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Abstract | i

Abstract

Predicting cloud cover from ground-based observations is crucial for weather
forecasting and meteorological analyses. Current methodologies face chal-
lenges in terms of cost, time consumption, and accuracy. This study evaluates
the effectiveness of three state of the art semantic segmentation models in
accurately segmenting cloud images for cloud coverage computation.

The objectives include evaluating performance of each respective model,
comparing their results with human observer predictions, and examining the
impact of dataset volume on model performance. Methodologically, the study
involves fine-tuning models on a custom dataset and conducting experiments
to assess their capabilities.

An evaluation with various metrics showed that all models were able to
segment cloud images well, with DeepLabV3 exhibiting superior performance
in all evaluation metrics. Comparison with human predictions for cloud
cover in cloud images suggests practical alignment, showing the viability
of deep learning models in predicting cloud cover in cloud images.
Moreover, the study revealed that dataset modifications, including data
augmentation, expansion, and reduction of the dataset did not lead to
significant improvements in model performance. For this reason, further
exploration is encouraged, considering the homogeneity of the custom dataset.

In conclusion, this study advances cloud observation methodologies, provid-
ing insight into the applicability of deep learning models. Future research
should focus on refining model generalization, exploring diverse datasets, and
enhancing real-world applicability.

Keywords

Cloud Observation, Cloud Cover Prediction, Deep Learning, Semantic
Segmentation
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Sammanfattning

Att förutsäga molnighet baserat på markobservationer är avgörande för
väderprognoser och metereologiska analyser. De nuvarande metoder som
används står inför utmananingar avseende kostnads, tid och noggranhet. Denna
studie utvärderar prestandan hos tre semantiska segmenteringsmodeller för
segmentering av molnbilder för att kunna förutsäga molnigheten i bilderna.

Målen i studient innefattar utvärdering av de tidigarenämnda modellerna,
jämföra molnigheten berkänad från segmentering med en metereologs
gissning av molnighet på bilderna, samt undersöka datasetets påverkan på
modellpresetandan. Modellerna i denna studie tränades på ett eget byggt
dataset och användes som bas vid fine-tuning av modellerna.

En utvärdering med olika mätetal visade att alla modeller var kapabla till att
segmentera molnbilderna väl, där DeepLabV3 uppvisade överlägsen prestanda
på alla utvärderingsmått (IoU, F1, och pixelnoggranhet). Resultaten av
jämförelse för molnighet på molnbilder mellan modell och metereolog visade
kapaciteten hos djupinlärningsmodeller för att användas vid förutsägelser
av molnighet i molnbilder. Slutligen visade resultaten i denna studie
ingen signifikant förbättring vid modifikation av datat. Av denna anledning
uppmuntras ytterligare utforskning att studera detta, med tanke på datasetes
begränsningar.

Sammanfattningsvis främjar denna studie molnobservationsmetodik och ger
insikter om användbarheten hos djupinlärningsmodeller. Framtida forskning
bör fokusera på att förbättra modellgeneralisering, utforska olika dataset och
förstärka användningen i verkliga situationer.

Nyckelord

Molnobservationer, Molnskattningar, Djupinlärning, Semantisk Segmente-
ring
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Chapter 1

Introduction

Clouds are one of the most common weather phenomena, covering around
67% of the global surface [1], and have been widely studied as clouds play
a pivotal role in the Earth’s atmospheric movement, surface temperature
regulation, and hydrological cycle [2]. Therefore, the development of cloud
observation methods is important.

Cloud observations are made mainly in two ways, satellite-based observations
and ground-based observations, where satellite-based observations are used
to analyze a greater surface area, while ground-based observations are used to
analyze a local area [2].

Ground-based cloud observation is highly flexible and accessible, and is good
at monitoring the bottom characteristics of clouds, such as cloud height, cloud
type and cloud cover [2]. Currently, cloud observations are mainly conducted
by trained human observants, such as metereologist. However, it leads to a
high human resource burden and uncertain subject bias toward the observation
results [2] [3]. To alleviate the need for human resources, efforts have been
put into developing tools that can accurately analyze clouds. Many ground-
based cloud measurement devices, such as radar and lidar, are used to detect
and determine cloud cover and cloud height. However, a much cheaper and
more accessible tool has been developed in the form of all-sky-view imaging
cameras (ASI), thus, effort has been put into using the images from the ASIs,
mainly image segmentation, to be able to determine cloud characteristics, such
as cloud type and cloud cover. In this thesis, we looked at how we can predict
cloud cover based on cloud images
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Precise cloud segmentation plays a crucial role in the analysis of ground-based
ASI equipment, particularly in providing accurate information on cloud cover.
Enhancing the precision of cloud cover information can enable meteorologists
to obtain a better comprehension of the prevailing climatic conditions.
Therefore, accurate cloud segmentation has emerged as a significant research
area, with numerous algorithms proposed to address this issue. [3]

The emergence of image acquisition devices has led to several robust
algorithms. Long et al. described in his article how clouds more evenly
emits red and blue light whereas sky mostly only emits blue light, making
it possible to propose a thresholding algorithm based on the red and blue
channels [4]. Heinle et al. [5] used the Red-Blue color channels to set
a threshold in their algorithm to classify clouds from whole sky images.
Shi et al.[6] proposed a different approach to cloud image segmentation;
using superpixels and graph models, they were able to segment cloud images
effectively and more accurately than previous methods. Although progress has
been made, achieving satisfactory cloud image segmentation based on ground-
based imaging has shown to be a challenging task due to the blurry edged
and varied shapes of the clouds. For this reason, the results have remained
unsatisfactory and methods that could provide more accurate and robust cloud
segmentation are still being explored.

The powerful representation ability of deep learning has made it the
mainstream approach for numerous computer vision tasks, with convolutional
neural networks (CNN) being a prominent technique [2]. For example, Shi et
al. have proposed CloudU-Net and CloudU-Netv2 [7] [8], while CloudSegNet
[9] and SegCloud [10] are similar models that employ an encoder-decoder
architecture. In this architecture, the encoder consists of a CNN, which
learns high-level and low-resolution features, while the decoder generates a
segmentation mask of the input image.

Despite extensive research that has demonstrated the effectiveness of deep
learning for cloud segmentation, the lack of labeled cloud image datasets in
practical applications remains a challenge. Consequently, these models often
exhibit the disadvantage of limited generalization ability [11]. The goal of
transfer learning is to enhance the performance of target networks in target
domains by leveraging the knowledge acquired from other source domains.
This approach can help reduce the need for extensive target-domain data
during the construction of the target network. One commonly adopted TL
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strategy is to use pre-trained weights on a large dataset instead of random
initialization [11].

1.1 Problem Statement

Ground-based cloud observations traditionally relies on manual observations
by meteorologists or ceilometers, both of which have limitations. Manual
observations are resource-intensive and prone to human error, while
ceilometers have accuracy concerns [2]. This thesis explores the use of deep
semantic segmentation models to automate cloud observations, aiming to
improve accuracy and efficiency.

1.1.1 Scientific and engineering issues

Accurate cloud image segmentation using deep learning is challenging due to
the limited availability of labeled datasets. This thesis investigates whether
transfer learning can enhance model performance on cloud images and
explored the dataset sizes required for effective segmentation. By addressing
these issues, we aim to develop a robust approach for cloud cover prediction
that can complement existing methods and reduce the need for extensive
manual observation.

1.1.2 Research Questions

This thesis will explore the application of deep learning-based semantic seg-
mentation methods for cloud cover prediction, focusing on their performance,
efficiency, and scalability. The following research questions will guide our
investigation:

1. What are the advantages and disadvantages of deep learning-based
semantic segmentation methods for cloud cover prediction in terms of
predictive performance, efficiency, and implementation complexity?

2. How does the accuracy of cloud cover prediction differ between
deep learning based methods and manual observations made by
meteorologists in the Swedish cloud observation process?

3. What is the impact of dataset volume on the performance of state-of-
the-art deep semantic segmentation models? Specifically, what is the
minimum volume of data sets required to achieve accurate segmentation,
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and how does increasing the volume of data sets further enhance model
performance?

1.2 Purpose

The purpose of this thesis is two-fold. Firstly, it aims to contribute to
the advancement of the Swedish cloud observation process by incorporating
machine learning techniques. Specifically, the thesis seeks to identify a
feasible and efficient method that can deliver results comparable to those
obtained via manual observations. The thesis seeks to address concerns
about resource-intensiveness associated with manual cloud observations by
developing a commercially viable solution that can improve the accuracy of
cloud cover prediction. Additionally, machine learning methods have the
potential to complement the information obtained from ceilometers, which
have been associated with concerns about the accuracy of their predictions.
Second, this thesis seeks to gain a deeper scientific understanding of the impact
of a limited data set on deep semantic segmentation models. By evaluating
model performance across varying dataset sizes, we aim to unravel the intricate
relationship between dataset volume and the learning efficacy of these models.
This knowledge will provide valuable insights into optimizing the learning
process

Moreover, this thesis aims to improve upon current methods of cloud cover
prediction, which have implications for achieving Sustainable Development
Goals (SDGs). Notably, accurate cloud cover predictions align with SDG 11
(Sustainable Cities and Communities) by informing urban planning strategies,
promoting energy efficiency, and contributing to the development of resilient
cities in the face of climate-related challenges. Furthermore, advancements
in cloud cover prediction contribute to SDG 7 (Affordable and Clean Energy)
by optimizing the efficiency of renewable energy resources through improved
forecasting techniques.

1.3 Delimitations

This study focuses mainly on the initial stage of the cloud observation process,
namely cloud cover prediction, as defined by the World Meteorological
Organization (WMO). Consequently, this thesis does not explore the
remaining stages of the cloud observation process which includes, predicting
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cloud height, cloud types, or other cloud features.

Due to the limitations of the camera setup, in this study only images captured
during the day were selected.

Given the scarcity of data, transfer learning is the preferred method in
exploring deep learning-based approaches. Thus, this study does not aim
to propose a novel architecture, but rather scrutinizes the currently available
state-of-the-art methods and pre-trained models.

1.4 Structure of the thesis

Chapter 2 of this thesis presents the background information relevant to this
study as well as introducing the models used in this study. Chapter 3 describes
the methodology in this thesis. The results of this study are presented in
chapter 4 and discussed in chapter 5. Finally, the conclusions are stated in
chapter 6.
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Chapter 2

Background

This chapter introduces the key domains of this project, starting with an
overview of image processing, image and semantic segmentation, which
involves the methods and techniques employed for analyzing images.
Subsequently, we delve into the field of machine learning, highlighting its
applications in image processing and its evolutionary development over time.
Moreover, a detailed description of the models utilized in this thesis is
provided, elucidating their architecture and functionalities.

Furthermore, a section on related work is included, which offers a concise
summary of recent advancements in the field of sky cloud image analysis. This
section provides valuable context and outlines notable contributions made by
researchers in this area.

2.1 Cloud Observation Analysis

Cloud observation can generally be categorized into two areas, satellite-based
observations and ground-based observations [2]. Currently, ground-based
observations are generally carried out by a trained metereologist [3]. Cloud
observations are important for many reasons, such as weather forecasting,
environmental studies, and more [3] [12]. To conduct a ground-based cloud
observation correctly, the world metereological organization (WMO) has
released a step-by-step guide on how to conduct such observations. The steps
are listed in the following order:

1. Estimate or measure total cloud amount

2. Identify all clouds in the sky by genus, and where possible, species,
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varieties, supplementary features, accessory clouds, mother-cloud and
any other meteors associated with the cloud

3. Estimate or measure cloud amounts of the individual cloud genera and
cloud layers

4. Estimate or measure cloud height

5. Estimate direction of movement

In many cases, only some parts of a cloud observation is of interest. For
example, estimation of cloud cover are generally used for flight planning and
aviation [12]. In this thesis, we will explore this area of cloud observation and
how we can automate the process of estimating cloud cover in a local area.

2.2 Digital Image Processing

Digital image processing is a field that is comprised of the task of manipulating
digital images using digital computers [13]. Image processing focuses on
the analysis, manipulation, and interpretation of digital images and involves
applying various techniques, algorithms, and methodologies to enhance,
transform, and extract meaningful information from images. The goal of
image processing is to improve the visual quality of images, extract important
features, and enable automated understanding and interpretation of visual data
for a wide range of applications in fields such as computer vision, medical
imaging, remote sensing, and more.

2.2.1 Image Segmentation

Image segmentation, a specific field within digital image processing, involves
partitioning an image into distinct regions or objects, serving as a crucial
initial step for subsequent image analysis [14]. The primary objective of
image segmentation is to delineate meaningful areas within an image that are
pertinent to specific tasks or objects. For example, in medical imaging, the
detection and isolation of organs of interest can be facilitated by segmentation
techniques. Similarly, in applications such as autonomous driving and object
location, computer systems interpret images by assigning labels to objects,
allowing a comprehensive understanding of the environment [15].
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Numerous techniques have been proposed for image segmentation, including
thresholding methods, edge-based methods, and clustering methods [16].
This thesis aims to delve into neural network-based approaches, with a
particular focus on exploring semantic segmentation, a specialized type of
image segmentation that assigns semantic labels to individual pixels.

2.2.2 Semantic Segmentation

Semantic segmentation constitutes one of the prominent methodologies
in image segmentation, aiming to assign precise semantic class labels to
individual pixels within an image. As a supervised learning problem, semantic
segmentation necessitates the training of classifiers from pixel-level labeled
data [17]. As semantic segmentation is able to provide information at the
pixel level, many real-world applications can benefit from this task, including
self-driving vehicles, pedestrian detection, defect detection, and more [18].
By providing pixel-level information, this task aids systems to make informed
decisions and accurate judgements.

In recent years, semantic segmentation has seen promising results with the
introduction of deep learning and deep neural networks. Leveraging sufficient
images and their corresponding pixel-wise labeling maps as training data,
deep neural networks learn to establish a robust mapping between semantic
labels and diverse visual representations. This learning process progressively
reconciles the disparity between high-level semantics and low-level visual
features, thereby enhancing the network’s awareness of various semantic
concepts [18].

In section 2.3.3 some of the state-of-the-art models used in this thesis are
introduced and described.

2.3 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) and
focuses on the development of methodologies and algorithms that empower
computational systems to learn from data, improve their performance over
time, and make informed decisions without explicit programming [19]. ML
can be defined as the process of learning and understanding patterns in
data by adapting and tuning model parameters to the underlying probability
distribution of the dataset. In turn, the model is capable of generating an output
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"y" (predicted labels or values), representing predicted labels or values, based
on the input "x" (input features or data points), which represents input features
or data points [19]. The learning process that involves understanding the
underlying distribution of the dataset is referred to as the training phase. Once
the model completes its training, it gains the ability to identify the identity of
new inputs, often referred to as the test set, which share characteristics with
the data used during training. The model’s capacity to accurately categorize
novel examples, distinct from those encountered during the training phase,
is recognized as generalization. Achieving a generalized model, capable
of effectively handling diverse and previously unseen data, is an important
objective in machine learning endeavors [19]. ML consists of different
learning types, in this thesis, supervised learning [19] is the method used
during model training.

• Supervised learning, also known as inductive learning, imitates human
learning by gaining knowledge based on previous experiences. ML
systems in supervised learning are trained on labeled datasets, where
input and validation data have known labels. During training, the model
adjusts its parameters to minimize the difference between its predictions
and the true labels, learning from experience. This process enables
the model to generalize patterns and make accurate predictions on new,
unseen data. The success of supervised learning hinges on the quality
of labeled training data, as it enables the model to adapt its knowledge
effectively. [20]

Machine learning has gained widespread application in various fields, such as
robotics, finance, medical sciences, and computer vision, owing to its capacity
to discern patterns in extensive and multidimensional datasets. Despite its
immense potential, ML is not without challenges, particularly those associated
with data. The availability and quality of data play a pivotal role in model
performance. In instances where data is insufficient, training a robust and
generalizable model becomes challenging, leading to suboptimal outcomes.
Data quality also influences model performance significantly, necessitating
the development of sophisticated engineering techniques to mitigate such
issues. Moreover, interpretability poses a common challenge, particularly in
deep learning, rendering the decision-making process of ML models more
intricate and less transparent [21]. In this thesis, we delve into these pertinent
challenges and propose effective approaches to address them in Chapter 3.
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2.3.1 Artificial Neural Networks and Deep Learning

Artifical neural networks (ANN), is a popular ML method that tries to simulate
the mechanism of learning of biological organisms [22]. ANNs are at the core
of deep learning, a subfield of machine learning that has revolutionized various
domains with its ability to handle complex tasks and large datasets [22].

The architecture of artificial neural networks (ANNs) aims to replicate the
communication observed in the brain, where neurons process and transmit
information through interconnected pathways. In ANNs, nodes, also known
as neurons, are organized into layers, and each node receives input and
computes outputs based on its associated weights and activation function
[22]. By combining perceptrons and arranging them into multiple layers,
known as multi-layer perceptrons (MLP), ANNs have demonstrated the
ability to solve nonlinear problems [22]. This integration of depth through
the addition of layers, enabling the learning of hierarchical representations,
together with advancements in activation functions, optimizations algorithms,
initialization techniques, and the availability of large-scale datasets and
powerful computational resources such as graphics processing unit (GPUs),
has been the main reason for the advancements in deep learning [22].

Recent years has seen great progress for different deep learning techniques
in several fields. In natural language processing (NLP), transformers has
shown extraordinary results in tasks such as text comprehension [23]. Deep
reinforcement learning integrates neural networks and reinforcement learning
to enable agents to make decisions in different environments through trial
and error [24]. Computer vision (CV) has made significant strides using
convolutional neural networks (CNNs), which excel at encoding image-
specific features and solving complex image analysis tasks[25][22].

2.3.2 Convoloutional Neural Network

One of the largest limitations of classic ANN is that they tend to struggle
with the computational complexity involved with image data [25]. Similar
to traditional ANN, convolutional neural networks has a similar structure in
the way that it is a feed-forward network, meaning that an input will be fed to
the input layer in the form of raw image vectors and eventually an output score
is given, which then with a loss function, similar techniques are used to adjust
the weights within the network [25].
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Figure 2.1: A general structure of a CNN with four layers

The architecture of a CNN is mainly comprised of these four components, the
input layer - which holds the pixel values of the image, the convolutional
layer - where convolution filters are applied to the input, the clustering layers
- which downsamples the input, and a fully connected layer - which is used
to produce class scores used for prediction [25]. Figure 2.1 demonstrates a
standard CNN architecture. The layers are described in the following sections.

Input Layer
The input layer is the first and initial layer. The input layer is where the data
points serving as input is introduced to the model. In this study, the input data
is images, and will be seen as an array of pixels by the computer. [25] [26]

Convolutional Layer
The convolutional layer consists of a set of learnable kernels that perform
the convolutions on the image [25]. The kernels are small in spatial
dimensionality, but they spread along the entirety of the depth of the input [25].
When the input hits a convolutional layer, the kernel slides across the image,
producing a 2-dimensional activation map [25]. This way, the kernel will know
when to "fire" when they see a specific feature at a given spatial position; these
are commonly known as activations. Each kernel will have the corresponding
activation map, which will be stacked along the depth dimension to form
the output volume of the convolutional layer [25]. The benefit of this, in
comparison to traditional neural networks, is that we are able to drastically
reduce the number of parameters. For example, if we have an input image of
size 64x64x3 and we set the kernel size to 6x6, we would have a total of 108
weights in each neuron in the convolutional layer. Compared to a standard
ANN, each neuron would contain 12,288 weights each [25].

To optimize the output of the convolutional layer, the programmer can set three
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different hyperparameters, stride, depth, and zero-padding.

• Depth in the convolution layer refers to the number of channels/filters
in the layer [25]. For example, setting depth to 16 would mean that the
convolutional layer has 16 different kernel that are associated with each
own kernel, that in turn are responsible of recognizing features in the
image.

• Stride determines the sliding size of the kernel. If we set stride to 1, the
kernel will move one pixel at a time, leading to a highly overlapping
receptive field and a larger output. This is more computationally
expensive, however, this enables the layer to capture more details and
features. In contrast, a higher stride means that the step the kernel takes
each iteration is larger, which means less overlap and a smaller output.
This makes the computation faster and less expensive; however, this also
means that the details captured by the kernels are less. [25]

• Zero-padding is the process of padding the borders of the input [25].
This is done so that the kernel does not go out-of-bounds when sliding
through the input.

By using these hyperparameters, the spatial dimensionality of the output will
change. To compute the output size of the convolutional layer, one can use the
following equation:

(V −R) + 2Z

S + 1

Where V represents the input size (height ∗width ∗ depth), R represents the
kernel size, Z is the amount of zero padding, and S is the stride size [25]. The
output will then become the new input for a pooling layer or sent to another
convolutional layer for further processing.

Pooling layers
Pooling layers are used to gradually reduce the spatial dimensionality of
the representation, thus further reducing the number of parameters and the
computational complexity of the model [25]. This is usually done with max-
pooling layers, which includes a small kernel (often the size of 2x2 or 3x3)
that like kernels in the convolutional layers, slides through the feature input.
Then it uses a "MAX" function, where the maximum value of each region is
saved [25]. This enables the layer to reduce the spatial dimensionality while
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Figure 2.2: Typical encoder-decoder architecture of CNN based semantic
segmentation

preserving important features [25].

If we have an activation map of size W x W x D, a pooling kernel of spatial
size F, and stride S, then the size of output volume can be determined by the
following formula:

W − F

S
+ 1

Fully-connected layer
Neurons in the fully-connected layer have full connectivity with neurons in the
preceeding and and succeeding layer as in traditional fully-connected neural
networks [25]. The output from the fully-connected layer is then sent in as
input to the output layer which is responsible for prediction.

2.3.3 Deep Semantic Segmentation Models

As for other computer vision tasks, CNNs have been heavily used for semantic
segmentation. Semantic segmentation architectures typically include a
encoder-decoder, where the encoder extracts features from the image which
are then decoded to produce a semantic segmentation output, like in figure 2.2
[27]. Although the proposed models generally have a common architecture,
many different optimization techniques have been tested to increase current
benchmarks [27] [28]. In this thesis, we introduce three of these models, the
Fully Convolutional Networks (FCN) [29] that laid the foundation for the most
modern segmentation architecture [28], the U-net model that built on FCN
by introducing skip-connections [28], and finally, DeepLabv3 that introduced
atrous convolutions and atrous spatial pyramid grouping [30]. In the following
sections, these models are thouroughly explained.
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2.3.3.1 Fully Convolutional Networks

The model proposed by Long, Shelhamer, and Darrel was the basis for how
state-of-the-art architectures for semantic segmentation have been built [28].
The main challenge with semantic segmentation tasks in deep learning is
the nature of losing local spatial information due to downsampling, which
are crucial for accurate pixel-wise segmentation [29]. The authors addresses
this problem by mainly incorporating two modifications, replacing the fully-
connected layers with convolutional layers and incorporating skip connections
throughout the network [29].

The authors use a encoder-decoder architecture where the encoder is
responsible for downsampling the input image to capture high-level features.
During this process, the spatial dimensions of the feature maps are reduced,
which is the main cause of losing the spatial information. However, by
incorporating skip connections between the encoder and decoder, it enables
the transfer of feature maps from the encoder to the decoder, which effectively
fuses low-level and high-level features [29].

As mentioned previously, the algorithms replaced fully connected layers with
convolutional layers, as fully connected layers produce a fixed-size output
vector, leading to a loss of spatial information. The output from fully
connected layers are usually used for classification tasks, however, as this
prediction made from the information from these layers do not contain spatial
information, this is not suitable for pixel wise predictions. By replacing
them with convolutional layers, the model is able to produce spatially dense
predictions [29].

As ground truth is available at every output cell, end-to-end learning is
possible with straightforward forward and backward passes, without the need
of processing the raw image input [29]. The decoder network consists of
upsampling layers that are responsible for increasing the spatial dimensions
of the feature maps. In FCNs, two upsampling methods are used, backward
convolution (sometimes called deconvolution), and bilinear interpolation [29].
Convolutional layers are also used in the decoder to further process upsampled
feature maps and refine segmentation predictions [29].

By incorporating these modifications, the authors could achieve results that
transcended previous state-of-the-art in pixel-wise predictions [29].
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2.3.3.2 U-Net

The U-net [31] model incorporates the same idea as the FCN with included
modifications to skip connections. The U-Net model was developed for
biomedical image segmentation tasks [31]. Similarly to the architecture of the
FCN model proposed by [29], the U-net utilizes an encoder-decoder structure
that, in comparison with the previous model, is symmetrical and attains a U-
shape, thus the name U-Net [31]. The major difference between the U-Net
and FCN is the way the skip connections work. Previously in the FCN model,
skip connections are implemented as "upsampling and sum" connections.
During the upsampling process, the encoder feature maps are upsampled to
match the size of the corresponding decoder feature maps. The upsampled
feature maps are then element-wise added to the decoder feature maps to
combine low-level and high-level information. U-net’s skip connections
are direct concatenation connections [31], where the feature maps from the
encoder are not upsampled as in FCNs, but instead directly concatenated
with the corresponding decoder feature maps. The authors showed that their
architecture outperformed previous models in biomedical image segmentation
challenges, and proposed that the model be used in other fields for semantic
segmentation [31].

2.3.3.3 DeepLabv3

In more recent years, the DeepLabV3 [30] model was proposed by Chen, Zhu,
Papandreou, Schroff, and Adam. It was an upgrade to its previous DeepLab
predecessors [30]. To address the challenges of deep semantic segmentation
models, the authors mainly utilized atrous convolution, also known as dilated
convolution [30]. Atrous convolutions allow for control in how densely to
compute feature responses, as atrous convolutions increase the receptive field
of the kernel by adding holes in the kernel [30]. Using dilated kernels, the
network is able to extract denser feature responses without having to learn any
additional parameters, enabling maintenance of computational efficiency and
performance [30]. Examples of the atrous convolution filter can be seen in
figure 2.3.

To effectively capture multiscale information, the authors used spatial pyramid
pooling (ASPP) [30]. ASPP is a module used at the end of the network that
consists of parallel branches and uses multiple dilated convolutions at different
rates, which means that it has different kernels with different sizes of the
receptive field [30]. The ASPP module then uses global average pooling,
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Figure 2.3: Atrous convolution with kernel size 3x3 and different rates.

Figure 2.4: DeepLabV3 architecture.

as when the dilation rates become larger the number of valid filter weights
decreases [30]. The DeepLabV3 architecture scheme, in comparison with
previously mentioned models, does not adapt an encoder-decoder architecture
in the same way. Instead, the DeepLabV3 model uses a ResNet model as the
backbone, followed by dilated convolutional layers. Then an ASPP module is
placed to capture multi-scale context in the image. Finally, the output of the
ASPP module is passed through a 1x1 convolution to get the actual size of the
image, which then will be the final segmented mask for the image created by
the model [30]. The architecture can be seen in figure 2.4.

The authors showed that DeepLabV3 outperformed previous DeepLab
models, as well as achieving results comparable to state-of-the-art models on
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the PASCAL VOC 2012 semantic image segmentation benchmark [30].

2.4 Related work

Effort to adapt semantic segmentation networks to sky cloud images has been
made during recent years, as effective cloud image analysis is sought after. In
this section, recent work on sky cloud semantic segmentation is presented and
described.

2.4.1 CloudU-Netv2: A Cloud Segmentation Method
for Ground-Based Cloud Images Based on Deep
Learning

In [8], Shi, Zhou, and Qiu proposed the CloudU-Netv2 model, an upgrade of
their previous CloudU-Net[8] model that was based on the U-net model. The
authors proposed three different changes to their model, which significantly
increased performance [8]. The CloudU-Netv2 model consists of the encoder-
decoder architecture, as well as a dual-attention module (DAM) between the
encoder and decoder. The DAM consists of position attention modules (PAM)
and channel attention modules (CAM) [8]. The Position Attention Module
(PAM) selectively combines features from different locations in the feature
maps through weighted summation, emphasizing long-range dependencies
and context at each position. On the other hand, the Channel Attention
Module (CAM) emphasizes relevant interdependent channel mappings within
the feature maps. Combining the outputs of both attention modules through
concatenation enhances the overall feature representation, allowing the model
to capture richer and more discriminative information [8].Other modifications
include changing the upsampling method to bilinear upsampling, using
rectified Adam as optimizer. The architecture of the proposed model can be
found in figure 2.5.

Bilinear Upsampling
Bilinear upsampling is a method used in the decoder to upsample the image
to its original spatial dimensions. The idea is to improve the spatial resolution
of the feature maps from the previous model version [8]. Imagine you have
a small image with a grid of pixels. Bilinear upsampling looks at the colors
of neighboring pixels and creates new pixels in between them, filling in the
gaps to make the image bigger. The idea is to perform linear interpolation



Background | 19

Figure 2.5: CloudU-Netv2 Architecture.

successively along the two directions of the coordinate axis [8]. Imagine that
four points are known, A = (x1, y2), B = (x2, y2), C = (x1, y1), D =

(x2, y1), and f(x3, y3) at G is unknown. To compute the position of f(x3, y3)

at G, we first perform linear interpolation in the direction of the x-axis:

f(x3, y1) ≈
x2 − x3

x2 − x1

f(C) +
x3 − x1

x2 − x1

f(D)

f(x3, y2) ≈
x2 − x3

x2 − x1

f(A) +
x3 − x1

x2 − x1

f(B)

Then we can compute the position of f(x3, y3) by linear interpolation in the
direction of the y coordinate axis:

f(x3, y3) ≈
y2 − y3
y2 − y1

f(x3, y1) +
y3 − y1
y2 − y1

f(x3, y2)

Dual Attention Modules
The DAM was introduced to this model to capture local feature maps and
global dependencies in spatial and channel dimensions [8]. The module is
placed between the encoder and the decoder and consists of two different
modules, the position attention module and the channel attention module [8].
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Figure 2.6: The structure detail of PAM.

Position Attention Module
As illustrated in figure 2.6, the encoder generates the local feature maps H.
Firstly, H performs convolution operation to generate three feature maps I,
J and K, where {I, J,K} ∈RXxY xZ . The feature maps are then reshaped
to RXxW , where W = Y xZ represents the number of pixels. Second, the
matrices I and the transpose of J are multiplied, and obtain the position
attention features maps M by using a softmax activation function where mji

represents the influence of the i-thj pixel on the j-th pixel. The closer the
two pixels are, the greater their mji value. After that, the matrices M and the
reshaped K are multiplied. Finally, the result is multiplied by a parameter α
and an add operation is performed on the local feature maps H to obtain the
output N of the PAM.[8]

Channel Attention Module
The channel attention module emphasizes the interdependence of features
between different channels [8]. The structure detail of the CAM can be
seen in figure 2.7. Compared to PAM, CAM computes attention feature
maps O directly from H. The calculations are consistent with PAM. Finally,
convolution operations on the output of the two modules are performed and
fused to improve the feature representation. [8]

RAdam optimizer
During the initial phase of model training, insufficient training samples
can lead to heightened influence of the initial few samples on the model
parameters. Consequently, this can result in notable fluctuations in the
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Figure 2.7: Structure detail of CAM.

adaptive learning rate, contributing to the model getting trapped in a local
optimal solution. To address this issue, the present paper presents the RAdam
optimizer, a modified version of the Adam optimizer. RAdam enhances
convergence speed and effectively optimizes convergence, demonstrating
robustness in achieving favorable outcomes. [8]

2.4.1.1 CloudU-Netv2 against other state-of-the-art

To thoroughly evaluate their model, the researchers compared its results with
other advanced models using both quantitative and visual assessments. The
outcomes revealed that their model outperformed the competition across all
measures. Interestingly, their model’s segmentation maps closely resembled
the original ground truth data in most cases, highlighting its effectiveness and
strength [8].

2.4.2 Cloud Image Segmentation Using Deep Transfer
Learning

Due to the limited amount of labeled data, the authors in [11], explored
how deep transfer learning can be used in the context of cloud image
segmentation. Twelve state-of-the-art semantic segmentation models were
selected, FCN-8, FCN-16, FCN-32, U-Net, SegNet, PSPNet [24], RefineNet,
PAN, DeepLabV3, DeepLabV3+, DenseASPP, and BiSeNet [11]. The
models were trained on the GBCS (Ground-Based Cloud Segmentation)
dataset, which was manually created by the authors by collecting images from
the web. When comparing the models quantitatively, they found that the
DeepLabV3+ model had the best performance and was selected for further
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training and evaluation [11]. Strong generalizability and robustness are
important attributes for deep learning models. Therefore, the authors tested
two different cloud image datasets with their trained DeepLabV3+ model. The
qualitative analysis showed that their model was able to recognize different
shapes of cloud quite well, however, it performed slightly worse on night-time
images since they have less illumination [11].

The authors were able to show that transfer learning methods have a positive
effect and efficiently improved the predictive power of cloud segmentation
tasks. This can significantly reduce time consumption and workload in the
annotation process. [11].
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Chapter 3

Method

In this chapter, the main methods employed in the study are presented. Section
3.1 outlines the data-related methods, including data collection, datasets used,
and data augmentation techniques. Section 3.2 discusses the evaluation
methods utilized, along with the statistical techniques employed to validate the
experimental results. Lastly, in Section 3.4, the experimental environment is
detailed, covering software, tools, model implementation, parameters, training
procedures, and the overall experimental setup.

3.1 Data

In this section, the datasets used for the thesis are explained, as well as how
they were collected and processed.

3.1.1 Datasets

For this thesis, three distinct datasets have been used to facilitate comprehen-
sive research and analysis. These datasets include our custom-built dataset,
the Singapore Whole Sky IMagin SEGmentation Database (SWIMSEG) [32],
and the Singapore Whole Sky Nighttime Image SEGmentation Database
(SWINSEG) [33]. The SWIMSEG dataset, contains 1013 images of sky/cloud
patches, and the SWINSEG dataset, contains 115 nighttime images of
sky/cloud patches.

Our custom dataset serves as the primary resource for training and evaluating
the different models investigated throughout the research. Concurrently, the
SWIMSEG and SWINSEG datasets have been utilised in assessing the broader
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Figure 3.1: Original Image Figure 3.2: Binary Image

applicability and generalizability of the developed models. These publicly
available datasets offer a diverse range of cloud and nighttime sky imagery,
enabling a more comprehensive evaluation of the model’s performance beyond
our specific dataset.

3.1.2 Data Collection

Building our custom dataset was done in two steps, first collecting and filtering
images that came from our image provider, and secondly we had to manually
label our data using the MIT LabelMe tool. Our images were provided by the
Swedish Meteorological and Hydrological Institute (SMHI) using a camera
located at their station in Norrköping. Their camera was installed to take
an image once every five minutes and then uploaded for us to download.
Images older than ten days were deleted in their database, for this reason, we
downloaded the images available to our local machine once every ten days.
All the nightime images were removed as the camera was not able to take
nightime images. Any images with noise were also removed. In the end, 264
images were used for training, and 60 separate images were used for testing.
The labels for the images were manually made by using the LabelMe tool from
MIT. An example of how an image looks like and its corresponding label can
be found in 3.1 and 3.2. The images had a resolution of 720x480.

3.1.3 Data Augmentation

To observe whether the performance difference from the models could be
increased, we tried to expand our datasets with different data augmentation
techniques and append the transformed images to our existing dataset. As
deep learning models run the risk of overfitting the data, data augmentation
techniques can be used to reduce this risk [34]. Common techniques such as
random rotation, random contrast changes, random brightness changes were
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made to our existing dataset.

In the end, we combined the augmented images together with the original
images to construct four different datasets;

• Dataset 1: Represents the original dataset with no modifications applied
to the images, serving as the baseline for performance comparison.
Contains 264 images.

• Dataset 2: An upsampled version of Dataset 1, augmented with random
rotations to introduce variability in image orientation. Contains 528
images.

• Dataset 3: Similar to Dataset 2, this is an upsampled version of Dataset
1; however, the images are modified by applying random changes
in brightness and contrast, testing model robustness against lighting
variations. Contains 528 images.

• Dataset 4: An upsampled composite of Dataset 1 that incorporates
both types of modifications from Datasets 2 and 3 (rotations and
brightness/contrast adjustments), designed to challenge the models with
a combination of augmentations. Contains 792 images.

• Dataset 5: A downsampled version of Dataset 1, containing half
the volume of images but maintaining an equivalent distribution of
different cloud coverages, to assess model performance with reduced
data availability. Contains 132 images.

3.2 Evaluation

To quantitatively estimate the capacity and effectiveness of different models
in extracting and decoding cloud features, four evaluation metrics were used.
These were pixel accuracy, F1-score, and Intersection-over-Union (IoU).

3.2.1 F1 Score

The F1 score is based on the true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). From these parameters, precision,
recall, and further, the F1 score can be computed [35]. The definition of
precision and recall is the following;
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Precision =
TP

(TP + FP )

Recall =
TP

(TP + FN)

Then the F1 score can be calculated as following;

F1 = 2 ∗ Precision ∗Recall

Precision+Recall

The F1 score ranges for values between 0 and 1, and a value as close to 1 is
desirable.

3.2.2 Intersection over Union

Intersection over Union (IoU), also known as the Jaccard index, is a measure
of the overlap between two sets. It is a commonly used evaluation metric in
object detection and semantic segmentation, as it is used to evaluate the quality
of the model predictions compared to the true boundaries and masks of objects
[36].

The intersection refers to the number of pixels that are correctly classified by
both the model and the ground truth. It represents the number of pixels where
the model prediction matches the actual object present in the image.

The union represents the number of pixels that are classified as an object by
either the model or the ground truth. It encompasses all the pixels that are part
of the object in either the prediction or the ground truth.

The IoU is computed using the following formula:

IoU =
Area of intersection

Area of union

The formula quantifies the degree of overlap between the model prediction and
the ground truth. A higher IoU score indicates a better segmentation result,
as it would mean that there is a higher level of overlap. The IoU score ranges
in values between 0 and 1, where 0 means no overlap between prediction and
ground truth, and 1 indicates a perfect match. [36]
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3.2.3 Pixel Accuracy

Pixel accuracy is a straight-forward evaluation metric for image segmentation
task, that serves as an easy-to-understand metric that provides a quick
assessment of the segmentation performance. However, its simplicity also
comes with a drawback, as the pixel accuracy does not account for the spatial
alignment between the ground truth and the predicted segmentation. This
can be clearly seen when you have a class imbalance in the data with a lot
of background. The pixel accuracy represents the ratio between correctly
instances and all the instances in the dataset [35]:

Pixel Accuracy =
TP + TN

TP + TN + FP + FN

This can be translated into:

Pixel Accuracy =
Number of correctly classified pixels

Total number of pixels

3.3 Statistical testing

To validate our results, two different statistical tests were performed. A one-
way analysis of variance (ANOVA) test to determine whether there was any
statistical significance between the models, and a paired T test to explore where
the significance lies between the models.

A one-way analysis of variance (ANOVA) is used to determine if there is
a difference in the means of three or more groups and is one of the most
commonly used statistical methods [37]. In other words, the null hypothesis
in a comparison of three groups in an ANOVA test would be "the population
means of three groups are all the same", and thus the alternative hypothesis
would be "at least one of the population means of three groups is different".
For this reason, the ANOVA test cannot be conducted by itself to draw any
conclusion about the difference between the group; rather it tells us that there
is at least one difference, but not where the difference exists. Therefore, a post-
hoc test has to be conducted to observe where the significance lies [37].

To summarize, the following hypothesis can be described as follows;
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H0 : µ1 = µ2 = µ3

H1 : µ1 ̸= µ2orµ1 ̸= µ3orµ2 ̸= µ3

As the one-way ANOVA test only tells us whether there is a significant
difference between the mean groups but not where, the ANOVA test must be
followed by an ad hoc test. In this paper, a pairwise t-test with a level of α of
0.05 is used.

3.4 Software and tools

In this section, the software and tools used for this thesis are mentioned. As
well as the implementation of the models and the experimental setup.

3.4.1 Data Labeling

To create the ground-truth mapping of our cloud images, the MIT LabelMe
[38] tool was used. The tool makes it possible to draw and encircle relevant
objects in the images that we want to label. The output from the tool is a
JSON-file that we can later use with a script to create the binary images where
the cloud pixels were assigned the value 255 (white) and the background were
assigned the value 0 (black)

3.4.2 Environment

The majority of the experimental work was conducted on the Google Colab
platform, leveraging the PRO edition for enhanced memory capacity and
access to the A100 GPU, optimizing the training of deep learning models.
Additionally, the data labeling process involved the use of the LabelMe tool,
where ground-truth labels were generated as JSON-files. Some custom scripts
were developed independently to handle specific tasks, such as converting
these JSON files into binary images.

3.4.3 Cloud Cover Definition

The definition of cloud cover is defined by the World Meteorological
Organization (WMO) as "Total cloud cover is the fraction of the sky covered
by all the visible clouds". To be able to use this definition for our purpose and
use it for cloud images, we will say that the cloud cover in an image is the
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fraction of clouds in an image. As cloud cover is measured in octaves, we take
the floor of the mean of the cloud pixels and multiply it by 8.

Cloud Cover = ⌊ # Cloud Pixels
# Total Amount of Pixels

∗ 8⌋

3.4.4 Evaluation and Validation tools

This study aimed to evaluate the performance of the models using various
metrics, including IoU, F1 score and pixel accuracy. To implement and use
these evaluation metrics, functionalities of the Python library Torchmetrics
were used. The results were transferred over to an Excel file, where the
validation methods were used for statistical testing.

3.4.5 Implementation of models

In this study, three models based on deep learning were implemented and
evaluated. The models chosen for this study were FCN, U-Net, DeepLabV3.
Due to their frequent use in image segmentation as well as their popularity in
image segmentation tasks, these models were chosen. A pretrained version of
these models was utilized through the Python library PyTorch, a widely used
open-source deep learning framework.

3.4.6 Fine-Tuning

Fine-tuning is a concept of transfer learning, a machine learning technique
that involves using knowledge gained previously learned during training in
one type of problem and then transferred to improve performance in another
task [39]. In deep learning, the first layers are trained to identify the features
of the task [39]. Therefore, during transfer learning, you can freeze layers
and "re-train" the last few layers and adjust output layers to the task at hand.
Fine-tuning is particularly valuable in scenarios where data is scarce, thus
training a model from scratch is impractical. Additionally, training models
using fine-tuning are much faster than training from scratch, and can also be
more accurate [39]. As the availability of data is limited in this study, fine-
tuning of the models will be crucial.
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3.4.7 Experimental Setup & Hyperparameters

In the experimental setup, a standard 80-20 split of the data set was used
for training and validation. Each model shared similar hyperparameter
configurations to maintain consistency. The batch size was set to 8, the
learning rate was set at 0.0001, and the training process spanned 10 epochs.
Cross-entropy loss served as the chosen loss function for all models, and the
Adam optimizer was consistently applied. It is important to note that this study
did not dive into hyperparameter tuning or explore model training optimization
techniques. The selected hyperparameter values were used uniformly across
all models for the sake of simplicity and comparability as well as time
constraints and resource constraints.
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Chapter 4

Results and Analysis

In this chapter, the results of the experiments are mentioned. In the
first section, the model performances are shown, both quantitatively and
qualitatively. In the next section, we show the performance after the data-
oversampling and -augmentation methods have been applied. In the third
section, the validation of the relevant results are shown. In the fourth
section, the difference in cloud cover estimation between a meteorologist and
DeepLabV3 is shown. In the fifth section, we see if the knowledge learned
from our dataset can be transferred to other datasets. Finally, in the last section,
the findings of the key results are summarized.

4.1 Results of Different Models

This section addresses the first research question, found in 1.1.2, by analyzing
the performance of various models on the cloud segmentation task. An
assessment of the models’ performance using the key evaluation metrics
is given, to provide a comprehensive overview of each model’s ability to
accurately segment cloud cover in the provided test dataset.

4.1.1 Baseline Performance of Each Model Before Fine-
Tuning

Before applying any fine-tuning specific to our cloud image datasets, it is
essential to establish the baseline performance of the selected deep learning
models: FCN, U-Net, and DeepLabV3. This baseline serves as a reference
point, allowing us to measure the impact of subsequent fine-tuning and
adaption to our specific task.
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Baseline Performance Before Fine-tuning Models
Model IoU F1 Pixel Accu-

racy
FCN 0.400 0.486 0.506
U-Net 0.173 0.268 0.183
DeepLabV3 0.000 0.000 0.24743

Table 4.1: Baseline performance metrics of pre-trained models, FCN, U-net,
and DeepLabV3, on cloud segmentation tasks in terms of IoU, F1 Score, and
Pixel Accuracy before fine-tuning.

Table 4.1 presents the baseline performance metrics - IoU, F1 score and Pixel
Accuracy - achieved by each model in our test set, which consists of 73 images.
These metrics provide an initial assessment of the models’ ability to segment
cloud cover accurately before any fine-tuning was applied.

Figure 4.1 showcases an example image from our test set alongside its ground
truth mapping and the segmentation outputs produced by each model prior
to fine-tuning. The visual comparison highlights the initial capabilities and
limitations of the models in handling cloud images.

4.1.2 Comparative Results for Cloud Segmentation
Models

In this section, the results from the applied fine-tuning process to our deep
learning models - FCN, U-Net, and DeepLabV3 - on the newly constructed
datasets mentioned in Section 3.1.3 are presented. This analysis aims to
highlight the improvements and capabilities of each model in performing cloud
segmentation tasks.

Table 4.2 summarizes the performance metrics—Intersection over Union
(IoU), F1 score, and Pixel Accuracy—for each model across our datasets,
illustrating the enhancements achieved through fine-tuning. The datasets,
labeled from 1 to 5, are configured as follows for comparative analysis:

• Dataset 1: Represents the original dataset with no modifications applied
to the images, serving as the baseline for performance comparison.

• Dataset 2: An upsampled version of Dataset 1, augmented with random
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(a) (b)

(c) (d)

(e)

Figure 4.1: Baseline segmentation outputs from pre-trained models: a)
Original Image, b) Ground-Truth, c) FCN, d) U-Net, and d) DeepLabV3.

rotations to introduce variability in image orientation.

• Dataset 3: Similar to Dataset 2, this is an upsampled version of Dataset
1; however, the images are modified by applying random changes
in brightness and contrast, testing model robustness against lighting
variations.
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Performance on All Deep Learning Models
Model Dataset Num

Images
Run Time
(Min)

IoU F1 Pixel Accu-
racy

DeepLabV3 1 264 18 0.937 0.965 0.962
DeepLabV3 2 528 38 0.933 0.960 0.956
DeepLabV3 3 528 37 0.933 0.963 0.958
DeepLabV3 4 792 54 0.935 0.964 0.959
DeepLabV3 5 151 4 0.929 0.961 0.956
FCN 1 264 17 0.913 0.950 0.940
FCN 2 528 28 0.927 0.959 0.951
FCN 3 528 29 0.929 0.959 0.952
FCN 4 792 46 0.914 0.952 0.931
FCN 5 151 8 0.909 0.949 0.937
U-Net 1 264 5 0.874 0.925 0.918
U-Net 2 528 9 0.887 0.935 0.931
U-Net 3 528 8 0.889 0.935 0.933
U-Net 4 792 11 0.897 0.929 0.929
U-Net 5 151 3 0.863 0.925 0.920

Table 4.2: Performance Metrics for Deep Learning Models Across Multiple
Datasets. This table displays the average results from five training runs for each
model (DeepLabV3, FCN, U-Net) on five different datasets. Metrics include
Run Time (minutes), IoU, F1 Score, and Pixel Accuracy. Green-highlighted
values indicate the top four performance metrics in each category, while red
highlights denote the four lowest scores in each category.

• Dataset 4: An upsampled composite of Dataset 1 that incorporates
both types of modifications from Datasets 2 and 3 (rotations and
brightness/contrast adjustments), designed to challenge the models with
a combination of augmentations.

• Dataset 5: A downsampled version of Dataset 1, containing half
the volume of images but maintaining an equivalent distribution of
different cloud coverages, to assess model performance with reduced
data availability.

To highlight some of the key differences found between the models from the
output achieved when testing the models on our test set, visual examples are
presented in figures 4.2, 4.3, and 4.4. These figures highlight key differences
in the performance of the FCN, U-Net, and DeepLabV3 models:

• Figures 4.2 and 4.3 - Images with Sun Rays (Noise):
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(a) Original Image (b) Ground Truth Seg-
mentation

(c) FCN Output (d) U-Net Output (e) DeepLabV3 Output

Figure 4.2: Comparative results for an example cloud image across different
models. The original image (a) and its corresponding ground truth
segmentation (b) are shown on the top row. The outputs of three deep learning
models: FCN (c), U-Net (d), and DeepLabV3 (e) are presented on the bottom
row.

– DeepLabV3 and FCN: Both models handle the noise introduced
by sun rays relatively well, maintaining a clear segmentation
between cloud and sky.

– U-Net: The U-Net model struggles significantly with images con-
taining noise, such as sun rays. This results in misclassification,
where parts of the cloud are incorrectly segmented as background,
leading to a less accurate representation.

• Figure 4.4 - Fully Covered Sky:

– DeepLabV3 and FCN: These models correctly identify the entire
image as clouds, matching the expected segmentation.

– U-Net: In this scenario, the U-Net model classifies certain pixels
as background, even when the entire sky is covered with clouds.
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(a) Original Image (b) Ground Truth Seg-
mentation

(c) FCN Output (d) U-Net Output (e) DeepLabV3 Output

Figure 4.3: Comparative results for an example cloud image across different
models. The original image (a) and its corresponding ground truth
segmentation (b) are shown on the top row. The outputs of three deep learning
models: FCN (c), U-Net (d), and DeepLabV3 (e) are presented on the bottom
row.
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(a) Original Image (b) Ground Truth Seg-
mentation

(c) FCN Output (d) U-Net Output (e) DeepLabV3 Output

Figure 4.4: Comparative results for an example cloud image across different
models. The original image (a) and its corresponding ground truth
segmentation (b) are shown on the top row. The outputs of three deep learning
models: FCN (c), U-Net (d), and DeepLabV3 (e) are presented on the bottom
row.
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4.1.3 Statistical Testing

To evaluate the effect of data volume on model performance, we first conducted
a one-way ANOVA test on the performance metrics—IoU, F1 score, and Pixel
Accuracy—across different dataset sizes for each model. Each model was
independently tested and no comparisons were made between the models (for
example, DeepLabV3 trained on dataset 1 was not compared to FCN trained
on dataset 2). The null hypothesis was that the volume of data did not have a
significant impact on the performance of the model. The tests were carried out
with 4 degrees of freedom between groups and 20 degrees of freedom within
groups. The significance level for the test was set at = 0.05

The results indicated that, for all metrics except the IoU score for the U-Net
model, data volume did not significantly affect performance (p > 0.05). As a
result, we were unable to reject the null hypothesis that data volume had no
significant impact on performance for most tests. The results of this can be
found in table 4.3.

Next, we performed an ANOVA test to compare the performance of the models
on the original dataset, since data volume did not significantly affect model
performance. The ANOVA tests were conducted with 2 degrees of freedom
between groups and 12 degrees of freedom within groups with a significance
threshold set at α = 0.05. This test revealed statistically significant differences
in performance between models in all metrics. The resulting p-values were
4.88e-07 for IoU, 1.62e-06 for F1 Score, and 9.15e-06 for Pixel Accuracy.
This test revealed statistically significant differences in performance between
models in all metrics.

Following these results, we conducted a post-hoc pairwise t-tests to compare
the models’ performance on the original dataset. These t-tests helped identify
which specific model pairs exhibited statistically significant performance
differences. The results can be found in table 4.4.
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Model IoU F1 Score Pixel Accuracy
DeepLabV3 0.861 0.948 0.882

U-Net 0.015 0.753 0.558
FCN 0.702 0.802 0.405

Table 4.3: P-values from one-way ANOVA tests conducted separately for
each model across datasets of varying sizes. The analysis was performed
to determine whether data volume had a significant impact on each model’s
performance.

Metric Comparison DeepLabV3 FCN U-Net

IoU
DeepLabV3 - 0.006 2.58e−6

FCN 0.006 - 0.0005
U-Net 2.58e−6 0.0005 -

F1 Score
DeepLabV3 - 0.015 1.04e−6

FCN 0.015 - 0.0014
U-Net 1.04e−6 0.0014 -

Pixel Accuracy
DeepLabV3 - 0.008 4.96e−6

FCN 0.008 - 0.006
U-Net 4.96e−6 0.006 -

Table 4.4: P-values from post-hoc paired t-tests comparing the performance of
DeepLabV3, FCN, and U-Net models across three metrics: IoU, F1 Score, and
Pixel Accuracy. Each comparison reflects the significance of the differences
between the models.
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4.2 Best performing model vs Meteorologist
cloud cover estimation

To see if our definition of cloud cover aligns with the definition covered in
Section 3.4.3, we used the DeepLabV3 model to segment images and calculate
cloud cover based on segmentation. We then compared our result with the
estimation made of the cloud cover on those images by a meteorologist from
the Swedish Meteorological and Hydrological Institute. The results are shown
in Table 4.5. Cloud cover is measured in octaves, where 0 means that there are
no clouds and a score of 8 means that the sky is fully covered by clouds.

Based on these figures in table 4.5, of 20 images, nine images were correctly
classified, eight images were classified with an error of one octave, two images
were classified with an error of two octaves, and one image was classified
with an error of more than two octaves. To note, is that on some images, the
meteorologist made some assumptions about the cloud which were taken into
account when making the estimation. These were for images 7, 8, 16, and
17. Out of these four images, one image was classified correctly, image 8, two
images were classified with an error of 1, images 16 and 17, and one image
was classified with an error of two, image 7.
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Cloud Cover Estimation
Image Number Model Estimate Meteorologist Es-

timate
Error in Octaves

1 4 4 0
2 4 3 1
3 3 2 1
4 6 6 0
5 4 7 3
6 3 2 1
7 4 6 2
8 6 6 0
9 8 8 0
10 7 6 1
11 5 5 0
12 6 6 0
13 5 4 1
14 3 2 1
15 7 7 0
16 1 2 1
17 3 2 1
18 4 4 0
19 5 5 0
20 4 2 2

Table 4.5: Cloud Cover Estimations between DeepLabV3 Segmentation and
Meteorologist
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4.3 Generalization - Performance on other
dataset

To assess the generalization capability of the models trained during our
study, we evaluated their performance on two publicly available cloud image
datasets: SWIMSEG and SWINSEG. Specifically, we tested DeepLabV3,
FCN, and U-Net, which were all trained on dataset 1 from our primary
experiments.

Given that the previous statistical analysis revealed no significant differences
between models trained on different datasets, only the models trained on
dataset 1 were included in this experiment. This approach ensures that we
are testing the most representative version of each model.

The images from the SWIMSEG and SWINSEG datasets were fed into the
trained models, and the respective performance metrics—IoU, F1 Score, and
Pixel Accuracy—were computed. The results for each model are shown in
Table 4.6.

Model Dataset IoU F1 Pixel Accuracy
DeepLabV3 SWIMSEG 0.518 0.646 0.716
FCN SWIMSEG 0.279 0.372 0.660
U-Net SWIMSEG 0.082 0.118 0.554
DeepLabV3 SWINSEG 0.504 0.648 0.554
FCN SWINSEG 0.506 0.653 0.567
U-Net SWINSEG 0.555 0.601 0.452

Table 4.6: Performance results of models trained on Dataset 1 across
SWIMSEG and SWINSEG datasets for three metrics: IoU, F1 Score, and Pixel
Accuracy.
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Figure 4.5: Segmentation output from DeepLabV3 on example images from
the SWIMSEG dataset. Each row shows the original image (left), the ground
truth mapping (middle), and the segmentation output from DeepLabV3
(right).
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Figure 4.6: Segmentation on SWINSEG images from DeepLabV3. Each row
shows the original image (left), the ground truth segmentation (middle), and
the model’s segmentation output (right).



Results and Analysis | 45

4.4 Summary of Key Findings

This section provides an overview of the key findings of the experiments
conducted. The following summary highlights the performance of the models,
the impact of data augmentation and data volume, their effectiveness in
predicting cloud cover compared to meteorologists’ predictions, and the ability
of the models to generalize to external datasets.

4.4.1 Model Performance Across Metrics

DeepLabV3 consistently outperformed both FCN and U-Net across all three
peformance metrics; IoU, F1 Score, and Pixel Accuracy. For example, on
the test dataset, DeepLabV3 achieved an IoU of 0.937, an F1 score of 0.965
and a Pixel precision of 0.962, which was significantly higher than FCN
(IoU; 0.913, F1 Score; 0.950, Pixel Accuracy 0.940) and U-Net (IoU; 0.874,
F1 Score; 0.925, Pixel Accuracy 0.918). The statistical tests confirmed the
statistical significance in both the ANOVA test, where the p value was lower
than the significance level in all metrics as shown in the table ?? and was
further supported by the paired t tests, where the p value for IoU between
DeepLabV3 and U-Net was 2.58e−6, and between DeepLabV3 and FCN was
0.006 (see Table 4.5). Similarly, for Pixel Accuracy, DeepLabV3 significantly
outperformed U-Net (p = 4.96e−6) and FCN (p = 0.008), further validating the
superiority of DeepLabV3.

4.4.2 Impact of Data Augmentation and Data Volume

The results indicate that the augmentation of the data contributed to marginal
improvements in the performance of the model. However, the ANOVA test
performed on models trained with varying dataset sizes showed no statistically
significant difference in performance (p > 0.05), suggesting that the volume
of training data had a lesser effect on model precision compared to model
architecture.

4.4.3 Cloud Cover Prediction Based on DeepLabV3
segmentation

To observe whether our definition of cloud cover is in line with the definition
of cloud cover in the meteorology world, we used the segmentation of
the DeepLabV3 model to compute the cloud coverage in an image and
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then compared that to the estimate made of the cloud coverage from a
meteorologist. Out of 20 images, we found that in 17 cases, our model had
a maximum error of 1 octave, indicating that our definition is well aligned
with the real world.

4.4.4 Generalization on External Datasets

When evaluating the models trained on Dataset 1 on external datasets
(SWIMSEG and SWINSEG), the results indicated that the knowledge gained
during training did not transfer well to these datasets. The performance scores,
particularly for U-Net and FCN, were significantly lower than those observed
on the original dataset. For example, U-Net achieved an IoU of only 0.082
on the SWIMSEG dataset and 0.555 on SWINSEG, which are unsatisfactory
for practical cloud cover segmentation tasks. Similarly, FCN’s IoU was 0.279
on SWIMSEG and 0.506 on SWINSEG, also showing poor generalization.
Even DeepLabV3, the best performing model on our own dataset, showed a
significant drop in performance, achieving an IoU of 0.518 on SWIMSEG and
0.504 on SWINSEG. The F1 and Pixel Accuracy scores also followed similar
patterns.
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Chapter 5

Discussion

The aim of this study was to evaluate deep semantic segmentation models on
cloud images, to later utilise them for predicting cloud coverage. This chapter
begins with an examination of the results, followed by revisiting and answering
the research questions.

5.1 Restating the research problem

Ground-based cloud observations face challenges such as inaccuracy, time
consumption, resource intensiveness, and high costs. Previous research has
highlighted the potential of leveraging deep learning methods to address
these issues, offering accurate and efficient cloud observations, including
cloud cover prediction and various applications. This study aims to evaluate
three state-of-the-art deep semantic segmentation models, demonstrating their
viability in the realm of cloud observation. The goal is to serve as a catalyst
for transforming current practices in ground-based cloud observations, paving
the way for a more effective and resource-efficient approach.

5.2 Revisiting Research Questions and Hy-
potheses

In this section, we will be revisiting the research questions and hypotheses
stated in Section 1.1.2 this paper and discuss how the results relate to each.
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Research question 1: ’What are the advantages and disadvantages of deep
learning-based semantic segmentation methods for cloud cover prediction in
terms of predictive performance, efficiency, and implementation complexity?’

Upon evaluating three prominent semantic segmentation models: FCN,
U-Net, and DeepLabV3—after fine-tuning in our training set, all models
demonstrated remarkable precision in segmenting cloud images. Evaluation
metrics consistently scored above 0.87 for all models, confirming their
proficiency in correctly segmenting the test images. Segmentation output
further substantiated these findings, providing visual evidence of the
effectiveness of the models.

Despite the commendable performance of all three models, distinctions
emerged during the qualitative analysis. FCN and DeepLabV3 exhibited
superiority over U-Net. The qualitative assessment revealed that U-Net
displayed a higher sensitivity to noise, rendering images with noise more
susceptible to poor generalization. This observation underscores a potential
limitation of U-Net in handling noisy input.

The superior performance of FCN and DeepLabV3 suggests their suitability
in terms of efficiency and implementation complexity. Notably, these models
exhibited robustness against noise without necessitating major modifications.
In contrast, U-Net’s sensitivity to noise indicates a potential need for additional
adaptations to enhance its noise resilience.

The choice between these models becomes crucial when considering real-
world implementation and operational efficiency. The resilience of FCN and
DeepLabV3 to noise positions them as favorable options, requiring minimal
modifications to handle challenging image conditions. On the other hand, U-
Net’s heightened sensitivity, rooted in its original development for medical
image segmentation, raises considerations about its adaptability to diverse
environmental conditions.

It’s important to note that while U-Net may excel in certain contexts,
such as medical imaging, the specific requirements for cloud observation
demand models capable of handling various atmospheric conditions and
potential image distortions. This study provides valuable information on
the comparative strengths and weaknesses of these models, helping inform
decision making for practical applications in cloud cover prediction.
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Research question 2: ’How does the accuracy of cloud cover prediction differ
between deep learning based methods and manual observations made by
meteorologists in the Swedish cloud observation process?’

In pursuit of demonstrating the utility of semantic segmentation models for
cloud cover prediction, we conducted a comparative analysis between cloud
cover predictions generated from segmented images and those derived from
manual observations by meteorologists at the Swedish Meteorological and
Hydrological Institute. Since the models do not provide a direct cloud cover
score, we employed our defined metric – ’the amount of sky covered by clouds’
– computed by evaluating the fraction of cloud pixels in the images. The
meteorologist’s predictions served as the ground truth for our assessment.

Out of the twenty images evaluated, the models accurately predicted the cloud
cover in nine instances. Eight images were predicted with an error of one
octave, two images with an error of two octaves, and one image with an error
exceeding two octaves. Most of the predictions were correct or exhibited a
minimal error of one octave, suggesting that semantic segmentation models
provide accurate cloud cover predictions.

However, it is crucial to recognize that these results, while promising, cannot
serve as a definitive conclusion. Further experiments are warranted to refine
our understanding of the models’ performance.

Research question 3: What is the impact of dataset volume on the performance
of state-of-the-art deep semantic segmentation models? Specifically, what is
the minimum volume of data sets required to achieve accurate segmentation,
and how does increasing the volume of data sets further enhance model
performance?

To assess the influence of dataset volume on semantic segmentation models,
we curated a dataset comprising 264 cloud images as our baseline. To
investigate the effects of data volume on model performance, we employed
data enhancement, up-sampling, and down-sampling techniques, as detailed
in Section 3.1.3. Following independent experiments with the three models,
the results indicated that modifications to our dataset did not exert significant
effects on model performance.
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Considering these findings, one might infer that the original dataset volume of
264 images suffices when employing fine-tuning techniques. Several factors
contribute to this conclusion. Firstly, in semantic segmentation, each pixel
serves as a data point, resulting in a substantial number of data points even
with a limited number of images. Given our image dimensions of 720x480
pixels, each image yields 345.600 pixels, translating to an equivalent number
of labeled data points. With our baseline dataset volume, training on our
dataset provides approximately 91.5 million data points.

Secondly, the homogeneity of our dataset should be acknowledged. Con-
structed solely from images captured by a single camera at a fixed location, our
dataset exhibits uniformity in terms of contrast, brightness, and colors. This
uniformity proved beneficial in training models to effectively discern clouds
from the background within our set-up. However, when testing the models
on diverse public datasets, we observed challenges in consistently separating
clouds in those images.

These observations underscore the nuanced impact of the volume of the
dataset. Although our baseline dataset proves to be effective for fine-tuning
and demonstrates the potential of semantic segmentation models, it is essential
to recognize its limitations when applied to more diverse data sets. Future
work could explore strategies to enhance model generalization, such as
incorporating additional diverse images in the training dataset or exploring
advanced transfer learning techniques. Additionally, assessing the models’
performance across varying atmospheric conditions and camera setups could
contribute to a more comprehensive understanding of their capabilities and
limitations.

5.3 Potential Impact of Future Cloud Observa-
tions

Cloud observation is at the forefront of meteorological research, playing a
pivotal role in understanding and predicting weather patterns. As technology
continues to advance, there is a growing need for innovative approaches that
can enhance the accuracy, efficiency, and automation of cloud observation
processes. In this context, the findings of from our study show the potential of
reshaping the landscape of cloud observation methodologies.
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Our study, while focused on the prediction of cloud coverage, has demon-
strated promising applications of state-of-the-art semantic segmentation
models. These models showcase the ability to accurately separate clouds
from the background in images, laying the groundwork for future cloud cover
estimation methodologies.

The introduction of machine learning methodologies into this field presents
numerous possibilities. Firstly, it has the potential to reduce the reliance on
human resources by streamlining operational processes. Secondly, machine
learning can potentially complement existing cloud observation technologies,
providing more accurate and nuanced observations. Thirdly, in the estimation
of cloud cover, these models could enable real-time predictions, a capability
lacking in current technologies like ceilometers. However, these possibilities
come with their own set of challenges. The ability to scale up and generalize
machine learning solutions is crucial. While our results demonstrated strong
performance on our dataset, challenges arose when applied to other available
datasets, posing a potential obstacle in commercial settings. Additionally,
maintaining the quality of the images is paramount, necessitating a dedicated
team to ensure proper camera operation throughout all seasons. Cost
considerations, encompassing not just hardware but also platforms for training,
deployment, and maintenance, add another layer of complexity.

This field, while promising, remains in its infancy. As we delve into potential
future work in the next chapter, it becomes evident that much research and
evaluation are required to determine the feasibility and widespread adoption
of AI and ML solutions in cloud observation. Acknowledging these challenges
and embracing ongoing research endeavors will be crucial to realize the full
potential of these innovative approaches.

5.4 Limitations

This section discusses potential limitations that could have affected the study
results.

5.4.1 Limitations of Dataset

As our dataset that was used for this study was collected during the course
of the project, some limitations could have affected the experimental results
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in the end. First, our data set was manually labeled, which introduced
the possibility of errors in pixel-wise classification. The inherent limitation
arises from the difficulty in the human eye discerning every pixel accurately,
leading to instances where pixels may be misclassified as cloud or non-
cloud. The precision of the manual labeling process also influences the
granularity of the segmentation achieved by the models. This variability in
precision could affect the quantitative performance metrics. Furthermore, the
subjective nature of manual labeling introduces a noteworthy consideration.
Depending on the labeler’s interpretation, the ground truth may exhibit
variations in precision and detail. Consequently, the segmentation produced
by the models, although accurate, may appear to be more refined than
the manually labeled ground truth. This discrepancy poses a challenge
for quantitative metrics as the model’s output may differ slightly from the
ground truth. Consequently, this discrepancy could potentially result in
lower quantitative performance scores, not reflective of the model’s actual
segmentation capability. In light of these limitations, it is important to
supplement quantitative measures with qualitative assessments. Qualitative
evaluations provide a nuanced understanding of the segmentation quality,
acknowledging potential differences between manual ground truth and model
output. This recognition is essential for a comprehensive evaluation of the
performance of the models and an informed interpretation of the results.

The homogeneity of our dataset, coupled with its absence of noisy images,
significantly impacted the robustness and generalization capabilities of the
trained models. Given the study’s primary focus on evaluating how well
semantic segmentation models handle cloud images within the constraints
of data volume, the selected images shared similarities in terms of colors,
contrast, brightness, and various other features. Additionally, due to the
limitations of our camera setup, only daytime images made their way into the
dataset, excluding nighttime captures.

This design choice became evident in the models’ performance. They excelled
at segmenting images captured by our specific camera setup, but faced
challenges when confronted with images from different sources. A notable
limitation stemmed from the absence of intentionally noisy images in our
dataset. For example, images captured on rainy days that feature rain droplets
that create significant aberrations were not included. These types of image are
crucial for exploring the model’s resilience in diverse and challenging weather
conditions. The omission of such variations becomes particularly significant
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when considering the demands of real-world applications. Inclusion of diverse
images, with variations in weather conditions and environmental factors, is
instrumental for enhancing the robustness and generalization capabilities of
machine learning solutions. This limitation underscores the need for future
research to explore the impact of diverse, noisy data on the performance of
semantic segmentation models in cloud observation scenarios.

5.4.2 Hyperparameter Tuning and Model Training

Hyperparameter tuning, or hyperparameter optimization, is a set of methods
to optimize hyperparameters in order to increase the performance of the
machine learning model for certain tasks [40]. In this study, default settings
were used and no hyperparameter optimization methods were applied. The
decision to forgo hyperparameter optimization was grounded in practical
considerations. Implementing optimization techniques can be time-intensive,
particularly since optimal hyperparameter values often hinge on the specific
model architecture.

In this study, the data set was divided into 80-20 splits for training and
validation data, with a separate test set reserved for the evaluation of the trained
models. The choice of this split ratio is a critical aspect of model training, as it
influences the model’s ability to generalize to new, unseen data. It is essential
to recognize that different splits of the data during the training phase can lead
to variations in model performance. One approach to mitigate the influence of
a specific split is to employ K-fold cross-validation, a widely used technique in
machine learning. K-fold cross-validation involves dividing the dataset into K
folds, training the model on K-1 folds, and validating it on the remaining fold.
This process is repeated K times, each fold serving as the validation set exactly
once. The performance metrics are then averaged over the K iterations [41].
The employment of similar methods could be further investigated in order to
achieve desirable performance.

5.5 Future work

This study has demonstrated the effectiveness of image processing techniques,
specifically semantic segmentation, in predicting cloud cover. While the
results are promising, there remain plenty of opportunities for further
contributions within this domain.
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1. Dataset Extensions for Generalization and Robustness:
To address the limitations of this study, research exploring the effects of
enhancing the datasets is of importance. Enhancements could include
expanding the dataset to include images that cover larger areas, incorporating
nighttime images, and introducing more varied noise levels. Strengthening
generalization and robustness is essential, particularly when considering the
commercialization of the solution.

2. Hyperparameter Optimization:
As highlighted in the limitations, exploring hyperparameter optimization is
a logical next step to improve the study outcomes. This step aims to identify
optimal combinations of hyperparameters, potentially leading to refined model
performance.

3. Cloud Coverage Prediction Model:
An intriguing improvement would be the development of a model capable
of directly predicting cloud coverage. This approach required an investment
in creating a specialized dataset, assigning scores to each image for accurate
training. Adjustments to the model architecture are necessary for the model to
be able to classify the score correctly. Potential enhancements could involve
incorporating data from other cloud analysing tools. For instance, in Sweden,
the ceilometer is the current tool used for cloud cover prediction; perhaps
the data from a ceilometer could be utilized for more accurate cloud cover
prediction.

4. Weather and Seasonality Analysis:
Recognizing the correlation between cloud and weather patterns across
seasons, future work could focus on analyzing weather and seasonality for
improved cloud cover predictions. Techniques that incorporate the temporal
aspect and capture seasonal patterns could offer insights for real-time analysis
and future cloud projections. The potential of this solution extends beyond
predicting cloud coverage; it opens avenues for forecasting various cloud types
based on their characteristic patterns and behaviors in different seasons. This
broader approach not only enhances our understanding of cloud dynamics
but also contributes to a more comprehensive and nuanced cloud observation
analysis.

5. Understanding Deep Learning Models:
Addressing the common challenge of deep learning models acting as black
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boxes, future investigations should focus on understanding the learning
process of image processing models. Drawing inspiration from studies such as
[42], which visualizes and understands CNNs, an exploration into how CNN
models learn properties could provide deeper insights, minimizing the black
box effect and enhancing interpretability.

These potential directions for future work will not only build upon the
current study but also pave the way for advancements in cloud observation
methodologies. Each suggestion aligns with the overarching goal of
automating and enhancing cloud observation methodologies, aiming to make
them more accurate and applicable in diverse real-world scenarios.

5.6 Sustainability Aspect

The computational demands of machine learning solutions often translate
into significant resource consumption, which can contribute to an increased
environmental carbon footprint. Given the commercial focus of this study, it
is imperative to consider the environmental impact of different computational
solutions. Opting for energy-efficient hardware and leveraging cloud-
computing platforms with green computing initiatives are essential strategies
to mitigate the ecological effects of machine learning implementations.

In terms of data ethics, this study does not use sensitive data. However,
as this field advances, future investigations must carefully navigate the legal
landscape concerning image capture, permissible photography areas, and
privacy regulations. Especially in commercial deployments, understanding
and complying with laws and regulations related to data collection are crucial
considerations.

5.7 Ethical Considerations

Ethical concerns extend to the interpretability of machine learning models,
particularly the black box nature of deep learning algorithms. For widespread
commercial adoption, transparency is crucial. Future studies should examine
the workings of these models, seeking to demystify their decision-making
processes. Employing solutions that lack explainability may be viewed
unfavorably, and efforts to enhance transparency will contribute to the ethical
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integrity of the technology.

Lastly, as previously mentioned in the section about impact, it is crucial to
delve deeper into the considerations surrounding maintenance and hardware
upgrades in the context of environmental sustainability. In the lifecycle of
machine learning solutions, ongoing maintenance stands as a linchpin for
sustained efficiency and optimal performance. Regular monitoring, periodic
system health checks, and responsive software updates not only ensure the
reliability of the system, but also contribute significantly to resource efficiency.
By emphasizing the importance of maintenance, strategic hardware upgrades,
and a comprehensive approach to lifecycle assessment, organizations can
effectively contribute to the responsible and sustainable development and
deployment of machine learning solutions. These efforts underscore a
commitment to environmental stewardship within the evolving landscape of
technology.
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Chapter 6

Conclusions

The goal of this study was to demonstrate the potential of deep learning
in the area of cloud observation analysis - more specifically, to explore the
capabilities of deep learning models in predicting cloud cover from images.
To align with the goal, three research questions were initially stated in this
thesis. To summarize them, the research questions asked about the general
performances of the used models, as well as their ability to accurately predict
cloud cover by comparing the results with predictions made by a human
observer. Lastly, this study explored the effects of data volume, and how that
affected model performance.

The experiments conducted with the three models, FCN, U-Net, and
DeepLabV3, showed that the models were all capable of learning and able
to separate cloud from the background, achieving accurate segmentations of
the images. Although all three generated good results, the DeepLabV3 model
achieved the best results, while U-Net showed the worst result. Although the
model performed well with our test set, when testing the models on other
unseen data, we saw a drastic reduction in performance which could possibly
be due to the homogeneity of our dataset.

When comparing the model output and the prediction of a human observer,
around 85% of the images had the same prediction as the human observer
or an error of 1 octave, indicating that the segmentation and the definition
used for cloud cover was well aligned with the real world application. These
observations suggest that deep learning can indeed be a viable approach for
the task of predicting cloud cover from images.
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To answer the final research questions, experiments were performed that
included changes in the data set. The results showed that the modifications
made by our side, including different augmentations as well as over and
undersampling, did not have any significant effect on the performances. This
indicates that the original size of 264 images was well suited for the approach
of this study. However, this cannot be used as conclusive evidence and more
exploration in this area is encouraged.

In conclusion, this study has shown that deep learning is indeed a viable
method for the prediction of cloud cover in the cloud observation process.
However, it is important to note that these results can not be used as conclusive
evidence and more research has to be made before AI can be deployed in
this field. Further research is therefore highly encouraged, as advances within
this field could result in a significant performance increase when it comes to
predicting cloud cover, as well as other improvements, such as better real-time
predictions in terms of speed and accuracy, as well as having the potential to
be used in the other fields of the cloud observation analysis.
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