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Abstract

Studying White Matter (WM) lesions in premature babies is a societal challenge, as

premature mortality is decreasing while neurological morbidity remains the same.

This master thesis is part of the p-HCP (Premature Human Connectome Project),

which aims to study these lesions using extreme magnetic field MRI (11.7T) , starting

with the construction of a typical ex vivo brain atlas atmesoscopic scale and comparing

it, in a second phase, to an atlas of damaged brains. This work presents a segmentation

strategy for the fetal brain structures to characterize them at different key stages of

the development using MRI images with unprecedented resolution. We first manually

segmented the structures of a 20-week gestation brain using a histological atlas, in

order to explore the information contained the nineteen MRI modalities available

(quantitative, weighted and diffusion images). We then segmented the fetal brain

structures, without anatomical a priori, by using data engineering and automatic

clustering algorithms. Wehave succeeded in designing a proof of concept for automatic

segmentation for the fetal brain and extracting, from our MRI images, groups of

structures similar in molecular composition and cytoarchitecture.
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Abstract

Att studera lesioner den vita substansen hos för tidigt födda barn är en samhällelig

utmaning, eftersom den för tidiga dödligheten minskar medan den neurologiska

sjukligheten förblir densamma. Denna masteruppsats är en del av p-HCP (Premature

Human Connectome Project), som syftar till att studera dessa lesioner med hjälp av

MRT med extremt magnetfält (11,7T), med början med konstruktionen av en typisk

ex vivo hjärnatlas i mesoskopisk skala och jämföra den, i en andra fas, med en atlas

av skadade hjärnor. I detta arbete presenteras en segmenteringsstrategi för fostrets

hjärnstrukturer för att karakterisera dem vid olika viktiga utvecklingsstadier med

hjälp av MR-bilder med oöverträffad upplösning. Vi segmenterade först manuellt

strukturerna i en 20 veckors graviditetshjärna med hjälp av en histologisk atlas, för

att utforska informationen i de nitton tillgängliga MR-modaliteterna (kvantitativa,

viktade och diffusionsbilder). Vi segmenterade sedan de fetala hjärnstrukturerna, utan

anatomisk a priori, genom att använda datateknik och automatiska klusteralgoritmer.

Vi har lyckats utforma ett proof of concept för automatisk segmentering av fostrets

hjärna och från våra MR-bilder extrahera grupper av strukturer som liknar varandra i

molekylär sammansättning och cytoarkitektur.

Nyckelord

Biomedicinsk fysik, Neuroimaging, MRI, Diffusion MRI, Multimodal, Segmentering,

Mahalanobisavstånd, K-means, Foster, Hjärnans utveckling, Mikrostruktur
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Chapter 1

Context and framework of the
thesis

1.1 Master thesis context

1.1.1 CEA, Paris Saclay

The French Atomic Energy and Alternative Energies Commission (CEA) is a research

organisation in many fields: energy, defense and security, information technologies

and health technologies. The CEAwas created in 1945 for research in bothmilitary and

civil nuclear energy. Over the years, the CEA has become a major player in research in

France, particularly for the healthcare sector. [1]

1.1.2 Neurospin

Neurospin is a research institute in neuroimaging of the CEA, in Saclay, France, that

is dedicated to the study of the human brain with imaging techniques such as MRI.

Thanks to the development of advanced equipment with ultra high field MRI scanners

(three clinical scanners at 3,7 and 11.7T and three pre-clinical scanners at 7,11.7 and

17.2 T), researchers can visualize and analyze the structures, functions and connectivity

of the human brain with really high resolution (up to 100 micrometer). Two types of

research are carried out at neurospin: the more methodological part, which is at the

heart of the research carried out at the CEA, and a coginitive part. The main fields

of study in Neurospin include the neurological and psychiatric disorders, cerebral

1



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

development, aging, cerebral plasticity and many others. [2]

1.1.3 p-HCP

Mymaster thesis is part of the Premature Human Connectome Project (p-HCP) which

gathers clinicians from Lariboisière Hospital (Paris), Robert-Debré hospital (Paris),

Sorbonne University (Paris) and Neurospin (CEA, Paris-Saclay).

The main goal of this project is to study the white matter injuries in premature babies

and to find new markers of white matter injury using extreme high field ex vivo (post

mortem) MR Imaging and 3D histology. The goal is to create a large atlas to describe

both macro and microstructure of white matter injury of preterm newborns using MR

imaging and 3D histology of injured brains and also pseudo-typical brains. Currently,

at Neurospin, an ex vivo multi-modal MRI atlas of typical brains at mesoscopic scale

is being created. Thanks to the pre-clinical MRI Bruker at 11.7T, anatomic, diffusion

and relaxometry images of brain of different ages with a high resolution of 200

microns isotropic (and 100 microns for some modalities) are collected. In parallel, a

3-dimensional (3D) histology atlas is being built at Lariboisière Hospital on the same

samples. The next step will be to create also a database at multiple fields (from 3T to

11.7T) and a 3D histology and immunohistochemical database of injured brains.

2



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

1.2 Scientific background

1.2.1 Brain anatomy

The brain is part of the central nervous system. It is made up of two distinguishable

compartments : the white matter and the gray matter. The gray matter is the part of

the brain containing all the neurons cell bodies such as the cortex (at the surface) and

the central gray matter (basal ganglia and thalamus). The white matter is composed of

neuronal fibers called axons that make up the connections between the different parts

of the brain. The cerebrospinal fluid surrounds the brain and the spinal cord to give a

physical and immunity protection.

Figure 1.2.1: Neuron structure

Source: User:Dhp1080, CC BY-SA 3.0,

http://creativecommons.org/licenses/by-

sa/3.0/

A neuron is a cell of the nervous system

that sends and receives electrical and

chemical signals. The three main parts

of a neuron are the dendrites, the cell

body and the axon. (see Fig 1.2.1)

The dendrites are branched extensions

located around the cell body. They

receive electrical and chemical signals

from other neurons via the synapses and

transmit this information to the cell body,

and to other neurons through the axon.

In this project, we are looking at fetal brains in development. During fetal

development, the most important neurogenetic events occur : proliferation

(determination of the number of neurons), molecular specification (molecular

diversity of neurons), migration (allocation in the cortex of the neurons moving from

the ganglionic eminence to the cortical plate), axonogenesis (growth of axons) and

synaptogenesis (formation of functional contacts).Fig 1.2.2

Around 15 Gestation week (GW), myelinization begins. Myelin is located around the

axon and acts as an insulator, making it impermeable for efficient protein and electrical

transport.

3



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

Figure 1.2.2: Development periods of main neurogenetic events

Source: Lucas Arcamone, [3]

During the development, the brain grows dramatically leading to the gyration : gyri

(folds on the surface of the brain) appear, separated by sulci (see Fig. 1.2.3).

Figure 1.2.3: MRI of fetal brain at different gestational age in coronal, axial and sagittal
view

Source: A normative spatiotemporal MRI atlas of the fetal brain for automatic

segmentation and analysis of early brain growth [4]

1.2.2 MRI physics

MRI is a medical imaging technique that allows for 2-dimensional (2D) or 3D images

of the body, with good contrast for soft tissues and in a non-invasive manner. MRI is

usually used for diagnosis and follow-up of diseases.

MRI is based on Nuclear Magnetic Resonance (NMR) principle, using the quantum

properties of the atomic nuclei. Each atom nucleus has several protons and neutrons

that rotate around an axis passing through their center. This creates a spin or

magnetic moment. In clinical MRI, we observe the magnetic moment of an atom,

usually hydrogen, since the brain is composed mainly of water. Some MRI techniques

4



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

use other atomic nuclei such as sodium, hyperpolarized helium, phosphor, carbon,

etc.

When hydrogen atoms are observed without any external magnetic field, protons are

randomly oriented and the sum of all microscopic elementary magnetizations is zero.

There is no macroscopic magnetization. When applying a static magnetic field, called

B⃗0, along the z-axis, all the spins align to the direction of this vector but they are not in

the same orientation (up or down). The resultant of the macroscopic magnetization

is then non-zero and creates a longitudinal component M⃗z0 of the tissue vector of

magnetization.

Protons do not really align along B⃗0 but rotate around the z-axis at the Larmor

frequency : ω0 = γB0 where γ is the gyro magnetic ratio, specific to each nucleus. This

rotation is called precession. Since this magnetization is along the external magnetic

field, the spins’ orientation does not change, producing no detectable signal. To make

protons ”visible”, another magnetic field B⃗1, rotating at the frequency ω1, is applied,

disrupting the equilibrium. At the resonance condition, the rotation frequency of the

rotating magnetic field ω1 and the Larmor frequency of the static one ω0 are equal. In

this configuration, M⃗ is still rotating around B⃗0 and begins to rotate around B⃗1 so a

transversal componentMxy appears. This state is unstable, once B⃗1 is suppressed, the

longitudinal magnetic moment M⃗z returns to M⃗z0 -T1 relaxation- and the transversal

component M⃗xy decreases quickly to zero -T2 relaxation-. The contrast in MRI images

results from the differences in T1 or T2 relaxation times in various tissues.

MRI sequences acquisition parameters can be changed to obtain images of different

weightings : the echo time TE is the time between the application of the resonance

frequency and the detection of an echo and the repetition time TR is the time between

two pulses. Using a short TR and TE allows the discrimination of two tissues with

regard of T1 whereas long TR and TE are useful for discriminating tissues with regard

to T2.

1.2.3 Diffusion

The diffusion MRI is a technique that takes benefit of the movement of water

molecules. The diffusion of these molecules can be free; this is the isotropic diffusion

and this is described by the Brownian motion. This results from the vibrating motion

5



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

of the water molecules, governed mainly by the temperature. The diffusion can also

be anisotropic, when water molecules do not diffuse uniformly in all directions but are

restricted in a specific direction (by cell membranes, for example).

There is an also diffusion technique: the Diffusion tensor imaging (DTI). The

diffusion tensor is a mathematical tool commonly used to characterize the anisotropy

of diffusion in anatomical tissues, by modeling the water molecule diffusion in three

dimensions, giving information about the orientation and the magnitude of the net

diffusion in each voxel. With the tensor we can calculate parameters such as the

Fractional anisptropy (FA) and the Mean Diffusivity (MD). The FA evaluates how

anisotropic the diffusion in the brain tissues is. A fraction of 0 indicates that the

diffusion is totally isotropic and 1 indicates that the diffusion is fully anisotropic (all

water molecules diffuse in one direction). MD measures of the average diffusion in all

directions. It gives an estimation of the mobility of molecules in a voxel. A high MD is

seen in the Cerebrospinal Fluid (CSF), but can also indicate a disruption in the tissue

micro structure such as a loss of membrane or tissue degeneration.

The brain is composed of 80% of water molecules : some are in a configuration of

isotropic motion as in CSF, and others are restricted as in axons. The myelin around

axons prevents water molecules from crossing axons membranes, so they diffuse

preferentially in the direction of the axon. Observing the preferred trajectories of

water molecules in white matter using diffusion imaging thus provides information

on the orientation of nerve fibers locally. Different models and metrics give different

information about fibers. For example : the Neurite Orientation Dispersion and

Density Imaging (NODDI) model. This model aims to characterize the brain

microstructure giving information about the density of neurites –such as axons and

dendrites- and about the orientation dispersions of those neurites in the brain. Since

this is a model, it is based on simple hypotheses. It is important to note that we

do not obtain real information about the neurites but a rough idea of their number

and orientation. The main principle of this model is to decompose the diffusion

signal in four components that represent the different types of diffusion in the brain

: stationary, isotropic and extra and intra axonal diffusion. Different metrics can be

computed:

• The Neurite Density Index (NDI) represents the intra axonal diffusion divided

by all the other ones except the isotropic one. It indirectly reflects the density of

neurons in space.

6



CHAPTER 1. CONTEXT AND FRAMEWORK OF THE THESIS

• The Orientation Dispersion Index (ODI) gives information on the arrangement

of neurites in space.

To reconstruct the different modalities and to have different contrasts, it is needed

to acquired different sequences using different b-values. The b-value represents the

image’s sensitivity to the movement of water molecules.

7



Chapter 2

Introduction

Throughout pregnancy and after the term, the brain develops in size, weight, shape

and composition. The brain changes very intensely during the first weeks of gestation

and the first postnatal months [5]. This development is based on different complex

and intermingled mechanisms that lead to maturation and function specialization of

the future greymatter and thewhitematter. Moreover, brains aremade up of transient

structures and evolve rapidly week by week. During brain development, neurogenetic

events happen : migration, axonal growth, synaptogenesis and myelination [6]. The

neuronal migration is a migration of the neurons from the subventricular zones to the

cortex or subcortex. The axonal growth creates connections. Synapses, the connections

between neurons in the central nervous system, are formed during synaptogenesis.

Myelination (i.e. the formation of myelin around axons) takes place at the end of white

matter development.

To study the brain developmentmechanisms atmicroscopic scale, 3D histology is used

to describe the brain physiology with a resolution around 100 nm and 0.1microns. It is

often coupled with clinical MRI at 3T that has a macroscopic resolution around 1 mm

[7]. Paralleling MRI images with histology provides a new approach to understanding

the events that happen during brain development [8]. There is no study of the fetal

brain at mesoscopic scale, around hundreds of microns, to make a bridge between the

micro and macroscopic scale. By increasing the magnetic field intensity until 11.7 T

to image fetal brains, mesoscopic resolution can be reached, offering detection and

characterization of the smallest anatomical regions [9] and detailed visualization of

brain fiber bundles [10]. Creating such data for the brains of premature babies is an

8



CHAPTER 2. INTRODUCTION

excellent approach for studying white matter lesions, resulting from the interruption

of normal brain development in the intrauterine environment.

Premature newborns, 13 millions in the world, are a major societal challenge. Despite

therapeutic advances that reduce mortality, neurodevelopmental morbidity remains

high [11]. The global prevalence ofmental impairment is about 13.6% among surviving

preterm infants born at 26 weeks or earlier and about 14.3 % among children weighing

less than 800 g [12].

p-HCP is a project that aims to characterize the macro and microstructural white

matter injuries [13] on preterm newborns using extrem high field MRI at 11.7T with

a resolution of 200 microns with a 3D histological validation. The first part of this

project is then to create a MRI atlas of ’pseudo-typical’ brains between 20 and 41 GW

correlated with a 3D histology atlas. For the moment, 3 brains are totally acquired

(20 GW, 29 GW, 33 GW) and by the end of the project another will be included (41

GW) [3]. The methods of acquisition, reconstruction and registration are similar

to the Chenonceau project [14]. The reconstructed and registered images must be

segmented to characterize the structures and study the development of their size/shape

and composition during fetal development.

This master thesis aims to present the strategy to better understand the fetal brain at

different stages of development using the advances in MRI histology [15]. The study

was done on the 20 GW specimen. First of all, we will use the multimodal MRI to

explore the tissue composition and the cytoarchitecture of the brain [16] of fetuses.

The quantitative images act as a proxy of molecule contents (water, iron, ...) and the

diffusion images explain the neuronal fibers organization [17].

To characterize the tissues inside the brain using MR images, I carried out manual

segmentation. The boundary of the structures was manually delineated directly on the

MRImodality used for every single transversal slice [18]. The aim of this approach was

to study the behavior of the different modalities in the best-known, easily-recognized

structures, in order to study their behavior in all available MRI modalities. For this,

I used a histological atlas and all MRI images, thus ensuring optimal segmentation of

some structures of the 20 GW brain.

There are several automatic methods for brain segmentation, such as intensity-based,

threshold-based or atlas-based clustering [19]. The first two methods are linked to the

recognition of gray and white matter, which are indistinguishable in the fetal brain.

9



CHAPTER 2. INTRODUCTION

Indeed, until the end of neuronal migration and myelination, gray matter and white

matter are still mixed in certain parts of the brain. Atlas-based segmentation cannot

be applied, as there is as yet no such resolute atlas of the fetal brain. Automatic

segmentation avoids introducing information that is external to the actual information

(human bias) content provided by the MRI modalities. In this way, we can group

structures according to their common, physically interpretable feature. We will draw

a threshold-based segmentation strategy, using the multi modal MRI and guiding by

the previous characterisation of the manually segmented structures.

10



Chapter 3

Material and Methods

3.1 Sample preparation

The brains that compose the atlas come from the foetopathology department of Robert-

Debré Hospital (Paris) (Conservation d’éléments du corps humain (CODECOH),

Preservation of human body parts, tissue authorization : DC-2022-5118). Firstly, they

are imaged in situ (within the skull) with a clinical 3TMRI at Robert Debré Hospital to

check the state of the brain, aid diagnosis andprovide a clinical reference for comparing

data acquired later. Then they are fixed during two months by immersion in Formalin

12% formaldehyde to avoid the natural decline in tissue quality. Then, at Neurospin,

the brains are doped with Gadolinium and Phosphate Buffer Saline (PBS) to improve

the contrast and reduce the relaxation times (and then reduce the acquisition time).

They are first imaged on the clinical 7T MRI to have a high isotropic resolution

reference, used for modeling containers and cutting dies, and for registration of tissue

blocks. The 11.7T MRI has a diameter of 60 mm, the antenna used has a diameter

of 50 mm and the usable diameter is 46mm. The brains in the project are (with the

exception of the 20 GW) larger than this diameter, and must therefore be cut to fit

the MRI antenna. After imaging is completed, they are transferred to Lariboisière

Hospital where the histology is done. The specimens come frommedical terminations

of pregnancy or fetal/neonatal deaths, when the cause of death is not related to brain

pathology. Samples are considered pseudo-typical because death often leads to brain

abnormalities. We will use 3D histology as the ground truth to distinguish typical from

non-typical areas. For now, we have collected brains of 20, 29 and 33 GW and a 41 GW

brain will be entirely imaged by the end of this project. Those are key stages of fetal

11



CHAPTER 3. MATERIAL ANDMETHODS

development from middle of pregnancy to full term.

3.2 MRI protocol

Images are acquired on a BioSpec 117/16 Bruker, a preclinical MRI that reaches a field

strength of 11.7T. Thismachine has been chosen because of its extremely highmagnetic

field: it allows a better signal collection to reduce the spatial resolution. Its gradients

are up to 760mT/m (compare to the clinicalMRI gradient at 200mT/m). As the brains

are imaged post-mortem, we can use very long acquisition times to obtain very high-

resolution images. This also enables us to achieve isotropic resolution of 200microns,

or even 100microns for certain sequences (T2-weighted and quantitative T2*) with an

acquisition time of 150 hours per field of view.

Using different MRI sequences, it is possible to have weighted, quantitative and

diffusion images. A weighted image is a contrasted representation based on relaxation

time, providing an anatomic image with a good contrast between different brain

tissues when the sequence parameters are well chosen. A quantitative image provides

a measure of the tissue relaxation time in each voxel, that is correlated with the

tissue composition and microstructure. Moreover, because we obtain physical values

rather than reconstructed ones, it allows for direct comparison in subsequent studies,

enhancing repeatability.

Modalities Acquisition time

T2-weighted 21h
Quantitatives images (T1, T2*, T2) 26h20min
Diffusion images : DTI, AQBI, NODDI 100h

Total 150h

Table 3.2.1: Acquisition times for different modalities

By the end of the 150 hours of acquisition (Table 3.2.1), 19 images were reconstructed :

quantitative T1 (longitudinal relaxation time), quantitative T2 (transversal relaxation

time), quantitative T2*(transverse relaxation time, taking into account the effect

of B0 inhomogeneities caused by variations in tissue molecular composition and

imperfections in the external magnetic field B1 at the microscopic scale), weighted T2,

NODDI (NDI and ODI) and images from the DTI model. Four metrics are calculated

with the DTI model, each with the three b values b = 1500mm/s², b = 4500mm/s²,

12



CHAPTER 3. MATERIAL ANDMETHODS

b = 8000mm/s²) : the Apparent Diffusion Coefficient (ADC), the FA, the parallel

diffusion that takes into account only the diffusion along the principal fibers axis, and

transverse diffusion that takes into account, on the contrary, diffusion perpendicular

to the main fiber. There is finally the Generalized Fractional Anisotropy (GFA).

3.3 Manual Segmentation

The manual segmentation of the present study was carried out on a 20 GW fetal brain,

with the visualization software Anatomist [20] and a graphic tablet.

13



CHAPTER 3. MATERIAL ANDMETHODS

Figure 3.3.1: Manual segmentation of the ganglionic eminence, using different
modalities and the Atlas [21]. (GE : ganglionic eminence, PUT : putamen, : NC :
caudate nucleus, CP : cortical plate, SP : sub-plate)

To segment the regions of interest, the different structures seen on each modality of

3D magnetic resonance images were compared with those shown on the coronal and

sagittal sections of same age specimen atlas [21] (see Fig 3.3.1). The advantage of

having different MRI sequences was that they could be compared: some regions, such

as the basal ganglia, were much better distinguished on T2-weighted images, while

others, such as the globi pallidi, required diffusion images for delimitation. It was
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not feasible to segment all the regions: some because they were too large, like the

cortical plate (inwhich case only a small representative partwas segmented) and others

because it was not possible to delineate them in the available images.

The structures that were segmented manually include (see Fig 3.3.2) :

• The basal ganglia : caudate nuclei (dark blue), lenticular nuclei -putamen (pink),

internal (orange) and external (yellow) globus pallidus-, substantia nigra (black),

subthalamic nuclei (green)

• The red nuclei (red)

• The ganglionic eminences (blue)

• A small part of the cortical and subcortical plates and of some waves of neuronal

migration (not visible on Fig 3.3.2)

(a) Coronal section of some manual
segmentation results on T2-weighted (b) QR codes for moving 3D visualizations

Figure 3.3.2: Results of the manual segmentation

3.4 Characterizaton of Regions of Interest

In order to obtain a “fingerprint” of each segmented structure from the manual

segmentation, we aimed to better understand each segmented structure by studying

the different quantitative values of relaxation times and the values of the different
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diffusion modalities, in order to obtain precise information on their molecular and

cellular composition, the disparity of values within the same region, and so on.

3.4.1 Histograms and KDE

To obtain information on the distribution of the data, we then displayed the histograms

using the Seaborn python library [22]. An histogram is a graphic representation of

the voxel intensities distribution, showing the frequency of each intensity voxel value

through the three dimensions. In addition to characterizing the structure, the aim was

to identify potential sub-regions within the structures. Indeed, if several peaks can be

distinguished within the histogram, it either means that the structure is divisible into

adjacent sub-structures, or that the structure is not homogeneous (see example Fig

3.4.1).

Figure 3.4.1: Histogram example on the right ganglionic eminence in q-T2star (ms)

The Kernel Density Estimate (KDE) plots represent the data using a continuous

probability density curve, in order to compare different structures on the same

figure for one modality(see example Fig 3.4.2). This will be useful for automatic

segmentation, indicating which structure can be isolated by which modality.

3.4.2 Violin plots

The violin plot is a graph that visualizes the distribution of a set of data. It shows both

summary statistics such as mean and extreme values, and the probability density of

the data distribution (Fig 3.4.3). This thumbnail view was more practical given the

number of histograms we needed to display.
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Figure 3.4.2: KDE plots example on q-T1 (ms)

Figure 3.4.3: Violin plot : example of the red nucleus on quantitative T1
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3.5 Data analysis

This section presents all the explorations conducted to enhance our knowledge and

understanding of this highly complex dataset (never explored before) aiming at

optimally reducing the dataset.

3.5.1 Data reduction

Our dataset is composed of 19 images. Each modality gives a different contrast

and therefore different information about the tissue. Using all the images makes

segmentation more complicated, both in terms of data size, but also in terms of

understanding and verification of each contrast. It was therefore essential to reduce

the dataset.

The aim of this section is to describe how the database has been transformed from a

large number of images to a smaller number, while retaining as much of the original

information as possible. We subsequently explored joint histograms, correlations, and

Principal Component Analysis (PCA).

Joint histograms

To reduce the data set we first considered plotting joint histograms between two

modalities. The idea was that if two modalities showed sufficient colinearity, we could

keep only one in our dataset. To prevent extreme values on the voxels due to PBS

leftovers and fit problems during reconstruction, the same brain mask was applied to

all images. To plot the histograms, python library Seaborn [22] was used. As shown

on the figure 3.5.1, three diffusion modalities were essentially linear : the parallel

diffusion, the transversal diffusion and the ADCmetric. The ADC will be chosen, since

it gives an average diffusion coefficient in every directions.

Joint histograms were usefull to reduce the dataset basing on the colinearity but most

of the acquired images were not colinear.

Correlation study

To continue data set reduction, the correlation between the modalities were studied

with the Pearson coefficient, a parametric correlation coefficient [23].

The correlation matrix was obtained and plotted with Seaborn [22]. (Fig 3.5.2)
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(a) ADC against parallel diffusion (b) ADC against transverse diffusion

Figure 3.5.1: Joint histograms showing the linearities of the diffusion modalities

Figure 3.5.2: Pearson correlation matrix for all the modalities

Same modalities with different shells are quite correlated. The decision was taken

to only keep the b-value b = 4500s/mm2 (this b-value contains information on both

b = 1500s/mm2 and b = 8000s/mm2) . The metric GFA is highly correlated to all the

FA modalities. The GFA is more representative of the reality that the DTI because it

takes into account all the diffusion orientations. The NDI and ODI were considered

enough negatively correlated of respectively ADC and GFA to be sidelined. Finally, the

five modalities kept are : quantitative T1, quantitative T2*, quantitative T2, GFA, ADC

at b = 4500s/mm2 (Fig 3.5.3).
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(a) quantitative T1 (b) quantitative T2* (c) quantitative T2

(d) ADC, b = 4500s/mm² (e) GFA

Figure 3.5.3: Axial sections of the 20 GW specimen

Principal components analysis

PCA is commonly used for dataset reduction. Its main goal is to create, from

correlated variables, a set of uncorrelated ones. Those new variables are called

principal components. Firstly, the images need to be centered and reduced to be

compared. Then, it calculates the covariance matrix of the dataset and decomposes it

into eigenvectors and eigenvalues. The eigenvectors represent the main directions of

variation in the data, and the eigenvalues indicates the amount of variance explained by

each direction. In addition to reduce the dataset by retaining only part of the explained

variance, PCA is usefull for denoising.

The table 3.5.1 indicates all the explained variances and the weight values of the initial

variables for each principal components.
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PC Explained

Variance

(%)

Quantitative

T1

Quantitative

T2star

Quantitative

T2

GFA ADC, b =

4500s/mm2

PC1 28.4 -0.32 0.67 0.62 0.22 -0.07

PC2 24.1 0.20 0.01 -0.05 0.65 0.73

PC3 19.7 0.84 0.14 0.40 -0.32 0.08

PC4 15.0 0.32 -0.18 0.05 0.65 -0.66

PC5 12.7 -0.21 -0.70 0.66 -0.01 0.13

Table 3.5.1: Principal components explained variances and weights

The principal components can be seen on the Fig. 3.5.4. The first main component

explains the anatomical metrics with high resolution to distinguish the different

structures. The second ismainly explained by diffusionmetrics and the fifth represents

the low frequencies of the data set, showing fine details. The third and fourth principal

components are mainly driven by field aberrations, allowing the other components to

be corrected.

(a) PC1 (b) PC2 (c) PC3

(d) PC4 (e) PC5

Figure 3.5.4: Principal Components Analysis: coronal sections of the 20 GW specimen
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3.6 Automatic segmentation

Now the dataset has a reasonable size, we can begin the automatic segmentation. This

section aims to explain how the automatic segmentation was done and driven by the

previous results.

3.6.1 Data-driven segmentation strategy

The data-driven segmentation is principally done using the K-meas clustering [24].

Indeed, this is the most basic segmentation tool and the easiest to implement, so it is

the good first step of an automatic clustering.

The automatic segmentation needs to be separated into multiple steps. (see strategy :

Fig. 3.6.1). It was not possible to obtain interpretable clusters using a single grouping.

It was decided that clustering would be carried out iteratively: if groups could be

distinguished from one or more images, the clustering algorithm would be applied,

and this operation repeated on other images until the final group was found.

Figure 3.6.1: Segmentation strategy

The K-means algorithm decomposes a dataset into k clusters, or groups (see Fig.

3.6.2). Each cluster has a centroid which is the mean of all the values in this group.

It first randomly determines k centroids on the dataset and then assigns each data
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point to the group with the closest centroid. Then the new centroids of each group

are re determined by taking the cluster gravitational centers and this is done as many

time as decided or until the centroids do no longer change. The number of clusters

can be determined using other algorithms [25] or by the user, depending on what is

required.

Figure 3.6.2: Kmeans illustration from “Review on determining number of Cluster in
K-Means Clustering” [24]

The number of clusters was determined by starting from n = 2 (the image background

and the brain) and adding a new cluster until we reach a result that changes very little.

Indeed, once the relevant number of clusters has been reached, new labels are assigned

only to individual voxels or very small and irrelevant groups of voxels. This step is

arbitrary.

Identification of the structures within the regions determined by the data-driven

segmentation were mainly based on the fetal brain atlas [21]. For the regions of

the manual segmentations 3.3.2, an inclusion coefficient was also calculated to add

a quantitative value for the verification. The inclusion coefficient used is the number

of voxels present in the manually segmented and the data-driven segmented masks

divided by the number of voxels in the manually segmented mask.

3.6.2 Validation

Once the clusters are determined, interpretation and performance metrics were used

to validate the segmentation.
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Mahalanobis distance map

To validate the automatic segmentation, I used the data from the manual

segmentation. To do this, we generated Mahalanobis distance maps, enabling us

to identify which structures were similar to each other. These maps also helped us

to interpret the results by calculating the mean and standard deviation within these

clusters, of the distances to structures whose composition was known.

The Mahalanobis distance is defined as:

dM(x,y) =
»
(x− y)TΣ−1(x− y)

where (x,y) are the two vectors between which the distance is calculated, (x,y)T is the

transposition of the difference vector and Σ−1 is the inverse of the covariance matrix

of the segmented images. This metric takes into account the distribution of voxel

values within the structure. In this case, x was the vector of the voxel values in the

five modalities and y was the vector of the averages within the studied structure in the

five modalities.

The calculated distances between the averages in the structure for each modality and

the voxel values for the same modality was then injected into the final image at the

same position as the initial voxel.

Those map were used calculating means and standard deviation of the distances from

a manual segmentation for each clusters to understand the dispersion of the data in

our five main metrics and to guide the automatic segmentation.

Structures seen within the label

The identification of the structures within the K-means clusters was firstly based on

the fetal brain atlas [21] and our knowledge.

To validate the clusters, two metrics were used :

• The inclusion coefficients that represents the proportion of the manual

segmentation included in the automatic segmentation.

• The DICE coefficient, an inclusion coefficient that takes into account false

negatives: it can be used for segmentation, which are the only ones in an

automatic cluster.
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Results

4.1 Manual segmentation characterization

The first objective was to characterize the fetal brain structures. We used the

manual segmentation to learn more about the regions of interest. Each structure is

characterized by its ’vignette’: a series of violin plots in each modality (see example

Fig. 4.1.1). This visualization enabled us to quickly compare the structures.

Figure 4.1.1: Example of violin plots of the ganglionic eminences
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It gives information on the distribution of each structure within the different MRI

parameters (in the 5 modalities and the principal components) and then on their

composition. We can analyse with the figure 4.1.1 that the ganglionic eminence is

characterized by a mean T1 of 80 ms while T2* and T2 are smaller (respectively 14

and 22 ms). The GFA has a mean value of 0.04 but is really dispersed, like the ADC.

For the principal components, the first and fifth ones have a low standard deviation,

whereas the second one is, as the diffusion metrics, quite dispersed.

4.2 Data-driven segmentation

The second objective was to implement an automatic segmentation strategy on the 20

GW fetal brain.

As a reminder, we will use the five principal components and the five modalities :

quantitative-T1, quantitative-T2*, quantitative-T2, ADC, GFA.

4.2.1 First clustering

Figure 4.2.1: First clustering results
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We first do a K-means on one relevant metric. PCA enabled us to obtain homogeneous

images, an important criterion for the Kmeans algorithm so the first clustering was

done on the first principal component (the one that explains the more the variance on

the initial dataset and that has no artefact). Three clusters were extracted.

The figure 4.2.1 summarizes the first step of the K-means method and shows the first

three clusters indicating the structures visible inside.

4.2.2 Characterization of the first three clusters

Once the three clusters were determined, we looked at their violin plots to guide the

rest of the segmentation strategy. Label 0 or label 1 did not result in any observations

that could be used to guide further segmentation.

Figure 4.2.2: Example of violin plots of Label 2

The figure 4.2.2 shows an example of the violin plots of the Label 2. It shows that the

GFA, ADC and then the PC2 (that is mainly explains by the diffusionmetrics) are really

dispersed. For the other two clusters, the violin plots did not identify any metrics that

could be used for other conclusive groupings. In fact, we were unable to interpret the

results of the K-means on selected modalities by looking at these violin plots.
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4.2.3 Clustering of the label 2

Based on the latest observations on the violin plots, we decided to do a K-means on the

principal components that allow us to do a clustering on the two diffusion metrics that

have a dispersed violin plots while excluding modalities containing artifacts. That is

whywe chose to do the clustering based on PC1, PC2 (mostly explained by the diffusion

metrics) and PC5.

We then can distinguish two clusters :

• Label 21 : ventricles, ganglionic eminence contours (Deep cellular layer, the first

sojourn zone to appear outside the germinal matrix/ Late-forming deep layer of

callosal fibers outside the germinal matrix) and anterior commissure.

• Label 22 : internal and external globi pallidi, cortical subplate and a part of the

intermediate zone.

The figure 4.2.3 summarizes the clustering strategy and results for the Label 2.

Figure 4.2.3: First clustering results
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4.2.4 Clustering of the Label 0

To find another way of chosing metrics for the clustering, we then began to interpret

the first three labels according to the biology (tissue composition).

Looking at the structures within the clusters, it seems that they have been grouped

according to their density. On the label 0, the ganglionic eminences are structures

with a really high concentration of progenitors cells [26]. The label 1 groups structures

with an reasonable density of cells, more dispersed (the putamen is made of many cell

aggregates[6]). The label 2 is on the contrary, made of structures with a low cell density

(the anterior commissure is a bundle of neuronal fibers[6]).

Mahalanobis distance maps were computed from manually segmented structures on

the five main modalities kept. As mentioned above, the ganglionic eminences (for

which we have manual segmentation) can serve as a reference for regions of high cell

density. We then looked at the Mahalanobis maps from the left ganglionic eminence

and calculated, within the different labels the average of this distance and its standard

deviation (see Table 4.2.1). This will give an idea of the similarity between the clusters

and the ganglionic eminences and then Mahalanobis distance will act as a cell density

descriptor.

Cluster Mean Standard deviation

Label 0 49.7 49.5

Label 1 42.41 15.3

Label 2 66.7 32.2

Table 4.2.1: Mahalanobis distance to the left ganglionic eminence : mean and standard
deviation within the labels

The StrandardDeviation (STD)within the label 0 shows that the dispersion on the data

on the five modalities (quantitative T1, quantitative T2*, quantitative T2, ADC, GFA)

is unexpectedly high. The disparity in distances to this reference structure therefore

suggests that different clusters are still separable, using the same five modalities as for

the Mahalanobis distance.

Using the K-means on the five main modalities for the label 0, a mask containing the

ganglionic eminences (this label will be named ’GE’) was retained. The remainder of

label 0 will be called ’Outliers’, and contains outliers and ventricles and the part of the
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ganglionic eminences not segmented by this new step of the K-means algorithm (see

Fig 4.2.4).

Figure 4.2.4: Results of the clustering on the label 0

To check this strategy and the two new clusters, the Mahalanobis distance averages

and standard deviations within them :

Cluster Mean Standard deviation

GE 35.1 22.3

Outliers 57.0 57.1

Table 4.2.2: Mahalanobis distance to the left ganglionic eminence : mean and standard
deviation within the new labels

The results in the table 4.2.2 for the ganglionic eminences mask GE are more expected

in regard of the other labels (Table 4.2.1). The results of the outliers are inconclusive,

with a high mean and high standard deviation, as expected, indicating high disparity

within the cluster.
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To understand why the mean and standard deviation are still high, and to have

a reference, we calculated the mean and standard deviation of the Mahalanobis

distancemap within themanually segmented ganglion eminences versus themanually

segmented ganglion eminences themselves.

Cluster Mean Standard deviation

Ganglionic eminences 20 11.8

Table 4.2.3: Mahalanobis distance to the left ganglionic eminence : mean and standard
deviation within the manually segmented ganglionic eminences mask

If automatic segmentation were similar to manual segmentation, which we take as

our reference, the mean and standard deviation results would be identical to those

in the table 4.2.3. The differences are probably due to artefacts in the quantitative

metrics.
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4.2.5 Final clusters

The figure 4.2.5 summarizes the clustering strategy and the results of the clusters.

Figure 4.2.5: Strategy and clusters results

Using aK-means on the first principal component, wewere able to classify the different

structures primarily according to their quantitative data, and as seen previously, their

cell density. The second step on Label 0 then enabled us to mask the ganglionic

eminences, essential structures at this stage of brain development. Clustering on Label

2, usingmainly diffusion data, enabled areas to be separated according to the direction

of water diffusion within the tissue (istropic or not).
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The figure 4.2.6 shows the clusters on the same image, with the colors :

• fuchsia : Outliers

• cyan : GE

• green : Label 1

• purple : Label 21

• light green : Label 22

(a) Axial section (b) Coronal section

Figure 4.2.6: Visualization of the automatic clustering
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4.3 Validation of the automatic clusters using manual

segmentation

Once we had the final clusters, we used manual segmentations to validate the

structures present within them. Based on these manual segmentations, we used

metrics to check whether the structures we thought we would find were indeed inside

the clusters.

The figure 4.3.1 summarizes the results of the inclusions coefficients.

Figure 4.3.1: Inclusion and DICE coefficients results (in %)

The colors used are the same as explained for the figure 4.2.6. Each bar represents

the percentage inclusion coefficient for segmented structures within the final clusters.

Structures having been segmented in two different left/right clusters have been

grouped together for this calculation. All coefficients found are higher than 60%,

which is reasonable taking into account artifacts and potential manual segmentation

issues. The structures with the lowest inclusion coefficients are not surprising: these

are regions that are difficult to segment manually due to artifacts, tissue problems or

data interpretation difficulties.
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Discussion

In this section, we will evaluate the results, discuss what could have been done

differently or better, and what will be done after this master thesis.

5.1 Interpretation

5.1.1 About the MRI parameters

To understand what the different clusters represent, we first need to look at the

modalities used and the information they contain. The different MRI parameters

explain the composition and the structures organization within the brain tissues.

The quantitative images can be considered as metrics of contents within the tissue

[17]:

• quantitative T1 : explains the water and lipid contents

• quantitative T2 : explains the water content and iron accumulation

Both decrease with age, the quantitative T1 with ’pre-myelination’ (membrane

proliferation in the intra- and extracellular space), and the quantitative T2 with

myelination. [17] As a reminder, in the brain here, aged 20 GW, myelination has not

really begun. Using quantitative metrics such as T1, T2 and T2* makes also apparent

the densely packed microstructures such as the neocortex [15].

The DTImetrics depend on the different maturational stages, they reflect the neuronal

fibers organization as well as the pre-myelination and the myelination. [17]
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The GFA give also information about the fibers organization.

5.1.2 Within the clusters

First clustering

The first K-means is based on the first principal components (PC1) that is mainly

driven by quantitative-T1, quantitative-T2 and quantitative-T2*. The initial thought,

that this clustering explains a gradient of cellular density, is then confirmed by the

interpretation the quantitative metrics explained by PC1. T1, T2 and T2* appear here

as proxy of the cell density [15].

Label 0 clustering

The Mahalanobis distance was used to separate region of ganglionic eminences (label

GE) and outliers according to their local dispersion 4.2.2. This indicates that the cells

of ganglionic eminences are fairly homogeneous. The results of themeanMahalanobis

distances of the Label 1 and 2, validate the cell density hypothesis for the first

clustering.
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Label 2 clustering

The second stage of K-means on Label 2 is based on the first, second and fifth principal

components (PC1, PC2, PC5). It can be seen from the violin graphs (Fig 5.1.1) that the

threshold was carried out mainly on PC2.

Figure 5.1.1: Violin plots of the Label 2_1 and 2_2 of the principal components

This second principal component explains the diffusion parameters. The two clusters

have therefore been separated by their diffusion characteristics, as seen on Fig

5.1.2.

The first cluster has a high GFA, meaning that diffusion is fairly anisotropic (limited

to one main direction) and the second has a low GFA, meaning that diffusion is more

isotropic (in all directions). It would appear that this grouping has separated areas

containing mainly fibers according to their dispersion.
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Figure 5.1.2: Violin plots of the Label 2_1 and 2_2 of five modalities

5.2 Limitations

5.2.1 MR images

Some of the MR images we used for this master thesis contained artifacts. On

the quantitative images, there was an area of hypersignal that was not anatomically

explained in the frontal part of the brain. This was due either to the sensitivity zone of

theMRI antenna, or to the preparation of the tissue, i.e. to the presence of a gradient of

the dopant within the tissue, and hence a gradient of relaxation time. For the diffusion

metrics, we observed an inconsistency, probably due to saturation of one of the RF

amplifiers.

5.2.2 Manual segmentation

Manual segmentation was carried out by just one person. This introduces biases into

the interpretation of the tissues observed on the MRI images. To counter this, another
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person, perhapsmore expert in fetal anatomy, would have had tomanually segment the

structures, which was impossible during this master thesis. In addition, the position of

the brain within the slices was not always precisely the same as in the atlas, sometimes

forcing extrapolation of structures. For some structures, such as the globi pallidi,

delimitations with other structures were very difficult to determine, even using all

modalities, and this could result in segmentation errors.

5.2.3 Automatic segmentation

Automatic segmentation followed an exploratorymethod. To determine themodalities

and cluster numbers for each step, arbitrary choices were made. However, K-means is

a simple segmentation algorithm. It is based on the histogramof the data and performs

a threshold to separate the different clusters. The histograms in our data sometimes

lacked distinctive peaks enabling clear and interpretable segmentation. In the case

of Label 1, for example, the results of the various K-means tried did not represent a

recognizable anatomical segmentation.

5.3 Perspectives

5.3.1 To improve the work

Firstly, to improve clustering, the choice of the number of clusters in a segmentation

can be automated. Indeed, there are automatic methods for determining the optimal

number of clusters for a K-means [25].

Then, as K-means clustering was not sufficient to segment all structures correctly,

other segmentation algorithms could be used. K-means is a partition clustering (where

the cluster center is defined as the center of data points) but there are many other

types of clustering algorithm [27]. For example, we can try the clustering algorithm

based on distribution such as Gaussian mixture model[28]. It attributes data from

the same distribution to the same clusters if there exists several distributions in the

original dataset.

The data set can also be more relevant, whether by improving the data engineering

(data reduction, removal or enhancement of artifacts) or by adding some features

(spatial continuity between the clusters or local dispersion for example).
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5.3.2 Long term perspectives

This study will be applied to the other brains of the project : 29 GW, 33 GW and 41

GW.

As fetal brain development during this period of gestation is very extensive and rapid

[5], this will inform us about modality-dependent changes in the composition and

shape of each structure. Myelination occurring during this period should appear

longitudinally at each gestational age.

Given that the composition of the brain and its structures changes significantly

between the 20th and the 41st GW due to various neurogenetic events [6], the imaging

modalities used at each stage will likely differ. However, the methodological approach

will remain consistent. We do not expect the same structures to be grouped within the

same clusters throughout development; rather, studying these differences will provide

valuable insights into the trajectories of brain development.

The segmentation strategywill also be employed to create a state-of-the-art overview of

typical fetal brain development at various key stages. We anticipate that white matter

injuries will exhibit distinct composition and organization compared to typical white

matter. Therefore, we will utilize the same strategy to segment the injured areas of the

white matter for the following of p-HCP.
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Conclusion

This study presents methods for characterizing the signals of fetal brain structures

using various ultra-high field MRI modalities and draws interpretations about their

molecular composition and spatial organization. It also demonstrates a proof

of concept for automatic segmentation of these MRI images without anatomical

priors.

With the manual segmentation of the 20 GW brain based on a histological atlas, we

characterized several main regions in quantitative and diffusion MRI metrics. We

then managed to segment regions of this brain with a similar molecular composition

and cytoarchitecture. We identified clusters that differ in their cell density and the

anisotropy fraction of the water scattering within them. These clusters were compared

with the manually segmented regions, with reasonable success.

The iterative K-means clustering algorithm we used did not yield more accurate

segmentation of the structures. Some arbitrary steps could have beenmade automatic,

andmore features combined with a different groupingmethodmight be able to extract

a different segmentation based on more fine differences within the tissues.

This master thesis presents an approach to the automatic, anatomically uninformed

segmentation of very high-resolution multimodal MRI images, enabling the study of

brain development from a different angle than histology.
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