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energy harvesting device. The events which were easily 
identifiable in the acceleration profile of the forced vibration 
testing were found to be present in the voltage output of the 
energy harvesting device. More research is required to obtain 
accurately correlations between the acceleration and voltage 
response and also for further applications arising from the 
integration of energy harvesting technology with civil 
infrastructure elements. This paper demonstrates that such 
applications are possible and further advance the range of 
applications that can be achieved through the integration of 
smart technology with civil infrastructure elements. 
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