

Degree project in Civil and Architectural Engineering

 First cycle, 15 credits

Modeling Autonomous On-Demand Public Transport

Churong chen

2

Abstract

As autonomous vehicle (AV) technology evolves and matures, automated public transit
(APT) is gaining attention due to its flexibility, cost-effectiveness, and efficiency. This
report explores various algorithms for allocating vehicles to passengers within APT
systems. It aims to organize and propose effective allocation strategies and validate
them through comparative analyses on test networks. Overall, the paper introduces
several algorithms, with six specifically compiled and tested using the VIPSim
simulator across four traffic networks. Two of these networks are basic, while the other
two are more complex and represent real-world scenarios. Through these numerical
experiments, the algorithm that maximizes network operational efficiency was
identified, and several instructive conclusions were drawn from the comparative
analysis.

Keywords

Automated Public Transit, autonomous vehicle, assignment methods, ride-sharing,
simulation

3

Sammanfattning

När tekniken för autonoma fordon (AV) utvecklas och mognar, får automatiserad
kollektivtrafik (APT) uppmärksamhet på grund av sin flexibilitet, kostnadseffektivitet
och effektivitet. Denna rapport utforskar olika algoritmer för att tilldela fordon till
passagerare inom APT-system. Den syftar till att organisera och föreslå effektiva
allokeringsstrategier och validera dem genom jämförande analyser på testnätverk.
Sammantaget introducerar rapporten flera algoritmer, varav sex specifikt har
sammanställts och testats med hjälp av VIPSim-simulatorn över fyra trafiknätverk. Två
av dessa nätverk är grundläggande, medan de andra två är mer komplexa och
representerar scenarier från verkliga världen. Genom dessa numeriska experiment
identifierades algoritmen som maximerar nätverkets operativa effektivitet, och flera
instruktiva slutsatser drogs från den jämförande analysen.

Nyckelord

Automatiserad kollektivtrafik, autonoma fordon, tilldelningsmetoder, samåkning,
simulering

4

Acknowledgments

Spending my final semester at the Royal Institute of Technology (KTH) in Sweden for
a semester exchange was truly magical and undoubtedly the best decision I have ever
made. I had an incredibly rewarding and joyful semester at KTH! I must say, I fell in
love with Stockholm—the people, the learning environment, the weather, and the air
here are all phenomenal. I am deeply grateful to my undergraduate institution and KTH
for this opportunity, which has deepened my reflections and shown me many
possibilities beyond my home country, moving me profoundly.

I extend my heartfelt thanks to my degree project supervisor, Dr. Wilco Burghout, who
guided me through the concepts of Automated Public Transit, encouraged my critical
thinking, and assisted me in compiling algorithms for the simulations. I feel
extraordinarily fortunate to have encountered such a responsible and kind-hearted
professor in a foreign land. I am immensely thankful that Dr. Wilco agreed to take me
under his guidance.

I would also like to express my gratitude to Dr. Albania Nissan for her overarching
guidance. I particularly enjoyed the atmosphere of the thesis defense preparation, which
was both relaxing and enlightening.

Additionally, I thank ChatGPT, for its help in refining the English in my writing and
correcting grammatical and lexical errors.

5

Contents

Abstract .. 2

Keywords .. 2

Sammanfattning ... 3

Nyckelord .. 3

Acknowledgments.. 4

Contents ... 5

1 Introduction ... 7

1.1 Background ... 7

1.2 Research Questions ... 8

1.3 Delimitations ... 8

1.4 Disposition .. 9

2 Related work ... 10

2.1 Autonomous Vehicles .. 10

2.2 Autonomous Public Transport .. 11

2.3 Assignment Methods ... 11

2.4 Ride-Sharing Methods .. 13

3 Problem Statement .. 15

3.1 Problem Settings ... 15

3.2 Mathematical Model ... 16

3.3 Simulation Networks .. 17

4 Methodology ... 21

4.1 Simple nearest neighbour assignment ... 21

4.2 Dynamic Assignment .. 26

4.3 Ride-Sharing Assignment ... 29

4.4 Algorithms to be tested ... 33

5 Numerical Experiment .. 38

5.1 Basic Algorithm .. 38

6

5.2 Enhanced Algorithm ... 40

5.3 Advanced Algorithm ... 43

5.4 Overall Test Results .. 45

6 Conclusion .. 49

6.1 Summary ... 49

6.2 Future Direction .. 49

6.3 Sustainability... 50

Reference ... 52

Appendix .. 55

7

1 Introduction

1.1 Background

Autonomous driving has rapidly become a pivotal topic within the realm of

transportation technology, evolving significantly in recent years. This evolution marks

a monumental stride in transportation innovation, potentially reshaping the landscape

of mobility and efficiency(Clavijo, Jiménez and Naranjo, 2023). The primary benefits

of autonomous driving extend well beyond relieving humans from the task of driving;

they encompass the capability of vehicles to collect and analyze varying spatiotemporal

data, thereby facilitating more informed and efficient driving decisions and route

planning. Consequently, autonomous vehicles (AVs) are poised to become a

fundamental component of smart city infrastructures.

While the organization and design of public transportation are crucial components of

large cities, aiming to enhance sustainability and urban living standards, there are still

various issues that persist(Iclodean, Cordos and Varga, 2020). Despite each city facing

unique challenges, the general goals remain consistent: to improve the operational

efficiency of public transportation, increase the passenger capacity per bus, reduce

passenger waiting times, and decrease the operating costs associated with these systems,

among others. Therefore, integrating autonomous driving with public transport and

incorporating this synergy into urban settings can offer numerous benefits.

In this report, we propose the replacement of traditional buses with autonomous buses

to improve the public transportation system. Specifically, rather than operating buses

on fixed routes, we suggest assigning buses to passengers based on demand. This

approach would utilize real-time data on passengers and vehicles on roads to

intelligently assign vehicles to passengers, thereby achieving optimal objectives. Such

a system offers multiple advantages. On-demand transportation enables dynamic rapid

transit, enhancing the flexibility of public transport and allowing for the expansion of

various features, such as enabling passengers to reserve seats through an app, thereby

improving communication between passengers and the public transport system.

Additionally, in suburban areas, where demand is more sporadic, supplying vehicles

on-demand can significantly reduce the occurrence of empty runs. Furthermore, this

8

approach provides efficient first- and last-mile connections, particularly to areas with

low demand(Carrese et al., 2023). From an economic perspective, incorporating AVs

into the public transport system can also be beneficial. By combining AVs with existing

public transport frameworks, there's a substantial opportunity to alleviate traffic

congestion significantly, thus contributing to a more sustainable and efficient urban

transit system(Poinsignon et al., 2022).

There are notable examples of practical initiatives where AVs have been integrated into

existing public transportation networks. In Rouen, France, for example, a fleet of four

AVs has been seamlessly integrated, demonstrating the critical role of collaboration and

regulatory frameworks in adapting these vehicles to meet local transit needs. Similar

initiatives have been launched in Sitten, Switzerland, where autonomous buses have

been operational since 2016, and in Lyon, France, and Michigan, USA. Collectively,

these autonomous buses have accumulated over 50,000 kilometers in travel distance

and have transported more than 100,000 passengers(Pakusch and Bossauer, 2017).

1.2 Research Questions

However, there are several critical issues still to be addressed in the field of

Autonomous Public Transport (APT), such as how to assign vehicles to passengers.

Furthermore, the criteria for assigning vehicles to passengers need to be established:

should the aim be to maximize the number of people transported, minimize passengers'

waiting time, or provide the fairest public transport (PT) service? What impacts might

focusing on a single objective have on other objectives? How can we compromise

between different objectives? These are all questions that require further analysis and

research. Therefore, in this report, we aim to discuss different assignment algorithms

and do simulation tests on them. Thus, reaching constructive conclusions.

1.3 Delimitations

At the same time, there are some issues that this report will not discuss. For example,

the report will not discuss the scope of APT implementation, nor will it address the

pricing issues of such APT systems, nor the safety concerns of AVs. Even though these

issues are practically significant in reality, we will focus on the main topic of our

research. Additionally, our test network is within a certain range, such as a part of

Goteborg.

9

1.4 Disposition

In the following report, related work in AVs and APT assignment algorithms will be

presented in Chapter 2. In Chapter 3, the settings for APT, the mathematical models

used, and the simulation network will be introduced. Chapter 4 will introduce the

algorithms we propose. Chapter 5 will display the test results of the algorithms on the

simulation network. Finally, the conclusion will be discussed in Chapter 6.

10

2 Related work

2.1 Autonomous Vehicles

The concept of AVs was introduced over 30 years ago, transitioning from the realm of

science fiction to a scientific reality. This shift has been fueled by rapid advancements

in information technology, artificial intelligence, and wireless communications,

particularly vehicle networking and V2X communications. AVs are equipped with

numerous sensors, including rangefinders, radars, cameras, GPS modules, and

gyroscopes. These sensors provide comprehensive perception capabilities that enable

the vehicle to adapt to its surroundings(Lam, Leung and Chu, 2016). Additionally, AVs

can establish informational connections with other vehicles and infrastructure,

facilitating better decision-making. A significant number of companies are investing in

autonomous driving technologies and planning to produce AVs. For instance, Google

conducted tests on driverless cars without a safety driver in 2011. Companies like

Waymo, Tesla, and Ford are also developing driverless vehicles. Research consistently

indicates that AVs will soon become mainstream, fundamentally transforming human

mobility.

There has been extensive research on AVs, primarily focusing on technology, safety,

and liability(Tafidis et al., 2022), as well as travel behavior(Soteropoulos, Berger and

Ciari, 2019), land use(Soteropoulos, Berger and Ciari, 2019), and human-autonomy (H-

A) collaboration(Xing et al., 2021). These studies explore various dimensions of how

AVs impact our lives, from technical advancements and the responsibility issues they

entail to their effects on travel patterns and urban planning and even the collaborative

dynamics between humans and autonomous systems.

The introduction of AVs has brought numerous benefits to urban transportation. With

rapid urban population growth, the concept of the "smart city" is increasingly discussed.

A critical aspect of the smart city is "smart transport," where existing literature

extensively refers to AVs as a solution to meet the escalating demands of urban

transportation, aiming for greater efficiency, safety, and sustainability. Studies suggest

that AVs enhance traveler convenience and safety, reduce the negative impacts of

congestion, and are more environmentally friendly(Litman, 2014). Additionally, it is

11

proposed that AVs can intelligently adjust the timing, speed, distance, and other driving

behaviors between vehicles(Kyriakidis, Happee and De Winter, 2015). Vehicles use

various on-board wireless communication technologies for vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure communications, expanding the possibilities for AVs.

Research focusing on the wireless communication framework for driverless city

vehicles has demonstrated improvements in safety and efficiency through enhanced

communications(Furda et al., 2010). Moreover, optimization models for traffic light

signals to vehicles (TLS2V) and V2V communications have been developed to reduce

fuel usage and emissions(Alsabaan, Naik and Khalifa, 2013).

2.2 Autonomous Public Transport

Public transportation is a vital component of urban mobility, generally categorized into

two main types: rail and road. Rail-based public transport systems rely on a network of

tracks, while road public transport primarily includes buses and taxis. Buses have a

larger passenger capacity and can serve more passengers per trip. However, they are

less flexible, operating on fixed routes and schedules. Taxis offer high flexibility, with

routes that can change in real-time based on passenger demand, but they have a smaller

capacity. The question arises whether there is a mode of public transport that could

integrate the advantages of both buses and taxis. This would involve offering on-

demand services to maintain flexibility while supporting ride-sharing to enhance

efficiency(Lam, Leung and Chu, 2016). APT systems are proposed as a solution to

achieve this goal. Such public transport methods are beneficial; research shows that

adding a sharing feature to taxis can decrease total travel distance by 40% or more,

despite a slight increase in passenger discomfort. These benefits come with reduced

service costs, emissions, and staggered fares, suggesting wide passenger acceptance of

this shared service(Santi et al., 2014). This also highlights the promising prospects of

APT.

2.3 Assignment Methods

In the operation of APT within urban areas, two primary considerations are pivotal: (1)

strategies for assigning AVs to traveler demand requests, and (2) sharing strategies for

AVs.

For the assignment of AVs to travelers, a common strategy is the heuristic approach.

12

The most basic heuristic method focuses on minimizing the longest waiting time,

utilizing the first-come, first-served (FCFS) principle to assign travelers to the nearest

available AV. This helps in reducing wait times by efficiently allocating nearby AVs as

demand arises(Jordan, Llc and Scarborough, 2013). In addition, the FCFS method is

also employed by Zhang and others, where users calling simultaneously are randomly

sorted. This randomization prevents the system from consistently prioritizing the same

areas, ensuring a more equitable service distribution across different urban

regions(Zhang et al., 2015). Furthermore, in 2016, Chen and colleagues improved this

approach by refining the search for the "nearest" available AV. They segmented the

overall area into sub-regions, initially searching for an available AV within the same

sub-region, and expanding the search to adjacent sub-regions if necessary. This method

helps in efficiently managing the distribution of AVs and reducing the time it takes for

an AV to reach a requester(Chen, Kockelman and Hanna, 2016). Differing from the

traditional priority of servicing the traveler with the longest waiting time, another

approach focuses on minimizing the number of vehicles dispatched. This involves

incorporating passengers en route into ongoing trips, even if this deviates from the

FCFS principle. This adjustment is permitted because it does not add any extra travel

time for the AVs, thereby optimizing the use of vehicles and minimizing unnecessary

travel(Levin et al., 2017).

Additionally, there are optimization-based methods for assigning AVs. An approach

utilizes optimization strategies to dynamically assign AVs to traveler requests, allowing

for the reassignment of previously assigned travelers to other AVs as new requests enter

the system. This method aims to minimize the total waiting time for travelers or the

distance traveled by vehicles(Hyland and Mahmassani, 2018). One study developed a

mixed integer linear programming model to tackle the single-household shared AV

problem(Cokyasar and Larson, 2020).

Another approach employed the maximum weight bipartite matching model to

maximize system-wide travel savings in a dynamic ride-sharing context. By

constructing a bipartite graph, each driver and passenger is represented as a node, and

feasible pairings are depicted as edges. The weight of each edge represents the travel

distance saved by the pairing. This method also considers the matching needs of round-

trip journeys by adding constraints to ensure simultaneous matching for these

trips(Agatz et al., 2011). Furthermore, a game-theoretical framework has been applied

13

to the assignment of AVs to passengers. This method structures the vehicle-target

assignment problem as a multiplayer game and uses pure Nash equilibrium to represent

equitable vehicle assignments, aiming to maximize overall system utility(Arslan,

Marden and Shamma, 2007).

2.4 Ride-Sharing Methods

In the study of ride-sharing strategies for AVs, a classical method involves the use of

shareability networks. Santi and colleagues introduced such a graph model where each

node represents an individual trip, and the edges between nodes indicate that these trips

can be reasonably shared. This network is transformed into a graph matching problem,

utilizing maximum matching or maximum weight matching algorithms to find optimal

trip pairings, thereby maximizing the number of shared trips or minimizing the total

time required to complete all trips(Santi et al., 2014).

Further extensions of this method have been applied to the sharing of a large number

of passengers and trips. Improvements include adding vehicles to the shareability

network and constructing an integer linear optimization model on this network to enable

both trip-to-trip and vehicle-to-trip matching(Alonso-Mora et al., 2017). Another

approach adapts this model to allow a single vehicle to match with only one new request

while still handling multiple requests simultaneously. This method involves

transforming the carpooling problem into a joint optimization framework involving

linear assignment between fleet vehicles and customer trip requests, which results in a

significantly faster algorithm(Simonetto, Monteil and Gambella, 2019). Additional

refinements involve addressing one-to-one ride-matching problems by breaking down

the original graph into multiple subgraphs and introducing various clustering

algorithms to boost computational efficiency, optimizing the process for dynamic ride-

sharing scenarios(Tafreshian and Masoud, 2020).

However, there remain many areas in previous research that have not been thoroughly

explored. For example, some algorithms have not been tested in micro-simulation

environments, or, in other words, lack randomness, making them unable to accurately

represent real-world traffic conditions. Moreover, while many assignment algorithms

reference FCFS and introduce new, more efficient algorithms based on it, they do not

clearly indicate how they balance efficiency and fairness. Additionally, the applicability

of these algorithms may be related to the characteristics of the network and the scale of

14

the demand, which has been rarely mentioned in prior literature. The availability of

historical data and real-time mobile data makes it possible to predict passenger behavior,

and proactive vehicle assignment based on predictions could be highly beneficial in

APT, but few studies have considered this aspect.

Since many studies have not used simulations that accurately represent real traffic

conditions to test their algorithms, and because each algorithm has been tested on

different networks and environments without a unified testing platform, this report aims

to use simulation to test, investigate, and analyze these algorithms. In this report, we

use four different testing networks, starting with two simple networks (one is a rhombus

network with equal sides, and the other is a quadrilateral network with unequal sides),

and then using more complex real networks to test different algorithms. We will discuss

and analyze whether the characteristics of the network impact the efficiency of the

algorithms and their comparative performance.

15

3 Problem Statement

In this section, we will present an introduction to the settings of our APT system, the

mathematical model of the system, and the simulated networks on which we will

conduct our numerical experiments.

3.1 Problem Settings

In the APT system, we aim to study, autonomous buses that transport passengers within

a designated area. This area contains several predefined stations, and the autonomous

buses operate between these fixed stations, as can be seen in Figure 1. Passengers need

to wait at the stations, and since this study does not consider features such as passenger

bookings through an app, autonomous buses can only obtain passenger travel

information when passengers arrive at the station. The buses then adjust their routes

accordingly. The primary focus of this study is how these autonomous buses can be

optimally assigned to passengers based on the available information. Additionally,

autonomous buses also consider ride-sharing to maximize the utilization of their large

capacity. The capacity per vehicle adopted in this article is 10. The key difference

between autonomous buses and regular public transportation buses is that regular buses

run on fixed routes and schedules, while autonomous buses are assigned on-demand

based on passenger needs, dynamically adjusting their routes in real-time. Figure 1 is

an illustration of the APT system.

Figure 1. Illustration of APT system.

16

3.2 Mathematical Model

The network will be represented by a graph 𝐺 = 𝐺(𝑉, 𝐴), where every vertex 𝑣 ∈ 𝑉

is an intersection or a bus station, and every segment 𝑎 ∈ 𝐴 represents a section of the

network. Each segment 𝑎 contains the information of the starting point, the terminal

point, and the time required to traverse the segment, which can also be considered as

the segment's distance.

The demand is represented by the arrival of the passengers 𝑝. In this report, two types

of demand are considered: (1) The first type consists of sequentially arriving passengers,

for whom we know the station of arrival, the time of arrival, and their desired

destination. (2) The second type of demand is "bunch demand," where the information

provided includes the station of arrival, the time of arrival, the total number of

passengers, and their respective desired destinations. The reason for considering such a

"bunch arrival" is that our APT system is designed to integrate with other modes of

transportation, thereby forming a multi-modal transport system. For example, the

arrival of trains or subways might bring a group of passengers to a station.

There is also a vehicle set to indicate the locations of the vehicles, their destinations,

the number of passengers on board, and whether the vehicle is already assigned to some

certain passengers.

The inputs of the model are: (1) the graph 𝐺 = 𝐺(𝑉, 𝐴); and (2) the demands, which

contains information such as the passengers' arrival time at the station, the number of

passengers, and their destinations. The output of the model is the set of all movements

performed by the vehicles.

There are many potential objective functions for evaluating or optimizing the

aforementioned APT system. One could aim to minimize the maximum waiting time or

minimize the average waiting time. These two different objectives address individual

goals and network-wide goals, respectively. When minimizing the maximum waiting

time, the overall network efficiency might be compromised to prioritize passengers

with longer waiting times. On the other hand, when minimizing the average waiting

time, some passengers in remote areas might never be served. Alternatively, from the

perspective of vehicle operation, the objective function could be to maximize the total

17

number of passengers served within a certain time or the ratio of effective trips

(assuming trips with passengers on board are considered effective). Different objective

functions will lead to different evaluations of the system and result in different

optimization algorithms.

3.3 Simulation Networks

In our report, we will utilize VIPSim, a micro-level traffic simulation software, as our

primary simulation tool. This software allows for the importation of specific maps to

set up designated stations, predefine passenger travel patterns, and guide the movement

trajectories of autonomous buses using various methods, including an element of

randomness to better reflect real-world scenarios.

The study will be conducted across four different traffic networks to test various

proposed algorithms—from the simplest networks to more complex ones representing

portions of real urban areas—aiming for a comprehensive analysis of the algorithms '

performance across network types.

Simulation case 1: The first traffic network is designed as a simple square grid
comprising four stations, as shown in Figure 2, and we will refer to it as "simplesquare"
in the following text. Vehicles move along diagonal roads, resulting in equal travel
distances between each station and the remaining three. This design significantly
simplifies the road network complexity, but it may also introduce certain considerations.
For instance, the difference in dispatching an idle bus from the north station to the south
versus to the west is not markedly distinct. Consequently, this could obscure certain
factors during algorithm analysis.

The demand used in this network includes both individual demand and bunch demand.

The bunch demand takes into account situations when a large public transport vehicle,

such as a train, arrives at the station, and a group of passengers arrives at the same time.

The total demand in the simulation is 299 passengers. Additionally, there are a total of

3 AVs in this network. And the simulation time is 7200 simulation steps, which is 2

hours in total.

18

Figure 2. "Simplesquare" network.

Simulation case 2: The second traffic network, is shown in Figure 3, which will refer

to it as "simplesquare (2)", introduces additional complexity to the initial grid by

extending the station on the right further outward. This change disrupts the symmetry

among the stations, effectively addressing the considerations previously mentioned. By

integrating this modified layout with the initial traffic network, we enhance our capacity

to conduct a more precise analysis of algorithm performance across simpler networks.

This simulation network shares the same demand, simulation time with "simplesquare"

network.

Figure 3. "Simplesquare (2)" network.

19

The previously discussed networks are simplistic road networks, which enable us to

analyze each specific vehicle movement in detail. However, they clearly do not

represent the conditions experienced in the real world. To examine the effects of

algorithms on a more macroscopic level across an entire region, it is necessary to

consider larger networks. Therefore, we have incorporated two networks that exist in

the real world.

Simulation case 3: The "Saclay" network, located in Saclay, France, consists of 22

stations and is characterized by its considerable length in the longitudinal direction and

shorter width in the transverse direction. This configuration provides a unique

framework for studying traffic flow dynamics and algorithm efficiency in a

longitudinally extended urban setting. Figure 4 shows the network in the simulator,

while Figure 5 shows the network in the map.

Figure 4. "Saclay" network (a).

Figure 5. "Saclay" network (b).

The "Saclay" network also contains individual demand and bunch demand, with a total

demand of 560 passengers. The simulation time is 3600 simulation steps, equivalent to

one hour.

Simulation case 4: Subsequently, we introduced a part of the road network located in

the southwest corner of Goteborg, as shown in Figure 6. Compared to the "Saclay"

20

network, the "Goteborg" network contains more stations and exhibits a more complex

structure. It distinctly presents a grid-like configuration. A notable feature of the

"Goteborg" network, as shown in Figure 6, is a station situated in the northeast corner

of the considered area, at the upper right of the image. This station acts as a crucial

transport hub connecting the southwest area of Goteborg with other parts. The

deployment of APT in this region aims to provide on-demand public transport services

in areas with sparse demand. This setup not only meets the local mobility needs within

the region but also supports extensive travel to the transport hub for reaching other areas.

Considering the actual circumstances, unlike the three networks mentioned above, this

network only includes individual demand, with a total demand of 591 passengers. The

simulation time is one hour. In this example, the efficiency of the algorithm can be

tested, demonstrating the significant role and practical applications of APT in urban

transportation.

Figure 6. "Goteborg" network.

21

4 Methodology

In this section, we will provide a detailed explanation of the algorithms considered for
allocating autonomous buses to passengers. We begin with the basic algorithm based
on the simple nearest neighbour assignment and then progress to more sophisticated
algorithms that incorporate ride-sharing during the assigning process.

4.1 Simple nearest neighbour assignment

The Simple Nearest Neighbor (SNN) assignment algorithm strategically assigns the

closest available buses to passengers based on specific criteria. Illustrated in Figure 7

is an operational diagram of this algorithm, where assignments are primarily based on

the length of time passengers have waited at the station, adhering to the FCFS principle.

This criterion can be adjusted to account for either the total number of people waiting

at the station or the count of unassigned passengers. One of our key objectives is to

evaluate the operational efficiency of algorithms under these varying criteria. Notably,

the "Find ride-share candidates" step highlighted in Figure 7 refers to a ride-sharing

algorithm that functions independently from the assignment mechanism. This feature

enables passengers to board a bus if both the start and end points of the bus’s route align

with their own destinations, provided that the bus has available seats. This ride-sharing

algorithm will be integrated into all subsequent algorithms discussed in our study.

Figure 7. Operational diagram of SNN assignment algorithm.

The pseudocode for the algorithm is as follows:

22

Algorithm 1 SNN (MaxWaitSimple)

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the longest waiting time of unassigned passengers.

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 EndIf

End

If the criterion is changed to the number of unassigned passengers at the station, the

pseudocode remains similar and is presented as follows:

Algorithm 2 SNN (MaxNrPassengers)

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the number of unassigned passengers.

23

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 EndIf

End

Considering the large number of passengers and vehicles, assigning only once every 20

simulation steps (where 20 serves as a hyperparameter that can be adjusted according

to specific needs) might be inadequate. Thus, it is proposed to continue the assignment

process until there are no remaining vehicles or unassigned passengers. The pseudocode

for this refined approach is outlined below:

Algorithm 3

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the longest waiting time of unassigned passengers.

While the number of unassigned passengers are not zero do:

 𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

24

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 EndIf

 EndWhile

End

Previous algorithms considered the assignment of empty vehicles exclusively. However,

consider a scenario where all buses in a current area are too far from the passenger 𝑝,

who has been waiting the longest. Meanwhile, some vehicles, although currently

carrying passengers, are soon to arrive at the station where passenger 𝑝 is standing to

drop off passengers and become available. Subsequently, these vehicles can transport

passenger 𝑝 to their destination. Including such incoming buses in the assignment

algorithm can significantly reduce the waiting time for the passenger who has waited

the longest, better meeting the FCFS criteria by actually transporting passengers (rather

than merely assigning them based on FCFS). This approach also avoids the inefficiency

of distant empty vehicles traveling to pick up passenger 𝑝 , thereby making the

assignment process both fairer and more efficient. An improved pseudocode based on

Algorithm 1 is outlined as follows:

Algorithm 4

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣,

Input: destination 𝑠௣;

Input: Vehicle set;

Output: All movements.

25

For every 20 simulation steps:

 SortStation  sort by the longest waiting time of unassigned passengers.

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 Else If station 𝑠 has incoming vehicle 𝑣’ that will be empty:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣′ and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

 EndIf

End

Another approach, very similar to Algorithm 4, considers all buses during the

assignment process, not just empty or incoming buses. This algorithm calculates the

nearest vehicle by assessing the distance/time from non-empty buses to the waiting

passenger, which includes the time required for the buses to reach their destinations,

plus the time needed to transition from these destinations to the station where the

waiting passenger is located (if the bus is incoming and its current destination is the

waiting passenger's station, this transition time is counted as zero). For empty buses,

the consideration is simply the current distance/time to the waiting passenger. By

calculating and comparing the distance/time for all buses in the network to the waiting

passenger, vehicles are an assigned accordingly. This method is an advanced refinement

26

of Algorithm 4, theoretically enhancing both fairness and efficiency. However, the

implementation of this algorithm presents certain challenges, particularly during the

compilation phase. Given that the pseudocode for this algorithm closely resembles that

of Algorithm 4, it is not detailed further here.

4.2 Dynamic Assignment

In the SNN assignment method, once a vehicle is assigned to a passenger, the

assignment is immutable. This approach is somewhat unrealistic in real-world scenarios,

primarily because the factors considered are often fewer than those actually impacting

real-world situations, and the judgment of the "nearest vehicle" is based solely on

distance or limited historical information about the road environment, which can be

inaccurate.

More importantly, our algorithms are heuristic rather than exact optimization. As the

time window progresses, although we provide the optimal solution at each individual

time point—identifying and assigning the nearest vehicle—the solution is not optimal

over a period. As buses continuously become available due to passengers alighting and

new passengers appear at stations waiting for a ride, the overall optimal solution

dynamically changes. To address this, our algorithm needs to incorporate the capability

to dynamically adjust previous assignments.

One of the simplest forms of dynamic assignment involves considering already defined

empty trips. Specifically, if a bus has an empty trip planned for picking up a passenger,

and there happens to be another passenger or passengers needing a ride from the starting

point to the destination of this empty trip, then the bus can accommodate these

additional passengers. This approach is quite rational because, although it deviates from

the FCFS principle, it does not adversely affect anyone's waiting time or interests.

Implementing this strategy will undoubtedly enhance the efficiency of the APT system

based on the existing algorithm framework. The specific pseudocode for this approach

is outlined in Algorithm 5.

Algorithm 5 Add passengers to empty trips

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣,

27

Input: destination 𝑠௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the longest waiting time of unassigned passengers.

𝑠௜  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠௜ has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from 𝑠௜.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣 . //the station where empty vehicle 𝑣 is

located is referred to as 𝑠௝

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from 𝑠௜.unassigned_passengers.

If there are passengers wishing to travel from 𝑠௝ to 𝑠௜:

 Set Ρ  passengers wishing to travel from 𝑠௝ to 𝑠௜

//boarding based on waiting time, total number does not

exceed vehicle capacity

Remove passengers in set Ρ from 𝑠௝.unassigned_passengers

 EndIf

 EndIf

End

A deeper reassignment goes beyond reassigning passengers and vehicles that merely

have the same origin and destination; it involves reassigning all vehicles. Another

approach is to dynamically find the optimal assignment in real-time. More specifically,

the algorithm adjusts the assignment of passengers in already assigned vehicles based

on updated real-time conditions, ensuring that the new assignment is better for each

28

passenger than the original. This is equivalent to reassigning all passengers or vehicles

during each assignment cycle, regardless of whether they were previously assigned,

except for those who are already on board. This leads to the following code:

Algorithm 6 Reassignment

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣,

Input: destination 𝑠௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the longest waiting time of unassigned passengers.

While the number of unassigned passengers are not zero do:

 𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If 𝑝.veh is empty: //𝑝 is not yet assigned to any vehicle before

 If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

𝑝.veh  𝑣

 EndIf

Else:

 If station 𝑠 has empty vehicle 𝑣 then:

 Unassign the 𝑒𝑚𝑡௣ and 𝑡𝑟𝑖𝑝௣ that was originally

assigned to 𝑝.veh.

Create Trip 𝑡𝑟𝑖𝑝௣.

29

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.passengers.

 Else:

 Find nearest empty vehicle 𝑣.

If 𝑝.veh≠ 𝑣:

 Unassign the 𝑒𝑚𝑡௣ and 𝑡𝑟𝑖𝑝௣ that was

originally assigned to 𝑝.veh.

Create EmptyTrip 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣.

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

𝑝.veh  𝑣

 EndIf

 EndIf

 EndIf

 EndWhile

End

However, there is an unresolved issue with this algorithm. For empty vehicles already

assigned to specific passengers and en route to pick them up, if a closer and faster

vehicle becomes available, it is unclear how to handle the originally assigned empty

vehicles. This algorithm follows a greedy principle, but it is likely to become

suboptimal. Therefore, its actual performance needs to be observed during

implementation.

4.3 Ride-Sharing Assignment

In APT system, ride-sharing is a crucial component. Although previous algorithms have

incorporated dependent ride-sharing algorithms, where passengers can board buses that

have vacancies and share the same origin and destination points, ride-sharing was not

considered in the initial vehicle assignment. To enhance efficiency and assign limited

bus resources to more passengers, it is essential to consider ride-sharing in the bus

assignment process to stations. Specifically, we prefer to assign vehicles primarily to

30

stations with a higher number of passengers sharing the same destination. The specific

assignment method may vary depending on the factors considered.

A very simple approach is to assign passengers to vehicles by assigning all passengers

with the same origin and destination to the same vehicle, instead of assigning only one

specific passenger to a vehicle. This prevents subsequent vehicles from being assigned

to passengers who share the same origin and destination, only to find that these

passengers have already departed due to the ride-sharing mode, thus avoiding

unnecessary empty trips and achieving a better assignment method. This method is

clearly more efficient, as it incorporates the ride-sharing model during the assignment

phase. Based on this idea, we wrote the pseudocode according to the previously

mentioned Algorithm 2:

Algorithm 7

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣,

Input: destination 𝑠௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the number of unassigned passengers.

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

31

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑒𝑚𝑡௣:

assign 𝑝′ to 𝑒𝑚𝑡௣.

Remove 𝑝′ from unassigned_passengers.

Assign 𝑣 to 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers.

 EndIf

End

Additionally, consideration of assigning passengers can be introduced when sorting

stations. The widely used principles of sorting stations, such as FCFS or prioritizing

stations with the maximum number of waiting passengers, tend to assign vehicles to

stations with the longest waiting passengers or the most waiting passengers. However,

an alternative approach could be to assign vehicles to stations with the highest number

of passengers sharing the same origin and destination as one of the consideration factors.

This could improve the overall efficiency of the transportation network. Algorithms 8-

10 present the pseudocode for the SortStation function. Specifically, Algorithm 8 only

considers the ride-sharing factor, prioritizing the assignment of vehicles to the groups

with the most ride-sharing passengers.

Algorithm 8 SortStation Function1

Function: SortStation

For every station 𝑠:

 Group the passengers who are going to the same station.

Count the number of passengers in each group.

Split the group if the number of passengers in it is larger than vehicle capacity.

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as

32

𝑁 = {𝑛ଵ, … , 𝑛௞}.

s.Index  largest group number.

End

Sort station according to s.Index.

EndFunction

In Algorithm 9, we not only consider the groups with the most ride-sharing passengers,

but also the total number of waiting passengers at a station. To simultaneously account

for both factors, we use a specific index, 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑒௡೔௞
௜ୀଵ , in this pseudocode, where

𝑒 denotes the base of the natural logarithm.

Here is an example to explain this index in detail: If Station 1 has four passengers, with

two of them wanting to go to the same destination and the other two going to different

destinations, the index is calculated as 𝐼𝑛𝑑𝑒𝑥 = 𝑒ଶ + 𝑒 + 𝑒 . On the other hand, if

Station 2 has six passengers, each going to different destinations, the index is calculated

as 𝐼𝑛𝑑𝑒𝑥 = 6𝑒. Since 𝑒ଶ + 2𝑒 < 6𝑒, vehicles will be prioritized for Station 2.

This shows that the order of vehicle assignment to stations is determined by both factors.

In the formula we use, the ride-sharing factor has a larger weight because it has an

exponential impact, while the total number of waiting passengers has a relatively

smaller influence. Of course, the mathematical expression can be modified to other

forms, such as a weighted sum of the two factors.

Algorithm 9 SortStation Function2

Function: SortStation

For every station 𝑠:

 Group the passengers who are going to the same station.

Count the number of passengers in each group.

Split the group if the number of passengers in it is larger than vehicle capacity.

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as

𝑁 = {𝑛ଵ, … , 𝑛௞}.

s.Index  ∑ 𝑒௡೔௞
௜ୀଵ

End

Sort station according to s.Index.

EndFunction

33

Similarly, in Algorithm 10, we consider both the groups with the most ride-sharing

passengers and the longest waiting time as factors. The mathematical expression we use

is: 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑛௜
௪೔௞

௜ୀଵ . However, the exact mathematical expression to be used should

be determined based on actual simulations; this is just a potential example.

Algorithm 10 SortStation Function3

Function: SortStation

For every station 𝑠:

 Group the passengers who are going to the same station.

Count the number of passengers in each group.

Split the group if the number of passengers in it is larger than vehicle capacity.

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as

𝑁 = {𝑛ଵ, … , 𝑛௞}.

Calculate the waiting time of the longest waiting passenger in each group,

define it as 𝑊 = {𝑤ଵ, … , 𝑤௞}.

s.Index  ∑ 𝑛௜
௪೔௞

௜ୀଵ .

End

Sort station according to s.Index.

EndFunction

4.4 Algorithms to be tested

There are many algorithms mentioned above, and it is not feasible to test each one in

this report. Therefore, this report will test the most representative algorithms.

First, this paper will test the basic algorithms, which are Algorithm 1(MaxWaitSimple)

and Algorithm 2 (MaxNrPassengers) as mentioned earlier.

Subsequently, we will test Algorithm MaxWaitSimple-B and MaxNrPassengers-B.

Algorithm MaxWaitSimple-B integrates aspects from Algorithms 1, 5, and 7.

Specifically, it prioritizes the number of unassigned passengers when sorting stations,

allocating vehicles to stations with the highest number of unassigned passengers

(Algorithm 1). Additionally, if there are passengers with the same origin and destination,

they are added to empty trips (Algorithm 5). Furthermore, during the assignment phase,

34

it considers ride-sharing by assigning all passengers with the same origin and

destination to the same vehicle, instead of assigning only one specific passenger to a

vehicle (Algorithm 7). This is a comprehensive algorithm that considers multiple

factors, including dynamic assignment and ride-sharing. Similarly, for

MaxNrPassengers-B, we integrates aspects from Algorithms 2, 5, and 7.

Below, the pseudocode for algorithm MaxWaitSimple-B will be displayed.

Algorithm MaxWaitSimple-B

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the number of unassigned passengers.

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers.

 Else:

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑒𝑚𝑡௣:

assign 𝑝′ to 𝑒𝑚𝑡௣.

Remove 𝑝′ from unassigned_passengers.

Assign 𝑣 to 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

35

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers.

 EndIf

End

Algorithm MaxWaitSimple-C and Algorithm MaxNrPassengers-C are advanced

versions of Algorithm MaxWaitSimple-B and Algorithm MaxNrPassengers-B,

respectively. These algorithms integrate the methodologies of Algorithm 4 from the

previous chapter. When assigning vehicles, they consider not only empty vehicles but

also incoming vehicles. Specifically, if passengers are waiting at station 𝑠௜ , the

algorithm first checks for any empty vehicles at station 𝑠௜. If none are available, it then

considers whether any unassigned vehicles carrying passengers are en route to station

𝑠௜ as their destination. If neither condition is met, the nearest empty vehicle is

considered.

Algorithm MaxWaitSimple-C

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴);

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣;

Input: Vehicle set;

Output: All movements.

For every 20 simulation steps:

 SortStation  sort by the number of unassigned passengers.

𝑠  top (SortStation).

𝑝  longest waiting unassigned passenger at station 𝑠.

If station 𝑠 has empty vehicle 𝑣 then:

 Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

36

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers

 Else If station 𝑠 has incoming vehicle 𝑣’ that will be empty after

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣′ and 𝑝 to 𝑡𝑟𝑖𝑝௣.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers

Else

 Find nearest empty vehicle 𝑣.

Create EmptyTrip 𝑒𝑚𝑡௣.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑒𝑚𝑡௣.:

assign 𝑝′ to 𝑒𝑚𝑡௣.

Remove 𝑝′ from unassigned_passengers.

Assign 𝑣 to 𝑒𝑚𝑡௣.

Create Trip 𝑡𝑟𝑖𝑝௣.

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣

Chain 𝑒𝑚𝑡௣ to Movements.

Chain 𝑡𝑟𝑖𝑝௣ to Movements.

Remove 𝑝 from s.unassigned_passengers.

For all other unassigned passengers 𝑝′ with same origin and destination

as 𝑡𝑟𝑖𝑝௣:

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣

Remove 𝑝′ from s.unassigned_passengers.

 EndIf

End

37

Figure 8 demonstrates the logic when deciding which algorithm and which feature to

be tested. We first test the two basic algorithm, then we add two features to the basic

algorithm and form two enhanced algorithm. We add one more feature to the enhanced

algorithm and gets two advanced algorithms.

Figure 8. Algorithm to be tested.

38

5 Numerical Experiment

In this study, we selected some of the previously mentioned algorithms and tested them

using the VIPSim simulator on the four networks discussed in Chapter 3.

Our simulation utilizes several key performance indicators (KPIs) to evaluate the

efficiency of each algorithm across different network environments. These KPIs

include: the number of passengers served, maximum passenger wait time, average

passenger wait time, average passenger travel distance, total passenger travel distance,

empty vehicle distance ratio, average vehicle occupancy, and average queue length.

Detailed results for these KPIs will be displayed in the tables within the Appendix. In

the main body of the report, we primarily focus on analyzing two crucial metrics: the

maximum passenger waiting time and the average passenger waiting time.

5.1 Basic Algorithm

First, we tested Algorithm 1 and Algorithm 2. This was to explore whether it is better

to assign vehicles to the longest waiting passenger (following the FCFS principle) or to

assign them to the station with the highest number of unassigned waiting passengers. A

preliminary prediction is that allocating to the longest waiting passenger would be fairer

and minimize the maximum wait time, while prioritizing the station with the most

unassigned waiting passengers would increase efficiency. To test our hypothesis, we

obtained the results shown in Figures 9 and 10, where "simplesquare" represents the

symmetric simple network, while "simplesquare(2)" represents the asymmetric simple

network. Figure 9 shows the comparison results of the two algorithms in terms of the

maximum passenger wait time, while Figure 10 presents the comparison results in terms

of the average passenger wait time.

Our initial prediction was that Algorithm 1 (MaxWaitSimple), which assigns vehicles

to the longest waiting passenger, would result in a shorter maximum passenger wait

time. However, Figure 9 shows the opposite. Except for the "simplesquare" network,

where the symmetry likely minimizes the impact of different assignment strategies, we

found that Algorithm 2 (MaxNrPassengers), which prioritizes stations with the highest

number of waiting passengers, outperformed Algorithm 1 in both maximum passenger

wait time and average passenger wait time.

39

Figure 9. Comparison of Algorithm MaxNrPassengers and Algorithm MaxWaitSimple

under the metric of maximum passenger waiting time.

Figure 10. Comparison of Algorithm MaxNrPassengers and Algorithm

MaxWaitSimple under the metric of average passenger waiting time.

A detailed analysis of vehicle assignments and movements suggests that the reason for

this unexpected result is a decline in overall efficiency (evidenced by an increase in

average passenger wait time), which negatively impacts all metrics, including

maximum passenger wait time. In other words, although Algorithm 1 aimed to be fairer

by addressing the longest waiting passenger, the decrease in overall efficiency led to

worse outcomes for everyone.

Therefore, from this comparison, we conclude that in our very basic assignment

algorithms, prioritizing the number of unassigned passengers at a station is a more

40

efficient method. Additionally, when emphasizing fairness, the overall system

efficiency may suffer. More importantly, we found that a decline in overall system

efficiency can lead to worse outcomes for everyone, including those who were

supposed to be prioritized and favored.

5.2 Enhanced Algorithm

Subsequently, we executed Algorithm MaxNrPassengers-B.

Figure 11. Comparison of Algorithm MaxNrPassengers and Algorithm

MaxNrPassengers-B under the metric of maximum passenger waiting time.

Figure 12. Comparison of Algorithm MaxNrPassengers and Algorithm

MaxNrPassengers-B under the metric of average passenger waiting time.

41

The test results are shown in Figures 11 and 12. We observed that, apart from the

"SimpleSquare(2)" network where Algorithm MaxNrPassengers-B performs

marginally worse than Algorithm 2 (MaxNrPassengers), Algorithm MaxNrPassengers-

B consistently outperforms Algorithm 2 (MaxNrPassengers) in all other network

configurations. This finding is in line with our initial expectations, which posited that

Algorithm MaxNrPassengers-B would yield better results in practical network

scenarios.

Similarly, we tested Algorithm MaxWaitSimple-B, which integrates aspects from

Algorithms 1, 5, and 7. Similar to Algorithm MaxNrPassengers-B. When comparing

the results of Algorithm MaxWaitSimple-B to those of Algorithm 1 (MaxWaitSimple),

we observed different outcomes, as shown in Figures 13 and 14. The results distinctly

show that Algorithm MaxWaitSimple-B outperforms Algorithm 1 (MaxWaitSimple)

across all four networks, with the improvements being particularly significant in the

"Goteborg" network. Moreover, the advancements of Algorithm MaxWaitSimple-B

over Algorithm 1 (MaxWaitSimple) are more substantial than those of Algorithm

MaxNrPassengers-B over Algorithm 2 (MaxNrPassengers). This marked improvement

is likely due to Algorithm 1 (MaxWaitSimple) solely adhering to a FCFS basis, thus

neglecting the overall efficiency of the network. The new features integrated into

Algorithm MaxWaitSimple-B have significantly rectified this oversight, enhancing

overall network performance.

Figure 13. Comparison of Algorithm MaxWaitSimple and Algorithm

MaxWaitSimple-B under the metric of maximum passenger waiting time.

42

Figure 14. Comparison of Algorithm MaxWaitSimple and Algorithm

MaxWaitSimple-B under the metric of average passenger waiting time.

Then, compare Algorithm MaxNrPassengers-B with Algorithm MaxWaitSimple-B.

Unlike Algorithm 2 (MaxNrPassengers), which surpasses Algorithm 1

(MaxWaitSimple) in both maximum and average passenger waiting times, Algorithm

MaxNrPassengers-B performs better than Algorithm MaxWaitSimple-B in terms of

average passenger waiting time, yet it underperforms in maximum passenger waiting

time.

Figure 15. Comparison of Algorithm MaxNrPassengers-B and Algorithm

MaxWaitSimple-B under the metric of maximum passenger waiting time.

43

Figure 16. Comparison of Algorithm MaxNrPassengers-B and Algorithm

MaxWaitSimple-C under the metric of average passenger waiting time.

This aligns with our initial expectations regarding the two assignment strategies.

Assigning vehicles to the longest waiting passenger, as employed by Algorithm

MaxWaitSimple-B, reduces the maximum passenger waiting time, thereby achieving a

fairer distribution of wait times. Conversely, assigning vehicles to stations with the

highest number of unassigned waiting passengers, a strategy used by Algorithm

MaxNrPassengers-B, tends to improve the overall operational efficiency of the network.

This analysis supports the theoretical basis for the designed algorithms and their

intended impacts on network performance.

5.3 Advanced Algorithm

The subsequent section introduces the test results for Algorithm MaxNrPassengers-C

and Algorithm MaxWaitSimple-C. These algorithms build on the foundation of

Algorithm MaxNrPassengers-B and Algorithm MaxWaitSimple-B by adding the

feature "add passengers to empty trips", which was previously mentioned in Algorithm

5. Intuitively, this approach aims to reduce the mileage of empty vehicles and enhance

the overall efficiency of the network. However, it may increase the waiting time for

some passengers, as the nearest empty vehicle might arrive faster, but to avoid

dispatching empty vehicles, an incoming vehicle is assigned instead.

44

Figure 17. Comparison of Algorithm MaxWaitSimple-B and Algorithm

MaxWaitSimple-C under the metric of maximum passenger waiting time.

Figure 18. Comparison of Algorithm MaxWaitSimple-B and Algorithm

MaxWaitSimple-C under the metric of average passenger waiting time.

To validate our hypotheses, numerical experiments were conducted to compare

Algorithm MaxWaitSimple-B and Algorithm MaxWaitSimple-C. The results,

illustrated in Figures 17 and 18, revealed unexpected findings. Contrary to our initial

assumptions, it was not possible to determine which algorithm performed better under

the metrics of maximum passenger waiting time and average passenger waiting time.

Each algorithm excelled in different networks. Additionally, we observed that an

algorithm could perform either better or worse on both the maximum and average

passenger waiting times. This characteristic was consistent with the results for the basic

algorithm discussed in Section 5.1, and the underlying reasons have been discussed

45

previously and will not be reiterated here.

5.4 Overall Test Results

Finally, a comparative analysis of all the algorithms tested in this study is presented in

Figures 19 and 10. Algorithm MaxWaitSimple demonstrated the poorest performance,

ranking lowest in both efficiency (measured by average passenger waiting time) and

maximum passenger waiting time. In contrast, Algorithm MaxNrPassengers-B was

identified as the most efficient in optimizing network efficiency. Determining the best

performer in terms of maximum passenger waiting time proved to be challenging, as

no clear leader emerged from the analysis.

Furthermore, our findings indicate that the impact of additional features varies

depending on the base algorithm. For instance, incorporating the "incoming vehicles"

feature significantly improved the performance of Algorithm MaxWaitSimple-B

compared to its effect on Algorithm MaxNrPassengers-B. Therefore, it is essential not

to assume intuitively that any new feature will enhance efficiency. Instead,

improvements should be assessed based on testing outcomes across multiple networks

to determine the specific enhancements to a particular algorithm.

Balancing efficiency and fairness is crucial. The overall network's FCFS allocation

should be based on the metric of maximum passenger waiting time, which we believe

best satisfies the principle of fairness. However, results reveal that, among algorithms

with the same functionalities, those allocating vehicles based on the maximum number

of passengers often exhibit higher efficiency than those based on maximum passenger

waiting time. This necessitates an understanding that efficiency may come at the cost

of some fairness, requiring a trade-off between the two.

Simultaneously, our assumption is that there should be a trade-off between maximum

passenger waiting time and average passenger waiting time. When we focus more on

reducing maximum passenger waiting time, the average passenger waiting time tends

to increase. However, in practice, the trends of maximum passenger waiting time and

average passenger waiting time are generally similar. That is to say, when the average

passenger waiting time is low, the maximum passenger waiting time is also typically

reduced. We believe the underlying logic is that when the overall efficiency of the

network (average passenger waiting time) improves, the benefits extend to most

46

passengers, reducing the waiting time for the majority and thereby decreasing the

maximum waiting time as well. Thus, we consider that enhancing overall efficiency is

a more crucial factor in the development of transportation network algorithms.

Figure 19. Comparison of all algorithms under the metric of maximum passenger

waiting time.

Figure 20. Comparison of all algorithms under the metric of average passenger

waiting time.

Evaluating the network from the passenger perspective using metrics such as maximum

passenger waiting time and average passenger waiting time is very effective, as they

distinctly reflect the passenger experience. From the operator perspective, metrics like

47

the Ratio of empty vehicle kilometers and the average number of passengers per loaded

vehicle are also worth discussing and are often important efficiency metrics as well.

Figure 21 shows a comparison of six algorithms under the metric of Ratio of empty

vehicle kilometers, where we find that in complex networks, the algorithm

MaxNrPassengers-B is optimal. This aligns with the conclusions under the metric of

average passenger waiting time. However, in simpler networks, the algorithm

MaxNrPassengers-C performs slightly better than MaxNrPassengers-B.

Figure 22 presents the average number of passengers per loaded vehicle. We find that

the differences between algorithms on this metric are not significant. Moreover, the

average number of passengers per loaded vehicle is far less than the vehicle capacity of

10. This also indicates that our algorithms need further improvement in practical ride-

sharing scenarios (not just considering ride-sharing factors at the assignment stage).

Our algorithms and functionalities have not yet addressed this aspect, which could be

incorporated into future research. For instance, vehicles with available seats could pick

up passengers en route or plan routes that slightly detour to accommodate more

passengers, thus increasing ride-sharing opportunities. These aspects could be

considered for further development.

Figure 21. Comparison of all algorithms under the metric of ratio of empty vehicle

km.

48

Figure 22. Comparison of all algorithms under the metric of average number of

passengers per loaded vehicle.

49

6 Conclusion

6.1 Summary

This report aims to introduce the concept of APT into urban transit systems to enhance

flexibility, cost-efficiency, and overall performance. The successful implementation of

APT requires sophisticated vehicle assignment algorithms that distribute vehicles to

passengers based on specific rules. Therefore, this study summarizes and proposes

several effective assignment algorithms and evaluates their performance through

simulation experiments conducted on a traffic simulator.

Specifically, the report presents several innovative approaches to algorithm

improvement and ultimately tests six algorithms. The test scenarios are carried out on

four traffic networks within the VIPSim simulator, two of which are basic networks,

while the other two are more complex, real-world networks. The findings identify the

most efficient algorithm for network operation and offer several insightful conclusions.

For example, (1) in basic algorithms, using average passenger waiting time as a metric

for assignment achieves higher network efficiency than using maximum passenger

waiting time; (2) the effectiveness of different algorithms varies across networks with

different characteristics; (3) the impact of new features differs depending on the base

algorithm, suggesting that features should be tailored specifically for each algorithm.

These guidelines provide valuable recommendations for the future implementation of

APT.

6.2 Future Direction

Additionally, this report identifies several promising yet unexplored research areas:

（1） Due to time constraints, not all algorithms proposed in Chapter 4 were tested.

Future studies should aim to test these algorithms using simulators to better

understand their effectiveness.

（2） The algorithms tested in this study incorporate multiple features, such as ride-

sharing, adding passengers to empty trips, and considering incoming vehicles.

50

However, the specific impact of each feature on algorithm performance is

unknown. Future research should test these features individually and in various

combinations to ascertain their effects on network operations.

（3） Most allocation algorithms considered in this report are heuristic. Future

research could develop exact optimization algorithms for simple networks to

compare with our heuristic algorithms, providing a clearer perspective on their

relative strengths and weaknesses.

（4） The current allocation algorithms do not address the routing of passengers after

boarding, typically transporting groups with the same origin and destination

without considering en-route pickups. Practically, vehicles with available

capacity could pick up passengers at intermediate stops or slightly detour to

maximize ride-sharing. This aspect could be explored in future expansions.

（5） This study was conducted on only four networks, which is insufficient to

analyze the relationship between algorithms and network characteristics

thoroughly. Future studies should expand the number of test networks, selecting

those with distinctive features to evaluate different algorithms comprehensively.

（6） Demand significantly influences algorithm performance; varying demand

characteristics may necessitate different algorithms. This area warrants further

investigation.

6.3 Sustainability

Sustainability is a crucial consideration in contemporary development. The United

Nations has established 17 Sustainable Development Goals (SDGs), a global action

plan aimed at achieving peace and prosperity while protecting the planet's natural

environment by 2030.

This report contributes to sustainability through its focus on the APT system, which

aligns perfectly with "Goal 11: Sustainable Cities and Communities." The APT system

represents a more advanced, intelligent, and user-centric public transportation system

that can enhance urban mobility services. And it has the potential to provide efficient

first- and last-mile connections, thereby serving a broader demographic, including

51

vulnerable groups, and fully meeting the requirements of sustainable development.

Moreover, this report also contributes to "Goal 13: Climate Action." It aims to improve

the efficiency of the APT system by leveraging smart assignment algorithms to increase

ride-sharing and reduce empty vehicle trips. The proposed enhanced and advanced

algorithms help achieve this by minimizing unnecessary travel, reducing fuel

consumption and emissions while maintaining or improving service quality. This makes

the APT system more environmentally friendly and supportive of sustainability

initiatives.

52

Reference

Agatz, N.A.H. et al. (2011) ‘Dynamic ride-sharing: A simulation study in metro
Atlanta’, Transportation Research Part B: Methodological, 45 `(9). Available at:
https://doi.org/10.1016/j.trb.2011.05.017.

Alonso-Mora, J. et al. (2017) ‘On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment’, Proceedings of the National Academy of Sciences of the
United States of America, 114(3). Available at:
https://doi.org/10.1073/pnas.1611675114.

Alsabaan, M., Naik, K. and Khalifa, T. (2013) ‘Optimization of fuel cost and
emissions using V2V communications’, IEEE Transactions on Intelligent
Transportation Systems, 14(3). Available at:
https://doi.org/10.1109/TITS.2013.2262175.

Arslan, G., Marden, J.R. and Shamma, J.S. (2007) ‘Autonomous vehicle-target
assignment: A game-theoretical formulation’, Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME, 129(5). Available at:
https://doi.org/10.1115/1.2766722.

Carrese, F. et al. (2023) ‘The Integration of Shared Autonomous Vehicles in Public
Transportation Services: A Systematic Review’, Sustainability (Switzerland).
Available at: https://doi.org/10.3390/su151713023.

Chen, T.D., Kockelman, K.M. and Hanna, J.P. (2016) ‘Operations of a shared,
autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure
decisions’, Transportation Research Part A: Policy and Practice, 94. Available at:
https://doi.org/10.1016/j.tra.2016.08.020.

Clavijo, M., Jiménez, F. and Naranjo, J.E. (2023) ‘The Development and Prospects of
Autonomous Driving Technology’, Applied Sciences (Switzerland). Available at:
https://doi.org/10.3390/app13095377.

Cokyasar, T. and Larson, J. (2020) ‘Optimal assignment for the single-household
shared autonomous vehicle problem’, Transportation Research Part B:
Methodological, 141. Available at: https://doi.org/10.1016/j.trb.2020.09.003.

Furda, A. et al. (2010) ‘Improving safety for driverless city vehicles: Real-time
communication and decision making’, in IEEE Vehicular Technology Conference.
Available at: https://doi.org/10.1109/VETECS.2010.5494179.

Hyland, M. and Mahmassani, H.S. (2018) ‘Dynamic autonomous vehicle fleet
operations: Optimization-based strategies to assign AVs to immediate traveler
demand requests’, Transportation Research Part C: Emerging Technologies, 92.
Available at: https://doi.org/10.1016/j.trc.2018.05.003.

Iclodean, C., Cordos, N. and Varga, B.O. (2020) ‘Autonomous shuttle bus for public

53

transportation: A review’, Energies. Available at:
https://doi.org/10.3390/en13112917.

Jordan, W.C., Llc, J.A. and Scarborough, B.A. (2013) ‘TRANSFORMING
PERSONAL MOBILITY Lawrence D. Burns, Director, Program on Sustainable
Mobility’, Broadway [Preprint].

Kyriakidis, M., Happee, R. and De Winter, J.C.F. (2015) ‘Public opinion on
automated driving: Results of an international questionnaire among 5000
respondents’, Transportation Research Part F: Traffic Psychology and Behaviour, 32.
Available at: https://doi.org/10.1016/j.trf.2015.04.014.

Lam, A.Y.S., Leung, Y.W. and Chu, X. (2016) ‘Autonomous-Vehicle Public
Transportation System: Scheduling and Admission Control’, IEEE Transactions on
Intelligent Transportation Systems, 17(5). Available at:
https://doi.org/10.1109/TITS.2015.2513071.

Levin, M.W. et al. (2017) ‘A general framework for modeling shared autonomous
vehicles with dynamic network-loading and dynamic ride-sharing application’,
Computers, Environment and Urban Systems, 64. Available at:
https://doi.org/10.1016/j.compenvurbsys.2017.04.006.

Litman, T. (2014) ‘Autonomous Vehicle Implementation Predictions: Implications for
Transport Planning’, Transportation Research Board Annual Meeting, 42(2014).
Available at: https://doi.org/10.1613/jair.301.

Pakusch, C. and Bossauer, P. (2017) ‘User acceptance of fully autonomous public
transport’, in ICETE 2017 - Proceedings of the 14th International Joint Conference
on e-Business and Telecommunications. Available at:
https://doi.org/10.5220/0006472900520060.

Poinsignon, F. et al. (2022) ‘Autonomous vehicle fleets for public transport: scenarios
and comparisons’, Green Energy and Intelligent Transportation, 1(3). Available at:
https://doi.org/10.1016/j.geits.2022.100019.

Santi, P. et al. (2014) ‘Quantifying the benefits of vehicle pooling with shareability
networks’, Proceedings of the National Academy of Sciences of the United States of
America, 111(37). Available at: https://doi.org/10.1073/pnas.1403657111.

Simonetto, A., Monteil, J. and Gambella, C. (2019) ‘Real-time city-scale ridesharing
via linear assignment problems’, Transportation Research Part C: Emerging
Technologies, 101. Available at: https://doi.org/10.1016/j.trc.2019.01.019.

Soteropoulos, A., Berger, M. and Ciari, F. (2019) ‘Impacts of automated vehicles on
travel behaviour and land use: an international review of modelling studies’,
Transport Reviews, 39(1). Available at:
https://doi.org/10.1080/01441647.2018.1523253.

Tafidis, P. et al. (2022) ‘Safety implications of higher levels of automated vehicles: a
scoping review’, Transport Reviews, 42(2). Available at:

54

https://doi.org/10.1080/01441647.2021.1971794.

Tafreshian, A. and Masoud, N. (2020) ‘Trip-based graph partitioning in dynamic
ridesharing’, Transportation Research Part C: Emerging Technologies, 114.
Available at: https://doi.org/10.1016/j.trc.2020.02.008.

Xing, Y. et al. (2021) ‘Toward human-vehicle collaboration: Review and perspectives
on human-centered collaborative automated driving’, Transportation Research Part
C: Emerging Technologies, 128. Available at:
https://doi.org/10.1016/j.trc.2021.103199.

Zhang, W. et al. (2015) ‘Exploring the impact of shared autonomous vehicles on
urban parking demand: An agent-based simulation approach’, Sustainable Cities and
Society, 19. Available at: https://doi.org/10.1016/j.scs.2015.07.006.

55

Appendix

Table 1. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on
"simplesquare" network.

KPI MaxNrPassengers MaxWaitSimple

passengersServed 297 299

passengersNotServed 2 0

maxPassengerWait 1230.417693 1136.2

averagePassengerWait 297.1695203 300.2862202

averagePassengerTripTime 124.9324324 127.547973

averagePassengerKm 0.974917953 0.974986697

totalPassengerKm 288.5757141 288.5960624

vehicleKmLoaded 123.7837909 121.8244343

vehicleKmEmpty 50.72518633 53.64430304

vehicleKmEmptyRatio 0.290673793 0.305720004

passengersPerLoadedVehicle 2.330708661 2.368

energyConsumptionEmpty 9.130533539 9.655974548

energyConsumptionLoaded 22.28108236 21.92839817

maxQueueLength 51 50

averageQueueLength 6.426010127 6.364018203

Table 2. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on
"simplesquare" network.

KPI MaxNrPassengers-B MaxWaitSimple-B

passengersServed 299 297

passengersNotServed 0 2

maxPassengerWait 1126.2 1062.2

averagePassengerWait 278.2059527 286.127148

averagePassengerTripTime 120.8013514 122.8789116

averagePassengerKm 0.974986392 0.974954126

totalPassengerKm 288.595972 286.6365132

vehicleKmLoaded 125.7433765 127.6927677

vehicleKmEmpty 48.7458273 47.77602881

vehicleKmEmptyRatio 0.279362999 0.272276495

passengersPerLoadedVehicle 2.294573643 2.244274809

56

energyConsumptionEmpty 8.774248915 8.599685186

energyConsumptionLoaded 22.63380777 22.98469819

maxQueueLength 51 50

averageQueueLength 6.302413281 6.343123156

Table 3. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on
"simplesquare" network.

KPI MaxNrPassengers-C MaxWaitSimple-C

passengersServed 299 294

passengersNotServed 0 5

maxPassengerWait 1124.2 1162.2

averagePassengerWait 282.326354 300.3254229

averagePassengerTripTime 120.3016835 116.2578231

averagePassengerKm 0.974967741 0.974953546

totalPassengerKm 289.565419 286.6363426

vehicleKmLoaded 127.6826935 130.6219785

vehicleKmEmpty 40.96811476 42.91754752

vehicleKmEmptyRatio 0.242916801 0.247307046

passengersPerLoadedVehicle 2.267175573 2.194029851

energyConsumptionEmpty 7.374260656 7.725158553

energyConsumptionLoaded 22.98288482 23.51195613

maxQueueLength 51 51

averageQueueLength 6.301060833 6.198419072

Table 4. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on
"simplesquare (2)" network.

KPI MaxNrPassengers MaxWaitSimple

passengersServed 296 294

passengersNotServed 3 5

maxPassengerWait 1372.421525 1655.2

averagePassengerWait 365.5581644 434.5135522

averagePassengerTripTime 149.5687075 151.0831615

averagePassengerKm 1.272470529 1.267103876

totalPassengerKm 374.1063356 368.7272279

vehicleKmLoaded 146.6579283 141.7286907

vehicleKmEmpty 42.19058793 45.63975723

57

vehicleKmEmptyRatio 0.223409687 0.243582939

passengersPerLoadedVehicle 2.610619469 2.645454545

energyConsumptionEmpty 7.594305828 8.215156302

energyConsumptionLoaded 26.39842709 25.51116433

maxQueueLength 50 51

averageQueueLength 7.393425437 7.649005751

Table 5. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on
"simplesquare (2)" network.

KPI MaxNrPassengers-B MaxWaitSimple-B

passengersServed 297 294

passengersNotServed 2 5

maxPassengerWait 1498.2 1538.2

averagePassengerWait 367.937197 378.3727782

averagePassengerTripTime 146.0027119 149.0191126

averagePassengerKm 1.271444756 1.266746055

totalPassengerKm 375.0762031 371.156594

vehicleKmLoaded 145.1479823 142.6984295

vehicleKmEmpty 43.65006828 43.60976175

vehicleKmEmptyRatio 0.231199783 0.234073239

passengersPerLoadedVehicle 2.619469027 2.63963964

energyConsumptionEmpty 7.85701229 7.849757115

energyConsumptionLoaded 26.12663681 25.68571731

maxQueueLength 51 51

averageQueueLength 7.249603988 7.276257792

Table 6. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on
"simplesquare (2)" network.

KPI MaxNrPassengers-C MaxWaitSimple-C

passengersServed 297 294

passengersNotServed 2 5

maxPassengerWait 1415.2 1389.2

averagePassengerWait 377.202689 347.8273874

averagePassengerTripTime 148.0040816 146.2541096

averagePassengerKm 1.270769195 1.274508248

totalPassengerKm 373.6061434 372.1564084

58

vehicleKmLoaded 147.6176601 143.6581523

vehicleKmEmpty 36.80181838 40.19061221

vehicleKmEmptyRatio 0.199554942 0.21860692

passengersPerLoadedVehicle 2.587719298 2.625

energyConsumptionEmpty 6.624327308 7.234310198

energyConsumptionLoaded 26.57117881 25.85846741

maxQueueLength 51 51

averageQueueLength 7.540977791 7.255120669

Table 7. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on
"saclay" network.

KPI MaxNrPassengers MaxWaitSimple

passengersServed 511 502

passengersNotServed 48 58

maxPassengerWait 1133.636414 1323.984047

averagePassengerWait 242.0809333 271.4885905

averagePassengerTripTime 476.6328018 472.2391011

averagePassengerKm 5.924851242 5.897024203

totalPassengerKm 2601.009695 2624.17577

vehicleKmLoaded 1765.117347 1810.786639

vehicleKmEmpty 629.4546313 630.5019043

vehicleKmEmptyRatio 0.262867284 0.258266032

passengersPerLoadedVehicle 1.597402597 1.569920844

energyConsumptionEmpty 113.3018336 113.4903428

energyConsumptionLoaded 317.7211225 325.941595

maxQueueLength 14 15

averageQueueLength 1.988583833 2.14044346

Table 8. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on
"saclay" network.

KPI MaxNrPassengers-B MaxWaitSimple-B

passengersServed 520 511

passengersNotServed 40 55

maxPassengerWait 869.5094747 1257.472321

averagePassengerWait 234.3017085 262.070645

averagePassengerTripTime 477.0977376 476.0834101

59

averagePassengerKm 5.919342728 5.940796109

totalPassengerKm 2616.349486 2578.305511

vehicleKmLoaded 1820.862469 1804.245208

vehicleKmEmpty 595.0194619 617.1172835

vehicleKmEmptyRatio 0.246294926 0.25486365

passengersPerLoadedVehicle 1.582697201 1.513089005

energyConsumptionEmpty 107.1035031 111.081111

energyConsumptionLoaded 327.7552443 324.7641374

maxQueueLength 12 13

averageQueueLength 1.883673811 2.095487425

Table 9. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on
"saclay" network.

KPI MaxNrPassengers-C MaxWaitSimple-C

passengersServed 500 509

passengersNotServed 59 50

maxPassengerWait 1213.814193 807.665222

averagePassengerWait 250.4402091 230.262997

averagePassengerTripTime 468.0441247 474.5640909

averagePassengerKm 5.870923351 5.943063123

totalPassengerKm 2448.175037 2614.947774

vehicleKmLoaded 1799.04947 1858.243198

vehicleKmEmpty 602.5728121 555.9262193

vehicleKmEmptyRatio 0.250902407 0.23027639

passengersPerLoadedVehicle 1.580901857 1.536523929

energyConsumptionEmpty 108.4631062 100.0667195

energyConsumptionLoaded 323.8289046 334.4837756

maxQueueLength 13 12

averageQueueLength 1.99100723 1.854595081

Table 10. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on
"Goteborg" network.

KPI MaxNrPassengers MaxWaitSimple

passengersServed 479 333

passengersNotServed 112 258

maxPassengerWait 2587.732782 2604.069521

60

averagePassengerWait 410.2924338 620.435319

averagePassengerTripTime 350.9616708 351.7227586

averagePassengerKm 3.71232026 3.677600953

totalPassengerKm 1510.914346 1066.504276

vehicleKmLoaded 590.954049 426.390951

vehicleKmEmpty 882.4269217 1042.979991

vehicleKmEmptyRatio 0.598912935 0.709813949

passengersPerLoadedVehicle 2.417910448 2.288732394

energyConsumptionEmpty 158.8368459 187.7363984

energyConsumptionLoaded 106.3717288 76.75037118

maxQueueLength 12 28

averageQueueLength 2.268316915 2.842148137

Table 11. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on
"Goteborg" network.

KPI MaxNrPassengers-B MaxWaitSimple-B

passengersServed 517 491

passengersNotServed 74 100

maxPassengerWait 2587.732782 1596.139764

averagePassengerWait 304.881723 445.6266493

averagePassengerTripTime 342.0181435 344.0252381

averagePassengerKm 3.671549944 3.661150324

totalPassengerKm 1740.314673 1537.683136

vehicleKmLoaded 694.6161465 610.8298581

vehicleKmEmpty 761.6260854 850.7508375

vehicleKmEmptyRatio 0.523007827 0.582075858

passengersPerLoadedVehicle 2.304166667 2.298076923

energyConsumptionEmpty 137.0926954 153.1351508

energyConsumptionLoaded 125.0309064 109.9493745

maxQueueLength 10 17

averageQueueLength 2.268316915 2.842148137

Table 10. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on
"Goteborg" network.

KPI MaxNrPassengers-C MaxWaitSimple-C

passengersServed 524 489

61

passengersNotServed 67 102

maxPassengerWait 2587.732782 1617.648836

averagePassengerWait 328.8085169 438.5030996

averagePassengerTripTime 341.4640523 348.9352381

averagePassengerKm 3.662987642 3.690146466

totalPassengerKm 1681.311328 1549.861516

vehicleKmLoaded 690.2576569 586.0572624

vehicleKmEmpty 773.7722116 873.1938763

vehicleKmEmptyRatio 0.528522149 0.59838492

passengersPerLoadedVehicle 2.295833333 2.348258706

energyConsumptionEmpty 139.2789981 157.1748977

energyConsumptionLoaded 124.2463782 105.4903072

maxQueueLength 11 16

averageQueueLength 1.90074637 2.12458983

62

TRITA –

Stockholm, Sweden 2024

www.kth.se

ABE-MBT-24519

