,

and the proof is complete.

4.5 Flows of controlled ODEs

In this section, we consider the class of flows φ arising from a controlled ODE of
the form

ξ̇(t) = f(ξ(t), u(t)), ξ(0) = x. (4.13)

If the function f : X × Rdu → Rdx is sufficiently regular, the flow of such a system
is well-defined for all Borel measurable and essentially bounded controls (Sontag,
1998, Appendix C), and satisfies the ODE in the following sense:

φ(t, x, u) = x+

∫ t

0

f(φ(s, x, u), u(s))ds, t ∈ R≥0. (4.14)

In particular, if f is continuous and the control u is right-continuous at time s ≥ 0,
it then holds that

d

dt

∣∣∣∣
t=s

φ(t, x, u) = f(φ(s, x, u), u(s)). (4.15)

We now show that the assumptions of Theorem 1 are satisfied case under mild
conditions on the input parameterisation α and the right-hand side f of the ODE.

Lemma 1. Assume that the functions f in (3.3) in and α in (4.3) satisfy the
following assumptions:

I) The function α is measurable, and for each ω ∈ Rdω the function α(ω, ·) is
bounded on [0, 1] and right-continuous at t = 0. Furthermore, the family of
functions

{
α(·, t) : Rdω → Rdu : t ∈ [0, 1)

}
is equicontinuous, i.e. if ωn → ω

then for any ε > 0 there exists N ∈ Z≥0 such that for all t ∈ [0, 1) and n ≥ N
it holds that ∥α(ωn, t)− α(ω, t)∥ < ε.

II) The function f is continuously differentiable in (x, u), and solutions to (3.3)
exist in the sense of (4.14) for t ∈ R≥0, for all x ∈ X and all measurable and
essentially bounded controls u : R≥0 → Rdu .

Then the flow φ associated to the ODE (3.3) satisfies the assumptions of Theorem 1.
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Recalling the definition of uω in Theorem 1, Assumption I implies that uω is
continuous from the right at t = 0 and that uωn → uω uniformly when ωn → ω.
Assumption II above is sometimes referred to as forward completeness of (3.3).
There is no single condition on f that can guarantee forward completeness; examples
of possible conditions are discussed in (Sontag, 1998; Angeli and Sontag, 1999). It
implies the existence of φ satisfying (4.14) for all t ≥ 0, and that U can be chosen
to be the set of all measurable essentially bounded functions u : R≥0 → Rdu .

Proof. First, we show that Assumption 1 in Theorem 1 holds. Let Kω ⊂ Rdω be
a compact set, and let u ∈ U(Kω) be parameterised by the sequence (ωk). Let
ak := supt∈[0,1] ∥α(ωk, t)∥. Suppose (ak) is unbounded, and pick a subsequence (akj

)
such that limj→∞ akj

= ∞. By compactness, there is a subsequence (ωk′
j
) of (ωkj

)
with limj→∞ ωk′

j
= ω ∈ Kω. Then, by equicontinuity we have that for j large

enough ∥∥∥α(ωk′
j
, t)
∥∥∥ < 1 + ∥α(ω, t)∥ , t ∈ [0, 1),

which implies that (ak′
j
) is bounded, a contradiction. Hence ak is bounded, and so

u is bounded. Since α is measurable, so is u, and thus u ∈ U, as desired.
We now show that Assumption 2 in Theorem 1 holds. Since α is right-continuous

at t = 0, (4.15) gives

d

dτ

∣∣∣∣
τ=0

Φ(τ, x, ω) =
d

dτ

∣∣∣∣
τ=0

φ(∆τ, x, uω)

= f(φ(0, x, uω), uω(0))∆

= f(x, α(ω, 0))∆,

and hence Φ is differentiable from the right at τ = 0, as desired.
Finally, we show that Assumption 3 in Theorem 1 holds. Let

Ψ0(τ, x, ω) = Ψ(τ, x, ω)− x.

We will show that the differential of Ψ0 with respect to x is continuous, and thus
bounded on compact sets, from which it follows that Ψ0 (and thus Ψ) is locally
Lipschitz. The remainder of the proof requires a few additional properties of the
flow φ which we state in the following sublemmata.

Sublemma 1. Let (ωn) ⊂ Rdω and (xn) ⊂ X be such that ωn → ω and xn → x ∈ X.
Then φ(t, xn, uωn) → φ(t, x, uω) uniformly in t ∈ [0,∆].

Proof. By Assumption I on the function α we have that uωn
→ uωn

uniformly, and
thus the result follows from (Sontag, 1998, Theorem 1).

Sublemma 2. The flow φ is differentiable with respect to the initial condition x
and and its differential with respect to x, Dxφ, satisfies

Dxφ(t, x, u)ξ = λx,u(t; ξ)
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for all ξ ∈ Rn, where λx,u is the solution of the linear initial value problem

λ̇x,u(s; ξ) = Dxf(φ(s, x, u), u(s))λ(s; ξ)

λx,u(0; ξ) = ξ.
(4.16)

Equivalently, Dxφ(t, x, u) = Λx,u(t) where Λx,u is the state transition matrix associ-
ated to the linear system (4.16).

Proof. See (Sontag, 1998, Theorem 1).

We also need the following result on the continuity of solutions of linear ODEs
with respect to the coefficient matrix.

Sublemma 3. Let x, z : [t1, t2] → Rdx satisfy

ẋ(t) = A(t)x(t)

ż(t) = B(t)z(t)
t ∈ (t1, t2)

with A,B : [t1, t2] → Rdx×dx measurable and essentially bounded. Then, with
d(t) = x(t)− z(t) and D(t) := A(t)−B(t),

∥d(t)∥ ≤
(
∥d(t1)∥+

∫ t

t1

∥D(s)∥ ∥x(s)∥ds
)
e
∫ t
t1

∥B(s)∥ds (4.17)

for t ∈ [t1, t2].

Proof. Write

d(t) = d(t1) +

∫ t

t1

[B(s)d(s) + (A(s)−B(s))x(s)] ds,

so that

∥d(t)∥ ≤ ∥d(t1)∥+
∫ t

t1

∥B(s)∥ ∥d(s)∥ds+
∫ t

t1

∥D(s)∥ ∥x(s)∥ds,

and Grönwall’s inequality gives the desired result.

We shall use the inequality (4.17) to show that Λx,uω is continuous with respect
to (x, ω). To this end, let xn → x and ωn → ω and, for t ∈ [0,∆], set

A(t) = Dxf(φ(t, x, uω), uω(t)), (4.18)
Bn(t) = Dxf(φ(t, xn, uωn

), uωn
(t)). (4.19)

By continuity of φ and α, there exist compact sets K ′
x and K ′

u such that φ(t, x, uω)
and φ(t, xn, uωn

) remain in K ′
x and uω(t), uωn

(t) ∈ K ′
u holds for all n and t ∈ [0,∆].

Let
F̄ := sup {∥Dxf(z, u)∥ : z ∈ K ′

x, u ∈ K ′
u}. (4.20)
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We have F̄ <∞, by continuity of Dxf , and ∥B(s)∥ ≤ F̄ for s ∈ [0,∆]. Sublemma 3
applied on the interval [0, t] now gives

∥∥λx,uω
(t; ξ)− λxn,uωn

(t; ξ)
∥∥ ≤ etF̄

∫ t

0

∥A(s)−Bn(s)∥ ∥λx,uω
(s; ξ)∥ds

≤ etF̄ sup
s∈[0,∆]

∥Λx,uω
(s)∥

(∫ t

0

∥A(s)−Bn(s)∥ds
)
∥ξ∥ ,

so that

∥∥Λx,uω (t)− Λxn,uωn
(t)
∥∥ ≤ etF̄ sup

s∈[0,∆]

∥Λx,uω (s)∥
∫ t

0

∥A(s)−Bn(s)∥ds (4.21)

for each t. By continuity of Dxf and the uniform convergence of φ(t, xn, uωn
) and

uωn , Bn converges uniformly to A, and thus Λxn,uωn
→ Λx,uω uniformly on [0,∆].

Returning to our original goal, for τ > 0 we have

DxΨ0(τ, x, ω) = τ−1(DxΦ(τ, x, ω)− I)

= τ−1(Dxφ(τ∆, x, uω)− I)

= τ−1(Λx,uω (τ∆)− I).

Due to the continuity of Λx,uω , DxΨ0 is continuous in (τ, x, ω) for τ > 0.
For τ = 0 we have DxΨ0(0, x, ω) = ∆Dxf(x, uω(0)). If τn → 0 with τn > 0,

xn → x and ωn → ω then

DxΨ0(0, x, ω)−DxΨ0(τn, xn, ω) = ∆Dxf(x, uω(0))− τ−1
n

(
Λxn,uωn

(τn∆)− I
)

= ∆Dxf(x, uω(0))− τ−1
n (Λx,uω

(τn∆)− I)

+ τ−1
n (Λx,uω (τn∆)− Λxn,uωn

(τn∆)).

The first term of the last equality goes to zero, hence we are left to investigate the
second term. With A,Bn, F̄ defined in (4.18)-(4.20), from (4.21) we find

∥∥τ−1
n (Λx,uω

(τn∆)− Λxn,uωn
(τn∆))

∥∥

≤ eτn∆F̄ sup
t∈[0,∆]

∥Λx,uω
(t)∥ 1

τn

∫ τn∆

0

∥A(t)−Bn(t)∥ dt.

Pick ε > 0, and let n be large enough that ∥A(t)−Bn(t)∥ < ε for t ∈ [0,∆], so
that

τ−1
n

∥∥Λx,uω
(τn∆)− Λxn,uωn

(τn∆)
∥∥ ≤

(
∆eτn∆F̄ sup

t∈[0,∆]

∥Λx,uω
(t)∥

)
ε

and τ−1
n (Λx,uω

(τn∆)− Λxn,uωn
(τn∆)) → 0 as n→ ∞, as desired.
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4.6 Summary

We have shown that the RNN architecture proposed in Chapter 2 is a universal
approximator of flow functions of continuous-time control systems. The considered
parameterisation of the control inputs, from which the discrete structure of the flow
emerges, motivated the RNN architecture. We proved the main result, Theorem 1,
for general control systems, under smoothness assumptions on the flow function. We
then showed that these assumptions hold in the important case of flows of control
systems with dynamics given by controlled ODEs, under the condition that the
equation is continuously differentiable.

4.7 Appendix

Proof of Theorem 2

The case N = 0 is trivial, and N = 1 corresponds to the standard universal approx-
imation theorem proved in Hornik (1991), so we assume N ≥ 2 in what follows.

Define the sets K0
x, . . . ,K

N−1
x recursively by Kn+1

x = f(Kn
x ,Ku) with K0

x = Kx.
By continuity of f , the Kn

x are compact. For any input sequence u ∈ S(Ku) and
initial state x0 ∈ Kx, we then have that

ρf (n, x0, u) ∈ Kn
x , n = 0, 1, . . . , N − 1.

Define also Ln
f , η

n
f ≥ 0 and sets K̃n, n = 1, . . . , N − 1 recursively as follows:

η1f = 1

K̃n = Nεηn
f
(Kn

x )

Ln
f = max

{
1, sup

u∈Ku

νK̃n(u)

}

ηn+1
f = 1 + Ln

f η
n
f ,

and let

K = Kx ∪
N−1⋃

n=1

K̃n

εn =
1

2N−n
∏N−1

k=n L
k
f

ε, n = 1, . . . , N.

Pick a neural network g ∈ Ndx+du,dx
σ such that

sup
x∈K,u∈Ku

∥f(x, u)− g(x, u)∥ < min
n=1,...,N

εn. (4.22)

In particular, supx∈K,u∈Ku
∥f(x, u)− g(x, u)∥ < ε.
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Now, pick x ∈ Kx and u ∈ S(Ku). We have (omitting the (x, u) arguments since
they are fixed everywhere)

∥ρf (n+ 1, x, u)− ρg(n+ 1, x, u)∥ = ∥f(ρf (n))− g(ρg(n))∥
≤ ∥f(ρf (n))− f(ρg(n))∥+ ∥f(ρg(n))− g(ρg(n))∥

Assuming that ∥ρf (n)− ρg(n)∥ < εηnf , we have ρg(n) ∈ K̃n ⊂ K and so

∥ρf (n+ 1)− ρg(n+ 1)∥ < Ln
f ∥ρf (n)− ρg(n)∥+ ε

≤ εηn+1
f .

Since (4.22) implies

∥ρf (1, x, u)− ρg(1, x, u)∥ < ε (= εη1f ),

by induction we have that ∥ρf (n, x, u)− ρg(n, x, u)∥ < εηnf for n = 1, . . . , N − 1, so
that ρg(n, x, u) ∈ K̃n.

Now, we show by induction that

∥ρf (n, x, u)− ρg(n, x, u)∥ < εn

for each n ≥ 0. For n = 1 this holds by (4.22):

∥ρf (1, x, u)− ρg(1, x, u)∥ = ∥f(x, u0)− g(x, u0)∥ < ε1.

Assume that ∥ρf (n, x, u)− ρg(n, x, u)∥ < εn. Then

∥ρf (n+ 1, x, u)− ρg(n+ 1, x, u)∥ ≤ ∥f(ρf (n))− f(ρg(n))∥+ ∥f(ρg(n))− g(ρg(n))∥
< Ln

f εn + εn

=
εn+1

2
+ εn

≤ εn+1.

And since εn ≤ ε for n = 1, . . . , N , we have that ∥ρf (n, x, u)− ρg(n, x, u)∥ < ε, as
desired.

Since it is not necessarily the case that g ∈ N0
σ,p for some p, it remains to obtain

an equivalent recurrent neural network. Write g explicitly as

g(x, u) = Tσp(Ax+Bu+ b) + c,

and rank-factorise T as
T =M

[
T1
0

]

with M ∈ Rdx×dx invertible and T1 ∈ Rr×p of full row rank. Then, with

g1(x, u) :=

[
T1σp(AMx+Bu+ b) + c′1

c′2

]
, M−1c =

[
c′1
c′2

]
,



4.7. Appendix 69

it follows that
Mρg1(n,M

−1x, u) = ρg(n, x, u)

for all (n, x, u). Let now T+
1 be a right inverse of T1 (i.e. T1T+

1 = Ir) and

Q :=M

[
T1 0
0 Idx−r

]
, Q+ :=

[
T+
1 0
0 Idx−r

]
M−1.

Then with
g2(z, u) :=

[
σp(AQz +Bu+ b) + T+

1 c
′
1

c′2

]
,

we get
Qρg2(n,Q

+x, u) = ρg(n, x, u).

Finally, let

Ã :=

[
AQ

0(dx−r)×(p+dx−r)

]
, B̃ :=

[
B

0(dx−r)×du

]
,

b̃ :=

[
b

0dx−r

]
, c̃ :=

[
T+
1 c

′
1

c′2 − σdx−r(0)

]

and define the maps γ : Rp+dx−r → Rdx and β : Rdx → Rp+dx−r as

γ(z) = Q(z + c̃)

β(x) = Q+x− c̃.

Then with dz := p+ dx − r and

h(z, u) := σdz
(Ãz + B̃u+ b̃+ Ãc̃)

we get
γ(ρh(n, β(x), u)) = ρg(n, x, u),

so that h ∈ N0
σ,dz

and

∥γ(ρh(n, β(x), u))− ρf (n, x, u)∥ < ε

for all x ∈ Kx, u ∈ S(Ku) and n = 0, . . . , N , as desired. Note also that γ and β
have the desired properties.





Chapter 5

Conclusions

5.1 Summary

In this thesis, we have studied the problem of learning flow functions of continuous-
time control systems from measurements of state trajectories. First, we proposed
a discrete-time recurrent neural network (RNN) architecture for approximating
the flow function. Considering classes of control inputs with a discrete structure,
corresponding to inputs typically used in practical applications, we showed that
these inputs induce a discrete structure in the flow function, and established an
exact representation of the flow function as a discrete-time dynamical system. We
thus proposed to approximate this discrete-time system by an architecture composed
by an RNN together with a pair of encoder-decoder networks. We evaluated the
architecture experimentally on data from the Van der Pol and FitzHugh-Nagumo
nonlinear oscillators. On both systems, models trained using our method were able to
accurately reproduce the state trajectories, and the training procedure was shown to
be robust to initialisation and to the choice of the architecture hyperparameters. For
the Van der Pol oscillator model, we further investigated the simulation capabilities
of the trained model for long time horizons (relative to the length of the training
data) and for a different distribution of the control inputs. We also showed that the
training procedure is robust to measurement noise, and studied the dependence of
the test loss on the number of measurements. For the FitzHugh-Nagumo oscillator
model, we demonstrated that the trained model was able to capture the excitable
behaviour of the system.

Secondly, we considered an application to surrogate modelling of spiking systems.
We used conductance-based models as prototypical state-space realisations of spiking
behaviour, and proposed a framework for constructing surrogate models of these
systems from trajectory data, based on our flow function learning formulation. We
highlighted two challenges arising in training simulation models for these systems.
First, as the output signal contains high-frequency components, many samples
are required in order to represent it accurately, leading to a data-heavy training
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procedure, and possibly to under-representation of the spikes in the dataset. To
address this, we proposed a data reduction method based on rejection sampling,
equivalent to giving higher weight in the loss function to those parts of the trajectories
which contain spikes. Second, we considered the complexity of optimising the
empirical loss. For recurrent models, it is known that the Lipschitz constant of the
loss function with respect to the model parameters increases exponentially with the
simulation length. We addressed this by using the semigroup property of the flow
function to create a windowed loss function using shorter segments of the measured
trajectories. We evaluated our methodology on two systems, namely a model of a
fast spiking neuron, and a model of two regular spiking with adaptation type neurons
interconnected in feedforward through an electrical synapse. In both cases, the
trained models are able to closely reproduce the spiking behaviour, demonstrating
the feasibility of our approach for constructing surrogate models of spiking systems.

Finally, we studied the universal approximation of flow functions of continuous-
time control systems by discrete-time RNNs. Considering the architecture we had
proposed earlier, we derived conditions on the flow function of a general continuous-
time control system such that it can be approximated arbitrarily well by elements
of the hypothesis space defined by the architecture. We then specialised to the case
of flows of systems given by controlled ordinary differential equations. Namely, for
systems with continuously differentiable dynamics, we showed that the conditions
for universal approximation hold, for a broad class of input signals.

5.2 Future work

A number of avenues for developing the work we have presented here are in view.
It would be interesting to study the application of flow function models in inverse
problems and design optimisation. Inverse problem formulations can be used in
parameter estimation, for instance, while design optimisation methods could be
an interesting way to optimise controller parameters. Another application of the
latter is in the design of a network of conductance-based neuron models so that it
replicates a given desired behaviour, as described in Section 1.1.

A second application is learning observers for complex systems. Consider a
system with spatiotemporal dynamics, e.g. a traffic flow model, from which we
can sample low-dimensional measurements at a constant rate. An observer for this
type of system can be regarded as a continuous-time control system with piecewise-
constant inputs. Our formulation can thus be used to learn the flow function of such
an observer, from data of measurement and state trajectories. In this connection,
an interesting problem is that of learning an observer in this way from simulated
data and deploying it on a real system.

The use of flow function models in continuous-time predictive control is another
promising direction of research. Using the models we propose in this thesis allows
for direct computation of the simulated state trajectory, so that the receding-horizon
optimisation problem can be formulated without differential equation constraints.
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Furthermore, automatic differentiation allows for the efficient computation of gradi-
ents of the state trajectory with respect to the control input. This application
also suggests an experiment design problem, namely selecting the distribution of
the inputs used for training the flow function model so that the model has good
simulation accuracy under the inputs generated by the predictive controller in
feedback.

Further experimental validation of the architecture is also in order, in particular
its scalability with the number of states. A variety of extensions of the proposed
architecture are in sight, such as to systems with spatiotemporal dynamics, possibly
using techniques from neural operators for partial differential equations; estimating
models from input-output data, for instance employing a subspace encoder similarly
to what is done in (Beintema, Schoukens and Tóth, 2023); as well as considering
other (non-parametric) classes of input signals.

Finally, a number of directions for further theoretical studies of the flow func-
tion learning problem can be considered. This includes extensions of our result
in Chapter 4, using stability conditions to obtain approximation guarantees on
unbounded time intervals, or obtaining bounds on the number of parameters, as
in (Hanson and Raginsky, 2020). Another possible direction is the study of the
sample complexity of the flow learning problem. Lastly, the results of Chapters 2
and 3 suggest that our architecture is capable of approximating systems without
fading memory. The identification of systems without fading memory is a difficult
and mostly open problem (Burghi, 2020); theoretical studies from this point of view
and possible relations to stability of discrete-time recurrent neural networks would
be valuable.
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