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Abstract | i

Abstract
Mathematical models of hydropower stations can become exceedingly
complex and hard to compute when modelling larger river systems.
Consequently, methods to simplify the complexity have been developed, such
as hydropower equivalents, which can reduce a system of stations into one
equivalent station. However, these equivalents are calculated based on data
from detailed models which have been made under the assumption that all
information, such as the natural inflow of water and electricity prices, is
certain. In reality, this is not the case. In order to include the uncertainty of
the data, a new stochastic model was developed in this thesis. This model was
based on the rolling horizon algorithm, which was combined with multiple
possible future scenarios of inflows and electricity prices to represent the
uncertainty. Two stochastic models were constructed: one aggregated model
with a weekly future horizon, as well as a more detailed model with a daily
future horizon. The results indicated that, in general, the reservoir levels were
higher in the stochastic models than in the deterministic model. This was
also reflected in the calculated hydropower equivalent parameters, where the
minimum reservoir level was increased. Furthermore, the aggregated model
showed a more realistic production pattern than both the deterministic and
detailed stochastic model as it was following the electricity price variations
more closely.

Keywords
Hydropower, Inflow, Rolling horizon, Stochastic optimization, Scenarios



ii | Abstract



Sammanfattning | iii

Sammanfattning
Matematiska modeller av vattenkraftverk kan bli mycket komplexa och
svåra att beräkna när man modellerar större flodsystem. Därför har metoder
för att förenkla komplexiteten utvecklats, såsom vattenkraftekvivalenter,
som kan reducera ett system av stationer till en ekvivalent station. Dessa
ekvivalenter beräknas dock baserat på data från detaljerade modeller som har
gjorts under antagandet att all information, såsom den naturliga tillrinningen
av vatten och elpriser, är säker. I verkligheten är detta inte fallet. För
att inkludera osäkerheten i data utvecklades en ny stokastisk modell i
denna rapport. Denna modell var baserad på rullande horisont-algoritmen,
som kombinerades med flera möjliga framtidsscenarier för tillrinningar
och elpriser för att representera osäkerheten. Två stokastiska modeller
konstruerades: en aggregerad modell med en veckovis framtidshorisont,
samt en mer detaljerad modell med en daglig framtidshorisont. Resultaten
visade att, generellt sett, var magasinnivåerna högre i de stokastiska
modellerna än i den deterministiska modellen. Detta återspeglades även
i de beräknade parametrarna för vattenkraftekvivalenten, där den lägsta
magasinnivån ökades. Dessutom visade den aggregerade modellen ett
mer realistiskt produktionsmönster än både den deterministiska och den
detaljerade stokastiska modellen eftersom den följde elprisvariationerna
närmre.

Nyckelord
Vattenkraft, Inflöden, Rullande horisont, Stokastisk optimering, Scenarion
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Nomenclature

In this segment the nomenclature for the thesis is described.

Sets

Ω Scenarios from 1 to 6, index ω

Idown Set of all down-streams reservoirs

Iup Set of all directly up-streams reservoirs

J Production segments from 1 to 2, index j

R Weeks in the rolling horizon algorithm from 1 to 52, index r

T Hours in a week from 1 to 168, index t

V Weeks in horizon from v to 52, index v

Variables

Mω
r,v Energy in reservoir rolling week r,week v, scenario ω in MWh

Pω
r,v Energy production in rolling week r, week v, scenario ω in MWh

Sω
r,v Energy spillage rolling week r, week v, scenario ω in MWh

Vω
r,v Energy inflow in rolling week r, week v, scenario ω in MWh

Mr,i,t Reservoir level rolling week r, reservoir i, hour t in m3

Pr,t Total electricity production rolling week r, hour t in MWh/h

QE
i,j,t Discharge in hydropower equivalent, reservoir i, segment j, time t

Qr,i,j,t Discharge rolling week r, reservoir i, segment j, hour t in m3/s

Sr,i,t Spillage rolling week r, reservoir i, hour t in m3/s
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Vr,i,t Water inflow rolling week r, reservoir i, hour t in m3/s

Parameters

λr,t Electricity price rolling week r, hour t

λω
r,v Average electricity price rolling week r, week v, scenario ω

µE
i,j Marginal production equivalent in hydropower equivalent, reservoir i,

segment j

µi,j Marginal production equivalent reservoir i, segment j

M Maximum energy in reservoir

P Maximum energy production from reservoir

S Maximum energy spillage from reservoir

M i Maximum content in reservoir i

Qi,j Maximum discharge from reservoir i, segment j

Si Maximum spillage from reservoir i

πω Probability of scenario ω

τi Water delay time from reservoir i to down-streams reservoir in hours

M0,i,0 Starting reservoir level rolling week 0, reservoir i, week 0
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Chapter 1

Introduction

1.1 Background
In Sweden, there are approximately 1800 hydropower plants [1], which in 2023
produced nearly 40% of the country’s total electricity production [2]. With
goals to increase the renewable energy sources in the system as described in
[3], hydropower is expected to continue its expansion and be the third largest
electricity producer globally by 2050. Hydropower is a flexible source of
electricity because of the ability to store energy in reservoirs, but also as kinetic
energy in the inertia of turbines. Therefore hydropower can provide stability
to a highly fluctuating system with higher shares of intermittent sources such
as wind power and photovoltaics [4].

With rapid changes and increasing complexity in the electricity grid, the
necessity to understand how hydropower works and behaves is an important
factor to tackle the challenges of future development. One way to analyze
electric grids and energy systems is by creating optimization problems of
mathematical models where grid operation can be simulated and optimized.
The emergence of energy models is associated with the oil crisis that happened
in 1973, which highlighted the importance of planning for various future
scenarios [5]. With energy models it is possible to create multiple forecasts
and scenarios in order to plan for the future.

When creating accurate models of complex energy systems, the mathemat-
ical models can become quite complex as well and be very computationally
heavy. Therefore it is useful to simplify models where it is possible while
retaining accuracy. The complexity of hydropower modeling comes from the
large amount of constraints needed to describe the system [6]. This can be
for example water flow balance constraints that need to be applied for all the
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branches of the rivers. To mitigate this problem, ways of aggregating river
systems over wide areas has been developed [7]. The aggregations are called
hydro power area equivalents or just hydro power equivalents and are used
to represent an area or a river of reservoirs and hydro power stations as one
equivalent reservoir and station. With an aggregated model, large systems of
rivers get a lot less computationally heavy which in turn make the models more
usable and flexible.

The problem with some of the current hydropower equivalents are that
the data they build upon is deterministic. This means that all information is
perfect and forecasts are assumed to be accurate even for longer time spans
up to multiple years. But this is not very realistic, the most commonly used
electricity forecasts have a timespan of at most a couple of days into the
future and have mean absolute errors ranging between 10-20% [8]. Hence
it is not appropriate to assume that forecasts are accurate one year into the
future. The uncertainty in forecasts is something that can be incorporated in
mathematical models by using stochastic models and one way to represent the
uncertainty is by creating multiple different scenarios of the uncertain variable.
For stochastic hydro power modeling there are primarily two distinct variables
which can be seen as uncertain which are electricity prices and natural inflow
of water to the rivers. It is therefore of interest in this thesis to investigate how
a stochastic model with uncertain prices and inflow of water would impact the
calculation of hydropower equvalents.

1.2 Problem
Deterministic models are based on perfect information and perfect foresight
which could in some cases be an appropriate way to handle short term
problems. However, when dealing with long term problems such as
hydropower optimization spanning a yearly timeframe, this approach becomes
unrealistic. What this means for the deterministic hydropower models is that
the most optimal solution is to deplete reservoirs before periods of high natural
inflow or conserve water for longer periods, anticipating higher electricity
prices in the future [9]. However, in reality, this operation scheduling is
impractical since it does not take into account any of the uncertainty which
exists in reality.
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1.3 Purpose
With the electric grids becoming more and more interconnected the
importance of large electricity models will also increase. In large electricity
models hydropower equivalents are important since they have been proven to
reduce the time to compute solutions to the problems drastically [3]. But if the
equivalent models do not provide accurate results, it may not be worthwhile
to use them. With a stochastic model, real uncertainties such as inflow
and electricity prices could be reflected in the results and consequently be
more accurate and realistic. With the ability to produce accurate equivalent
hydropower models, cascade river system complexity would become less of an
issue and the efficiency of large energy models would increase. The main goal
of this thesis was therefore to create a stochastic model of a river system with
uncertain inflows and electricity prices which could be used to calculate a new
hydropower equivalent model. The main research questions to be answered in
this thesis were:

• How could the issue with perfect foresight for this long term problem
be handled?

• How can a stochastic model be developed to deal with the uncertainty
of electricity prices and natural inflows?

• How does the stochastic model impact the calculation of the hydropower
equivalent?

To be able to answer the questions, the resulting yearly production and
reservoir level graphs will be compared with deterministic results to see
how they differ. The parameters for the hydropower equivalent calculations
for both deterministic and stochastic models will also be compared. The
primary objective of this thesis is to address the research questions presented
above. Furthermore, the results of this thesis should contribute with
further knowledge of using stochastic models in hydropower optimization.
Additionally, they should provide insight into the performance of a rolling
horizon algorithm in this context.

1.4 Research methodology
To address the problems in this thesis, a stochastic mathematical model
of the river system Luleälven was developed as an optimization problem.
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The model was then implemented and solved in python, using the Gurobi
optimizer alongside a rolling horizon algorithm. Python was chosen due to
the availability of an existing codebase of the deterministic model described
in [7]. The codebase could then be extended to incorporate a stochastic future
information horizon with the rolling horizon algorithm. The results of the
stochastic model were then used to create a hydropower equivalent which
could be compared to the previous deterministic equivalent.

1.5 Delimitations
The thesis primarily focused on the uncertainty of natural inflow to reservoirs
and electricity prices. Notably, the operation of the hydropower plants were
solely based on electricity prices and did not take into account any electricity
demand. Only one optimization method was investigated, the rolling horizon
algorithm. There are other methods such as dynamic programming but a
rolling horizon method was preferred due to new information being given
to the model continuously much like in reality. Additionally, the model was
scenario based which limited the number of possible states. To further limit
the complexity of the model, no environmental constraints were taken into
account. It was also made with the assumption of a perfect market with perfect
competition. Furthermore this thesis was constrained to only simulating one
river, Luleälven situated in Sweden in the electricity price area SE1 in Sweden
due to its availability for historic data.

1.6 Report structure
Chapter 1 introduces the topic of hydropower modeling and equivalents as well
as stating the problem in question. The primary research questions are also
presented here. Chapter 2 provides background information of hydropower,
optimization, the rolling horizon algorithm and also introduces the river used
for the hydropower model. Chapter 3 describes the methodology used to
create the stochastic model and what had to be done beforehand regarding
data handling and preparation of parameters. Chapter 4 presents and discusses
the acquired graphs and tables from the simulations of different versions of
the stochastic model, a deterministic model and the equivalent model. The
concluding chapter 5 revisits the research questions and provide answers to
them.
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Chapter 2

Theory

2.1 Hydropower
Hydropower is a highly efficient renewable energy source which can produce
electricity from the potential and kinetic energy in the flow of water.
Hydropower is also a very flexible energy source since it has the ability to
store water in reservoirs which can then be used when needed. The electricity
is produced when water flows through a turbine which in turn causes a
generator to rotate as well which produces electricity, see Fig. 2.1. There
are three main types of hydropower stations, impoundment, diversion and
pumped hydro storage where the two first ones will be introduced in this
thesis [10]. Impoundment is the most common type of hydropower station
and uses reservoirs to store water, this makes it flexible and is usually found
in larger hydro power stations. The release of water from the reservoirs
can be controlled and can be in two different forms, discharge and spill.
The term discharge is used to describe the release of water through the
turbine, which generates electricity. In contrast, the term spill is used to
describe the diversion of water past the turbines, which does not generate
any electricity. The spillways of hydropower stations serve an essential
function in ensuring the safety of reservoirs by preventing them from becoming
overfilled [11]. In addition, there are cases where environmental constraints
necessitate the utilization of non-zero minimum spillage levels in order to
preserve biodiversity in and along the downstreams rivers [12]. The second
type of hydropower station is the diversion station, also known as run-of-river
station [10]. This type of station lacks any significant water reservoirs and is
continuously generating electricity. In contrast to impoundment the diversion
type diverts a portion of the water from the river through a turbine which then
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generates electricity.

Figure 2.1: Layout of a hydropower station in [13]

2.2 Natural inflow of water
The natural inflow of water to reservoirs is depending on many different factors
such as season, weather, climate, and topography [14]. In Sweden, the natural
inflow is highly dependent on the season and the amount of snow and ice that
has accumulated during the winter in upstream areas. As temperatures begin
to rise in the spring, the snow and ice begin to melt, resulting in high natural
inflows to nearby rivers and subsequently to the reservoirs in those rivers, as
stated in [15]. This period of high inflow is referred to as the ”spring flood” or
”vårfloden” in Swedish and occurs annually around the transition from April
to May. The magnitude of the spring flood also has a significant influence on
the operational capacity of hydropower stations in affected rivers throughout
the remainder of the year. During the spring flood, reservoirs are often filled
and stored for the following winter, when electricity demand is at its highest.
The magnitude of the spring flood thus determines to what extent hydropower
stations can discharge throughout the remainder of the year without emptying
their reservoirs in advance of the winter.

2.3 Luleälven
In Sweden close to 95% of the hydropower electricity production is made in
less than 10% of the hydropower plants as stated in [16]. Luleälven is as
mentioned in [17] and [18] one of the most water abundant and important
rivers in Sweden where also the largest hydropower station in Sweden,
Harsprånget is situated. Luleälven is 461 km long and stretches from Sulitelma
by the border of Norway to Luleå and has 15 active hydropower stations along
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the river which can be seen in Fig. 2.2. As stated in [17] Luleälven has changed
alot since the construction of the hydropower stations, but with preserved
environmental value due to the constructed roads, making the mountains
accessible for everyone.

The total hydropower production of the hydropower stations along the
river is 4447 MW, which can be compared to the largest nuclear facility in
Sweden, Forsmark, with an installed capacity of 3271 MW. In table 2.1 all the
hydropower plants and their respective installed capacity and reservoir sizes
can be seen.

Table 2.1: Hydropower station data in Luleälven

Station Capacity [MW] Reservoir [m3]
Ritsem 320 177780
Vietas 320 1989000
Porjus 465 175500
Harsprånget 1001 1778
Ligga 367 1500
Messaure 442 14700
Seitevare 225 466000
Parki 20 131900
Randi 86 27200
Akkats 158 11500
Letsi 456 1900
Porsi 272 7500
Laxede 207 19165
Vittjärv 30 3610
Boden 78 220

2.4 Variable costs
In determining the optimal electricity source for production, the system
operator considers the variable costs associated with each option. These costs
include fuel, operation, and maintenance expenses, and are typically expressed
in euros per megawatt-hour (EUR/MWh), as stated in [20]. Variable costs
provide insight into the cost of producing a unit of electricity from a given
source. For many different sources, this must to be taken into account, as some
have relatively high variable costs. An example is electricity from biofuel or
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Figure 2.2: Overview of Luleälven from [19]
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oil, which can have high fuel costs. Hydropower however has a comparatively
low variable cost which is based on the opportunity cost, if wear and tear
costs are neglected. This is the cost of saving water for the future, rather than
utilizing it now as described in [21]. In this thesis, only the direct profit from
selling electricity was analyzed and therefore the variable costs of hydropower
were neglected.

2.5 Electricity production
The power output of a hydropower station can be calculated using Eq, 2.1 in
which P is the power, Q is the discharge, η is the efficiency, ρ is the water
density, g is the gravitational acceleration, and h the difference in height
between the entrance and exit of the water which can be seen in Fig 2.1.

P = Qηρgh (2.1)

The issue with this formulation however is that it is a non-linear equation due
to the efficiency being dependent on the discharge making it difficult to use in
a linear optimisation problem. To simplify the equation, it can be rewritten as
a piecewise linear concave function, as also done in [22] which yields Eq. 2.2

Pi,t =
∑
j∈J

µi,jQi,j,t (2.2)

where µi,j is a marginal production equivalent with segments J, which
represents the slope of the linear function. In order for the equation to be
concave the slope of the segments must be decreasing which can be stated as
Eq. 2.3.

µi,j > µi,k if j < k (2.3)

2.6 Optimization
The term ” optimization” is defined as the process to find the best solution
to a problem according to [23]. Usually the problem can be described by
an objective function and the most optimal solution to that would either be
the maximal or minimal value of that function, depending on what type of
problem it is. But for optimization problems there needs to be constraints
to the solution which are in the form of inequality and equality expressions
that must to be satisfied when determining the optimal solution. For this
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reason an optimization problem is said to maximize the objective function,
f, while subject to some constraints, g, which can be seen in a mathematical
formulation in Eq. 2.4. As explained in [23] some examples of constraints can
be to preserve energy balances or environmental restrictions to set maximum
values for pollutants. In the context of hydropower there are some technical
aspects such as maximum discharge capacity which has to be taken into
account as constraints or balance in water flows throughout the river.

maximize f(x1, x2, . . . , xn)

subject to gi(x1, x2, . . . , xn) ≤ bi, i = 1, . . . ,m.
(2.4)

The objective function is dependent on the optimization variables or decision
variables which are (x1, x2, ..., xn) in Eq. 2.4. The optimization variables
can be seen as the parameters that can be manipulated and adjusted in order
to find the best solution to the problem. They are also called decision
variables because they can be controlled through decisions. In hydropower
optimization, one of the decision variables is the discharge, because the
hydropower station operators can decide on how much or little to discharge.

2.7 Deterministic and stochastic optimiza-
tion

As previously stated in section 1.1 in reality there are a multitude of
uncertainties. One method to handle uncertainty in problems is by using
stochastic optimization [24]. The uncertainty in a stochastic optimization
problem can be generated as scenario trees that provide different possible
future values with some probability. As an example, a scenario tree could be
constructed to represent the uncertainty associated with tomorrow’s weather.
The scenario tree could comprise three distinct future possibilities, such
as sunny, rainy, or cloudy, with each scenario assigned a probability. By
combining the future scenarios and their respective probabilities, it is possible
to calculate the expected value, which is the value that is optimized in
stochastic optimization. In this manner a wide range of uncertainties can be
taken into account when optimizing the model.

In contrast, deterministic optimization does not model uncertainty. It is not
necessary for a deterministic model to employ scenario trees, as all parameters
are known and certain. A stochastic model that is equivalent to this would only
allow for a single possible future scenario. Consequently, the probability of
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this scenario would be 100%.

2.8 Rolling horizon algorithm
For larger timespans, real world inflow of data in the context of hydropower
is usually updated continuously. All data about the future is not known from
the start, for instance, the price of electricity are highly volatile and is only
predictable over a relatively short time horizon. Therefore data has to be
updated continuously when new data from prices, inflows or weather forecasts
are made. In mathematical modeling there are many different ways to optimize
a formulated problem, but many do not utilize this constant inflow of new data
[25]. The rolling horizon algorithm however is an optimization algorithm that
can update the data while optimizing the model. The rolling horizon method
is based on repeatedly solving a smaller timespan with parameters and data
that get updated for every iteration. The total simulated timespan is divided
into sections, see Fig. 2.3. The algorithm solves the divided timespans and a
future horizon one at a time, where the horizon in each new period feeds the
model with new information. For each solved period in the algorithm, only
the solution to that period is retained, and the solution to the future horizon is
discarded.

Figure 2.3: Rolling horizon algorithm

As an example, to optimize a full year with the rolling horizon algorithm
the problem could be divided into solving the year one week at a time with
a set horizon of some timespan into the future. Weather forecasts are about
80 % accurate for up to seven days into the future [26]. A weekly resolution
in the rolling horizon algorithm could therefore be a suitable resolution. The
algorithm optimizes the first week and the timespan of the horizon, but only
saves the solution of the first week. For the next iteration the week to be
optimized is the second rolling week together with the horizon, the algorithm
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would then continue in this manner until the last week had been optimized,
see Fig. 2.3.

2.9 Hydropower aggregation
The complexity of large river systems renders them challenging to solve. It
is therefore beneficial to reduce river systems by aggregating them. The
aggregation in this context can be achieved through multiple different methods,
but the main aspects of the aggregation is to represent a multi-station river
system by a smaller river system that behaves in a similar manner. One of the
most straightforward methods for creating an aggregated river system is just
summing all the reservoir parameters such as production, inflows and reservoir
levels [27]. However, when calculating hydropower equivalents, this approach
is not precise enough. A more complex method is described in [7], where
different parameters for the equivalent must be solved for to mimic the original
system behavior.

2.10 Gurobi
In order to solve the optimization problem in this thesis the Gurobi
optimizer was used. The Gurobi optimizer is a widely utilized optimizer in
industry, suitable for a diverse range of businesses [28]. Additionally, the
Python module gurobipy enables Gurobi to be utilized within the Python
programming language.

2.11 Previous work
The work presented in [7] provided a deterministic base model that could
be used for any river. The existing codebase used in this thesis was also
based on this deterministic model. Furthermore, the method to calculate
the hydropower equivalents for this thesis was also the same as presented in
Blom’s paper.

The paper in [29] presented a method to implement a rolling horizon
algorithm on a river in Ethiopia with stochastic inflows. The paper described
the implementation of the rolling horizon algorithm and the generation of
scenarios in different ways. The problem presented was a single hydropower
station with uncertain inflows and with certain electricity prices since they
were set by the Ethiopian government. This paper inspired the utilization of the
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rolling horizon algorithm together with scenario based inflow and electricity
prices in this thesis.
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Chapter 3

Method

3.1 Code base
In this thesis, a Python code base that simulated the deterministic model
created in [7] was used. The code base included both the deterministic model
code and the code for calculating hydropower equivalents and was used as a
starting point when implementing the stochastic rolling horizon model.

3.2 Deterministic model
The deterministic model made in [7] was in this thesis used as a base case
in order to then be able to compare the stochastic models. The deterministic
model was constructed as follows:

Maximize
T∑
t=1

Ptλt (3.1)

Pt =
I∑

i=1

J∑
j=1

Qi,j,tµi,j ∀t ∈ T (3.2)

Mi,t = Mi,t−1 + Vi,t −
J∑

j=1

Qi,j,t −Si,t +Qflow
i,t +Sflow

i,t ∀i, t ∈ I, T (3.3)

Qflow
i,t =

∑
i∈Iup

J∑
j=1

Qi,j,t−τi ∀i, t ∈ I, T (3.4)
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Sflow
i,t =

∑
i∈Iup

Si,t−τi ∀i, t ∈ I, T (3.5)

Qi,j,t−τi =
mi

60
Qi,j,t−hi−1 +

60−mi

60
Qi,j,t−hi

(3.6)

Si,t−τi =
mi

60
Si,t−hi−1 +

60−mi

60
Si,t−hi

(3.7)

I∑
i=1

∑
i∈Idown

µi,1Mi,8760 =
I∑

i=1

∑
i∈Idown

µi,1Mi,0 (3.8)

0 ≤ Mi,t ≤ M i ∀i, t ∈ I, T (3.9)

0 ≤ Qi,j,t ≤ Qi,j ∀i, j, t ∈ I, J, T (3.10)

0 ≤ Si,t ≤ Si ∀i, t ∈ I, T (3.11)

3.3 Problem and rolling horizon implemen-
tation

The rolling horizon method described in section 2.8 was adapted to address
the specific characteristics of this hydropower problem. In this instance, a
simulation with a timespan of one year was conducted for Luleälven. To
implement the rolling horizon algorithm, the full year was divided into 52
weeks, which were then solved individually. Furthermore, the future horizon
for every week was set to 52 weeks, ensuring that the model always had
information one year into the future. Given the uncertainty of the future and
the increase in computational time with complexity, the future horizon was
chosen to not be fully detailed. This allowed for the use of an aggregated
future horizon instead, where the reservoirs and stations could be reduced to
a single reservoir with a single hydropower station.

The future horizon was used as an indicator of potential future outcomes,
therefore the resolution was reduced to weekly values instead of the hourly
values used in the code base. However, the detail in the initial week of each
rolling period was retained, with the resolution left at the hourly level, in
order for the total solution to still be fully detailed. It was also assumed that
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the forecasts for the initial week in each rolling period would be sufficiently
accurate to be considered deterministic. The scenarios described in 3.4 were
therefore used solely in the future horizon, resulting in a model with certain
information for the initial week, followed by 52 weeks of uncertain information
represented by the generated scenarios.

3.4 Scenario generation
Previous hydropower equivalent models have had the problem of using perfect
information and perfect foresight during the whole timespan. This thesis
addressed this issue by creating multiple possible future scenarios of inflows
and electricity prices from historical data. The data available for inflows
spanned the years 2009 to 2018 and included daily inflow values of all the
reservoirs in SE1 and SE2. To get scenarios from this data, each year in the
data set could be seen as one possible future scenario. With this approach the
preservation of the yearly natural periodic pattern in water inflows was ensured
which was a crucial aspect in this context.

With the rolling horizon algorithm however, the horizon extended one
year into the future,which necessitated the scenarios to be two years in length.
With scenarios being two years, it was also necessary to avoid sampling two
random years together as a scenario as this could introduce discrete jumps in
the inflows between year one and year two. Consequently the two years in each
scenario was chosen to be consecutive.

A slight problem in the scenario generation context with hydropower in
Sweden was that hydropower produces a large share of the total electricity
production as previously mentioned in section 1.1. This also implies that
hydropower production influences the electricity prices by how much they are
able to generate. A year with exceptionally high inflows of water will, in turn,
result in a year with lower electricity prices, as the hydropower stations are
able produce more electricity. Therefore a scenario with high inflows and
high electricity prices is less probable. In order to obtain realistic scenarios it
was therefore not appropriate to mix inflow data and price data from different
years. The available electricity price data spanned the years 2012 to 2023 and
inflow data from 2009 to 2018, to match years of both inflows and electricity
prices the only remaining years were between 2012 and 2018 resulting in only
six scenarios.

As the model was a weekly aggregation of the river system, the scenarios
also had to be transformed into weekly data. As a result, for each scenario,
the electricity prices were represented as the weekly average price as shown in
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Fig. 3.1b and the inflows were represented by a weekly total inflow as shown
in Fig. 3.1a.
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Figure 3.1: Scenarios generated

3.5 Probability of scenarios
A scenario probability is necessary for all scenarios in order to calculate
an expected value from them, however setting these probabilities is not
straightforward. By looking at historical data over wet years and dry years in
Sweden as shown in [30], it could be possible to draw some kind of conclusion
to scenario probabilities. However when looking at this data it is evident that
there is a large variation from year to year which can be between 50-80 TWh.
Therefore with just a few scenarios a simple assumption would be that all
scenario probabilities are equal. Another way to approach this however is to
try and calculate the probabilities from historical data.

Therefore a test was conducted on existing inflow data to calculate the
probabilities. The initial step involved the creation of a normal distribution
of the available data, which was then divided into percentiles. The lower
percentile represented a low inflow, the higher percentile a high inflow, and
the middle percentile represented the average. The test was conducted on
a weekly basis, examining the probability of a certain state occurring in the
subsequent week given the state of the current week. By examining years of
data and analyzing all state transitions between weeks, the probabilities could
be calculated.

With three states low, medium and high, a 3x3 matrix representing the
nine possible transitions between the three states could be constructed. The
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states was then translated to the numbers 1, 2, and 3 respectively, to be used as
rows and columns. In this case, the row represented the current week, and the
column the next week. Consequently, the probability of transitioning from a
low inflow state in the current week to a medium inflow state in the following
week could be determined by examining the probability in row 1, column 2 as
shown in Eq. 3.12.

Probability =

0.907 0.093 0

0.093 0.808 0.099

0 0.096 0.904

 (3.12)

This test was made on a week-to-week basis since the data needed to create
probabilities between year-to-year was way more than what was available.
However, the method above could be one way of calculating probabilities of
scenarios given enough data or when working with another timeframe for the
scenarios. In the continuation of this thesis however, the assumption of equal
probabilities for all scenarios was used.

3.6 Weekly aggregated model
In the rolling horizon algorithm the full yearly problem was divided into
weeks called rolling periods, and then solved one period at a time. For the
aggregated model, the system modeled in the future horizon was aggregated,
meaning that the initial hydropower stations were summed together with
a simple aggregation. The future horizon was also made with a weekly
resolution meaning that the scenarios were created as weekly inflows and
weekly electricity prices.

3.6.1 Deterministic and future horizon variables
As described in section 3.3, the problem was solved for each week in a full year,
with an hourly based deterministic week and a weekly based future horizon.
To create the optimization problem from this, the variables were split into
two categories: deterministic variables and future horizon variables. This
was done firstly because the variables had different resolutions, hourly and
weekly, and secondly because the deterministic variables were detailed with all
reservoirs and the horizon variables were aggregated. Therefore, it was most
straightforward to keep the variables separated and use constraints to connect
them. The deterministic variables were Mr,i,t, Pr,t, Sr,i,t and Qr,i,j,t for the
reservoir, production, spillage and discharge respectively. To ensure clarity
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regarding the distinctions between and similarities among the variables, the
future horizon variables, Mω

r,v,Pω
r,v and Sω

r,v, were highlighted with another
font, distinct from the one used for the deterministic variables.

3.6.2 Calculation of parameters
For the aggregated model, the most straightforward approach was to convert all
future horizon variables to energy in MWh. As a result the maximal values for
reservoirs, production and spillage were not the same as the detailed variables.
Therefore these variables had to be calculated and transformed into aggregated
maximal values.

For the maximal aggregated productionP in Eq. 3.13 , it was calculated as
the sum of the maximal production for all the reservoirs as the aggregation, and
then multiplied by the total number of hours in a week which was the resolution
for these variables. The aggregated maximum value was then multiplied with
0.8 which was chosen since the maximum sustained production is lower than
the actual maximum [31].

The calculations for the future maximum values of reservoir and spillage
were calculated similar to each other as can be seen in Eq. 3.14 and Eq. 3.15.
The total energy from each reservoir was calculated as the amount of power
produced by the water running through all down-streams hydropower stations
and then summed for all reservoirs. The spillage was then multiplied by the
hours of the week to get the maximal energy spillage for one week.

P =
I∑

i=1

P i · 168 · 0.8 (3.13)

M =
I∑

i=1

∑
i∈Idown

M i · µi,1 (3.14)

S =
I∑

i=1

∑
i∈Idown

Si · µi,1 · 168 (3.15)

3.6.3 Optimization problem formulation
The optimization problem was setup up to maximize profits for the hydropower
station owners in the means of electricity sold to the market. The objective
function for the weekly problem was set to maximise the direct profit from the
current week and the expected profit from the future horizon as in Eq. 3.16.
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The rolling horizon algorithm solved the optimization problem one time for
each week of a full year. Therefore the mathematical model below was solved
52 times with a rolling week index r. The index r was updated for each new
week in the rolling horizon from 1 to 52.

Maximize
T∑
t=1

Pr,tλr,t +
Ω∑

ω=1

πω

V∑
v=1

Pω
r,vλ

ω
r,v (3.16)

The total production for every hour was calculated with Eq. 2.2 and set as a
constraint as can be seen in Eq. 3.17 below where the production was summed
over all the reservoirs in the river system.

Pr,t =
I∑

i=1

J∑
j=1

Qr,i,j,tµi,j ∀t ∈ T (3.17)

To deal with the cascaded rivers, hydrological constraints were needed to
describe all the reservoir levels at any time which is shown in Eq. 3.18. For
each reservoir the reservoir level at hour t could be described by the level
obeserved the previous hour, the flow coming into the reservoir and the flow
going out from the reservoir. The flow going in was from natural inflow of
water Vr,i,t, and from water released from hydropower stations directly up-
streams as discharge or from spillage which can be seen in Eq. 3.19 and 3.20.
The outgoing water was then from the discharge or spillage in that reservoir.

Mr,i,t = Mr,i,t−1 + Vr,i,t −
J∑

j=1

Qr,i,j,t − Sr,i,t +Qflow
r,i,t + Sflow

r,i,t ∀i, t ∈ I, T

(3.18)
The transfer of water from upstream reservoirs to directly down-streams
reservoirs is not instantaneous. In reality, there is a time delay between the
release of water from one reservoir and its arrival at the next. This time delay
is not a constant and can vary depending on a number of factors. However,
for the sake of simplicity, it is assumed to be a constant time delay between
reservoirs. However, this delay must be accounted for, which was done with
Eq. 3.21 and Eq. 3.22.

Qflow
r,i,t =

∑
i∈Iup

J∑
j=1

Qr,i,j,t−τi ∀i, t ∈ I, T (3.19)
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Sflow
r,i,t =

∑
i∈Iup

Sr,i,t−τi ∀i, t ∈ I, T (3.20)

Qr,i,j,t−τi =
mi

60
Qr,i,j,t−hi−1 +

60−mi

60
Qr,i,j,t−hi

(3.21)

Sr,i,t−τi =
mi

60
Sr,i,t−hi−1 +

60−mi

60
Sr,i,t−hi

(3.22)

The future horizon variables also had to have a hydrological balance which
can be seen in Eq. 3.23. This could also be seen as an energy balance since
all units had been transformed into MWh.

Mω
r,v = Mω

r,v−1 + Vω
r,v − Pω

r,v − Sω
r,v ∀v, ω ∈ V,Ω (3.23)

For each week in the rolling horizon algorithm, the starting reservoir content
had to be updated since the optimization was made in 52 steps. The starting
reservoir content was updated to equal the end reservoir content from the
previous week which can be seen in Eq. 3.24.

Mr,i,1 = Mr−1,i,168 (3.24)

To tie the future horizon variables to the deterministic variables, a constraint
for the total energy in the reservoirs at the end of the deterministic week, was
set to be equal to the starting energy for the future horizon reservoir, which can
be seen in Eq. 3.25. In this equation it was also assumed that the water could
be produced at the highest efficiency, therefore only using the first segment,
µi,1, of the marginal production.

I∑
i=1

∑
i∈Idown

µi,1Mr,i,168 = Mω
r,0 ∀ω ∈ Ω (3.25)

A constraint was needed to limit the last values of the future horizon reservoir
levels. For deterministic models, end values can be set as constants since the
last value is always at the end of the planning period. But in a rolling horizon
algorithm, the end of the planning period is moving together with the rolling
period and could therefore not be set to a constant value. For every week in the
rolling horizon algorithm the end value had to be updated. Given the solution
from the previous rolling week Mω

r−1,v the last value for the future reservoir
level for the current week Mω

r,51 was updated as Eq. 3.26 below. With this
formulation the future reservoir levels are periodic in the way that the last
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value equals the beginning value in a yearly cycle.

Mω
r,51 = Mω

r−1,1 ∀ω ∈ Ω (3.26)

In the deterministic model the reservoir levels at the end of the planning period
were constrained to equal the starting values in the reservoirs. To constrain the
reservoir value in this model in a similar manner, the following constraint had
to be made which set the total energy in the reservoirs equal to the beginning
energy in Eq. 3.27.

Mω
r,52−r =

I∑
i=1

∑
i∈Idown

µi,1Mr,i,0 ∀ω ∈ Ω (3.27)

Notice here the 52-r for the reservoir variable, which had to be used in order to
move the week index for the end of the planning period along with each step
in the rolling horizon algorithm.

All variables in the model had to be constrained to a minimum and
maximum value and are shown in Eq’s 3.28 - 3.33.

0 ≤ Mr,i,t ≤ M i ∀i, t ∈ I, T (3.28)

0 ≤ Qr,i,j,t ≤ Qi,j ∀i, j, t ∈ I, J, T (3.29)

0 ≤ Sr,i,t ≤ Si ∀i, t ∈ I, T (3.30)

0 ≤ Mω
r,v ≤ M ∀v, ω ∈ V,Ω (3.31)

0 ≤ Sω
r,v ≤ S ∀v, ω ∈ V,Ω (3.32)

0 ≤ Pω
r,v ≤ P ∀v, ω ∈ V,Ω (3.33)

3.7 Fully detailed daily model
A fully detailed stochastic model was developed to allow for comparison
with the aggregated model. However, due to hardware limitations, it
was not possible to simulate a fully detailed hourly-based future horizon.
Consequently, the future horizon was constructed as a fully detailed model,
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but on a daily resolution. The existing similarities between the aggregated and
detailed models meant that not everything required modification. The first
modification was to the scenarios, which were changed from weekly values to
daily values with inflows for each reservoir. Since the previous aggregation
was only made on the future horizon, the deterministic week could be used as
it was, consisting of equations 3.17 to 3.22. However, all the future horizon
constraints had to be modified to work with all the reservoirs. The most heavily
modified constraint was the hydrological balance shown in Eq. 3.35 to 3.37 for
the future horizon since it had to incorporate the discharge from the stations
much like the deterministic hydrological balance in equations 3.18 to 3.20. In
the new, detailed model, this was expressed in terms of discharge rather than
simply as power, as in the aggregated model. Therefore also the objective
function had to be modified slightly to use the discharge instead of the power
as shown in Eq. 3.34. In the detailed model, it was also more straightforward
to refrain from transforming all values to energy and to utilize them in their
original form. This approach permitted the daily discharge, for instance, to
be regarded as a daily average discharge. Consequently, no transformation
of the maximum values for the hydropower station parameters was required.
The only modification needed was for the parameters Q and S which were
multiplied by 24 to get the maximum discharge and spill in a day. Therefore
Eq. 3.28 to 3.30 could be used as they were. The remaining constraints Eq.
3.26 and Eq. 3.27 could also be used by only changing the indexation from a
weekly to daily resolution.

.Maximize
T∑
t=1

Pr,tλr,t +
Ω∑

ω=1

πω

V∑
v=1

λω
r,v

I∑
i=1

J∑
j=1

Qω
r,i,j,vµi,j (3.34)

Mω
r,i,v = Mω

r,i,v−1 + Vω
r,i,v −

J∑
j=1

Qω
r,i,j,v − Sω

r,i,v+

+Qflow,ω
r,i,v + Sflow,ω

r,i,v ∀i, v, ω ∈ I, V,Ω

(3.35)

Qflow,ω
r,i,v =

∑
i∈Iup

J∑
j=1

Qω
r,i,j,v ∀i, v, ω ∈ I, V,Ω (3.36)

Sflow,ω
r,i,v =

∑
i∈Iup

Sω
r,i,v ∀i, v, ω ∈ I, V,Ω (3.37)
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3.8 Hydro power equivalent
The hydropower equivalent is more complex to calculate than the naive
aggregation made for the future horizon 2.9. The hydropower equivalent can
be represented as a single reservoir, single hydropower station reduction of
the original system which simplifies the problem. In the equivalent system
there are some unknown parameters such as the limits of the reservoir,
discharge, spill and marginal production equivalent [7]. Some of the unknown
parameters could be calculated directly such as the marginal production which
was calculated as a weighted average of the marginal productions in the
detailed model. However, the other parameters had to be solved in a bi-
level optimization problem. In the lower-level optimization the problem is
very similar to the deterministic presented in [7] with an objective function
to maximise profits. For the upper-level problem the objective function is
to minimize the difference between an obtained detailed production and the
equivalent production, see Eq. 3.38.

Minimize
T∑
t=1

(
I∑

i=1

Pi,t −
I∑

i=1

J∑
j=1

QE
i,j,tµ

E
i,j)

2 (3.38)

With Pi,t here being the known production of the detailed model and QE
i,j,t

the discharge that has been optimized in the lower level problem. With an
existing program which made these calculations the hydropower equivalent
could be calculated with the input of any model.
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Chapter 4

Case study

4.1 Deterministic model
As a base solution to the problem, the model described in section 3.2 was
simulated for 2017. The input data for this model was natural inflow data for
all reservoirs and electricity prices in an hourly resolution for the full year.

4.2 Aggregated model
For the aggregated model with the weekly resolution in the future horizon,
the equations and constraints described in section 3.6 were used. Many
different years were simulated but some of them were infeasible without
parameter tuning, therefore only the results from 2017 are shown which also
was considered as the year with the most average conditions. With this setup
there were four sets of input data, one set with inflows and one set with
electricity prices for the deterministic week which were in an hourly resolution.
Then there were the sets for inflows and price data for the future horizon which
were in a weekly resolution, the inflow data for the future horizon was also
aggregated for all reservoirs in the system as explained in section 3.6.2.

4.2.1 End constraints for the planning period
In section 3.6.3 two constraints for the future reservoirs levels were shown, see
Eq. 3.26 and Eq. 3.27. The first equation always had to be used in order to
constrain the end values of the future reservoirs. The second equation however
was only used to constrain the reservoir values for the end of the planning
period, therefore two simulations were made. The first simulation was made
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with both constraints and will be referred to as the constant end constraint
solution. The other simulation only used Eq. 3.27 for r = 1 to ensure that the
future reservoir levels were constrained for the first iteration. The solution to
this solution is referred to as the moving end constraint solution.

4.2.2 Reservoir levels
As a first quality control of the aggregated model, the reservoir levels were
compared to the deterministic solution in order to see if the rolling horizon
algorithm could find a similar optimal solution which is shown in figures 4.1,
4.4a and 4.4b. In Fig. 4.1 the reservoir levels for the deterministic solution
and two stochastic solutions is shown for 2017. As can be seen in the figure
all of the graphs follow each other throughout the year. From approximately
2000 to 4000 hours, both stochastic models had higher reservoir levels than
observed in the deterministic model. The greatest difference in reservoir levels
is observed from around hour 6000 and onwards, as the end of the planning
period approaches. The moving end constraint model retains more water in
the reservoirs in anticipation for the next year, which is observed from the
higher end values. The model with a constant end constraint also retains more
water after the high inflow period but then produces at a higher rate to decrease
reservoir levels to the set amount for the end of the planning period.
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Figure 4.1: Moving and constant end constraint
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4.2.3 Electricity production
After simulating 2017 with the aggregated and deterministic models, the
results for the total production from all hydropower stations were obtained. In
Fig. 4.2 the total production is shown plotted against the electricity price for
the specified year. The plot shows week 26 during the high inflow period. This
was plotted in order to see the impact of the electricity price on the operation
of the hydropower stations in both the aggregated and deterministic model.
What can be observed in this graph is that the production and electricity price
follow a similar pattern, were if price goes up the production goes up and if
the price goes down the production goes down as well.

Figure 4.2: Electricity price and production, aggregated

The differences between the operation in the aggregated model and the
deterministic model can be seen most clearly in the first 25 hours of this week.
The deterministic operation demonstrates that all hydropower stations produce
close to nothing for these hours. The aggregated model however continues
to produce during these hours but to a lesser extent. During these hours the
aggregated production closely follows the electricity price curve. Around hour
4315 there is also the opposite difference were the deterministic optimum
solution was producing at maximum, whereas the aggregated model produced
a bit less for a couple of hours following the shape of the electricity price. It is
evident that, given the knowledge that electricity prices in the future would be
higher than those of the current week, it would be better to store the water to
produce at the higher price for more profit. This could lead to the behaviour in
the first 25 hours where the deterministic solution has almost zero production.
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The aggregated model was only certain of the prices of the current week with
the subsequent weeks uncertain. Consequently, it would not be optimal to
produce zero for low prices, since there was no certainty that the prices would
be higher in the future.

4.2.4 Different scenarios
In the initial stages of the thesis, two sets of electricity price scenarios were
created. One set included the most recent couple of years, during which
electricity prices have been particularly high. The other set included earlier
years, during which electricity prices were relatively low. Two simulations
were run with high and low electricity price scenarios with the constant end
constraint, see Fig. 4.3.
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Figure 4.3: High and low electricity price scenarios

The figure shows that the set of scenarios with higher electricity prices
have a larger amount of water in the reservoirs throughout the year, while the
set of scenarios with lower prices have a lower amount of water throughout
the year. Only at the end of the planning period does the reservoir levels
for the low price scenarios go above the high price scenarios. The figure
would indicate that the set of scenarios with high prices makes it profitable
to save water during the deterministic week with 2017 prices, while the lower
price scenarios suggests the opposite, that it is more profitable to produce
more and take the current price. The problem of this large difference in the
results however, could be due to the fact that all scenarios were treated with
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an equal probability of happening which is not fully realistic. For example the
probability of a scenario happening with really high electricity prices should
in practise be lower than a scenario with closer to average electricity prices.
Considering only six scenarios were used for the models, the scenario outliers
could also have a larger impact on the results than if more scenarios were used
with equal probabilities.

4.2.5 Issue with infeasible solution
An issue that was observed during the simulation of different years was that
the model was unable to identify a solution to the problem for some other
years. The optimization was done iteratively for each week of the year since
the rolling horizon algorithm was used. Therefore an infeasible solution could
in theory be found at any of the weeks, however it was always around week
26. As shown in Fig 3.1a, this period coincides with the spring flood during
which most of the reservoirs have very high natural inflows. One possible
factor in making the problem unsolvable at this week was due to the naive
aggregation made for the future horizon. When calculating the aggregated
maximum parameters for the reservoir, production and spillage as described
in section 3.6.2, the assumption was inherently made that all reservoirs could
be at these maximum levels at the same time, which is not fully realistic. As
an example, for the detailed system to reach the maximal total production
calculated for the aggregation, it would require all hydropower stations to
produce at maximum for a week straight. This would also necessitate that
all reservoirs have sufficient water levels or that the smaller reservoirs have
sufficient inflow to sustain their maximum discharge. If the detailed week
optimization fail to produce the anticipated amounts in the future horizon the
previous weeks, the reservoir levels may exceed the maximum levels, making
the solution infeasible. In [27] an issue was presented that the parameters for
simple aggregations could easily be overestimated. Which would explain the
issue with the infeasible solution here quite well. If the maximum production
has been overestimated for the aggregation, the detailed optimization would
not be able to produce as much as what has been planned in the future horizon,
leading to overfilled reservoirs. One straightforward solution to circumvent
this issue was to simply set a factor alongside the aggregated parameters,
which could be modified when needed. This approach made it possible to
find a solution for all of the simulated years. However this shows why the
naive aggregation is not the best in all cases and certainly not good enough for
the hydropower equivalents.
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4.3 Detailed model
In section 3.7 the detailed daily model was described which unlike the
aggregated model had a daily resolution in the future horizon. In the detailed
model it was also possible to simulate all the reservoirs separately. This meant
that the sets of data for the future horizon had to be made as daily inflows for all
the reservoirs and daily electricity prices. As explained in section 4.2.1 two
simulations were made for the aggregated model and these two simulations
with and without Eq. 3.27 were made for the detailed model as well.

4.3.1 Reservoir levels
With results from both the detailed and aggregated model, the reservoir levels
could be compared with both end constraints as well, see Fig. 4.4.
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Figure 4.4: Detailed and aggregated model

With a constant end constraint as in Fig. 4.4a the difference between the
aggregated and detailed model was very small, from hour 4000 and onwards
the solutions were almost identical. The biggest difference occurs from the
start point until hour 4000 were they have only small differences. Both the
solutions have higher reservoir levels than the deterministic solution at all
times though. Comparing this to the results in Fig. 4.4b there was a larger
difference between the stochastic solutions, but closer to the deterministic
solution throughout the year. The biggest differences in this figure also shows
in the later parts of the year after the high inflow period. The detailed model
follows the deterministic solution more closely than the aggregated model
until both stochastic models plan to retain more water for next year. When
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looking at the reservoir levels in Fig. 4.4 the figures demonstrated that,
for different end constraints, the models showed different behaviors. With
a constant end constraint, the difference was almost negligible, and given
the computational difference discussed in section 4.6, the aggregated model
could be the preferable choice. However, the solutions from the aggregated
and detailed model with a moving end constraint showed a more pronounced
difference, suggesting that in certain instances, they may not be as similar in
the solution. The moving end constraint was also dependent on the solution
from the previous week which means that small changes in solution can make
the difference larger at a later stage in the solution. The scenarios between
the aggregated and the detailed model were also slightly different since the
aggregated model had weekly values and the detailed model daily values. The
slight increase in uncertainty from weekly scenarios together with the moving
constraint, which does not quite limit the values for the end of the planning
period could make the solutions differ more compared to with a constant end
constraint.

4.3.2 Electricity production
For the detailed model, the production graph is shown in Fig. 4.5. The detailed
model follows the deterministic model more closely than the aggregated model
which is most clear in the first 25 hours of week 26.

4200 4225 4250 4275 4300 4325 4350 4375
Hour

0

1000

2000

3000

4000

M
W

Stochastic
Deterministic
Electricity price

10

15

20

25

30

35

40

45

EU
R/

M
W

h

Production: week 26

Figure 4.5: Electricity price and production, detailed

The production graph for the detailed model, see Fig. 4.5, was more similar
to the deterministic model than the aggregated model. In the detailed models
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however there was a difference in maximum production where the weekly
production had a factor 80 % applied since it is not realistic to produce at 100
% for a week straight. This factor was not used in the detailed model and could
therefore explain the differences in production between the two. The scenarios
also differed between the two models. For instance, the electricity prices
for the aggregated model were weekly averages, whereas for the detailed,
daily averages. Therefore some of the details in the scenarios is lost in the
aggregated scenarios, which could introduce greater uncertainty to that model
compared to the detailed model.

In Table. 4.1 some data for week 26 is shown for the different models.
As can be seen, both stochastic models produce more during this week than
the deterministic model, however they both spill more water as well. By
looking at the start and end reservoir levels it is evident also that there is high
inflows since the reservoir levels are increasing for all models even though
they are producing and even spilling some of the water. This illustrates the

Table 4.1: Week 26 data for production, spillage and reservoir levels

Model Prod. [MWh] Spill [m3] Res. start [m3] Res. end [m3]
Deterministic 288517 2572 1455133 1635401
Aggregated 341798 20160 1590496 1755588
Detailed 338850 15307 1498005 1668420

problem of the deterministic model, particularly in this extreme week in the
middle of the spring flood. Since the deterministic model had all information
from the beginning, it had good reservoir levels in all reservoirs during this
week, allowing the model to produce less than the stochastic models while
also avoiding the necessity to spill as much.

4.4 Future horizon solutions
For each simulation all the future horizon solutions were obtained. Since every
week in the rolling horizon algorithm had a solution to the future horizon,
52 future horizon solutions were obtained in total. In Fig. 4.6 the optimal
reservoir levels for the rest of the year is shown for every scenario. This
solution is from the first rolling week and shows that the solutions from the
different scenarios are vastly different. Some scenarios had very high inflows
which can be seen in the scenarios that almost empty their reservoirs before the
spring flood. Other years had a smaller amount of natural inflow and therefore
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Figure 4.6: Reservoir levels for all scenarios week 1

had to store more of the water for the winter which can be seen in the scenarios
with higher reservoir levels throughout the year.

4.5 Hydropower equivalent
A deterministic and stochastic hydropower equivalent was calculated as
described briefly in section 3.8 and the most varying parameters are shown in
Table 4.2. The majority of the parameters were very similar between the two
equivalents and are therefore not shown in the table. However, the minimum
reservoir levels for the two stand out as being notably different. As can be
seen the minimum reservoir level made with stochastic data is considerably
larger relative to the deterministic level. Furthermore the maximum reservoir
level is slightly lower in the stochastic model than in the deterministic model.
However, when looking at the absolute differences, the maximum reservoir
level deviates more from the deterministic level (732 GWh) than the minimum
level (92 GWh).

Table 4.2: Hydropower equivalent parameters

Model data Reservoir max [GWh] Reservoir min [GWh]
Deterministic 4536.7 23.61

Stochastic 3804.4 115.67
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4.6 Difference in computation time
As mentioned slightly in section 1.1 the complexity of the system affects how
difficult the problem is to solve and therefore also the time it takes to compute
the solution. This is one of the major points in trying to create the hydropower
equivalents to reduce the system complexity and therefore computation times.
Throughout this thesis the issue with complexity has been a recurring theme,
especially when trying to create a fully detailed hourly model which was
not even possible to compute due to insufficient RAM. The fully detailed
deterministic program that was used to create the deterministic solution had a
computation time of roughly five minutes. The aggregated stochastic model
was quite a bit faster, solving the problem in a mere one minute and 30 seconds.
However, the fully detailed stochastic model on a daily-basis was by far the
slowest with a computation time of one hour and 40 minutes. The computation
time for the fully detailed stochastic model however seemed to slow down
more as the available RAM was utilized more. One potential explanation for
this is that when the RAM is fully utilized, the computer switches to utilize
other memory in the computer, which operates at a slower pace as stated in
[32]. Consequently, the total run time for the detailed model was not only
influenced by the complexity of the problem but also by hardware limitations.
The first 11 rolling periods were solved before the RAM was fully utilized
in only five minutes. If the computer were to continue at that same pace, it
would have a full solution in approximately 24 minutes, which is considerably
less than the actual run time of one hour and 40 minutes. Even if the solution
could be found in 24 minutes, this would still be way longer than one minute
and 30 seconds, which shows the issue with increasingly complex models of
hydropower systems which would have an increased solving time as well. If a
very large model then would have to be simulated multiple times aswell this
would become a large problem. If a large-scale model were to be subjected to
multiple simulations, this would become a significant challenge. In contrast,
with a hydropower equivalent, the parameters only need to be solved for once
and then only a reduced single-station system would have to be solved which
is more efficient.
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Chapter 5

Conclusion

To conclude this thesis, the issue with perfect foresight presented in previous
deterministic models was dealt with by generating multiple scenarios of
natural inflows and electricity prices. These scenarios were then used
as possible future scenarios in the model with a uniform probability.
Two stochastic models were made with a rolling horizon algorithm which
introduces new information to the model while optimizing much like in reality.
The two models that were made had different amount of detail in the model,
one was a fully detailed model with a daily resolution and the other was an
aggregated weekly model.

The results suggests that the aggregated stochastic model followed a more
realistic production pattern by following daily variations in electricity prices
more closely than the deterministic model. However, the detailed stochastic
model showed more similarity to the deterministic production which could be
due to the fact that the future maximum production were different for the two
models effecting how it could produce in the coming weeks.

The parameters derived from the hydropower equivalent were largely
consistent with those derived from deterministic data. However, relative to
the deterministic values, the minimum reservoir level was considerably higher.
The reservoir graphs from the stochastic models indicated that the reservoir
levels were generally higher than those derived from the deterministic
model which was reflected in an increased minimum reservoir level for the
hydropower equivalent.

It was evidently a difficult problem to create a good stochastic model for
Luleälven by using the rolling horizon algorithm together with an aggregated
future horizon. With the sometimes infeasible solutions for the aggregated
model it showed that the aggregation was too simple to handle all types of
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cases. However, the results showed that the rolling horizon algorithm was
applicable on this type of problem, but that it would need to be implemented
with a fully detailed model instead of an aggregated model to show its full
potential.

5.1 Future work
As the results has shown, different sets of scenarios produce different results,
therefore further research in how generating more scenarios for the models
would change the solutions would be of interest. The method to calculate
scenario probabilities explained in section 3.5 could also be tested on problems
with a shorter time frame or be investigated further. The different used end
constraints for the future horizon would also need some further research, in
this thesis the moving constraint was always dependent on the solution of the
previous week which might not be the most optimal route. Therefore finding
end constraints that give the model more freedom of setting reservoir levels for
the end of the planning period would also be of interest. For the aggregated
weekly model and detailed daily model some variation in the results were also
seen, therefore with better hardware, research could be made on a fully detailed
hourly stochastic model as well. Regarding the time to compute solutions,
python was used with the Gurobi optimizer which could have slowed the model
building and solving, therefore other coding languages and optimizers could
be tested to see if that would change to time to compute.
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