
Experiences in Simulating a Dynamically

Self-Configuring Middleware: A Case Study of DySCAS

TAHIR NASEER QURESHI, DEJIU CHEN, MARTIN TÖRNGREN,

LEI FENG AND MAGNUS PERSSON

Stockholm 2009

Mechatronics Lab

Department of Machine Design

School of Industrial Technology and Management

Kungliga Tekniska Högskolan- The Royal Institute of Technology

TRITA-MMK 2009:04, ISSN 1400-1179, ISRN/KTH/MMK/R-09/04-SE

Abstract

The increased usage of electronic components, wired and wireless networks,

software and advanced telematics systems in modern automotive systems has

raised the overall complexity in terms of both the system functionalities and their

development and maintenance. One way to handle a few of the complexities is the

use of middlewares and introduction of self-management mechanisms. This report

presents the experiences and efforts for verification and proof of concepts by sim-

ulations of a dynamically self-configuring middleware for automotive systems. A

brief overview of the architecture and control flow of the simulated middleware,

requirements for a self-managing systems and their simulation platform are also

presented.

The presented simulations comprise mainly of three scenarios which cover a few

of the major functionalities of the middleware under consideration. An evaluation

of SimEventsTM and discussion about the possible extensions and challenges are

also presented.

Keywords:Dynamic Reconfiguration, Middleware, Modeling, Simulation, Em-

bedded Systems, Resource Optimization, Software Download, Component Model,

Model Transformation, Unified Modeling Language (UML), Context Aware, Hy-

brid System, Discrete Events, Software Architecture, DySCAS, Real-time systems.

1

Contents

1 Introduction 4

1.1 The DySCAS project . 6

1.2 Aim, approach and scope . 7

2 The DySCAS architecture 8

3 Requirements and challenges 11

3.1 Requirements for a self-managing system 11

3.2 Requirements for simulation systems . 13

3.3 General challenges . 15

3.4 Specific requirements for the DySCAS simulations 16

4 Related work 17

5 SimEventsTM and the DySCAS library 18

6 Simulation case studies 21

6.1 New device attached to the vehicle . 21

6.1.1 Context management and dissemination 22

6.1.2 Service requests and feedbacks . 22

6.1.3 Platform / Device status . 23

6.2 System deployment and startup . 24

6.2.1 Master/Slave configuration management service 24

6.2.2 Network communication management service 25

6.2.3 Graphical user interface . 25

6.3 Application quality of service control . 26

6.3.1 Algorithm I . 27

6.3.2 Algorithm II . 28

7 SimEventsTM evaluation summary 29

7.0.3 Component model . 29

7.0.4 External environment . 30

7.0.5 Key abstractions . 30

7.0.6 Dynamic linking and loading . 30

7.0.7 Code generation . 30

7.0.8 Real-time properties . 30

2

7.0.9 Comprehensibility, visualization and levels of abstractions 31

7.0.10 Complexity . 31

8 Discussion and future work 31

8.0.11 Improvement in DySCAS system simulations 31

8.0.12 Tool integration and support . 32

8.0.13 Algorithms, policies and system modeling 32

Annexure A: Algorithms for Quality of Service 37

Annexure B: Figures 38

3

1 Introduction

For the past two decades the amount of electronics and software used in automobiles

has increased significantly. According to a study [24] the innovations from many fields

such as electronics and materials engineering are continuously being integrated in the

automotive industry. It is also expected that electronics and software systems will replace

many mechanical systems and thus will become the key technology in the development of

automobiles. In the same study it is also forecasted that the electronics and software will

share around 35% of the total vehicle manufacturing cost. A survey carried out by IBM

[38] identified eight significant aspects of vehicle development by 2020. Out of these eight

aspects, software and electronics are expected to have the highest levels of innovation.

This will contribute towards intelligent, greener, economical and customizable vehicles

providing information, entertainment, safety and convenience to the consumers.

From a simple steering lock to an advanced anti-spin system, a modern vehicle has

a large number of functionalities. This is achieved by employing a large of number of

electronic control units (ECUs). Depending on the criticality, these ECUs are connected

to each other through one or several networks to communicate with each other. Examples

of the networks used in modern automobiles include CAN (Controller Area Network)

[20] and the MOST (Media Oriented Systems Transport) [13] standard. More and

more functionalities are being introduced by exploiting this interconnection of the ECUs

and the flexibility in using software. This is leading to the increasing complexity in

development. Due to this reason a large amount of time is spent on the verification and

validation (V&V) before a product enters the market.

Features such as flexibility, scalability, quality, reliability, management of the increas-

ing complexity, support for commercial off-the-shelf (COTS) software and hardware, cost

and resource optimization are now considered essential for automotive systems. More-

over, there is also a need for self-management and post-deployment configurations such

as software updates. This is due to the increasing maintenance costs and usage of mo-

bile devices, and the shorter life time of vehicles internal components such as navigation

devices as compared to the overall system. Through the self-management and post-

deployment reconfigurations features such as transfer of functionality within a network

in case of failure and integration of modern devices like navigation system with latest

map and traffic conditions can be achieved.

The development and hence the time spent on testing can be reduced to some extent

by verification and validation (V&V) at early development stages. The methods for

V&V include but not limited to simulations and mathematical evaluation such as formal

4

verifications. Depending on the type of system, the chosen level of abstraction and tool,

simulation can be the least time consuming and effective method for V&V. However, the

credibility of a simulation is dependent on the choice of simulation tools, specifications

of simulation models and the granularity. Therefore, it is a standard practice to perform

hardware in loop (HIL) simulations, software in loop (SIL) simulations or even a small

scale implementation in addition to stand alone computer simulations before the start

of the actual production of a system.

Some of the above mentioned issues and requirements such as flexibility and scal-

ability to a great extent are addressed by the AUTOSAR (AUTomotive Open System

ARchitecture) [4] effort. The outcome of the AUTOSAR effort is a component based

software architecture framework for managing the software and hardware complexities,

scalability of software components, support for the use of commercial off-the-shelf com-

ponents etc. However, more work is required to introduce run-time / post-deployment

reconfiguration and upgradation mechanisms for self-management, fault-tolerance, re-

source management and robustness.

The DySCAS (Dynamically Self-Configuring Automotive Systems) project [15] is one

of the efforts towards context awareness and self-configuration in telematics domain in

automotive systems. This report presents a part of the simulation work carried out to

support the development of a framework for a dynamically self-configuring middleware

for automotive systems within the DySCAS project. These simulations were carried out

by using the results from the efforts [36] for a simulation platform for DySCAS middle-

ware. This simulation platform is based on SimEventsTM [27] which is an extension of

Simulink R© for discrete event simulations. The three scenarios covered in the simulations

are two of the four DySCAS generic use cases and system startup process. One of the

simulated scenario uses the algorithm [16] developed in the DySCAS project to demon-

strate the resource management capability of a DySCAS system. A comparison of two

simulations tools i.e. TrueTime [34] and SimEventsTM is also presented in the context

of DySCAS simulations in addition to the requirements for self-managing systems and

their simulation platforms.

The report is organized as follows. The motivation and background of the presented

work along with its aim and scope is presented in this section. The next section gives an

overview of the DySCAS architecture which is followed by a discussion about the require-

ments of self-managing systems and the simulation platform and the generic challenges

in section 3. The requirements derived specifically for simulations of a DySCAS system

are also discussed in section 3. This is followed by a discussion on related work. The

SimEventsTM and the DySCAS library are introduced in section 5. This is followed by

5

the description of the simulation scenarios and results in section 6. The evaluation of

SimEventsTM based on the simulation experience is presented in section 7. In section 8

the conclusions and the possibilities for future research are discussed.

1.1 The DySCAS project

DySCAS (Dynamically Self-Configuring Automotive Systems) [15] is a European Com-

mission funded project targeting self-management and context awareness in automotive

systems. It considers the needs for variability handling and advancement in product

life-cycle management, resource optimization and supervisory control for runtime sys-

tem verification, validation and error-handling [11]. The major outcome of the project

is the specifications of a framework for dynamically self-configuring middleware capable

of integrating new devices and software, legacy solutions and complementing existing

standards such as AUTOSAR [4]. Guidelines for tools, algorithms and implementation

are also provided by the DySCAS project.

One of the most interesting features of DySCAS is the multidisciplinary integration

of technologies such as control systems [39], autonomic computing [23, 25], middleware

[5] and policy-based computing [2]. The DySCAS project also provides a ground for

research on different mechanisms for resource management, quality of service, autonomic

configuration etc.

The application scenarios considered in the DySCAS project are exemplified by the

following four generic use cases [9].

1. GUC1: A new device attached to the vehicle related to the discovery and

incorporation of new devices in the vehicle’s communication range.

2. GUC2: Integrating new software functionality related to maintaining the

software functionalities of both the operating system and application software.

This also includes the addition of completely new software which is not known at

the design time.

3. GUC3: Closed reconfiguration related to the provision of the support for

advanced error handling and fault tolerance. For example, shut down of non-

safety critical services in case of power shortage, relocation of software in case of

failure of hardware, etc.

4. GUC4: Resource optimization which is similar to GUC3 but more related

to optimization of system resources by balancing of workloads on different ECUs,

6

selection of different scheduling and quality of service techniques for guaranteed

quality of service and reliability.

The above use cases are further refined into specific use cases. For example load

balancing is considered as a specific use case of GUC2. Functional and non-functional

requirements [9] of the DySCAS middleware are also derived from these use-cases.

The verification and validation work carried out in DySCAS includes safety analysis

[17], formal verification [12], prototype implementations [10] and simulations [17, 12, 2].

1.2 Aim, approach and scope

The objectives of the work presented in this report are as follows:

• Derive requirements for a simulation platform for dynamically self-configuring sys-

tems and identify the challenges in developing and working with such a platform.

• Evaluate SimEventsTM for its capability to simulate DySCAS type systems.

• Verify the correctness of the DySCAS simulation library [36].

• Evaluate the structure and logical behavior of the DySCAS architecture.

• Demonstrate a few of the DySCAS scenarios by simulations through implementa-

tion and test cases in a simulated environment.

• Compare SimEventsTM with TrueTime based on the experiences gained from the

simulations.

The following approach is followed to achieve the objectives. Based on the DySCAS

scenarios and requirements [9] and the state of the art survey [8], the general require-

ments and challenges for self-managing systems and their simulation platforms are iden-

tified. This is followed by the derivation of the specific requirements for the DySCAS

verification and validation. The logics and the behavior of the DySCAS architecture

[11], SimEventsTM and the mapping scheme [36] from UMLTM to SimEventsTM are ver-

ified by simulating three different DySCAS scenarios. Finally the TrueTime toolbox

and SimEventsTM are compared based on the experiences gained from this work and an

earlier evaluation [37].

The following delimitations were applied to set the scope of the work. With respect

to DySCAS this work is limited to the core service components and the overall system

startup. Fine grained details in the DySCAS specifications [11] are considered out

7

of scope of this work. One of the major delimitations of this work is that it is not

directly supposed to provide any sophisticated algorithms for configuration, quality of

service (QoS) or load balancing etc. Instead, the algorithm simplified from another

DySCAS work [16] is simulated for proving the concepts and the possibility for using

more sophisticated algorithms. Furthermore, out of the four DySCAS use cases only

two use cases i.e. GUC1 and GUC4 are simulated.

2 The DySCAS architecture

This section presents a conceptual overview of the DySCAS architecture. For detailed

specifications the readers are referred to [11].

Application Status
Application
Communication

Application
Programs

DyCAS Core
Services

Application
Interface

Vehicle / External
DevicesApplication Control

pp cat o Status Communication
& Control

Pl f

Instantiation
Interface Platform

Communication & Execution
Support

Platform Status

Platform Control

Platform
Communication
& Control

Figure 1: A conceptual view of the DySCAS architecture.

As shown in figure 1 DySCAS follows a well-defined strategy in terms of data and

control flow. The platform communicates with the application programs, the external

devices as well as the middleware services for controlling the execution/triggering of the

tasks. Microprocessor, operating systems, communication networks such as CAN [20]

are few examples of the elements of a platform. The core services are the major elements

of a DySCAS system. The application and instantiation interfaces provide the means

for the core services to communicate with the application programs and the platform.

The following discussion is mainly focused on the core services.

Except for one, every core service is further divided into local and global service and

is derived from the same basic component model as shown in figure 2. The signals, data

and the input and output ports of the basic component model are classified into the

following five types:

• Service requests related to the operations / decisions performed by a specific com-

ponent.

8

Context
Notification

Context
Notification

DySCAS
Events

Service
Requests

Execution Controller

Computation ModuleContext Manager

In
iti

al
iz

e
/ R

un
/

C
lo

se
 /

In
vo

ke

S
ta

tu
s

/
Fe

ed
ba

ck

In
iti

al
iz

e
/ R

un
/

C
lo

se
 /

In
vo

ke

S
ta

tu
s

/
Fe

ed
ba

ck

Context
Publication /
Subscription

Service
Feedbacks

Service
Requests

Context
Publication /
Subscription

Service
Feedbacks

DySCAS
Events

Bu
ffe

r C
on

tro
l

Bu
ffe

r C
on

tro
l

Figure 2: The basic component model for the DySCAS core services

• Service feedbacks related to the results of the service requested.

• Context information publication/subscription for measured or derived context in-

formation.

• Context information notifications for change of context information.

• DySCAS events such as error signals, signals related to component initialization

and requests for change of mode.

Each component model has the following three different types of internal modules:

• Context management module responsible to receive, derive and disseminate con-

text information.

• Computational module for performing computations and making decisions based

on the information available from the context management module. The decision

functions can be both static such as fixed algorithms or code and dynamic such as

policy based mechanisms [2].

• Execution controller which controls the behavior of the overall component model.

The behavior includes change of the operation modes based on a middleware event,

reading and writing on the input and output queues, invoking the internal compu-

tational modules based on the type of received signal. Configuration, run, error,

9

wait and shutdown are the five modes supported by the execution controller. A

simplified representation of the execution controller is shown in figure 31.

Configuration

Run

Wait

Shutdown

Error

DySCASEvent_ServiceRun [CTError=TRUE]

[RTError=TRUE]

[STError=TRUE]

DySCASEvent_Wait

DySCASEvent_ServiceHalt

Update Context Info

Maintain Context Data

Treat External Service Requests

Treat External Service Replies

Execute Computation Modules

Handle Overflow

[Empty Context Management Queue]

[Empty Context Notification Queue]

[Empty Service Replies Queue]

[Empty Service Results Queue]

TimeOut1

TimeOut2

TimeOut3

TimeOut4

TimeOut5

Figure 3: Execution controller for the DySCAS component model.

The core services and their functionalities are as follows:

• Resource Deployment Management Service (RDMS) supports resource and execu-

tion control as well as software loading on a networked system platform. Most of

the lower level operations are carried out by this service. Apart from the context

monitor, external device control and application and resource control are the two

types of internal computational modules.

• Dependability & Quality Management Service (DQMS) is responsible for on-line

dependability control and QoS based optimizations. Quality control is the module

for performing computations within a DQMS.

• Autonomic Configuration Management Service (ACMS) supports the deduction of

dependencies between different components for overall system. It also works as a

1The simplification also includes exclusion of some of the state transitions

10

planner for re-configurations. The computational modules related to ACMS are

the task scheduler and configuration resolver

• Autonomic Configuration Handler (ACH) is the coordinator for the configuration

operations scheduled by the ACMS.

• Repository Service supports storage, maintenance, and retrieval of files, configura-

tion rules, component images, and logging of runtime information.

• Software load management service related to software loading and execution.

3 Requirements and challenges

One of the knowledge areas discussed in SWEBOK [1] is the software requirement area

concerned with analysis, specification and validation of software requirements. This

area is considered very vital for software development and also for systems engineering

in general. For this reason it is important to understand the requirements for a system as

a whole and derive specific requirements for the required tools. The generic requirements

for self-managing systems like DySCAS, simulation platform and associated challenges

are discussed in the following subsections.

3.1 Requirements for a self-managing system

Self-management in systems [29] implies the following characteristics:

• Self-configuration : This includes the ability to derive knowledge about the

internal and external states such as memory capacity and number of external

devices connected to the system and automated configuration of components and

system.

• Self-optimization : The ability to monitor system resources, fine tuning of pa-

rameters and continually seeking opportunities for improving performance and

efficiency of the system.

• Self-healing : Automated detection, diagnosis and handling of hardware and soft-

ware faults.

• Self-protection : Ability to detect, identify and protect against malicious attacks

and maintenance of overall security and integrity of the system.

11

Figure 4 illustrates a self-managing system from a control systems perspective. A

self-managing system is able to keep track of external environment such as vehicle speed

in case of an automotive middleware, the status of the platform on which it resides such

as network utilization, its internal configuration like the number of available services

and quality of service levels of the application programs. All these entities including the

human machine interface can be referred to as the plant.

External Environment

Human Machine Interface

Application Programs

Internal configuration
(Services and context)

Platform
(Processors, networks,
devices, memory etc.) Sensing / detection

and
context derivation

Computations / decisions
(Policies and algorithms)

Actuation

Figure 4: Control model for a self-managing system

The measured / sensed information is further processed for derivation of a refined con-

text such as overall system quality of service. Based on the context information different

computations are performed by using dedicated policies and algorithms to achieve effi-

ciency e.g. fault handling and optimization. The outcome can be decisions and schemes

for re-configuration resulting in actuation signals for different sequence of operations

required for re-configuration. Change of quality of service levels for the applications,

change in vehicle speed, a message at the navigation screen are a few examples of the

actuation signals.

Based on the above discussion following requirements can be formulated for a self-

managing system:

• Monitoring of external and internal context such as vehicle location in

case of automotive systems, attached /detached devices, system resources which

includes but not limited to processor utilization, network bandwidth and system

states including information such as software versions, error codes and policies.

12

• Identification of unexpected events which are not part of normal operation,

malfunctions of components, resource imbalance, new software and devices, de-

tachment of devices.

• Verification and decision: Dynamic reconfiguration in a system implies some

kind of intelligence and planning capabilities. Usage of different kind of policies,

dynamic and feedback based algorithms enable the system to optimize and evaluate

different configurations. Verification of a new software for security, dynamic and

runtime decisions for different devices are a few examples of the requirements on

verification and decision.

• Execution: A self-configuring system is required to execute many activities some

of which are as follows:

– Setting up of communication and data routing between the system and a

remote device which may include a server at the vehicle manufacturer or

workshop for updating and downloading new softwares.

– Controlling the power, memory and processor utilization and other resources.

– Download, installation, rollback, execution and migration of software between

different nodes of a distributed system.

– Error handling such as configuration rollback.

All of the above activities are required to be performed in a timely manner which

can vary from one system to another. Moreover, these activities should not cause any

kind of disturbances or distraction for the system users. These systems should also be

robust towards disturbances, errors and failures.

3.2 Requirements for simulation systems

Based on the properties of a self-managing system, following requirements can be derived

for tools for simulating such systems.

• Component models: A simulation platform should be able to support

– Structural properties of a software component including its interfaces, signals

and the data types.

– Behavioral properties such as change of modes and states, activities like start-

up mechanisms, interactions between different components in a system and

sequence of operations for various scenarios.

13

• External environment: It should be possible to simulate external environment

with which the system under consideration interacts. For an automotive mid-

dleware a sensor measuring the vehicle speed can be considered as a part of the

external environment.

• Core dynamics: The dynamic behavior is one of the key features of a self-

managing system. Therefore, it should be supported in the simulation platforms.

• Key abstractions: Following abstractions should be supported

– Operating systems required to run different application programs.

– Networks which are commonly used in distributed systems.

– Self-configuration mechanisms and algorithms including policy based config-

urations if applicable for the system under consideration.

– Message and signal handling mechanisms.

• Sensing and actuation: It should also be possible to simulate different sensing

and actuation mechanisms. Measurement of processor utilization and changing

the quality of service levels of applications running on an ECU are a few examples

of sensing and actuation.

• Fault generation and testing: The simulation environment should support

fault generation/injection mechanisms to test the fault handling capability of the

system.

• Dynamic loading and linking: For systems which require on-line update and re-

placement of software, the simulation environment should support dynamic linking

and loading mechanisms to simulate upgrades and updates of software components.

• Real-time properties: A self-managing system is required to perform its activi-

ties within a certain time limit and with some constraints such as length of queues

for messages. Therefore, a simulation platform should enable its user to test and

analyze different real-time characteristics of the system.

• Levels of abstractions: It should be possible to simulate a system at different

levels of abstraction. Furthermore, it should also be possible to choose between

different levels for different parts of a system under consideration. For example,

simulation of logical behavior of a networked system may not require detailed

behavior of the network.

14

System
testing

System
design

Formal
verification

Simulation
environment

System Safety System
deployment

Safety
analysis

Policy
evaluation

Requirement
analysis

Figure 5: Ideal connection between simulation environment and other tools

• Design flow and reuse: It should be possible to use models from different tools

in cooperation with each other, for example inclusion of models built with UMLTM

in Simulink R©. Ideally, the simulation environment should be well connected to

other tools for formal verification, safety analysis, analysis of policies (if policy

based mechanisms [2] is used) etc. This requirement is illustrated in figure 5.

• Comprehensibility and visualization: The simulation environment should be

user friendly and comprehensible for better understanding of the system. More-

over, it should also be possible to visualize different aspects such as sequences of

activities and changes in system parameters.

3.3 General challenges

Complex embedded system and the development of their simulation tools put forth great

challenges for the developers. This is also applicable for DySCAS type systems. A few

of the challenges are as follows:

• Levels of abstraction and complexity: In order to reduce the analysis com-

plexity, simulations are performed at different levels of abstraction. Depending

on the purpose, some parts of the system need to be simulated at a very low

level of abstraction while a higher level may be sufficient for other parts. Too ab-

stract models can yield invalid results. On the other hand fine-grained simulation

can take longer time for developing models and for analysis making it difficult to

15

achieve answers in a reasonable time along with adding the difficulty in traceabil-

ity and understandability. The complexity in developing a simulation platform

increases with the increased levels of abstraction. For example, it is more complex

to simulate a complete operating system as compared to its basic mechanisms such

as scheduling. The complexity can increase considerably if different abstraction

levels need to be simulated at the same time. Therefore, the decision to choose

levels of abstraction and details to be simulated for different parts is also one of

the major challenges.

• View integration and model transformation: Because of multitude aspects

of modeling DySCAS type architecture, several views have to be considered. Ex-

amples of different views include safety, requirements and deployment. For efficient

development, these views need to be integrated. In addition, the development pro-

cess is iterative and changes in the design are frequent especially in the early stages

of development. This gives rise to the need for transformations of models between

different domains and tools. For example a system model designed using UMLTM

[42] may need to transformed into a model suitable for some specific simulation

environment.

• Choice and integration of tools: There are many commercial and non-commercial

tools available. Some tools are open source while others are closed source. Each

tool covers only a fraction of the tool requirements. This makes it challenging to

choose between different tools and sometimes gives rise to the need for integrating

various tools. For example, a CAD tool can be used with a simulation tool such

as Simulink R© for evaluation of mechanical systems.

3.4 Specific requirements for the DySCAS simulations

The major purpose of the simulations presented in this report was the proof of concepts

of the DySCAS architecture [11]. The requirements for simulation systems derived in

[37] are further refined for the objectives described in section 1.2 as follows:

• It should be possible to simulate different use cases described in section 1.1.

• The simulations should cover the following aspects of the DySCAS core service

components:

– Structure including ports, signals and internal modules.

– Input and output queues and message handling.

16

– Context derivation and dissemination.

– The execution controller2 responsible to control the working of internal mod-

ules.

– Decision functions.

• Startup behavior of one implementation of a DySCAS system.

• It should be possible to visualize different activities which are difficult to demon-

strate with actual implementations.

• Policy-based mechanisms [2] (optional).

• Basic operating system characteristics such as scheduling and pre-emption of tasks.

• Sensing of the context information and actuation to trigger re-configuration pro-

cesses.

• It should be possible to evaluate timing aspects the dependencies between different

services and tasks.

4 Related work

In addition to the presented work, the DySCAS middleware and its architecture have

been simulated in various ways for different purposes. A few dynamic reconfiguration

and quality of service mechanisms for the DySCAS middleware are presented in [16, 18].

This work includes simulations using TrueTime and demonstration of quality of service

control as well as resource optimization and migration of software between different nodes

in a network. A load balancing scheme and simulations for a dynamically configurable

middleware is presented in [28].

In addition to above a lot of work has been done in terms of simulations of different

middlewares especially the middlewares developed for wireless networks. One such effort

is the WISDOM (Wsn mIddleware Service moDules simulatiOn platforM) [31] frame-

work written in the Java language for simulation and verification for different middleware

protocols in wireless sensor networks. [43] presented a simulation of the Agilla middle-

ware [19] using TOSSIM (TinyOS mote simulator). UCS (Ultra CORBA Simulator) [41]

is one of the simulators for simulating CORBA(Common Object Requesting Broker Ar-

chitecture) [14] middleware. The provided support in UCS includes simulation for both

2Discussed in section 2

17

client and server sides, naming service, GIOP (General InterORB Protocol) and various

other functionalities. The former two methods i.e. the client-server and naming/trading

mechanisms are also used in the DySCAS middleware.

A DySCAS system can be considered as a hybrid system due to its discrete event

nature and its interaction with the environment which can be both continuous time

and discrete time. In [6] a framework for constructing simulation models of hybrid

manufacturing systems is presented. In this framework the UMLTM class diagrams drawn

for a specific system are implemented using Matlab R© functions and Stateflow R© for

simulating the state machines. This makes it very close to the presented work where the

simulation library used in this work to a great extent corresponds to UMLTM activity and

state-machine diagrams. A survey on languages and tools for hybrid systems is presented

in [35]. This survey was mainly carried out on tools for both simulation and formal

verification. A comparative study pointing towards the need for tool integration is also

presented in this survey along with the emphasis on the need for standard interchange

format for filling the current gap between different tools.

One of the objectives of the presented work is the verification of the DySCAS archi-

tecture. This also implies some real-time properties such as timings. A lot of ideas and

inspirations can be obtained from the already existing work. A few tools have resulted

from different efforts. MAST (Modeling and Analysis Suite for Real-Time Applications)

[22, 32] provide a set of tools for schedulability analysis, calculation of blocking and

slack times and optimized priority assignment techniques for real-time systems. One of

the interesting feature of MAST is that its model can be used in a UMLTM environment

for designing a real-time application. ARTISST (A Real-Time System Simulation Tool)

is another tool for analyzing timing characteristics of computing systems. It is capa-

ble of simulating different RTOS schedulers and complex task execution patterns with

user defined details. Torsche (Time Optimization of Resources, SCHEduling) [40] is a

scheduling toolbox developed for Matlab R©. Currently it supports scheduling on single

and distributed processors, cyclic and real-time scheduling.

5 SimEventsTM and the DySCAS library

SimEventsTM is a toolbox for Simulink R© for simulating discrete event systems. Entities

and events are the two basic concept used in SimEventsTM. While the former refers to

the discrete items of interest such as packets and frames in a communication network,

the later refers to a discrete incident such as change of state or occurrence of other events

like a function call [26]. The following blocks are included in the library of version 2.4

18

of SimEventsTM.

• Generators for generating entities, (function-calls) events and (numeric) signals.

• Attributes for managing data attached to an entity. A new reference signal for a

controller is one of the examples of attributes.

• Queues for storing entities. The current version supports FIFO, LIFO and priority

queues.

• Servers for arbitrating entities in a path based on a specified service time. The

execution time of a task on a specific processor scheduled by an operating system

is one of the example of the usage of servers in SimEventsTM [3].

• Routing for modeling entity path. It includes input and output switches, path

combiner and replicate blocks.

• Gates for regulating admission of entities. This is particularly useful for simulating

scenarios such as blocking of queues in a server.

• Entity management for combining and splitting entities.

• Signal management for manipulating signals which currently includes specifying

initial values and latching of signals.

• Timing for assigning time related properties to an entity such as time-out.

• Event translation for generating function calls based on arrival of events or change

of a signal.

• SimEvents sinks providing support for plotting different data values.

• Ports and subsystems for discrete event simulations.

A review of SimEventsTM is presented in [21]. In this review SimEventsTM was eval-

uated for environment, entity, channel, queue, server, logic control, abstraction and user

control aspects. Some of the evaluated features include customization, replication, pri-

orities, testing and feedback. Apart from few, most of the evaluated aspects exist in

SimEventsTM either directly or indirectly. The review found SimEventsTM a promis-

ing simulation tool for future given that alternate mechanisms can be implemented for

mechanisms which are not directly provided. A few applications have already been

implemented using SimEventsTM. These applications include simulation of queues for

19

manufacturing systems [33], anti-lock brake system (ABS) with CAN (Controller Area

Network) [7] and modeling of a nuclear facility [30]. SimEventsTM has also been used

to simulate real-time systems including the Ethernet network, operating system and

memory management [3].

Due to the above mentioned support for discrete event systems, continuous and

discrete time systems and state machines by Matlab R© / Simulink R© / SimEventsTM

/ Stateflow R©, a library of the DySCAS core service components was developed by

transforming the DySCAS models specified in UMLTM to SimEventsTM [36]. Figure

6 shows a simplified version of the transformed model of the Local dependability and

quality management service.

confgHandlFeedback
3

synchronizationEvent _In
2

cnfgHndlRequest _In
1

{TreatExternalServiceRequestQueues }
{ReadExternalServiceReplyQueues }

{ReadContextDataQueues }
{ReadContextManagementQueues }

{StartGlobalQualityControllers }

n
Sig

S

om

st

{StartContextMonitor }

Global Configuration
Action Coordinator

{dyscasEvent _component _InitOk }

{ServiceRequestQueueStatus }
{ServiceResultsSignalsQueueStatus }

{ContextNotificationSignalsQueueStatus }
{ContextManagementSignalsQueueStatus }

Execution Controller

 input events ()

Context Monitor Added semantics

ExternalTrigger
1

Figure 6: A simplified representation of a core service component in SimEventsTM

Each core service in the library conforms to the DySCAS specifications [11] and

comprises of an execution controller implemented in Stateflow R©, input queues and their

handling mechanism. Function calls are used as the input events to the execution con-

troller. The External Trigger input represent the trigger from operating system. This

implies that the triggering of each component has to be provided by user of the library.

Other inputs include the status of four different kinds of queues for context manage-

ment, context notifications, service requests and feedback signals. The read and write

operations of the input queues are controlled by the execution controller. These signals

as well as the signals required for initializing the internal modules are also implemented

as function calls. The Stateflow R© model of the execution controller is shown in figure

7.

By default the queue length for each input port is 5 which can be changed by the user.

Furthermore, the internal functionalities of the computational and context management

modules is also required to be provided by the user. An example implementation using

20

Figure 7: Stateflow R© implementation of the execution controller

entities for the interface data and signals is provided in [36] which can be used as a

reference for developing simulation models.

6 Simulation case studies

The following scenarios are considered for simulations:

• Attachment of a new device attached to the vehicle.

• System startup.

• Application quality of service (QoS) control.

The interaction between DySCAS core services and the platform were illustrated in

figure 1. For the simulations, the instantiation interface comprises of Master Configu-

ration Management service(MCMS), Slave Configuration Management Service(SCMS),

local node handler and External Device Handler. These three components are specified

in [11] and are required for system startup and monitoring of resources from the plat-

form. The core services involved are the Local Resource Deployment Management Ser-

vice(LRDMS) and the Local Dependability and Quality Management Service(LDQMS).

The functionalities and composition of these components will be further clarified in the

following sections.

6.1 New device attached to the vehicle

This scenario is one of the DySCAS specific use cases. The major activities in this use

case include detection of a new device, derivation and dissemination of context infor-

21

mation, monitoring of available resources, authentication of new devices and planning

and execution of the actual device connection. Figure 83 shows a schematic view of the

service interactions.

Local ResourceExternal Device
2

2

Dependability & Quality Management Service

2
Controller

Context Monitor

Manager Local Quality Controller

Context MonitorExternal Device
Handler

1

2

1
3

Context Monitor

C fi ti T k S h d l

Local Node
Handler 1

2
1

3

Resource Deployment Management Service

Instantiation Interface
Configuration Task Scheduler

Autonomic Configuration Management Service

Figure 8: Service interactions for the attachment of a new device: (1) Context dissemi-
nation, (2) Service requests/feedbacks, and (3) Platform / Device status

A successful detection sequence is listing in listing 1.

Listing 1: Detection of a new device

1 Check for available resources .(Local Resource Controller)

2 Check if the device is authentic .(Local Quality Controller)

3 Connect the new device .(External device handler)

Listing 1: Detection of a new device

6.1.1 Context management and dissemination

The local node handler periodically sends the status of the platform including memory,

processor utilization and the total number of available devices to the context monitor

located in the resource deployment management service. This context is evaluated and

disseminated to the context monitor (serving as proxies for the main context monitor)

of the dependability and quality management service.

6.1.2 Service requests and feedbacks

In case of a change of a context, a service acts by making some own decisions and / or

sending requests to other services. On detection of a new device the LDQMS checks for

3Note: The numbers in the figure represent the type of signals instead of any sequence

22

the available resources and sends a request to LDQMS for checking the authenticity of

the new device. Based on a positive feedback from LDQMS and availability of enough

resources, the LDQMS sends a request to the external device handler to connect the

new device.

6.1.3 Platform / Device status

The number of connected devices and information about the services available through

these devices are forwarded by the instantiation layer to the LRDM.

initstate

Resourceavailable
en: PosFB ;DefaultState

Resourceunavailable
en : NegFB ;

NewRequest [resource ==1]
1

NewRequest

NewRequest [resource ==0]
2

Figure 9: Decision function illustration

If any of the operations fails i.e. authentication and availability of enough resources

to connect the device, the device is considered as rejected. For this scenario, the deci-

sion functions are implemented as Stateflow R© charts where the required context value

is either one or zero. This is illustrated in figure 9 for the case of LRDMS. For the simu-

lations the context information is manually generated and altered at run time by using

Matlab R© commands. The variable resource corresponds to the combined availability

of resources such as memory and processor. The same applies for device authentication

decision function in LDQMS.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time

N
um

be
r o

f n
ew

 d
ev

ic
e

re
qu

es
ts

Figure 10: Requests for new devices

23

0 2 4 6 8
0

0.5

1

1.5

2

Time

C
on

ne
ct

ed
 d

ev
ic

es

Figure 11: Connected new devices

Figures 10 and 11 show graphical outputs from one run of simulations where four

devices are detected at different time values. Only the second and fourth devices are

attached. The first rejection is due to the lack of resources and the second one due to

the authentication failure.

6.2 System deployment and startup

The DySCAS startup activity is specified by a state-machine shown in figure 12.

For the simulations, a networked system with three nodes was assumed, where two

of the nodes are only used for generating the signals required for startup.

6.2.1 Master/Slave configuration management service

System initialization is carried out by the Master Configuration Management Service

(MCMS). The input signals for MCMS are signals from the Network Communication

Management Service (NCMS) and Slave Configuration Management Service (SCMS) of

each node. The output signals are commands for each SCMS for initializing and running

the services of their respective node. The Stateflow R© model shown in figure Annex.1

illustrates the startup activities in MCMS.

The SCMS of each node is also implemented by a Stateflow R© block. The inputs

to SCMS are the initialization status (success/failure) of the services along with the

commands from MCMS. The outputs from SCMS are the commands to the services on

the associated node for initialization and triggering of running state (User mode in figure

7. Feedback signal to the MCMS regarding the status (Failed/Ready) of the initialization

activity is also one of the outputs of SCMS. On receiving an initialization command from

the MCMS, SCMS sends initialization commands (implemented as function calls) to each

24

MWConfiguration_Setup

configuringMWServicedo /

networkCommunication_Setup

startNetworkCommunicationServicedo /

system_loadUp

Error

creating and starting NCMS on all
 nodes

when (any NCMS failed)

when (configuration setup failed)

when (power on)

when (all local NCMS started correctly) / startCnfgMngMasterSlave

Figure 12: DySCAS system startup in UMLTM[11]

service in a specified sequence. If any of the services fails to initialize, a node failure

signal is send to the MCMS.

6.2.2 Network communication management service

The purpose of the network communication management service is to coordinate the

communication between both local and external services. As this part of the simulations

is focused only on the startup behavior, the startup of network services is simulated by

generating an event based on a step signal where the step time can be varied by the

user.

6.2.3 Graphical user interface

One of the objectives of the simulation was easier understandability of the DySCAS

system. Therefore, a GUI is also developed for this purpose as shown in figure 13.

By pressing the buttons one by one, from top to bottom in sequence, the user can

understand the steps involved in the startup behavior.

25

Figure 13: DySCAS Graphical User Interface

6.3 Application quality of service control

This simulation evaluates and demonstrates the capability of a DySCAS system for

optimizing system resources with respect to changing system conditions. Figure Annex.2

shows the top level view of the simulations. The application software programs are

modeled as periodic entity generators with varying execution time. The execution time

is selected based on the input QoS level such as ‘QoSLevel task1’ for the first application

program. A very simple execution platform consisting of a ‘queue’ and a ‘single server’ (a

SimEventsTM block) is used to model the processor and the operating system. The time

required to run a specific task i.e. an application or a middleware service is based on

the assigned execution time (SimEventsTM ‘Set attribute’ block is used for assigning the

execution times). The ‘Application’ and the ‘Instantiation’ interfaces are used to forward

the values of the required quality of service levels to application programs and sending the

processor utilization to the middleware services respectively. The interactions between

the middleware services is shown in figure 14.

Quality Context
Quality evaluation request

Local Resource Deployment
Management Service

Local Dependability & Quality
Management Service

Quality Context

Context change notification

Quality control request

Application Control
RequestRequest

Figure 14: Middleware service interactions for QoS control

Any change in context is notified to the ‘Local Dependability and Quality Manage-

ment Service’(LDQMS) by the ‘Local Resource Deployment Management Service’(LRDMS).

The LRDMS requests LDQMS for quality evaluation if the overall QoS level (processor

utilization for the presented simulation) of the system changes. Based on the evalua-

26

tion results the LDQMS requests the LRDMS for changes (application qulaity of service

for the presented simulations). The LRDMS forwards the request to the application

interface.

For the simulations four application tasks are simulated. Each application task is

specified with a predefined set of benefit and significance levels for each QoS level. On

receiving the new QoS level request from LRDMS, the applications change their QoS

level i.e. execution time and period.

Two different algorithms were tested for QoS control. The algorithms and their

results are as follows:

6.3.1 Algorithm I

This is a very simple algorithm implemented as an embedded Matlab R© function and

described by following equation.

Commanded QoS =


1 if actual QoS level = 3

2 if actual QoS level = 1

3 if actual QoS level = 2

The three actual QoS levels are defined as

Actual QoS =


1 if cpu utilization ¡ 0.6

2 if 0.6 ¡ cpu utilization ¡ 0.8

3 if 0.8 ¡ cpu utilization ¡ 1.0

0 5 10 15
0

0.2

0.4

0.6

0.8

 CPU Utilization

Time

U
til

iz
at

io
n

Figure 15: CPU utilization

Figures 15 and 16 show the cpu utilization and the commanded QoS. The initial

delay in QoS commands is the time taken by the startup. Moreover, it is important to

note that the algorithm does not take account of the benefit and significance levels.

27

0 5 10
0

1

2

3
Commanded QoS

Time

Q
oS

 L
ev

el

Figure 16: QoS commands

6.3.2 Algorithm II

The interaction between the services is the same as described in figure 14. The difference

lies in the fact that instead of sending quality evaluation request, the LRDMS request

LDQMS to increase or decrease QoS levels of applications. This algorithm is a part of re-

configuration scheme proposed in [16]. The LDQMS selects one application task based

on the implemented algorithms and sends a request back to LRDMS with application

id and the required QoS level. The algorithms for increase and decrease of application

QoS are presented in the annexure of this report. For detailed description of algorithm

the readers are referred to [16].

Figure 17: Overall CPU utilization

Figures 17 and 18 show the outputs from one run of simulations where the objective

was to keep the highest possible QoS level for each application.

28

Figure 18: Applications QoS levels

7 SimEventsTM evaluation summary

A general evaluation of SimEventsTM for discrete event simulations is presented in [21].

Furthermore, [12] presents the evaluation of SimEventsTM with respect to DySCAS

requirements [9]. This section summarizes the evaluation for simulating a self-managing

system in general using SimEventsTM. The evaluation is based on the requirements

mentioned in section 3.

7.0.3 Component model

With combined usage of Simulink R© and SimEventsTM it is possible to simulate a com-

ponent model. The possibilities include the usage of:

• Simulink R© subsystem and a combination of Simulink R© (input and output ports)

and SimEventsTM (conn port) for structural properties such as ports and interfaces.

• SimEventsTM entity with attributes for signal and its parameters for an interface

with multiple signals.

29

• Stateflow R© and SimEventsTM for change of modes and states. This is illustrated

in figure 7.

7.0.4 External environment

The SimEventsTM toolbox alone is not capable of simulating the environment external

to the system. This is due to the fact that SimEventsTM uses discrete-event simula-

tion (DES) model of computation. However, similar to the component model case, a

combined usage of Matlab R©/Simulink R© and SimEventsTM can fulfill the purpose to a

great extent. This may also include HIL (Hardware in loop) and SIL (Software in loop)

simulations.

7.0.5 Key abstractions

It is possible to simulate operating system mechanisms such as scheduling and pre-

emption, networks, message and queue handling such as blocking and non-blocking

behavior.

The capability of using algorithms is provided by Simulink R©. However, dynamic

update of algorithm i.e. change of algorithm is not possible. This limitation can be

handled to some extent by a pre-defined code for selecting different functions at run-

time based on changeable variable.

7.0.6 Dynamic linking and loading

Matlab R© only provides a limited support for dynamic loading. This is to our experience

not possible with Simulink R© and hence with SimEventsTM.

7.0.7 Code generation

Code generation is an important aspect for efficient embedded system development.

Unlike other toolboxes, code generation is not supported by SimEventsTM.

7.0.8 Real-time properties

SimEventsTM supports the simulation of real-time properties in terms of timging. This

includes scheduling and canceling timeouts, starting and reading timer for different

SimEventsTM entities. It is also possible to use different types of queues together with

different types of gates which is useful for simulating constraints such as queue length

limitation.

30

7.0.9 Comprehensibility, visualization and levels of abstractions

It is possible to build a system in hierarchical form by using subsystems. This makes

it easier to comprehend a simulated model as well as simulating different levels of ab-

stractions. The graphical representation of state-flow and other scopes such as ‘attribute

scope’, ‘signal scope’ and ‘entity counter’ give a good support for the visualization of

signals and attributes.

7.0.10 Complexity

For very high levels of abstractions it is easier to manage the complexity. However,

with increasing complexity and levels of abstraction, the management of the simulated

models becomes difficult. A possibility to handle this short coming is to use configurable

masked subsystems for a one large component of a system like a DySCAS core service.

8 Discussion and future work

In this report we have derived requirements for a simulation system for a self-managing

system. Simulations of a DySCAS system are also presented. In our previous work [37]

we evaluated TrueTime for simulating a DySCAS system. As compared to SimEventsTM,

TrueTime is more closer to real implementations due to its support for operating system

kernel, networks, mailboxes for communication between different tasks, physical inputs

and outputs. Despite this fact, it is difficult to simulate a middleware using TrueTime.

Furthermore, additional code has to be written in order to overcome the shortcomings

of TrueTime which includes measurement of resources like processor and memory uti-

lization. It is also difficult to visualize and comprehend different activities implemented

using TrueTime. Thus it can be concluded that both SimEventsTM and TrueTime have

their own advantages and short comings. In TrueTime the complexity increases with the

increase in number of tasks and code whereas in SimEventsTM the complexity increases

due to the usage of many blocks from its library to implement a single function.

The future work can be divided into three categories:

8.0.11 Improvement in DySCAS system simulations

So far only a small part of the DySCAS specifications has been covered. The extension

possibilities include:

• Refinements in the DySCAS core service library by making it easily configurable.

31

The idea is to have a masked subsystem where different parameters such as queue

lengths and timings can be changed by one single dialog box.

• Addition of operating system and network for more fine grained simulations.

• Replacement of the dummy applications with some real life examples such as video

streaming.

8.0.12 Tool integration and support

It will be interesting to investigate

• Support for code generation from a SimEventsTM model.

• Integration of TrueTime and SimEventsTM/Stateflow R© to complement each other.

This may include control of system modes using Stateflow R© and actual execution

in TrueTime.

• Dynamic loading and linking mechanism to replace the current replications of

tasks for simulating transfer and execution of application programs from one node

to another in a network.

8.0.13 Algorithms, policies and system modeling

DySCAS type systems require a lot of algorithms and policies for self-management. Due

to many closed loops in the system a new trend is to control the computing systems using

control systems theory [39]. This includes but not limited to load balancing, quality of

service and admission control. One possibility is to develop mathematical models (often

required for control systems) for DySCAS systems, new algorithms and investigate their

performance with the existing mechanisms. Last but not least is the possibility to work

towards the development methodology for efficient policies.

References

[1] Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis, and Leonard L.

Tripp. Guide to the Software Engineering Body of Knowledge (SWEBOK). ISO

Technical Report ISO/IEC TR 19759, http://www.swebok.org/. 2004.

32

[2] Richard Anthony and Cecilia Ekelin. Policy-Driven Self-Management for an Auto-

motive Middleware. In Proceedings of the 1st International Workshop on Policy-

Based Autonomic Computing (PBAC 2007), Jacksonville, Florida, USA, June 11-15

2007.

[3] Anuja Apte. Modeling System Architecture and Resource Constraints Using

Discrete-Event Simulation. Matlab Digest, http://www.mathworks.com/, March

2008.

[4] AUTOSAR website. http://www.autosar.org/.

[5] David E. Bakken. Encyclopedia of Distributed Computing, chapter Middleware.

Kluwer Academic Press, 2001.

[6] Osvaldo Barbarisi and Carmen Del Vecchio. UML Simulation Model for Hybrid

Manufacturing Systems. In 13th IEEE Mediterranean Conference on Control and

Automation, pages 358–363, June 2005.

[7] Michael I. Clune, Pieter J. Mosterman, and Christos G. Cassandras. Discrete Event

and Hybrid System Simulation with SimEvents. Fascicle of Management and Tech-

nological Engineering, Volume VII (XVII), 2008.

[8] DySCAS Consortium. Existing Technologies. Deliverable 1.1A, DySCAS-

Dynamically Self Configuring Automotive Systems, IST project no. FP6-IST-2006-

034904. http://www.dyscas.org/doc/DySCAS D1.1A.pdf, July 2007.

[9] DySCAS Consortium. Scenario and System Requirements. Deliverable 1.2,

DySCAS-Dynamically Self Configuring Automotive Systems, IST project no. FP6-

IST-2006-034904. http://www.dyscas.org/doc/DySCAS D1.2.pdf, May 2007.

[10] DySCAS Consortium. Demonstrator Application and Specification. Deliverable 3.3,

DySCAS-Dynamically Self Configuring Automotive Systems, IST project no. FP6-

IST-2006-034904. http://www.dyscas.org/doc/DySCAS D3.3.pdf, February 2009.

[11] DySCAS Consortium. DySCAS System Specifications. Deliverable 2.3, DySCAS-

Dynamically Self Configuring Automotive Systems, IST project no. FP6-IST-2006-

034904. http://www.dyscas.org/doc/DySCAS D2.3 CoverPage.pdf, February 2009.

[12] DySCAS Consortium. Evaluation Report. Deliverable 4.3, DySCAS-Dynamically

Self Configuring Automotive Systems, IST project no. FP6-IST-2006-034904.

http://www.dyscas.org/doc/DySCAS D4.3.pdf, February 2009.

33

[13] MOST Cooperation. MOST Specification Rev 3.0. www.mostcooperation.com,

2008.

[14] CORBA website. http://www.corba.org/.

[15] DySCAS website. http://www.dyscas.org/.

[16] Lei Feng, DeJiu Chen, Magnus Persson, Tahir Naseer Qureshi, and Martin

Törngren. Dynamic Configuration and Quality of Service in Autonomic Embedded

Systems: Theory and Pratice of DySCAS Project. Technical Report TRITA-MMK

2008:12, ISSN 1400-1179, ISRN/KTH/MMK/R-08/12-SE, Mechatronics Lab, De-

partment of Machine Design, KTH, Stockholm, Sweden, 2008.

[17] Lei Feng, DeJiu Chen, and Martin Törngren. Safety Analysis of Dynamically Self-

Configuring Automotive Systems. Technical Report TRITA-MMK 2008:13, ISSN

1400-1179, ISRN/KTH/MMK/R-08/13-SE, Mechatronics Lab, Department of Ma-

chine Design, KTH, Stockholm, Sweden, 2008.

[18] Lei Feng, DeJiu Chen, and Martin Törngren. Self Configuration of Dependent

Tasks for Dynamically Reconfigurable Automotive Embedded Systems. In 47th

IEEE Conference on Decision and Control, Cancun, Mexico, December 2008.

[19] Chien-Lieng Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla: A Mobile Agent

Middleware for Sensor Networks. Technical Report WUCSE200616, Washington

University in St. Louis, 2006.

[20] Robert Bosch GmbH. CAN Specification, Version 2.0. 1991.

[21] Michael A. Gray. Discrete Event Simulation: A Review of SimEvents. In Computing

in Science and Engineering, Volume 9 Issue 6, 2007.

[22] Michael González Harbour, José Javier Gutiérrez, José Carlos Palencia, and

José Maŕıa Drake. MAST: Modeling and analysis suite for real time applications. In

Proceedings of the 13th Euromicro Conference on Real-Time Systems, Page(s):125

- 134, June 2001.

[23] Paul Horn. Autonomic Computing: IBM ’s Perspective on The State of The Infor-

mation Technology. In AGENDA’01, Scottsdale, AR, 2001.

[24] HypoVereinsbank and Mercer Management Consulting. Automobile Technology

2010: Technological Changes to The Automobile and Their Consequences For Man-

ufacturers, Component Suppliers and Equipment Manufacturers. 2001.

34

[25] IBM. An Architectural Blueprint For Autonomic Computing. June 2005.

[26] The Mathworks Inc. SimEventsTM2, Getting Started Guide. The MathWorks, Inc.,

2008.

[27] The Mathworks Inc. SimEventsTM2, User’s Guide. The MathWorks, Inc., 2008.

[28] Isabell Jahnich, Ina Podolski, and Achim Rettberg. Towards a Middleware Ap-

proach for a Self-configurable Automotive Embedded System. In SEUS ’08: Pro-

ceedings of the 6th IFIP WG 10.2 international workshop on Software Technologies

for Embedded and Ubiquitous Systems, pages 55–65. Springer-Verlag, 2008.

[29] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing,

volume 36, pages 41–50. IEEE Computer Society Press, Los Alamitos, CA, USA,

January 2003.

[30] Hyo Jik Lee, Sung Hyun Kim, Hee Sung Park, and Byung Suk Park. Discrete

event system simulation approach for a nuclear facility operational analysis. In

proceedings of Innovative Production Machines and Systems, IPRPMS 08, 2008.

[31] Hock Beng Lim, Bang Wang, Cheng Fu, Phull Arpan, and Di Ma. WISDOM:

Simulation Framework for Middleware Services in Wireless Sensor Networks. In

5th Consumer Communications and Networking Conference,CCNC, 2008.

[32] Modeling and Analysis Suite for Real-Time Applications (MAST) website.

http://mast.unican.es/#intro.

[33] Marius Nica, Lucian, Macedon Ganea, and Gheorghe Donca. Simulation of Queues

In Manufacturing Systems. Fascicle of Management and Technological Engineering,

Volume VII (XVII), 2008.

[34] Martin Ohlin, Dan Henriksson, and Anton Cervin. TrueTime 1.5 - Reference

Manual. Department of Automatic Control, Lund University, Sweden, http://

www.control.lth.se/truetime, January 2008.

[35] Carloni Luca P., Passerone Roberto, Pinto Alessandro, and Sangiovanni-

Vincentelli Alberto L. Languages and tools for hybrid systems design. Foundations

and Trends in Electronic Design Automation, 2006.

[36] Tahir Naseer Qureshi, DeJiu Chen, Lei Feng, Magnus Persson, and Martin

Törngren. On mapping UML models to Simulink/SimEvents: A Case Study of Dy-

namically Self-Configuring Middleware. Technical Report TRITA-MMK 2009:05,

35

ISSN 1400-1179, ISRN/KTH/MMK/R-09/05-SE, Mechatronics Lab, Department

of Machine Design, KTH, Stockholm, Sweden, 2009.

[37] Tahir Naseer Qureshi, DeJiu Chen, Magnus Persson, and Martin Törngren. Sim-

ulation Tools for Dynamically Reconfigurable Automotive Embedded Systems - An

Evaluation of TrueTime. at Real-Time in Sweden (RTiS’07), Väster̊as, Sweden,

August 21-22, 2007.

[38] Sanjay Rishi, Benjamin Stanley, and Kalman Gyimesi. Automotive 2020: Clarity

Beyond The Chaos. IBM Institute for Business Value, 2008.

[39] Karl-Erik. Årzén, Anton Cervin, Tarek Abdelzaher, H̊akan Hjalmarsson, and An-

ders Robertsson. Roadmap on Control of Real-Time Computing System. EU/IST

FP6 ARTIST2 NoE, Control for Embedded Systems Cluster, http://www.artist-

embedded.org/artist/IMG/pdf/18b Control Roadmap.pdf, 2005.

[40] P. Š̊ucha, M. Kutil, M. Sojka, and Z. Hanzálek. TORSCHE Scheduling Tool-

box for Matlab. In IEEE Computer Aided Control Systems Design Symposium

(CACSD’06), pages 1181–1186, Munich, Germany, October 2006.

[41] Regular Triangle Team. UCS User Guide V1.2.0. Technical report, 2008.

[42] UML website. http://www.uml.org/.

[43] Süleyman Özarslan and Y. Murat Erten. Simulation of Agilla Middleware on

TOSSIM. In Simutools ’08: Proceedings of the 1st international conference on Simu-

lation tools and techniques for communications, networks and systems & workshops,

pages 1–6, ICST, Brussels, Belgium, 2008. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-20-2.

36

Annexure A: Algorithms for Quality of Service

Input: Task set T , a list of QoS levels of all tasks Q
Output: success, Q
n := |T |;1

ratMax := 0, taskId := 0;2

for i=1 to n do3

if Q[i] = T [i].q or Q[i] = 0 then continue;4

∆res := T [i].cpu(Q[i] + 1)− T [i].cpu(Q[i]);5

if ∆res 6= 0 then6

∆bft := T [i].sig × (T [i].bft(Q[i] + 1)− T [i].bft(Q[i]);7

ratio := ∆bft/∆res;8

else9

ratio :=∞;10

end11

if ratio > ratMax then12

taskId := i;13

ratMax := ratio;14

end15

end16

if taskId > 0 then17

Q[taskId] := Q[taskId] + 1;18

success := 1;19

else20

success := 0;21

end22

return success, Q;23

Algorithm 1: Increase the QoS Level of One Active Task

37

Annexure B: Figures

Node1 1
Init

NCMSStarted NCMSFailed

SCMS
RetreiveLocalConfigSpecsandStartComponents
en: InitNode 1;

RecordStatusAndInformMaster
en: Node 1Status=1;

RunNode
en: RunNode 1;

Node2 2
Init

NCMSFailedNCMSStarted

MasterSlaveConfig

MCMS 1
RetreiveGlobalConfigSpecs

RecordStatusandCommandAllNodestoRun
en: RunNodeCommand ;

SCMS 2
RetreiveLocalConfigSpecsandStartComponents
en: InitNode 2;

RecordStatusAndInformMaster
Node2Status=1;

RunNode
en: RunNode 2;

Node3 3
Init

NCMSFailedNCMSStarted

SCMS
RetreiveLocalConfigSpecsandStartComponents
en: InitNode 3;

RecordStatusAndInformMaster
en: Node 3Status=1;

RunNode
en: RunNode 3;

NCMS1Fail1NCMS1Start2

MSConfig

Node 1Ready

RunNodeCommand

NCMS2Start

1

NCMS2Fail
2

MSConfig

[Node1Status ==1&&Node2Status ==1&&Node 3Status ==1]

Node 2Ready

RunNodeCommand

NCMS3Start 2 NCMS3Fail1

MSConfig

Node 3Ready

RunNodeCommand

Figure Annex.1: System startup in Stateflow R©

38

Input: Task set T , a list of QoS levels of all tasks Q, resource type tp ∈ {cpu, bw,
mem}

Output: success, Q
n := |T |;1

ratMin :=∞, reduce := 0, taskId := 0;2

for i=1 to n do3

if Q[i] = 1 then continue;4

for j=1 to Q[i]− 1 do5

switch tp do6

case cpu: ∆res := T [i].cpu(Q[i])− T [i].cpu(Q[i]− j);7

case bw: ∆res := T [i].bw(Q[i])− T [i].bw(Q[i]− j);8

case mem: ∆res := T [i].mem(Q[i])− T [i].mem(Q[i]− j);9

end10

if ∆res 6= 0 then break;11

end12

if ∆res 6= 0 then13

∆bft := T [i].sig × (T [i].bft(Q[i])− T [i].bft(Q[i]− j);14

ratio := ∆bft/∆res;15

else16

ratio :=∞;17

end18

if ratio < ratMin then19

taskId := i;20

ratMin := ratio;21

reduce := j;22

end23

end24

if taskId > 0 then25

Q[taskId] := Q[taskId]− reduce;26

success := 1;27

else28

success := 0;29

end30

return success, Q;31

Algorithm 2: Decrease the QoS Level of One Task

39

S
lave M

W
 C

onfiguration M
anager

M
W

_E
vent

Q
oS

 Levels of A
pplication Tasks

M
iddlew

are S
ervices

N
odeInfo

_In

O
S_Trigger_LR

D
M

O
S_Trigger_LD

Q
M

appInfo
_In

synchronizationE
vent_In

appC
trlR

equest_out

Instantiation Interface
sys_platform

O
S_Trigger_Local N

ode H
andler

N
odeInfo

_O
ut

D
evices

, S
ystem

s and Interface
sys_platform

Task1

Task2

Task3

Task4

O
S_Trigger_Local N

ode H
andler

O
S_Trigger_LR

D
M

O
S_Trigger_LD

Q
M

O
S_Trigger_A

ppH
andler

A
pplication S

oftw
are P

rogram
s

app_platform
Q

oS
Level_task1

Q
oS

Level_task2

Q
oS

Level_task3

Q
oS

Level _task4

Task 1

Task 2

Task 3

Task 4

A
pplication Interface

app_platform

A
pplicationC

trlR
equest

_in

A
pplicationInfoN

otification
_out

Q
oS

Level_task1

Q
oS

Level_task2

Q
oS

Level_task3

Q
oS

Level_task4

O
S_Trigger_A

ppH
andler

Figure Annex.2: Simulation setup for QoS Control

40

