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Abstract 

As autonomous vehicle (AV) technology evolves and matures, automated public transit 
(APT) is gaining attention due to its flexibility, cost-effectiveness, and efficiency. This 
report explores various algorithms for allocating vehicles to passengers within APT 
systems. It aims to organize and propose effective allocation strategies and validate 
them through comparative analyses on test networks. Overall, the paper introduces 
several algorithms, with six specifically compiled and tested using the VIPSim 
simulator across four traffic networks. Two of these networks are basic, while the other 
two are more complex and represent real-world scenarios. Through these numerical 
experiments, the algorithm that maximizes network operational efficiency was 
identified, and several instructive conclusions were drawn from the comparative 
analysis. 

Keywords 

Automated Public Transit, autonomous vehicle, assignment methods, ride-sharing, 
simulation 
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Sammanfattning 

När tekniken för autonoma fordon (AV) utvecklas och mognar, får automatiserad 
kollektivtrafik (APT) uppmärksamhet på grund av sin flexibilitet, kostnadseffektivitet 
och effektivitet. Denna rapport utforskar olika algoritmer för att tilldela fordon till 
passagerare inom APT-system. Den syftar till att organisera och föreslå effektiva 
allokeringsstrategier och validera dem genom jämförande analyser på testnätverk. 
Sammantaget introducerar rapporten flera algoritmer, varav sex specifikt har 
sammanställts och testats med hjälp av VIPSim-simulatorn över fyra trafiknätverk. Två 
av dessa nätverk är grundläggande, medan de andra två är mer komplexa och 
representerar scenarier från verkliga världen. Genom dessa numeriska experiment 
identifierades algoritmen som maximerar nätverkets operativa effektivitet, och flera 
instruktiva slutsatser drogs från den jämförande analysen. 

Nyckelord 

Automatiserad kollektivtrafik, autonoma fordon, tilldelningsmetoder, samåkning, 
simulering 
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1 Introduction 

1.1 Background 

Autonomous driving has rapidly become a pivotal topic within the realm of 

transportation technology, evolving significantly in recent years. This evolution marks 

a monumental stride in transportation innovation, potentially reshaping the landscape 

of mobility and efficiency(Clavijo, Jiménez and Naranjo, 2023). The primary benefits 

of autonomous driving extend well beyond relieving humans from the task of driving; 

they encompass the capability of vehicles to collect and analyze varying spatiotemporal 

data, thereby facilitating more informed and efficient driving decisions and route 

planning. Consequently, autonomous vehicles (AVs) are poised to become a 

fundamental component of smart city infrastructures. 

 

While the organization and design of public transportation are crucial components of 

large cities, aiming to enhance sustainability and urban living standards, there are still 

various issues that persist(Iclodean, Cordos and Varga, 2020). Despite each city facing 

unique challenges, the general goals remain consistent: to improve the operational 

efficiency of public transportation, increase the passenger capacity per bus, reduce 

passenger waiting times, and decrease the operating costs associated with these systems, 

among others. Therefore, integrating autonomous driving with public transport and 

incorporating this synergy into urban settings can offer numerous benefits. 

 

In this report, we propose the replacement of traditional buses with autonomous buses 

to improve the public transportation system. Specifically, rather than operating buses 

on fixed routes, we suggest assigning buses to passengers based on demand. This 

approach would utilize real-time data on passengers and vehicles on roads to 

intelligently assign vehicles to passengers, thereby achieving optimal objectives. Such 

a system offers multiple advantages. On-demand transportation enables dynamic rapid 

transit, enhancing the flexibility of public transport and allowing for the expansion of 

various features, such as enabling passengers to reserve seats through an app, thereby 

improving communication between passengers and the public transport system. 

Additionally, in suburban areas, where demand is more sporadic, supplying vehicles 

on-demand can significantly reduce the occurrence of empty runs. Furthermore, this 
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approach provides efficient first- and last-mile connections, particularly to areas with 

low demand(Carrese et al., 2023). From an economic perspective, incorporating AVs 

into the public transport system can also be beneficial. By combining AVs with existing 

public transport frameworks, there's a substantial opportunity to alleviate traffic 

congestion significantly, thus contributing to a more sustainable and efficient urban 

transit system(Poinsignon et al., 2022). 

 

There are notable examples of practical initiatives where AVs have been integrated into 

existing public transportation networks. In Rouen, France, for example, a fleet of four 

AVs has been seamlessly integrated, demonstrating the critical role of collaboration and 

regulatory frameworks in adapting these vehicles to meet local transit needs. Similar 

initiatives have been launched in Sitten, Switzerland, where autonomous buses have 

been operational since 2016, and in Lyon, France, and Michigan, USA. Collectively, 

these autonomous buses have accumulated over 50,000 kilometers in travel distance 

and have transported more than 100,000 passengers(Pakusch and Bossauer, 2017). 

1.2 Research Questions 

However, there are several critical issues still to be addressed in the field of 

Autonomous Public Transport (APT), such as how to assign vehicles to passengers. 

Furthermore, the criteria for assigning vehicles to passengers need to be established: 

should the aim be to maximize the number of people transported, minimize passengers' 

waiting time, or provide the fairest public transport (PT) service? What impacts might 

focusing on a single objective have on other objectives? How can we compromise 

between different objectives? These are all questions that require further analysis and 

research. Therefore, in this report, we aim to discuss different assignment algorithms 

and do simulation tests on them. Thus, reaching constructive conclusions. 

1.3 Delimitations 

At the same time, there are some issues that this report will not discuss. For example, 

the report will not discuss the scope of APT implementation, nor will it address the 

pricing issues of such APT systems, nor the safety concerns of AVs. Even though these 

issues are practically significant in reality, we will focus on the main topic of our 

research. Additionally, our test network is within a certain range, such as a part of 

Goteborg.  
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1.4 Disposition 

In the following report, related work in AVs and APT assignment algorithms will be 

presented in Chapter 2. In Chapter 3, the settings for APT, the mathematical models 

used, and the simulation network will be introduced. Chapter 4 will introduce the 

algorithms we propose. Chapter 5 will display the test results of the algorithms on the 

simulation network. Finally, the conclusion will be discussed in Chapter 6. 
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2 Related work 

2.1 Autonomous Vehicles 

The concept of AVs was introduced over 30 years ago, transitioning from the realm of 

science fiction to a scientific reality. This shift has been fueled by rapid advancements 

in information technology, artificial intelligence, and wireless communications, 

particularly vehicle networking and V2X communications. AVs are equipped with 

numerous sensors, including rangefinders, radars, cameras, GPS modules, and 

gyroscopes. These sensors provide comprehensive perception capabilities that enable 

the vehicle to adapt to its surroundings(Lam, Leung and Chu, 2016). Additionally, AVs 

can establish informational connections with other vehicles and infrastructure, 

facilitating better decision-making. A significant number of companies are investing in 

autonomous driving technologies and planning to produce AVs. For instance, Google 

conducted tests on driverless cars without a safety driver in 2011. Companies like 

Waymo, Tesla, and Ford are also developing driverless vehicles. Research consistently 

indicates that AVs will soon become mainstream, fundamentally transforming human 

mobility. 

 

There has been extensive research on AVs, primarily focusing on technology, safety, 

and liability(Tafidis et al., 2022), as well as travel behavior(Soteropoulos, Berger and 

Ciari, 2019), land use(Soteropoulos, Berger and Ciari, 2019), and human-autonomy (H-

A) collaboration(Xing et al., 2021). These studies explore various dimensions of how 

AVs impact our lives, from technical advancements and the responsibility issues they 

entail to their effects on travel patterns and urban planning and even the collaborative 

dynamics between humans and autonomous systems. 

 

The introduction of AVs has brought numerous benefits to urban transportation. With 

rapid urban population growth, the concept of the "smart city" is increasingly discussed. 

A critical aspect of the smart city is "smart transport," where existing literature 

extensively refers to AVs as a solution to meet the escalating demands of urban 

transportation, aiming for greater efficiency, safety, and sustainability. Studies suggest 

that AVs enhance traveler convenience and safety, reduce the negative impacts of 

congestion, and are more environmentally friendly(Litman, 2014). Additionally, it is 
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proposed that AVs can intelligently adjust the timing, speed, distance, and other driving 

behaviors between vehicles(Kyriakidis, Happee and De Winter, 2015). Vehicles use 

various on-board wireless communication technologies for vehicle-to-vehicle (V2V) 

and vehicle-to-infrastructure communications, expanding the possibilities for AVs. 

Research focusing on the wireless communication framework for driverless city 

vehicles has demonstrated improvements in safety and efficiency through enhanced 

communications(Furda et al., 2010). Moreover, optimization models for traffic light 

signals to vehicles (TLS2V) and V2V communications have been developed to reduce 

fuel usage and emissions(Alsabaan, Naik and Khalifa, 2013). 

2.2 Autonomous Public Transport 

Public transportation is a vital component of urban mobility, generally categorized into 

two main types: rail and road. Rail-based public transport systems rely on a network of 

tracks, while road public transport primarily includes buses and taxis. Buses have a 

larger passenger capacity and can serve more passengers per trip. However, they are 

less flexible, operating on fixed routes and schedules. Taxis offer high flexibility, with 

routes that can change in real-time based on passenger demand, but they have a smaller 

capacity. The question arises whether there is a mode of public transport that could 

integrate the advantages of both buses and taxis. This would involve offering on-

demand services to maintain flexibility while supporting ride-sharing to enhance 

efficiency(Lam, Leung and Chu, 2016). APT systems are proposed as a solution to 

achieve this goal. Such public transport methods are beneficial; research shows that 

adding a sharing feature to taxis can decrease total travel distance by 40% or more, 

despite a slight increase in passenger discomfort. These benefits come with reduced 

service costs, emissions, and staggered fares, suggesting wide passenger acceptance of 

this shared service(Santi et al., 2014). This also highlights the promising prospects of 

APT. 

2.3 Assignment Methods 

In the operation of APT within urban areas, two primary considerations are pivotal: (1) 

strategies for assigning AVs to traveler demand requests, and (2) sharing strategies for 

AVs.  

 

For the assignment of AVs to travelers, a common strategy is the heuristic approach. 
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The most basic heuristic method focuses on minimizing the longest waiting time, 

utilizing the first-come, first-served (FCFS) principle to assign travelers to the nearest 

available AV. This helps in reducing wait times by efficiently allocating nearby AVs as 

demand arises(Jordan, Llc and Scarborough, 2013). In addition, the FCFS method is 

also employed by Zhang and others, where users calling simultaneously are randomly 

sorted. This randomization prevents the system from consistently prioritizing the same 

areas, ensuring a more equitable service distribution across different urban 

regions(Zhang et al., 2015). Furthermore, in 2016, Chen and colleagues improved this 

approach by refining the search for the "nearest" available AV. They segmented the 

overall area into sub-regions, initially searching for an available AV within the same 

sub-region, and expanding the search to adjacent sub-regions if necessary. This method 

helps in efficiently managing the distribution of AVs and reducing the time it takes for 

an AV to reach a requester(Chen, Kockelman and Hanna, 2016). Differing from the 

traditional priority of servicing the traveler with the longest waiting time, another 

approach focuses on minimizing the number of vehicles dispatched. This involves 

incorporating passengers en route into ongoing trips, even if this deviates from the 

FCFS principle. This adjustment is permitted because it does not add any extra travel 

time for the AVs, thereby optimizing the use of vehicles and minimizing unnecessary 

travel(Levin et al., 2017).  

 

Additionally, there are optimization-based methods for assigning AVs. An approach 

utilizes optimization strategies to dynamically assign AVs to traveler requests, allowing 

for the reassignment of previously assigned travelers to other AVs as new requests enter 

the system. This method aims to minimize the total waiting time for travelers or the 

distance traveled by vehicles(Hyland and Mahmassani, 2018). One study developed a 

mixed integer linear programming model to tackle the single-household shared AV 

problem(Cokyasar and Larson, 2020).  

 

Another approach employed the maximum weight bipartite matching model to 

maximize system-wide travel savings in a dynamic ride-sharing context. By 

constructing a bipartite graph, each driver and passenger is represented as a node, and 

feasible pairings are depicted as edges. The weight of each edge represents the travel 

distance saved by the pairing. This method also considers the matching needs of round-

trip journeys by adding constraints to ensure simultaneous matching for these 

trips(Agatz et al., 2011). Furthermore, a game-theoretical framework has been applied 
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to the assignment of AVs to passengers. This method structures the vehicle-target 

assignment problem as a multiplayer game and uses pure Nash equilibrium to represent 

equitable vehicle assignments, aiming to maximize overall system utility(Arslan, 

Marden and Shamma, 2007).  

2.4 Ride-Sharing Methods 

In the study of ride-sharing strategies for AVs, a classical method involves the use of 

shareability networks. Santi and colleagues introduced such a graph model where each 

node represents an individual trip, and the edges between nodes indicate that these trips 

can be reasonably shared. This network is transformed into a graph matching problem, 

utilizing maximum matching or maximum weight matching algorithms to find optimal 

trip pairings, thereby maximizing the number of shared trips or minimizing the total 

time required to complete all trips(Santi et al., 2014).  

 

Further extensions of this method have been applied to the sharing of a large number 

of passengers and trips. Improvements include adding vehicles to the shareability 

network and constructing an integer linear optimization model on this network to enable 

both trip-to-trip and vehicle-to-trip matching(Alonso-Mora et al., 2017). Another 

approach adapts this model to allow a single vehicle to match with only one new request 

while still handling multiple requests simultaneously. This method involves 

transforming the carpooling problem into a joint optimization framework involving 

linear assignment between fleet vehicles and customer trip requests, which results in a 

significantly faster algorithm(Simonetto, Monteil and Gambella, 2019). Additional 

refinements involve addressing one-to-one ride-matching problems by breaking down 

the original graph into multiple subgraphs and introducing various clustering 

algorithms to boost computational efficiency, optimizing the process for dynamic ride-

sharing scenarios(Tafreshian and Masoud, 2020).  

 

However, there remain many areas in previous research that have not been thoroughly 

explored. For example, some algorithms have not been tested in micro-simulation 

environments, or, in other words, lack randomness, making them unable to accurately 

represent real-world traffic conditions. Moreover, while many assignment algorithms 

reference FCFS and introduce new, more efficient algorithms based on it, they do not 

clearly indicate how they balance efficiency and fairness. Additionally, the applicability 

of these algorithms may be related to the characteristics of the network and the scale of 
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the demand, which has been rarely mentioned in prior literature. The availability of 

historical data and real-time mobile data makes it possible to predict passenger behavior, 

and proactive vehicle assignment based on predictions could be highly beneficial in 

APT, but few studies have considered this aspect. 

 

Since many studies have not used simulations that accurately represent real traffic 

conditions to test their algorithms, and because each algorithm has been tested on 

different networks and environments without a unified testing platform, this report aims 

to use simulation to test, investigate, and analyze these algorithms. In this report, we 

use four different testing networks, starting with two simple networks (one is a rhombus 

network with equal sides, and the other is a quadrilateral network with unequal sides), 

and then using more complex real networks to test different algorithms. We will discuss 

and analyze whether the characteristics of the network impact the efficiency of the 

algorithms and their comparative performance.  
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3 Problem Statement 

In this section, we will present an introduction to the settings of our APT system, the 

mathematical model of the system, and the simulated networks on which we will 

conduct our numerical experiments. 

3.1 Problem Settings 

In the APT system, we aim to study, autonomous buses that transport passengers within 

a designated area. This area contains several predefined stations, and the autonomous 

buses operate between these fixed stations, as can be seen in Figure 1. Passengers need 

to wait at the stations, and since this study does not consider features such as passenger 

bookings through an app, autonomous buses can only obtain passenger travel 

information when passengers arrive at the station. The buses then adjust their routes 

accordingly. The primary focus of this study is how these autonomous buses can be 

optimally assigned to passengers based on the available information. Additionally, 

autonomous buses also consider ride-sharing to maximize the utilization of their large 

capacity. The capacity per vehicle adopted in this article is 10. The key difference 

between autonomous buses and regular public transportation buses is that regular buses 

run on fixed routes and schedules, while autonomous buses are assigned on-demand 

based on passenger needs, dynamically adjusting their routes in real-time. Figure 1 is 

an illustration of the APT system. 

 

Figure 1. Illustration of APT system. 

 



 

16 
 

3.2 Mathematical Model 

The network will be represented by a graph 𝐺 = 𝐺(𝑉, 𝐴), where every vertex 𝑣 ∈ 𝑉 

is an intersection or a bus station, and every segment 𝑎 ∈ 𝐴 represents a section of the 

network. Each segment 𝑎 contains the information of the starting point, the terminal 

point, and the time required to traverse the segment, which can also be considered as 

the segment's distance. 

 

The demand is represented by the arrival of the passengers 𝑝. In this report, two types 

of demand are considered: (1) The first type consists of sequentially arriving passengers, 

for whom we know the station of arrival, the time of arrival, and their desired 

destination. (2) The second type of demand is "bunch demand," where the information 

provided includes the station of arrival, the time of arrival, the total number of 

passengers, and their respective desired destinations. The reason for considering such a 

"bunch arrival" is that our APT system is designed to integrate with other modes of 

transportation, thereby forming a multi-modal transport system. For example, the 

arrival of trains or subways might bring a group of passengers to a station. 

 

There is also a vehicle set to indicate the locations of the vehicles, their destinations, 

the number of passengers on board, and whether the vehicle is already assigned to some 

certain passengers. 

 

The inputs of the model are: (1) the graph 𝐺 = 𝐺(𝑉, 𝐴); and (2) the demands, which 

contains information such as the passengers' arrival time at the station, the number of 

passengers, and their destinations. The output of the model is the set of all movements 

performed by the vehicles. 

 

There are many potential objective functions for evaluating or optimizing the 

aforementioned APT system. One could aim to minimize the maximum waiting time or 

minimize the average waiting time. These two different objectives address individual 

goals and network-wide goals, respectively. When minimizing the maximum waiting 

time, the overall network efficiency might be compromised to prioritize passengers 

with longer waiting times. On the other hand, when minimizing the average waiting 

time, some passengers in remote areas might never be served. Alternatively, from the 

perspective of vehicle operation, the objective function could be to maximize the total 
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number of passengers served within a certain time or the ratio of effective trips 

(assuming trips with passengers on board are considered effective). Different objective 

functions will lead to different evaluations of the system and result in different 

optimization algorithms. 

3.3 Simulation Networks 

In our report, we will utilize VIPSim, a micro-level traffic simulation software, as our 

primary simulation tool. This software allows for the importation of specific maps to 

set up designated stations, predefine passenger travel patterns, and guide the movement 

trajectories of autonomous buses using various methods, including an element of 

randomness to better reflect real-world scenarios. 

 

The study will be conducted across four different traffic networks to test various 

proposed algorithms—from the simplest networks to more complex ones representing 

portions of real urban areas—aiming for a comprehensive analysis of the algorithms ' 

performance across network types. 

 

Simulation case 1: The first traffic network is designed as a simple square grid 
comprising four stations, as shown in Figure 2, and we will refer to it as "simplesquare" 
in the following text. Vehicles move along diagonal roads, resulting in equal travel 
distances between each station and the remaining three. This design significantly 
simplifies the road network complexity, but it may also introduce certain considerations. 
For instance, the difference in dispatching an idle bus from the north station to the south 
versus to the west is not markedly distinct. Consequently, this could obscure certain 
factors during algorithm analysis.  

 

The demand used in this network includes both individual demand and bunch demand. 

The bunch demand takes into account situations when a large public transport vehicle, 

such as a train, arrives at the station, and a group of passengers arrives at the same time. 

The total demand in the simulation is 299 passengers. Additionally, there are a total of 

3 AVs in this network. And the simulation time is 7200 simulation steps, which is 2 

hours in total. 



 

18 
 

 

Figure 2. "Simplesquare" network. 

 

Simulation case 2: The second traffic network, is shown in Figure 3, which will refer 

to it as "simplesquare (2)", introduces additional complexity to the initial grid by 

extending the station on the right further outward. This change disrupts the symmetry 

among the stations, effectively addressing the considerations previously mentioned. By 

integrating this modified layout with the initial traffic network, we enhance our capacity 

to conduct a more precise analysis of algorithm performance across simpler networks. 

This simulation network shares the same demand, simulation time with "simplesquare" 

network. 

 

 
Figure 3. "Simplesquare (2)" network. 
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The previously discussed networks are simplistic road networks, which enable us to 

analyze each specific vehicle movement in detail. However, they clearly do not 

represent the conditions experienced in the real world. To examine the effects of 

algorithms on a more macroscopic level across an entire region, it is necessary to 

consider larger networks. Therefore, we have incorporated two networks that exist in 

the real world. 

 

Simulation case 3: The "Saclay" network, located in Saclay, France, consists of 22 

stations and is characterized by its considerable length in the longitudinal direction and 

shorter width in the transverse direction. This configuration provides a unique 

framework for studying traffic flow dynamics and algorithm efficiency in a 

longitudinally extended urban setting. Figure 4 shows the network in the simulator, 

while Figure 5 shows the network in the map. 

 

 

Figure 4. "Saclay" network (a). 

 

 
Figure 5. "Saclay" network (b). 

The "Saclay" network also contains individual demand and bunch demand, with a total 

demand of 560 passengers. The simulation time is 3600 simulation steps, equivalent to 

one hour. 

 

Simulation case 4: Subsequently, we introduced a part of the road network located in 

the southwest corner of Goteborg, as shown in Figure 6. Compared to the "Saclay" 
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network, the "Goteborg" network contains more stations and exhibits a more complex 

structure. It distinctly presents a grid-like configuration. A notable feature of the 

"Goteborg" network, as shown in Figure 6, is a station situated in the northeast corner 

of the considered area, at the upper right of the image. This station acts as a crucial 

transport hub connecting the southwest area of Goteborg with other parts. The 

deployment of APT in this region aims to provide on-demand public transport services 

in areas with sparse demand. This setup not only meets the local mobility needs within 

the region but also supports extensive travel to the transport hub for reaching other areas.  

 

Considering the actual circumstances, unlike the three networks mentioned above, this 

network only includes individual demand, with a total demand of 591 passengers. The 

simulation time is one hour. In this example, the efficiency of the algorithm can be 

tested, demonstrating the significant role and practical applications of APT in urban 

transportation. 

 

 
Figure 6. "Goteborg" network.  
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4 Methodology 

In this section, we will provide a detailed explanation of the algorithms considered for 
allocating autonomous buses to passengers. We begin with the basic algorithm based 
on the simple nearest neighbour assignment and then progress to more sophisticated 
algorithms that incorporate ride-sharing during the assigning process.  

4.1 Simple nearest neighbour assignment 

The Simple Nearest Neighbor (SNN) assignment algorithm strategically assigns the 

closest available buses to passengers based on specific criteria. Illustrated in Figure 7 

is an operational diagram of this algorithm, where assignments are primarily based on 

the length of time passengers have waited at the station, adhering to the FCFS principle. 

This criterion can be adjusted to account for either the total number of people waiting 

at the station or the count of unassigned passengers. One of our key objectives is to 

evaluate the operational efficiency of algorithms under these varying criteria. Notably, 

the "Find ride-share candidates" step highlighted in Figure 7 refers to a ride-sharing 

algorithm that functions independently from the assignment mechanism. This feature 

enables passengers to board a bus if both the start and end points of the bus’s route align 

with their own destinations, provided that the bus has available seats. This ride-sharing 

algorithm will be integrated into all subsequent algorithms discussed in our study. 

 

 

Figure 7. Operational diagram of SNN assignment algorithm. 

 

The pseudocode for the algorithm is as follows: 
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Algorithm 1 SNN (MaxWaitSimple) 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the longest waiting time of unassigned passengers. 

𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 EndIf 

End 

 

If the criterion is changed to the number of unassigned passengers at the station, the 

pseudocode remains similar and is presented as follows: 

 

Algorithm 2 SNN (MaxNrPassengers) 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the number of unassigned passengers. 
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𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 EndIf 

End 

 

Considering the large number of passengers and vehicles, assigning only once every 20 

simulation steps (where 20 serves as a hyperparameter that can be adjusted according 

to specific needs) might be inadequate. Thus, it is proposed to continue the assignment 

process until there are no remaining vehicles or unassigned passengers. The pseudocode 

for this refined approach is outlined below: 

 

Algorithm 3  

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the longest waiting time of unassigned passengers. 

While the number of unassigned passengers are not zero do: 

  𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 
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   Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

  Else: 

   Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

  EndIf 

 EndWhile 

End 

 

Previous algorithms considered the assignment of empty vehicles exclusively. However, 

consider a scenario where all buses in a current area are too far from the passenger 𝑝, 

who has been waiting the longest. Meanwhile, some vehicles, although currently 

carrying passengers, are soon to arrive at the station where passenger 𝑝 is standing to 

drop off passengers and become available. Subsequently, these vehicles can transport 

passenger 𝑝  to their destination. Including such incoming buses in the assignment 

algorithm can significantly reduce the waiting time for the passenger who has waited 

the longest, better meeting the FCFS criteria by actually transporting passengers (rather 

than merely assigning them based on FCFS). This approach also avoids the inefficiency 

of distant empty vehicles traveling to pick up passenger 𝑝 , thereby making the 

assignment process both fairer and more efficient. An improved pseudocode based on 

Algorithm 1 is outlined as follows: 

 

Algorithm 4 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣, 

Input: destination 𝑠௣; 

Input: Vehicle set; 

Output: All movements. 
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For every 20 simulation steps: 

 SortStation  sort by the longest waiting time of unassigned passengers. 

𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 Else If station 𝑠 has incoming vehicle 𝑣’ that will be empty: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣′ and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

 EndIf 

End 

 

Another approach, very similar to Algorithm 4, considers all buses during the 

assignment process, not just empty or incoming buses. This algorithm calculates the 

nearest vehicle by assessing the distance/time from non-empty buses to the waiting 

passenger, which includes the time required for the buses to reach their destinations, 

plus the time needed to transition from these destinations to the station where the 

waiting passenger is located (if the bus is incoming and its current destination is the 

waiting passenger's station, this transition time is counted as zero). For empty buses, 

the consideration is simply the current distance/time to the waiting passenger. By 

calculating and comparing the distance/time for all buses in the network to the waiting 

passenger, vehicles are an assigned accordingly. This method is an advanced refinement 
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of Algorithm 4, theoretically enhancing both fairness and efficiency. However, the 

implementation of this algorithm presents certain challenges, particularly during the 

compilation phase. Given that the pseudocode for this algorithm closely resembles that 

of Algorithm 4, it is not detailed further here. 

4.2 Dynamic Assignment 

In the SNN assignment method, once a vehicle is assigned to a passenger, the 

assignment is immutable. This approach is somewhat unrealistic in real-world scenarios, 

primarily because the factors considered are often fewer than those actually impacting 

real-world situations, and the judgment of the "nearest vehicle" is based solely on 

distance or limited historical information about the road environment, which can be 

inaccurate. 

 

More importantly, our algorithms are heuristic rather than exact optimization. As the 

time window progresses, although we provide the optimal solution at each individual 

time point—identifying and assigning the nearest vehicle—the solution is not optimal 

over a period. As buses continuously become available due to passengers alighting and 

new passengers appear at stations waiting for a ride, the overall optimal solution 

dynamically changes. To address this, our algorithm needs to incorporate the capability 

to dynamically adjust previous assignments. 

 

One of the simplest forms of dynamic assignment involves considering already defined 

empty trips. Specifically, if a bus has an empty trip planned for picking up a passenger, 

and there happens to be another passenger or passengers needing a ride from the starting 

point to the destination of this empty trip, then the bus can accommodate these 

additional passengers. This approach is quite rational because, although it deviates from 

the FCFS principle, it does not adversely affect anyone's waiting time or interests. 

Implementing this strategy will undoubtedly enhance the efficiency of the APT system 

based on the existing algorithm framework. The specific pseudocode for this approach 

is outlined in Algorithm 5. 

 

Algorithm 5 Add passengers to empty trips 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣, 
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Input: destination 𝑠௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the longest waiting time of unassigned passengers. 

𝑠௜  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠௜ has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from 𝑠௜.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣 . //the station where empty vehicle 𝑣  is 

located is referred to as 𝑠௝ 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from 𝑠௜.unassigned_passengers. 

If there are passengers wishing to travel from 𝑠௝ to 𝑠௜: 

   Set Ρ  passengers wishing to travel from 𝑠௝ to 𝑠௜  

//boarding based on waiting time, total number does not 

exceed vehicle capacity 

Remove passengers in set Ρ from 𝑠௝.unassigned_passengers 
 

  EndIf 

 EndIf 

End 

 

A deeper reassignment goes beyond reassigning passengers and vehicles that merely 

have the same origin and destination; it involves reassigning all vehicles. Another 

approach is to dynamically find the optimal assignment in real-time. More specifically, 

the algorithm adjusts the assignment of passengers in already assigned vehicles based 

on updated real-time conditions, ensuring that the new assignment is better for each 
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passenger than the original. This is equivalent to reassigning all passengers or vehicles 

during each assignment cycle, regardless of whether they were previously assigned, 

except for those who are already on board. This leads to the following code: 

 

Algorithm 6 Reassignment  

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣, 

Input: destination 𝑠௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps:  

 SortStation  sort by the longest waiting time of unassigned passengers. 

While the number of unassigned passengers are not zero do: 

  𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If 𝑝.veh is empty:  //𝑝 is not yet assigned to any vehicle before 

 If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

𝑝.veh  𝑣 

 EndIf 

Else: 

 If station 𝑠 has empty vehicle 𝑣 then: 

  Unassign the 𝑒𝑚𝑡௣  and 𝑡𝑟𝑖𝑝௣  that was originally 

assigned to 𝑝.veh. 

Create Trip 𝑡𝑟𝑖𝑝௣. 
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Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

If 𝑝.veh≠ 𝑣: 

 Unassign the 𝑒𝑚𝑡௣  and 𝑡𝑟𝑖𝑝௣  that was 

originally assigned to 𝑝.veh. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ and 𝑒𝑚𝑡௣. 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

𝑝.veh  𝑣 
 

  EndIf 
 

   EndIf 

  EndIf 

 EndWhile 

End 

 

However, there is an unresolved issue with this algorithm. For empty vehicles already 

assigned to specific passengers and en route to pick them up, if a closer and faster 

vehicle becomes available, it is unclear how to handle the originally assigned empty 

vehicles. This algorithm follows a greedy principle, but it is likely to become 

suboptimal. Therefore, its actual performance needs to be observed during 

implementation. 

4.3 Ride-Sharing Assignment 

In APT system, ride-sharing is a crucial component. Although previous algorithms have 

incorporated dependent ride-sharing algorithms, where passengers can board buses that 

have vacancies and share the same origin and destination points, ride-sharing was not 

considered in the initial vehicle assignment. To enhance efficiency and assign limited 

bus resources to more passengers, it is essential to consider ride-sharing in the bus 

assignment process to stations. Specifically, we prefer to assign vehicles primarily to 
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stations with a higher number of passengers sharing the same destination. The specific 

assignment method may vary depending on the factors considered. 

 

A very simple approach is to assign passengers to vehicles by assigning all passengers 

with the same origin and destination to the same vehicle, instead of assigning only one 

specific passenger to a vehicle. This prevents subsequent vehicles from being assigned 

to passengers who share the same origin and destination, only to find that these 

passengers have already departed due to the ride-sharing mode, thus avoiding 

unnecessary empty trips and achieving a better assignment method. This method is 

clearly more efficient, as it incorporates the ride-sharing model during the assignment 

phase. Based on this idea, we wrote the pseudocode according to the previously 

mentioned Algorithm 2: 

 

Algorithm 7 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣, 

Input: destination 𝑠௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the number of unassigned passengers. 

𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 
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For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑒𝑚𝑡௣:  

assign 𝑝′  to 𝑒𝑚𝑡௣. 

Remove 𝑝′  from unassigned_passengers. 

Assign 𝑣 to 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers. 

 EndIf 

End 

 

Additionally, consideration of assigning passengers can be introduced when sorting 

stations. The widely used principles of sorting stations, such as FCFS or prioritizing 

stations with the maximum number of waiting passengers, tend to assign vehicles to 

stations with the longest waiting passengers or the most waiting passengers. However, 

an alternative approach could be to assign vehicles to stations with the highest number 

of passengers sharing the same origin and destination as one of the consideration factors. 

This could improve the overall efficiency of the transportation network. Algorithms 8-

10 present the pseudocode for the SortStation function. Specifically, Algorithm 8 only 

considers the ride-sharing factor, prioritizing the assignment of vehicles to the groups 

with the most ride-sharing passengers. 

 

Algorithm 8 SortStation Function1 

Function: SortStation 

For every station 𝑠: 

 Group the passengers who are going to the same station. 

Count the number of passengers in each group. 

Split the group if the number of passengers in it is larger than vehicle capacity. 

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as 
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𝑁 = {𝑛ଵ, … , 𝑛௞}. 

s.Index  largest group number. 

End 

Sort station according to s.Index. 

EndFunction 

 

In Algorithm 9, we not only consider the groups with the most ride-sharing passengers, 

but also the total number of waiting passengers at a station. To simultaneously account 

for both factors, we use a specific index, 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑒௡೔௞
௜ୀଵ , in this pseudocode, where 

𝑒 denotes the base of the natural logarithm. 

 

Here is an example to explain this index in detail: If Station 1 has four passengers, with 

two of them wanting to go to the same destination and the other two going to different 

destinations, the index is calculated as 𝐼𝑛𝑑𝑒𝑥 = 𝑒ଶ + 𝑒 + 𝑒 . On the other hand, if 

Station 2 has six passengers, each going to different destinations, the index is calculated 

as 𝐼𝑛𝑑𝑒𝑥 = 6𝑒. Since 𝑒ଶ + 2𝑒 < 6𝑒, vehicles will be prioritized for Station 2. 

 

This shows that the order of vehicle assignment to stations is determined by both factors. 

In the formula we use, the ride-sharing factor has a larger weight because it has an 

exponential impact, while the total number of waiting passengers has a relatively 

smaller influence. Of course, the mathematical expression can be modified to other 

forms, such as a weighted sum of the two factors. 

 

Algorithm 9 SortStation Function2 

Function: SortStation 

For every station 𝑠: 

 Group the passengers who are going to the same station. 

Count the number of passengers in each group. 

Split the group if the number of passengers in it is larger than vehicle capacity. 

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as 

𝑁 = {𝑛ଵ, … , 𝑛௞}. 

s.Index  ∑ 𝑒௡೔௞
௜ୀଵ  

End 

Sort station according to s.Index. 

EndFunction 
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Similarly, in Algorithm 10, we consider both the groups with the most ride-sharing 

passengers and the longest waiting time as factors. The mathematical expression we use 

is: 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑛௜
௪೔௞

௜ୀଵ . However, the exact mathematical expression to be used should 

be determined based on actual simulations; this is just a potential example. 

 

Algorithm 10 SortStation Function3 

Function: SortStation 

For every station 𝑠: 

 Group the passengers who are going to the same station. 

Count the number of passengers in each group. 

Split the group if the number of passengers in it is larger than vehicle capacity. 

Define group set as 𝑔 = {1,… , 𝑘}, number of passengers in each group as 

𝑁 = {𝑛ଵ, … , 𝑛௞}. 

Calculate the waiting time of the longest waiting passenger in each group, 

define it as 𝑊 = {𝑤ଵ, … , 𝑤௞}. 

s.Index  ∑ 𝑛௜
௪೔௞

௜ୀଵ . 

End 

Sort station according to s.Index. 

EndFunction 

4.4 Algorithms to be tested 

There are many algorithms mentioned above, and it is not feasible to test each one in 

this report. Therefore, this report will test the most representative algorithms. 

 

First, this paper will test the basic algorithms, which are Algorithm 1(MaxWaitSimple) 

and Algorithm 2 (MaxNrPassengers) as mentioned earlier.  

 

Subsequently, we will test Algorithm MaxWaitSimple-B and MaxNrPassengers-B. 

Algorithm MaxWaitSimple-B integrates aspects from Algorithms 1, 5, and 7. 

Specifically, it prioritizes the number of unassigned passengers when sorting stations, 

allocating vehicles to stations with the highest number of unassigned passengers 

(Algorithm 1). Additionally, if there are passengers with the same origin and destination, 

they are added to empty trips (Algorithm 5). Furthermore, during the assignment phase, 
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it considers ride-sharing by assigning all passengers with the same origin and 

destination to the same vehicle, instead of assigning only one specific passenger to a 

vehicle (Algorithm 7). This is a comprehensive algorithm that considers multiple 

factors, including dynamic assignment and ride-sharing. Similarly, for 

MaxNrPassengers-B, we integrates aspects from Algorithms 2, 5, and 7. 

 

Below, the pseudocode for algorithm MaxWaitSimple-B will be displayed. 

 

Algorithm MaxWaitSimple-B 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the number of unassigned passengers. 

𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers. 

 Else: 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑒𝑚𝑡௣:  

assign 𝑝′  to 𝑒𝑚𝑡௣. 

Remove 𝑝′  from unassigned_passengers. 

Assign 𝑣 to 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 
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Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers. 

 EndIf 

End 

 

Algorithm MaxWaitSimple-C and Algorithm MaxNrPassengers-C are advanced 

versions of Algorithm MaxWaitSimple-B and Algorithm MaxNrPassengers-B, 

respectively. These algorithms integrate the methodologies of Algorithm 4 from the 

previous chapter. When assigning vehicles, they consider not only empty vehicles but 

also incoming vehicles. Specifically, if passengers are waiting at station 𝑠௜ , the 

algorithm first checks for any empty vehicles at station 𝑠௜. If none are available, it then 

considers whether any unassigned vehicles carrying passengers are en route to station 

𝑠௜  as their destination. If neither condition is met, the nearest empty vehicle is 

considered. 

 

Algorithm MaxWaitSimple-C 

Input: Graph 𝐺 = 𝐺(𝑉, 𝐴); 

Input: Predefined demands: number of passengers 𝑛௣, arriving time 𝑡௣; 

Input: Vehicle set; 

Output: All movements. 

For every 20 simulation steps: 

 SortStation  sort by the number of unassigned passengers. 

𝑠  top (SortStation). 

𝑝  longest waiting unassigned passenger at station 𝑠. 

If station 𝑠 has empty vehicle 𝑣 then: 

  Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 
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as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers 

 Else If station 𝑠 has incoming vehicle 𝑣’ that will be empty after 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣′ and 𝑝 to 𝑡𝑟𝑖𝑝௣. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers 

Else 

  Find nearest empty vehicle 𝑣. 

Create EmptyTrip 𝑒𝑚𝑡௣. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑒𝑚𝑡௣.:  

assign 𝑝′  to 𝑒𝑚𝑡௣. 

Remove 𝑝′  from unassigned_passengers. 

Assign 𝑣 to 𝑒𝑚𝑡௣. 

Create Trip 𝑡𝑟𝑖𝑝௣. 

Assign 𝑣 and 𝑝 to 𝑡𝑟𝑖𝑝௣ 

Chain  𝑒𝑚𝑡௣ to Movements. 

Chain 𝑡𝑟𝑖𝑝௣ to Movements. 

Remove 𝑝 from s.unassigned_passengers. 

For all other unassigned passengers 𝑝′ with same origin and destination 

as 𝑡𝑟𝑖𝑝௣:  

assign 𝑝′ to 𝑡𝑟𝑖𝑝௣  

Remove 𝑝′ from s.unassigned_passengers. 

 EndIf 

End 
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Figure 8 demonstrates the logic when deciding which algorithm and which feature to 

be tested. We first test the two basic algorithm, then we add two features to the basic 

algorithm and form two enhanced algorithm. We add one more feature to the enhanced 

algorithm and gets two advanced algorithms. 

 

 
Figure 8. Algorithm to be tested. 
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5 Numerical Experiment 

In this study, we selected some of the previously mentioned algorithms and tested them 

using the VIPSim simulator on the four networks discussed in Chapter 3. 

 

Our simulation utilizes several key performance indicators (KPIs) to evaluate the 

efficiency of each algorithm across different network environments. These KPIs 

include: the number of passengers served, maximum passenger wait time, average 

passenger wait time, average passenger travel distance, total passenger travel distance, 

empty vehicle distance ratio, average vehicle occupancy, and average queue length. 

Detailed results for these KPIs will be displayed in the tables within the Appendix. In 

the main body of the report, we primarily focus on analyzing two crucial metrics: the 

maximum passenger waiting time and the average passenger waiting time. 

5.1 Basic Algorithm 

First, we tested Algorithm 1 and Algorithm 2. This was to explore whether it is better 

to assign vehicles to the longest waiting passenger (following the FCFS principle) or to 

assign them to the station with the highest number of unassigned waiting passengers. A 

preliminary prediction is that allocating to the longest waiting passenger would be fairer 

and minimize the maximum wait time, while prioritizing the station with the most 

unassigned waiting passengers would increase efficiency. To test our hypothesis, we 

obtained the results shown in Figures 9 and 10, where "simplesquare" represents the 

symmetric simple network, while "simplesquare(2)" represents the asymmetric simple 

network. Figure 9 shows the comparison results of the two algorithms in terms of the 

maximum passenger wait time, while Figure 10 presents the comparison results in terms 

of the average passenger wait time. 

 

Our initial prediction was that Algorithm 1 (MaxWaitSimple), which assigns vehicles 

to the longest waiting passenger, would result in a shorter maximum passenger wait 

time. However, Figure 9 shows the opposite. Except for the "simplesquare" network, 

where the symmetry likely minimizes the impact of different assignment strategies, we 

found that Algorithm 2 (MaxNrPassengers), which prioritizes stations with the highest 

number of waiting passengers, outperformed Algorithm 1 in both maximum passenger 

wait time and average passenger wait time. 
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Figure 9. Comparison of Algorithm MaxNrPassengers and Algorithm MaxWaitSimple 

under the metric of maximum passenger waiting time. 

 

 

Figure 10. Comparison of Algorithm MaxNrPassengers and Algorithm 

MaxWaitSimple under the metric of average passenger waiting time. 

 

A detailed analysis of vehicle assignments and movements suggests that the reason for 

this unexpected result is a decline in overall efficiency (evidenced by an increase in 

average passenger wait time), which negatively impacts all metrics, including 

maximum passenger wait time. In other words, although Algorithm 1 aimed to be fairer 

by addressing the longest waiting passenger, the decrease in overall efficiency led to 

worse outcomes for everyone. 

 

Therefore, from this comparison, we conclude that in our very basic assignment 

algorithms, prioritizing the number of unassigned passengers at a station is a more 
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efficient method. Additionally, when emphasizing fairness, the overall system 

efficiency may suffer. More importantly, we found that a decline in overall system 

efficiency can lead to worse outcomes for everyone, including those who were 

supposed to be prioritized and favored. 

5.2 Enhanced Algorithm 

Subsequently, we executed Algorithm MaxNrPassengers-B. 

 

 

Figure 11. Comparison of Algorithm MaxNrPassengers and Algorithm 

MaxNrPassengers-B under the metric of maximum passenger waiting time. 

 

 

Figure 12. Comparison of Algorithm MaxNrPassengers and Algorithm 

MaxNrPassengers-B under the metric of average passenger waiting time. 



 

41 
 

 

The test results are shown in Figures 11 and 12. We observed that, apart from the 

"SimpleSquare(2)" network where Algorithm MaxNrPassengers-B performs 

marginally worse than Algorithm 2 (MaxNrPassengers), Algorithm MaxNrPassengers-

B consistently outperforms Algorithm 2 (MaxNrPassengers) in all other network 

configurations. This finding is in line with our initial expectations, which posited that 

Algorithm MaxNrPassengers-B would yield better results in practical network 

scenarios. 

 

Similarly, we tested Algorithm MaxWaitSimple-B, which integrates aspects from 

Algorithms 1, 5, and 7. Similar to Algorithm MaxNrPassengers-B. When comparing 

the results of Algorithm MaxWaitSimple-B to those of Algorithm 1 (MaxWaitSimple), 

we observed different outcomes, as shown in Figures 13 and 14. The results distinctly 

show that Algorithm MaxWaitSimple-B outperforms Algorithm 1 (MaxWaitSimple) 

across all four networks, with the improvements being particularly significant in the 

"Goteborg" network. Moreover, the advancements of Algorithm MaxWaitSimple-B 

over Algorithm 1 (MaxWaitSimple) are more substantial than those of Algorithm 

MaxNrPassengers-B over Algorithm 2 (MaxNrPassengers). This marked improvement 

is likely due to Algorithm 1 (MaxWaitSimple) solely adhering to a FCFS basis, thus 

neglecting the overall efficiency of the network. The new features integrated into 

Algorithm MaxWaitSimple-B have significantly rectified this oversight, enhancing 

overall network performance. 

 

 

Figure 13. Comparison of Algorithm MaxWaitSimple and Algorithm 

MaxWaitSimple-B under the metric of maximum passenger waiting time. 
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Figure 14. Comparison of Algorithm MaxWaitSimple and Algorithm 

MaxWaitSimple-B under the metric of average passenger waiting time. 

 

Then, compare Algorithm MaxNrPassengers-B with Algorithm MaxWaitSimple-B. 

Unlike Algorithm 2 (MaxNrPassengers), which surpasses Algorithm 1 

(MaxWaitSimple) in both maximum and average passenger waiting times, Algorithm 

MaxNrPassengers-B performs better than Algorithm MaxWaitSimple-B in terms of 

average passenger waiting time, yet it underperforms in maximum passenger waiting 

time. 

 

 

Figure 15. Comparison of Algorithm MaxNrPassengers-B and Algorithm 

MaxWaitSimple-B under the metric of maximum passenger waiting time. 
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Figure 16. Comparison of Algorithm MaxNrPassengers-B and Algorithm 

MaxWaitSimple-C under the metric of average passenger waiting time. 

 

This aligns with our initial expectations regarding the two assignment strategies. 

Assigning vehicles to the longest waiting passenger, as employed by Algorithm 

MaxWaitSimple-B, reduces the maximum passenger waiting time, thereby achieving a 

fairer distribution of wait times. Conversely, assigning vehicles to stations with the 

highest number of unassigned waiting passengers, a strategy used by Algorithm 

MaxNrPassengers-B, tends to improve the overall operational efficiency of the network. 

This analysis supports the theoretical basis for the designed algorithms and their 

intended impacts on network performance. 

5.3 Advanced Algorithm 

The subsequent section introduces the test results for Algorithm MaxNrPassengers-C 

and Algorithm MaxWaitSimple-C. These algorithms build on the foundation of 

Algorithm MaxNrPassengers-B and Algorithm MaxWaitSimple-B by adding the 

feature "add passengers to empty trips", which was previously mentioned in Algorithm 

5. Intuitively, this approach aims to reduce the mileage of empty vehicles and enhance 

the overall efficiency of the network. However, it may increase the waiting time for 

some passengers, as the nearest empty vehicle might arrive faster, but to avoid 

dispatching empty vehicles, an incoming vehicle is assigned instead. 
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Figure 17. Comparison of Algorithm MaxWaitSimple-B and Algorithm 

MaxWaitSimple-C under the metric of maximum passenger waiting time. 

 

 

Figure 18. Comparison of Algorithm MaxWaitSimple-B and Algorithm 

MaxWaitSimple-C under the metric of average passenger waiting time. 

 

To validate our hypotheses, numerical experiments were conducted to compare 

Algorithm MaxWaitSimple-B and Algorithm MaxWaitSimple-C. The results, 

illustrated in Figures 17 and 18, revealed unexpected findings. Contrary to our initial 

assumptions, it was not possible to determine which algorithm performed better under 

the metrics of maximum passenger waiting time and average passenger waiting time. 

Each algorithm excelled in different networks. Additionally, we observed that an 

algorithm could perform either better or worse on both the maximum and average 

passenger waiting times. This characteristic was consistent with the results for the basic 

algorithm discussed in Section 5.1, and the underlying reasons have been discussed 
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previously and will not be reiterated here. 

5.4 Overall Test Results 

Finally, a comparative analysis of all the algorithms tested in this study is presented in 

Figures 19 and 10. Algorithm MaxWaitSimple demonstrated the poorest performance, 

ranking lowest in both efficiency (measured by average passenger waiting time) and 

maximum passenger waiting time. In contrast, Algorithm MaxNrPassengers-B was 

identified as the most efficient in optimizing network efficiency. Determining the best 

performer in terms of maximum passenger waiting time proved to be challenging, as 

no clear leader emerged from the analysis. 

 

Furthermore, our findings indicate that the impact of additional features varies 

depending on the base algorithm. For instance, incorporating the "incoming vehicles" 

feature significantly improved the performance of Algorithm MaxWaitSimple-B 

compared to its effect on Algorithm MaxNrPassengers-B. Therefore, it is essential not 

to assume intuitively that any new feature will enhance efficiency. Instead, 

improvements should be assessed based on testing outcomes across multiple networks 

to determine the specific enhancements to a particular algorithm. 

 

Balancing efficiency and fairness is crucial. The overall network's FCFS allocation 

should be based on the metric of maximum passenger waiting time, which we believe 

best satisfies the principle of fairness. However, results reveal that, among algorithms 

with the same functionalities, those allocating vehicles based on the maximum number 

of passengers often exhibit higher efficiency than those based on maximum passenger 

waiting time. This necessitates an understanding that efficiency may come at the cost 

of some fairness, requiring a trade-off between the two. 

 

Simultaneously, our assumption is that there should be a trade-off between maximum 

passenger waiting time and average passenger waiting time. When we focus more on 

reducing maximum passenger waiting time, the average passenger waiting time tends 

to increase. However, in practice, the trends of maximum passenger waiting time and 

average passenger waiting time are generally similar. That is to say, when the average 

passenger waiting time is low, the maximum passenger waiting time is also typically 

reduced. We believe the underlying logic is that when the overall efficiency of the 

network (average passenger waiting time) improves, the benefits extend to most 
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passengers, reducing the waiting time for the majority and thereby decreasing the 

maximum waiting time as well. Thus, we consider that enhancing overall efficiency is 

a more crucial factor in the development of transportation network algorithms. 

 

 
Figure 19. Comparison of all algorithms under the metric of maximum passenger 

waiting time. 

 

 
Figure 20. Comparison of all algorithms under the metric of average passenger 

waiting time. 

 

Evaluating the network from the passenger perspective using metrics such as maximum 

passenger waiting time and average passenger waiting time is very effective, as they 

distinctly reflect the passenger experience. From the operator perspective, metrics like 
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the Ratio of empty vehicle kilometers and the average number of passengers per loaded 

vehicle are also worth discussing and are often important efficiency metrics as well. 

 

Figure 21 shows a comparison of six algorithms under the metric of Ratio of empty 

vehicle kilometers, where we find that in complex networks, the algorithm 

MaxNrPassengers-B is optimal. This aligns with the conclusions under the metric of 

average passenger waiting time. However, in simpler networks, the algorithm 

MaxNrPassengers-C performs slightly better than MaxNrPassengers-B. 

 

Figure 22 presents the average number of passengers per loaded vehicle. We find that 

the differences between algorithms on this metric are not significant. Moreover, the 

average number of passengers per loaded vehicle is far less than the vehicle capacity of 

10. This also indicates that our algorithms need further improvement in practical ride-

sharing scenarios (not just considering ride-sharing factors at the assignment stage). 

Our algorithms and functionalities have not yet addressed this aspect, which could be 

incorporated into future research. For instance, vehicles with available seats could pick 

up passengers en route or plan routes that slightly detour to accommodate more 

passengers, thus increasing ride-sharing opportunities. These aspects could be 

considered for further development. 

 

 

Figure 21. Comparison of all algorithms under the metric of ratio of empty vehicle 

km. 
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Figure 22. Comparison of all algorithms under the metric of average number of 

passengers per loaded vehicle. 
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6 Conclusion 

6.1 Summary 

This report aims to introduce the concept of APT into urban transit systems to enhance 

flexibility, cost-efficiency, and overall performance. The successful implementation of 

APT requires sophisticated vehicle assignment algorithms that distribute vehicles to 

passengers based on specific rules. Therefore, this study summarizes and proposes 

several effective assignment algorithms and evaluates their performance through 

simulation experiments conducted on a traffic simulator. 

 

Specifically, the report presents several innovative approaches to algorithm 

improvement and ultimately tests six algorithms. The test scenarios are carried out on 

four traffic networks within the VIPSim simulator, two of which are basic networks, 

while the other two are more complex, real-world networks. The findings identify the 

most efficient algorithm for network operation and offer several insightful conclusions. 

For example, (1) in basic algorithms, using average passenger waiting time as a metric 

for assignment achieves higher network efficiency than using maximum passenger 

waiting time; (2) the effectiveness of different algorithms varies across networks with 

different characteristics; (3) the impact of new features differs depending on the base 

algorithm, suggesting that features should be tailored specifically for each algorithm. 

These guidelines provide valuable recommendations for the future implementation of 

APT. 

6.2 Future Direction 

Additionally, this report identifies several promising yet unexplored research areas: 

 

（1） Due to time constraints, not all algorithms proposed in Chapter 4 were tested. 

Future studies should aim to test these algorithms using simulators to better 

understand their effectiveness. 

 

（2） The algorithms tested in this study incorporate multiple features, such as ride-

sharing, adding passengers to empty trips, and considering incoming vehicles. 
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However, the specific impact of each feature on algorithm performance is 

unknown. Future research should test these features individually and in various 

combinations to ascertain their effects on network operations. 

 

（3） Most allocation algorithms considered in this report are heuristic. Future 

research could develop exact optimization algorithms for simple networks to 

compare with our heuristic algorithms, providing a clearer perspective on their 

relative strengths and weaknesses. 

 

（4） The current allocation algorithms do not address the routing of passengers after 

boarding, typically transporting groups with the same origin and destination 

without considering en-route pickups. Practically, vehicles with available 

capacity could pick up passengers at intermediate stops or slightly detour to 

maximize ride-sharing. This aspect could be explored in future expansions. 

 

（5） This study was conducted on only four networks, which is insufficient to 

analyze the relationship between algorithms and network characteristics 

thoroughly. Future studies should expand the number of test networks, selecting 

those with distinctive features to evaluate different algorithms comprehensively. 

 

（6） Demand significantly influences algorithm performance; varying demand 

characteristics may necessitate different algorithms. This area warrants further 

investigation. 

6.3 Sustainability 

Sustainability is a crucial consideration in contemporary development. The United 

Nations has established 17 Sustainable Development Goals (SDGs), a global action 

plan aimed at achieving peace and prosperity while protecting the planet's natural 

environment by 2030. 

 

This report contributes to sustainability through its focus on the APT system, which 

aligns perfectly with "Goal 11: Sustainable Cities and Communities." The APT system 

represents a more advanced, intelligent, and user-centric public transportation system 

that can enhance urban mobility services. And it has the potential to provide efficient 

first- and last-mile connections, thereby serving a broader demographic, including 
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vulnerable groups, and fully meeting the requirements of sustainable development. 

 

Moreover, this report also contributes to "Goal 13: Climate Action." It aims to improve 

the efficiency of the APT system by leveraging smart assignment algorithms to increase 

ride-sharing and reduce empty vehicle trips. The proposed enhanced and advanced 

algorithms help achieve this by minimizing unnecessary travel, reducing fuel 

consumption and emissions while maintaining or improving service quality. This makes 

the APT system more environmentally friendly and supportive of sustainability 

initiatives. 
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Appendix 

Table 1. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on 
"simplesquare" network. 

KPI MaxNrPassengers MaxWaitSimple 

passengersServed 297 299 

passengersNotServed 2 0 

maxPassengerWait 1230.417693 1136.2 

averagePassengerWait 297.1695203 300.2862202 

averagePassengerTripTime 124.9324324 127.547973 

averagePassengerKm 0.974917953 0.974986697 

totalPassengerKm 288.5757141 288.5960624 

vehicleKmLoaded 123.7837909 121.8244343 

vehicleKmEmpty 50.72518633 53.64430304 

vehicleKmEmptyRatio 0.290673793 0.305720004 

passengersPerLoadedVehicle 2.330708661 2.368 

energyConsumptionEmpty 9.130533539 9.655974548 

energyConsumptionLoaded 22.28108236 21.92839817 

maxQueueLength 51 50 

averageQueueLength 6.426010127 6.364018203 

 
Table 2. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on 
"simplesquare" network. 

KPI MaxNrPassengers-B MaxWaitSimple-B 

passengersServed 299 297 

passengersNotServed 0 2 

maxPassengerWait 1126.2 1062.2 

averagePassengerWait 278.2059527 286.127148 

averagePassengerTripTime 120.8013514 122.8789116 

averagePassengerKm 0.974986392 0.974954126 

totalPassengerKm 288.595972 286.6365132 

vehicleKmLoaded 125.7433765 127.6927677 

vehicleKmEmpty 48.7458273 47.77602881 

vehicleKmEmptyRatio 0.279362999 0.272276495 

passengersPerLoadedVehicle 2.294573643 2.244274809 
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energyConsumptionEmpty 8.774248915 8.599685186 

energyConsumptionLoaded 22.63380777 22.98469819 

maxQueueLength 51 50 

averageQueueLength 6.302413281 6.343123156 

 
Table 3. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on 
"simplesquare" network. 

KPI MaxNrPassengers-C MaxWaitSimple-C 

passengersServed 299 294 

passengersNotServed 0 5 

maxPassengerWait 1124.2 1162.2 

averagePassengerWait 282.326354 300.3254229 

averagePassengerTripTime 120.3016835 116.2578231 

averagePassengerKm 0.974967741 0.974953546 

totalPassengerKm 289.565419 286.6363426 

vehicleKmLoaded 127.6826935 130.6219785 

vehicleKmEmpty 40.96811476 42.91754752 

vehicleKmEmptyRatio 0.242916801 0.247307046 

passengersPerLoadedVehicle 2.267175573 2.194029851 

energyConsumptionEmpty 7.374260656 7.725158553 

energyConsumptionLoaded 22.98288482 23.51195613 

maxQueueLength 51 51 

averageQueueLength 6.301060833 6.198419072 

 
Table 4. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on 
"simplesquare (2)" network. 

KPI MaxNrPassengers MaxWaitSimple 

passengersServed 296 294 

passengersNotServed 3 5 

maxPassengerWait 1372.421525 1655.2 

averagePassengerWait 365.5581644 434.5135522 

averagePassengerTripTime 149.5687075 151.0831615 

averagePassengerKm 1.272470529 1.267103876 

totalPassengerKm 374.1063356 368.7272279 

vehicleKmLoaded 146.6579283 141.7286907 

vehicleKmEmpty 42.19058793 45.63975723 
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vehicleKmEmptyRatio 0.223409687 0.243582939 

passengersPerLoadedVehicle 2.610619469 2.645454545 

energyConsumptionEmpty 7.594305828 8.215156302 

energyConsumptionLoaded 26.39842709 25.51116433 

maxQueueLength 50 51 

averageQueueLength 7.393425437 7.649005751 

 
Table 5. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on 
"simplesquare (2)" network. 

KPI MaxNrPassengers-B MaxWaitSimple-B 

passengersServed 297 294 

passengersNotServed 2 5 

maxPassengerWait 1498.2 1538.2 

averagePassengerWait 367.937197 378.3727782 

averagePassengerTripTime 146.0027119 149.0191126 

averagePassengerKm 1.271444756 1.266746055 

totalPassengerKm 375.0762031 371.156594 

vehicleKmLoaded 145.1479823 142.6984295 

vehicleKmEmpty 43.65006828 43.60976175 

vehicleKmEmptyRatio 0.231199783 0.234073239 

passengersPerLoadedVehicle 2.619469027 2.63963964 

energyConsumptionEmpty 7.85701229 7.849757115 

energyConsumptionLoaded 26.12663681 25.68571731 

maxQueueLength 51 51 

averageQueueLength 7.249603988 7.276257792 

 
Table 6. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on 
"simplesquare (2)" network. 

KPI MaxNrPassengers-C MaxWaitSimple-C 

passengersServed 297 294 

passengersNotServed 2 5 

maxPassengerWait 1415.2 1389.2 

averagePassengerWait 377.202689 347.8273874 

averagePassengerTripTime 148.0040816 146.2541096 

averagePassengerKm 1.270769195 1.274508248 

totalPassengerKm 373.6061434 372.1564084 
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vehicleKmLoaded 147.6176601 143.6581523 

vehicleKmEmpty 36.80181838 40.19061221 

vehicleKmEmptyRatio 0.199554942 0.21860692 

passengersPerLoadedVehicle 2.587719298 2.625 

energyConsumptionEmpty 6.624327308 7.234310198 

energyConsumptionLoaded 26.57117881 25.85846741 

maxQueueLength 51 51 

averageQueueLength 7.540977791 7.255120669 

 
Table 7. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on 
"saclay" network. 

KPI MaxNrPassengers MaxWaitSimple 

passengersServed 511 502 

passengersNotServed 48 58 

maxPassengerWait 1133.636414 1323.984047 

averagePassengerWait 242.0809333 271.4885905 

averagePassengerTripTime 476.6328018 472.2391011 

averagePassengerKm 5.924851242 5.897024203 

totalPassengerKm 2601.009695 2624.17577 

vehicleKmLoaded 1765.117347 1810.786639 

vehicleKmEmpty 629.4546313 630.5019043 

vehicleKmEmptyRatio 0.262867284 0.258266032 

passengersPerLoadedVehicle 1.597402597 1.569920844 

energyConsumptionEmpty 113.3018336 113.4903428 

energyConsumptionLoaded 317.7211225 325.941595 

maxQueueLength 14 15 

averageQueueLength 1.988583833 2.14044346 

 
Table 8. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on 
"saclay" network. 

KPI MaxNrPassengers-B MaxWaitSimple-B 

passengersServed 520 511 

passengersNotServed 40 55 

maxPassengerWait 869.5094747 1257.472321 

averagePassengerWait 234.3017085 262.070645 

averagePassengerTripTime 477.0977376 476.0834101 
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averagePassengerKm 5.919342728 5.940796109 

totalPassengerKm 2616.349486 2578.305511 

vehicleKmLoaded 1820.862469 1804.245208 

vehicleKmEmpty 595.0194619 617.1172835 

vehicleKmEmptyRatio 0.246294926 0.25486365 

passengersPerLoadedVehicle 1.582697201 1.513089005 

energyConsumptionEmpty 107.1035031 111.081111 

energyConsumptionLoaded 327.7552443 324.7641374 

maxQueueLength 12 13 

averageQueueLength 1.883673811 2.095487425 

 
Table 9. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on 
"saclay" network. 

KPI MaxNrPassengers-C MaxWaitSimple-C 

passengersServed 500 509 

passengersNotServed 59 50 

maxPassengerWait 1213.814193 807.665222 

averagePassengerWait 250.4402091 230.262997 

averagePassengerTripTime 468.0441247 474.5640909 

averagePassengerKm 5.870923351 5.943063123 

totalPassengerKm 2448.175037 2614.947774 

vehicleKmLoaded 1799.04947 1858.243198 

vehicleKmEmpty 602.5728121 555.9262193 

vehicleKmEmptyRatio 0.250902407 0.23027639 

passengersPerLoadedVehicle 1.580901857 1.536523929 

energyConsumptionEmpty 108.4631062 100.0667195 

energyConsumptionLoaded 323.8289046 334.4837756 

maxQueueLength 13 12 

averageQueueLength 1.99100723 1.854595081 

 
Table 10. KPIs of algorithm MaxNrPassengers and algorithm MaxWaitSimple on 
"Goteborg" network. 

KPI MaxNrPassengers MaxWaitSimple 

passengersServed 479 333 

passengersNotServed 112 258 

maxPassengerWait 2587.732782 2604.069521 
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averagePassengerWait 410.2924338 620.435319 

averagePassengerTripTime 350.9616708 351.7227586 

averagePassengerKm 3.71232026 3.677600953 

totalPassengerKm 1510.914346 1066.504276 

vehicleKmLoaded 590.954049 426.390951 

vehicleKmEmpty 882.4269217 1042.979991 

vehicleKmEmptyRatio 0.598912935 0.709813949 

passengersPerLoadedVehicle 2.417910448 2.288732394 

energyConsumptionEmpty 158.8368459 187.7363984 

energyConsumptionLoaded 106.3717288 76.75037118 

maxQueueLength 12 28 

averageQueueLength 2.268316915 2.842148137 

 

Table 11. KPIs of algorithm MaxNrPassengers-B and algorithm MaxWaitSimple-B on 
"Goteborg" network. 

KPI MaxNrPassengers-B MaxWaitSimple-B 

passengersServed 517 491 

passengersNotServed 74 100 

maxPassengerWait 2587.732782 1596.139764 

averagePassengerWait 304.881723 445.6266493 

averagePassengerTripTime 342.0181435 344.0252381 

averagePassengerKm 3.671549944 3.661150324 

totalPassengerKm 1740.314673 1537.683136 

vehicleKmLoaded 694.6161465 610.8298581 

vehicleKmEmpty 761.6260854 850.7508375 

vehicleKmEmptyRatio 0.523007827 0.582075858 

passengersPerLoadedVehicle 2.304166667 2.298076923 

energyConsumptionEmpty 137.0926954 153.1351508 

energyConsumptionLoaded 125.0309064 109.9493745 

maxQueueLength 10 17 

averageQueueLength 2.268316915 2.842148137 

 

Table 10. KPIs of algorithm MaxNrPassengers-C and algorithm MaxWaitSimple-C on 
"Goteborg" network. 

KPI MaxNrPassengers-C MaxWaitSimple-C 

passengersServed 524 489 
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passengersNotServed 67 102 

maxPassengerWait 2587.732782 1617.648836 

averagePassengerWait 328.8085169 438.5030996 

averagePassengerTripTime 341.4640523 348.9352381 

averagePassengerKm 3.662987642 3.690146466 

totalPassengerKm 1681.311328 1549.861516 

vehicleKmLoaded 690.2576569 586.0572624 

vehicleKmEmpty 773.7722116 873.1938763 

vehicleKmEmptyRatio 0.528522149 0.59838492 

passengersPerLoadedVehicle 2.295833333 2.348258706 

energyConsumptionEmpty 139.2789981 157.1748977 

energyConsumptionLoaded 124.2463782 105.4903072 

maxQueueLength 11 16 

averageQueueLength 1.90074637 2.12458983 
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