
KTH Computer Science
and Communication

CSC

Shool of Computer Siene and CommuniationTRITA-NA-P0513 � CBN � ISSN 0348-2952

Computational Biology and Neuroomputing

Massively parallel simulation ofbrain-sale neuronal network models
Mikael Djurfeldt, Christopher Johansson, Örjan Ekeberg,Martin Rehn, Mikael Lundqvist, and, Anders Lansner

Mikael Djurfeldt, Christopher Johansson, Örjan Ekeberg,
Martin Rehn, Mikael Lundqvist, and, Anders Lansner
Massively parallel simulation of
brain-scale neuronal network models

Report number: TRITA-NA-P0513, CBN
Publication date: December 2005
E-mail of author: djurfeldt@nada.kth.se

Reports can be ordered from:

Computational Biology and Neurocomputing
School of Computer Science and Communication (CSC)
Royal Institute of Technology (KTH)
SE-100 44 Stockholm
SWEDEN

telefax: +46 8 790 09 30
http://www.csc.kth.se/

Massively parallel simulation of

brain-scale neuronal network models

Mikael Djurfeldt, Christopher Johansson, Örjan Ekeberg,

Martin Rehn, Mikael Lundqvist, and, Anders Lansner

KTH – School of Computer Science and Communication

and

Stockholm University

SE-100 44 Stockholm

SWEDEN

December 23, 2005

Abstract

Biologically detailed computational models of large-scale neuronal networks have now become feasible
due to the development of increasingly powerful massively parallel supercomputers. We report here
about the methodology involved in simulation of very large neuronal networks. Using conductance-based
multicompartmental model neurons based on Hodgkin-Huxley formalism, we simulate a neuronal network
model of layers II/III of the neocortex. These simulations, the largest of this type ever performed,
were made on the Blue Gene/L supercomputer and comprised up to 8 million neurons and 4 billion
synapses. Such model sizes correspond to the cortex of a small mammal. After a series of optimization
steps, performance measurements show linear scaling behavior both on the Blue Gene/L supercomputer
and on a more conventional cluster computer. Results from the simulation of a model based on more
abstract formalism, and of considerably larger size, also shows linear scaling behavior on both computer
architectures.

1

2

Contents

1 Introduction 5
1.1 Computational modeling in neuroscience . 5
1.2 Could computer science learn from neuroscience? . 5
1.3 Level of abstraction . 5
1.4 Why do we need large-scale models? . 5
1.5 Parallel neuronal network simulators . 6

2 Cluster computers 6

3 The SPLIT simulator 7
3.1 Original design . 7
3.2 Optimizing SPLIT for cluster computers . 8

3.2.1 Stricter adherence to the MPI standard . 8
3.2.2 Identifying scaling problems—memory and time complexity O(ns) 8
3.2.3 Distributing creation of synapses and setting of their parameters to slave processes . . 8
3.2.4 The call-back mechanism—a conceptually simple way to parallelize user code 9
3.2.5 Hiding parallelism—the connection set algebra . 9
3.2.6 The cell map abstraction . 10

3.3 Optimizing SPLIT for Blue Gene/L . 10
3.3.1 Porting SPLIT to Blue Gene/L . 10
3.3.2 A scaling problem in model setup . 10
3.3.3 Adding a barrier call to the SPLIT API . 10
3.3.4 A scaling problem during simulation . 11
3.3.5 Removing data structures with memory complexity O(nc) 11
3.3.6 Implementation of a new protocol for specification of data logging 12
3.3.7 Implementation of a distributed data logging mechanism for binary data 12

4 A scalable network model of the neocortex 13
4.1 Results . 15

5 An abstract model of neocortex 17
5.1 Bayesian Confidence Propagating Neural Network . 17

5.1.1 Three implementations of the training phase . 18
5.1.2 Implementation details . 18

5.2 Results . 19
5.2.1 Running times for a mouse sized network . 19
5.2.2 Scaling of Hypercolumns . 20
5.2.3 Scaling of Connections . 20
5.2.4 A network model of record size . 20

6 Discussion 21
6.1 Trade-off between numbers and complexity . 22
6.2 Number of free parameters . 22
6.3 Cost of complex cell models in large scale simulations . 23
6.4 Mapping the model onto the Blue Gene/L torus . 23

7 Conclusions 23

8 Acknowledgments 23

3

4

1 Introduction

Biologically detailed computational models of large-
scale neuronal networks have now become feasible due
to the development of increasingly powerful massively
parallel supercomputers. In this report, we describe
the methodology involved in simulations of a neu-
ronal network model of layers II/III of the neocortex.
The model uses Hodgkin-Huxley-style formalism and
comprises millions of conductance-based multi-com-
partmental neurons and billions of synapses. Such
model sizes correspond to the cortex of a small mam-
mal. We also describe techniques involved in simu-
lating even larger cortex-like models based on a more
abstract formalism.

After some background and discussion of concepts
relevant to the methodology of large and full scale
neuronal network simulation, section 2 describes the
kind of supercomputer architectures we have used for
our simulations, while section 3 shows how we have
adapted our software tool to these computers and
to large problem sizes. Section 4 briefly describes
the scalable cortical attractor memory network model
used in our performance tests and shows examples
of scaling results obtained. Section 5 describes and
shows results for the more abstract cortex-like model.
The report is concluded with a discussion in section
6 and conlusions in section 7.

1.1 Computational modeling in
neuroscience

Computational modeling has come to neuroscience
to stay. As modeling techniques become increasingly
integrated with experimental neuroscience research,
we will see more knowledge extracted from existing
experimental data. Quantitative models help to ex-
plain experimental observations and seemingly unre-
lated phenomena. They assist in generating experi-
mentally testable hypotheses and in selecting infor-
mative experiments.

Super computers are becoming evermore power-
ful. In this report we show that it is possible to simu-
late a substantial part of a small mammal’s neocortex
with fairly biologically detailed compartmental neu-
ron models. This type of models are essential when
linking cognitive functions to their underlying neuro-
physiological correlates. They are becoming an im-
portant aid in achieving a better understanding of
normal function as well as psychiatric and neurolog-
ical disorders.

1.2 Could computer science learn
from neuroscience?

The nature of the neocortex is inherently parallel,
since it is based upon a large number of small com-
puting elements. Furthermore, neural systems, and
neocortex in particular, are good examples of very ad-
vanced and robust, massively parallel, systems that
perform much better on a great number of tasks than
today’s algorithms. This suggests that models of neu-
ral systems, especially their more abstract versions,
are interesting to study also from a computer science
perspective.

1.3 Level of abstraction

When modeling any physical system, there is a choice
of which state variables and which parameters to in-
clude. In this sense, a model can focus on particular
aspects of reality and model those aspects with a cer-
tain level of detail. For example, should we model the
currents through individual species of ion channels in
the cell membrane, or is a more abstract model, where
we only consider the average state of activity in the
cell, sufficient? The choice is mainly governed by the
type of questions we want to be able to address.

In computational neuroscience, the term “biolog-
ically detailed” typically refers to models which em-
ploy conductance based multi-compartmental model
neurons with a number of different ion channel types
represented. Abstract network models, on the other
hand, are often based on connectionist type graded
output units. In this case, a single unit in the model
may even represent multiple neurons, like a cluster of
cells in a cortical minicolumn.

When we consider the methodological problems
involved in simulating very large networks, especially
problems of parallelization, there are many similari-
ties between the detailed and abstract modeling ap-
proaches. In this report, we therefore study both
types of models and characterize some of the options
for designing simulators with a good scaling perfor-
mance on cluster computers with a large number of
nodes.

1.4 Why do we need
large-scale models?

Real vertebrate neuronal networks typically comprise
millions of neurons and billions of synaptic connec-
tions. They have a complex and intricate structure
including a modular and layered layout at several lev-
els, e.g., cortical minicolumns, macrocolumns, and
areas. It can be useful to model a single module or
microcircuit in isolation, for example in relation to a

5

correspondingly reduced experimental in vitro prepa-
ration such as a cortical slice. But such a module is,
by definition, a component in a much larger network.
In a real nervous system it is embedded in a mosaic
of similar modules and receives afferent input from
multiple other sources. We may therefore need to
consider an entire network of modules.

However, computational studies have, partly due
to limited computing resources, often focused on the
cellular and small network level, e.g., the emergence
and dynamics of local receptive fields in the primary
visual cortex. Modeling at the network level poses
specific challenges, but it is clear that it is inevitable
to take global and dynamic network interactions into
account in order to understand the functioning of a
neuronal system.

Natural dynamics

It is indeed hopeless to understand a global brain net-
work from modeling a local network of some hundred
cells, like a cortical minicolumn, or from dramati-
cally sub-sampling the global network by letting one
model neuron represent an entire cortical column or
area. One reason is that using small or sub-sampled
network models lead to unnatural dynamics.

The network model is comprised of model neurons
tuned after their real counterparts. These model neu-
rons need sufficient synaptic input current to become
activated. In a small network, model neurons are
bound to have very few presynaptic neurons. Thus,
either it is necessary to exaggerate connection proba-
bilities, or, synaptic conductances—most of the time
both.

This results in a network with few and strong sig-
nals circulating, in stark contrast to the real cortical
network, where many weak signals interact. Such dif-
ferences tend to significantly distort the network dy-
namics. For example, artificial synchronization can
easily arise, which is a problem especially since syn-
chronization is one of the more important phenomena
one might want to study. By modeling the full net-
work with a one-to-one correspondence between real
and model neurons such problems are avoided.

Computo-pharmacology

In biologically detailed large-scale neuronal network
models, the network effects of pharmacological ma-
nipulations can be studied in great detail. Does the
addition of the drug alter the firing patterns of a par-
ticular neuron? What happens to the activity of a
large ensemble of neurons? It might even be possible
to study functional properties, such as memory func-
tion, and the enhancement of these. Other types of

manipulations are possible, such as the addition or
removal of different cell types, or, the rearrangement
of connectivity patterns.

From ion channels to phenomenology

Large-scale network models will help to bridge the
gap between the neuronal and synaptic phenomena
and the phenomenology of global brain states and dy-
namics as observed in extracellular recordings, LFP,
EEG, MEG, voltage-sensitive dyes, BOLD etc. But
large-scale models demand tremendous amounts of
computing power.

In summary, computational neuroscience will ben-
efit greatly from the current development of new af-
fordable massively parallel computers, likely to enter
the market in the next few years. This development
constitutes an enabling technology for the modeling
of complex and large-scale neuronal networks.

1.5 Parallel neuronal network
simulators

The development of parallel simulation in computa-
tional neuroscience has been relatively slow. Today
there are a few publicly available simulators, but they
are far from as general, flexible, and documented as
commonly used simulators like Neuron (Hines and
Carnevale, 1997) and Genesis (Bower and Beeman,
1998). For Genesis there is PGenesis and the develop-
ment of parallel version of Neuron has started. In ad-
dition there exists simulators like NCS (Frye, 2005),
NEST (Morrison et al., 2005), and our own paral-
lelizing simulator SPLIT (Hammarlund and Ekeberg,
1998). However, they are in many ways still on the
experimental and developmental stage.

In the following we will describe a parallel simula-
tion study using the SPLIT simulator and one using
a more recently developed special purpose simulator.
But we start with a description of the computer ar-
chitectures on which these simulators have been de-
veloped.

2 Cluster computers

The simulations in this report were mainly performed
on two supercomputer installations: 1. The Dell
Xeon cluster Lenngren at PDC, KTH, Stockholm—a
rather conventional cluster computer containing 442
dual processor nodes. 2. The Blue Gene/L supercom-
puter (hereafter denoted BG/L) at the Deep Com-
puting Capacity on Demand Center, IBM, Rochester,
USA.

6

BG/L (Gara et al., 2005) represents a new breed
of cluster computers where the number of processors,
instead of the computational performance of indi-
vidual processors, is the key to higher performance.
The power consumption of a processor, and, thus,
the heat generated, increases quadratically with clock
frequency. By using a lower frequency, the amount
of heat generated decreases dramatically. Therefore,
CPU chips can be mounted more densely and need
less cooling equipment. A system built this way can
be made to consume less material and less power for
an equal computational performance.

While a BG/L system can contain up to 65536
processing nodes, with 2 processors per node, the
largest simulations described in this report were per-
formed on one BG/L rack containing 1024 nodes.
Our simulations on Lenngren ran on a maximum of
256 nodes. The theoretical peak performance of a
processor core in BG/L, running at 700 MHz, is 2.8
Gflops/s. This presumes using special compiler sup-
port for the double floating point unit in the PowerPC
440 core. Since we chose not to explore that in this
project, we should instead count on a theoretical peak
performance of 1.4 Gflops/s. This is to be compared
to 6.8 Gflops/s for one processor in the Lenngren clus-
ter. A node in the BG/L cluster has 512 MiB of mem-
ory compared to 8 GiB for a node in the Lenngren
cluster. A set of BG/L nodes can be configured to run
in co-processor mode, where one of the two processors
in a node run application code in most of the available
memory (≈ 501 MiB) while the other processor man-
ages communication, and virtual node mode, where
both processors run application code with half of the
memory (≈ 249 MiB) allocated to each. Thus, for
our purposes, a Lenngren node has 4.9 times more
computing power than a BG/L node in virtual node
mode and 16 times more memory.

When running our code, we did not see any signif-
icant difference in performance between a set of nodes
running in co-processor mode and half of that set run-
ning in virtual node mode. We therefore only used
co-processor mode in cases where we needed more
memory per node.

BG/L has three different inter node communica-
tion networks: a 3D torus network for point-to-point
communication, a tree structured network for col-
lective communication, and a barrier network. The
nodes in the Lenngren cluster are connected with In-
finiband which is a two-layered switch fabric.

3 The SPLIT simulator

3.1 Original design

The SPLIT simulator (Hammarlund and Ekeberg,
1998) was developed in the mid 90’s with the aim
to explore how to efficiently use the resources of vari-
ous parallel computer architectures for neural simula-
tions. Since different computer architectures benefit
from different kinds of optimizations, the code uses
programming techniques which encapsulate such op-
timizations and hardware specific features from the
rest of the program, and the neural network model
specification in particular. SPLIT has also served as
a platform for experiments with communication al-
gorithms.

SPLIT comes in the form of a C++ library which
is linked into the user program. The SPLIT API is
provided by an object of the class split which is the
only means of communicating with the library. The
user program specifies the model using method calls
on the split object. The user program is serial, and
can be linked with a serial or parallel version of the
library. Parallelism is thus completely hidden from
the user. In the parallel case, the serial user pro-
gram runs in a master process which communicates,
through mechanisms internal to the SPLIT library,
with a set of slave processes. On clusters, SPLIT
uses PVM or MPI.

The library exploits data locality for better cache-
based performance. In order to gain performance on
vector architectures, state variables are stored as se-
quences. It uses techniques such as adjacency lists
for compact representation of projections and AER
(Address Event Representation; Bailey and Hammer-
strom (1988)) for spike events.

Perhaps the most interesting concept in SPLIT is
its asynchronous design: On a parallel architecture,
each slave process has its own simulation clock which
runs asynchronously with other slaves. Any pair of
slaves only need to communicate at intervals deter-
mined by the smallest axonal delay in connections
crossing from one slave to the other.

The cells in a neural model can be distributed
arbitrarily over the set of slaves. This gives great
freedom in optimizing communication so that densely
connected neurons reside on the same CPU and so
that axonal delays between pairs of slaves are maxi-
mized. The asynchronous design, where a slave pro-
cess does not need to communicate with every other
slave at each time step, then gives two benefits: 1.
By communicating more seldom, the communication
overhead is reduced. 2. By allowing slave processes
to run out of phase, the amount of time waiting for
communication is decreased.

7

3.2 Optimizing SPLIT for cluster
computers

The recent work on large-scale models, described in
this report, has exposed a set of bottlenecks in the
original SPLIT library. This is not unexpected, since
current model sizes were quite unthinkable at the
time when the SPLIT library was conceived. In addi-
tion a set of bugs has been discovered and fixed. We
report below about the major changes to the code.

3.2.1 Stricter adherence to
the MPI standard

The SPLIT library makes extensive use of the point-
to-point communication operations MPI Send and
MPI Recv. On the architectures on which the original
SPLIT library was developed, smaller messages were
buffered and the MPI Send call did not block. The
original author used this implementation dependent
assumption in a few instances in the code. A typical
case is one where a many-to-many communication is
performed by first posting all sends and then all re-
ceives. On several modern architectures, this assump-
tion does not hold for message sizes used in SPLIT.
Therefore, and in order to remove uncertainties re-
garding code portability, we have changed the code
in all instances so that it strictly adheres to the MPI
standard. Thus, MPI Send is not assumed to return
before a corresponding MPI Recv has been posted. In
the following case, where the use of MPI Alltoall

was, for reasons having to do with code and class
structure, precluded, this meant implementing the
communication scheme shown in Figure 1.

If the communication network is not overloaded
the new scheme still has time complexity O(p), where
p is the number of processes. While there certainly
are schemes with better time complexity (Tam and
Wang, 2000; Gross and Yellen, 1998), the simplic-
ity of the chosen one is better from the perspective
of code maintainability, but may become problem-
atic for setup time when the number of processes ap-
proaches hundreds of thousands.

3.2.2 Identifying scaling problems—memory
and time complexity O(ns)

In the original design, synapses are created and their
parameters set from the master process. Associated
with this is a set of data structures with size propor-
tional to the number of synapses, ns, giving memory
complexity O(ns). In models where ns approaches
hundreds of millions, the required amount of memory
comes close to what is available on a single process-
ing node on many architectures—we have a mem-

// Original code:

for (i = 0; i < n processes; ++i)

// send to process i

for (i = 0; i < n processes; ++i)

// receive from process i

// New code:

for (i = 0; i < local rank; ++i)

// receive from process i

for (i = local rank; i < n processes; ++i)

// send to process i

for (i = 0; i < local rank; ++i)

// send to process i

for (i = local rank; i < n processes; ++i)

// receive from process i

Figure 1: Old and new version of simple commu-
nication scheme for all-to-all communication during
setup.

ory scaling problem. When models include billions
of synapses, it becomes necessary to remove all such
data structures. This includes data structures for
storage of synaptic parameters before distribution to
the slaves and various kinds of transformation ta-
bles used to quickly map distributed vector entities,
for example synaptic conductance, from index on the
master node, global index, to the corresponding pro-
cess rank and index within that process, local index
(see discussion below).

Remember also that, since the original SPLIT
library confines all model specification to the mas-
ter process, model specification is serial. We there-
fore also have a scaling problem in the time domain
since the time complexity for synapse setup becomes
O(ns). This was clearly noticeable in our simulations
where synapse setup time soon began to dominate
setup time for larger models.

3.2.3 Distributing creation of synapses and
setting of their parameters to slave pro-
cesses

An obvious solution to the memory and time com-
plexity problems described above is to distribute the
creation of synapses and setting of their parameters

8

to the slave processes, since setup code would gain
speedup from parallelization and data structures pro-
portional to the number of synapses only would need
to cover synapses relevant to the neurons represented
on a particular slave. This means that we need a
conceptually simple way to run user code in the slave
processes. Below, we will describe a first attempt at
supporting this. Then we will describe a way to shield
the user code from issues of parallelization which arise
due to this change. In our tests, these changes re-
duced model setup time from hours to minutes for
the larger models. Most importantly, it changed the
time complexity of setup time from O(ns) to O(ns/p)
where ns is the number of synapses and p the number
of slave processes.

3.2.4 The call-back mechanism—a conceptu-
ally simple way to parallelize user code

In the original design, the user program, running in
the master process, specifies all parameters and initi-
ates all stages of simulation through predefined func-
tions in the SPLIT API. In the new design, a call-
back mechanism introduces the possibility of execut-
ing arbitrary code at the slaves, by allowing the user
to define functions which can be called in all slave
processes at the command of the user program. Us-
ing such functions, callbacks, the user can freely mix
serial and parallel sections in the main program.

In order not to deal directly with slave processes,
a neural network model is conceived as consisting of
a number of parts, each governing the update of the
state variables of a disjoint subset of neurons in the
model. Such a part is represented as a simulation
unit, which, in the parallel case, is handled by one
slave process.

A simulation unit object, split unit, provides a
subset of the SPLIT API normally provided by the
split object. A callback receives a pointer to the
relevant split unit object as argument. The user
program can also supply an arbitrary amount of data
in the callback call, which is then distributed by the
call-back mechanism to all slaves.

3.2.5 Hiding parallelism—the connection set
algebra

According to SPLIT’s design, parallelism should be
hidden from the user, both conceptually and practi-
cally. A user program is able to arbitrarily link with
either a serial or parallel version of the SPLIT library.
How can we, when synapse setup is distributed, main-
tain a clean separation between issues of the model
itself and issues of parallelism so that the user code

only needs to be concerned with the model? In par-
ticular, we don’t want the user code to deal with how
cells in the model are distributed over the set of slave
processes.

The solution to this problem involves the abstrac-
tion connection set and, the simulation unit abstrac-
tion and call-back mechanism described above. The
synaptic connectivity is defined by the user in a call-
back, in a way which hides parallelism by using ex-
pressions from a connection set algebra. Since this is
a novel construction, it will now be described in some
detail.

A connection set object in essence represents an
infinite connection matrix. In practice, it is used to
represent a type of connection structure. The con-
nection set object obtains the sets of pre- and postsy-
naptic neurons it governs through the simulation unit
object. Conceptually, this acts as cutting out the rel-
evant piece of the infinitely large connection matrix.
Subsequently, the connection set object can work as
an iterator over existing connections and can be used
repeatedly in the user program to create synapses and
set their parameters.

A basic set of connection sets are provided with
the SPLIT library. This includes full connectivity, di-
agonal structure, uniformly random connectivity (ex-
istence of a connection determined by a fixed proba-
bility), and, Gaussian structure. The user can imple-
ment his own connection structures by inheritance,
but a much simpler and more expressive method is
provided in the connection set algebra which can be
conceived as a set of operators on infinite connec-
tion matrices. As a simple example, consider the case
where we want a 70% probability that a neuron con-
nects to any other neuron in a population, but no
connection to itself. This can now be expressed as:

random_uniform (0.7) - diag ()

where random uniform and diag are connection set
objects.

With the connection set abstraction, the user can
focus on the connectivity structure itself while details
such as which subset of neurons the code is work-
ing with is completely hidden. Note also how the
simulation unit abstraction and call-back mechanism
aid in hiding parallelism—the user does not need to
deal with how many simulation units there are, or
how neurons are distributed between them. These
novel mechanisms have low overhead and are cache
efficient since they do not depend on large tables in
main memory.

9

3.2.6 The cell map abstraction

To specify synapses, communicate spike events, etc.,
neurons need to be identified. An axon should con-
nect a certain presynaptic neuron to a certain post-
synaptic neuron. A spike is destined for a certain
neuron. As mentioned above, SPLIT uses global and
local indexes to refer to neurons. This design was in-
fluenced by two factors: 1. The best way to identify a
neuron is task dependent. When specifying synapses,
we most likely want to refer to neurons as members of
a population in the model being simulated. However,
when communicating spikes, it is more practical to
refer to neurons as members of population fragments
located in particular slave processes. Thus, we can
reduce complexity if we are allowed to use multiple
ways to address neurons. 2. SPLIT is designed to
allow for arbitrary mappings of neurons to slave pro-
cesses. Thus, we need a granularity at the neuron
level when determining to which slave a neuron be-
longs. The global index of a neuron is used to locate
it within the context of the entire population while its
local index locates it within a particular slave. Using
global indexes, we can avoid mixing the complexity
of the synaptic connection structure with the com-
plexity of the mapping of the model onto the slaves.

As indicated above, in the original code, the mas-
ter process is responsible for transforming between
global and local indexes. When synapse setup is dis-
tributed, the slaves need to be made aware of how the
cells in the model are distributed over the slave pro-
cesses. To this end, we have devised an abstraction,
cell map, which handles index transformations both
in the direction from global to local index and the re-
verse. During setup, when the user program supplies
the mapping from neurons to slaves, the cell map ob-
ject takes this information and distributes itself to the
slaves. In each slave, the local cell map object then
builds the tables it needs for efficient index trans-
formations. The ultimate goal is that the cell map

object will handle all functions associated with the
mapping from neurons to slaves. This has not yet
been fully implemented.

3.3 Optimizing SPLIT for
Blue Gene/L

In this section, we will describe our experiences with
the BG/L architecture and the changes we made to
SPLIT in order to achieve good scaling behavior.

Before running on the BG/L architecture our ex-
perience was based on running the updated version
of SPLIT, described above, on cluster computers at
PDC, KTH. Although scaling results on the Lenngren
cluster were slightly unpredictable, likely due to the

communication network being shared with other ap-
plications in a queue system, they appeared good in
that setup time seemed approximately constant for
runs on different number of nodes, while speedup for
simulation time was roughly linear.

BG/L represented a challenge in the sense that
we now had to start imagining simulations using tens
of thousands of processors while our previous prac-
tical experience was limited to less than 200. The
other main consideration was the smaller amount of
memory available to each processor.

3.3.1 Porting SPLIT to Blue Gene/L

The port of SPLIT to BG/L was trivial. It basi-
cally consisted of finding the correct arguments for
the GNU configure script (compiler flags, library lo-
cations etc). This is noteworthy, considering that the
BG/L is a novel computer architecture, and has two
major reasons: 1. The software stack on the BG/L
nodes is based on GNU software, for example GLIBC,
and provides a Linux-like run-time environment. 2.
The BG/L specific inter node communication hard-
ware is abstracted using the MPI API.

3.3.2 A scaling problem in model setup

The first scaling results for a model with 330000 neu-
rons and 161 million synapses showed that setup time
scaled linearly with the number of processors used on
BG/L (see upper trace in Figure 2). This was unex-
pected, since our results on Lenngren so far indicated
a constant setup time. We then performed runs on
Lenngren with up to 384 processors and could indeed
confirm a linear dependence on the number of MPI
processes (Figure 2, third trace). Because SPLIT
slave processes run asynchronously, it was difficult to
pin down exactly which code region was responsible,
but initial debugging indicated that the setup of cell
parameters was the culprit. Since this part of model
setup is computationally intensive and involves much
communication between master and slaves, and was
already identified as a scaling problem of the future
due to its time complexity O(nc), it was natural to
distribute cell setup as we had previously done with
synapse setup. This resulted in the second trace in
Figure 2. The linear scaling still remained, however.

3.3.3 Adding a barrier call to the SPLIT API

In order to isolate the problem, we added a barrier
call to the SPLIT API which synchronize processes
using MPI Barrier:

split->barrier ()

10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300 350 400 450 500

se
tu

p
tim

e
in

 s
ec

on
ds

number of MPI tasks

BG/L
BG/L dist cell param

Dell cluster
BG/L comm scheme

Figure 2: Scaling of setup time for a model with 330000 neurons. Upper trace: Initial result on BG/L. 2nd
trace: Scaling after distributing setup of cell parameters to the slave processes. 3rd trace: Initial result on
Dell cluster. 4th trace: Final result, after correcting problem in communication scheme implementation.
Setup time now decreases with increasing number of processors.

The implementation involved extending the internal
communication protocols in SPLIT, but the effort
was well motivated by its utility for debugging. By
using the barrier call to synchronize processes be-
tween each call to the SPLIT API, the scaling prob-
lem could be located to one particular member func-
tion (map). This made us discover that the imple-
mentation of the communication scheme for connect-
ing spike communication objects, a simplified version
of which is shown in Figure 1, did not work as in-
tended, but introduced unintended dependencies be-
tween sender-receiver pairs. After correcting this, we
obtained the scaling scaling curve shown in the fourth
trace in Figure 2.

3.3.4 A scaling problem during simulation

The upper trace in Figure 3 shows timings for one sec-
ond of simulated time in a model with 330000 neurons
and 161 million synapses. Note that the addition of
more processors does not lead to decreased simulation
time for simulations on more than 767 processors. In
order to pin down this problem, we linked SPLIT with
an MPI trace library provided by IBM. In addition to
giving detailed logs of communication events, this li-
brary provides various kinds of statistics of communi-

cation during a simulation. In a histogram over sizes
of communication packets, and the blocking time as-
sociated with those messages, we could observe that
packets of size 80 bytes were over-represented in num-
ber and responsible for a large fraction of simulation
time. With this clue, we could identify the cause
of the scaling problem: The normal state of asyn-
chronous operation of the slaves was repeatedly inter-
rupted by synchronization caused by the code which
collects membrane potential data for logging to file
at the master process. By decreasing the frequency
of communication of such logging data, we could ver-
ify that this was indeed the problem (lower trace in
Figure 3).

3.3.5 Removing data structures with mem-
ory complexity O(nc)

With the above scaling problems resolved, we could
now run models consisting of up to 4 million neurons.
At this point, we encountered a memory scaling prob-
lem. The SPLIT library still contained many data
structures in the master process, proportional to the
number of neurons, nc. This presented a barrier for
the absolute size of model we could handle. Some
of these structures were related to index transforma-

11

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 200 300 400 500 600 700 800 900 1000

si
m

ul
at

io
n

tim
e

in
 s

ec
on

ds

number of MPI tasks

Initial
No central logging

Figure 3: Scaling of simulation time for a model with 330000 neurons. Upper trace: Initial result. No speedup
above 767 MPI tasks. Lower trace: Final result, after decreasing frequency of communication associated
with central logging of membrane potentials.

tions, as described above, and could be eliminated,
but this was only part of the problem, as we will see
in section 3.3.6.

3.3.6 Implementation of a new protocol for
specification of data logging

A thorough review of data structures in the master
process with regard to memory complexity showed
that the largest amount of memory was consumed
by the mechanisms for specifying which model state
variables should be logged to file. The reason was
that this mechanism operated at the level of individ-
ual state variables. We therefore implemented a novel
mechanism where logged variables could be specified
at the level of sets of variables. This change, which in-
cluded extensions to the internal communication pro-
tocol in SPLIT, together with the changes described
in the previous section, substantially improved mem-
ory scaling. Without further changes, the library is
now capable of handling models consisting of tenths
of millions of cells and tenths of billions of synapses.

3.3.7 Implementation of a distributed data
logging mechanism for binary data

Since we are interested in synthesizing various mea-
sures of activity within the cortical sheet, like EEG,

we need an efficient way to log large amounts of data
to file. For example, one of our experiments, where
we simulate 20 seconds of activity of a model with
82500 neurons, generates 10 billion data points.

There are three problems associated with this: 1.
Since all previous mechanisms for data logging was
based on the master process collecting data from the
slaves, the concentration of data to the master pro-
cess, and the serialization that this implies, would
lead to overloading of the master, and time would be
lost due to slave processes waiting for communica-
tion. 2. The high rate of data to be collected from
the slave would lead to disturbance of the normal
asynchronous state of the slaves, as described above.
3. The previous mechanisms for data logging used a
text file format, which would be too voluminous.

A new data logging mechanism was therefore im-
plemented, which writes binary data to the BG/L
parallel file system, at each slave. Data can be logged
for an arbitrary number of state variables for subsets
of neurons and to files specified by the user program.
File names are suffixed with the slave rank. We have
written tools to locate and extract specific traces of
data points from these files, and to convert them for
further processing in tools like MatLab.

12

4 A scalable network model of
the neocortex

The model described in this section is the result of
an integration of functional constraints given by a
theoretical view of the neocortex as an associative
attractor memory network (a top-down strategy; see
Churchland and Sejnowski (1992), ch. 1), and, empir-
ical constraints given by cortical anatomy and phys-
iology (bottom-up).

The view of the cortex as an attractor network has
its origin more than fifty years back in Hebb´s theo-
ries of cell assemblies (see, e.g, Fuster (1995) for a re-
view). It has been mathematically instantiated in the
form of the Willshaw-Palm (Willshaw and Longuet-
Higgins, 1970; Palm, 1982) and Little-Hopfield mod-
els (Hopfield, 1982) and has subsequently been elab-
orated on and analyzed in great detail (Amit, 1989;
Hertz et al., 1991).

The olfactory cortex (Haberly and Bower, 1989)
as well as the hippocampus CA3 field (Treves and
Rolls, 1994) have previously been percieved and mod-
eled as prototypical neuronal auto-associative attrac-
tor memory networks. More recently, sustained ac-
tivity in an attractor memory of a similar kind has
been proposed to underlie prefrontal working mem-
ory, although in this case the attractor state itself
and not the connectivity matrix is assumed to hold
the memory (Compte et al., 2000).

Our view of cortical associative memory has been
expressed in the form of an abstract neural network
model (Lansner et al., 2003; Sandberg et al., 2002,
2003). An implementation of this model is described
in section 5 of this report. The computational units in
the model correspond to the anatomical minicolumns,
suggested by Mountcastle (1978) and described by
Peters and Sethares (1991), and to the orientation
minicolumns in the primary visual cortex.

In a previous series of papers we used the ideas
from the abstract model in a biologically detailed
model of a memory network architecture in layers
II/III of the neocortex (Fransén and Lansner, 1995,
1998; Lansner and Fransén, 1992). We found that the
model could perform critical cell assembly operations
such as pattern retrieval, completion and rivalry.

However, the abstract framework also suggests
modularity in terms of a hypercolumnar organiza-
tion of a similar kind to that described by Hubel and
Wiesel (Hubel and Wiesel, 1977) for the primary vi-
sual cortex, that is, bundles of about 100-200 mini-
columns forming one hypercolumn. In the present
model, we have continued the development of the bi-
ologically detailed model by adding a hypercolumnar
structure. We have also added a second type of in-

Figure 4: Cartoon of a network with 12 hypercolumns
and 8 minicolumns each. Each hypercolumn has 8
circularly arranged minicolumns, each comprising 30
densely connected model pyramidal cells. The small
disc in each minicolumn represents 2 RSNP cells that
receive input from distant pyramidal cells and inhibit
local ones. The large disc at the center of each hyper-
column represents a population of basket cells. The
negative feedback circuitry between pyramidal and
basket cells is indicated. An excitatory long-range
minicolumn-to-minicolumn connection originates in
pyramidal cells in the presynaptic minicolumn and
targets pyramidal cells in the postsynaptic minicol-
umn. An inhibitory minicolumn-to-minicolumn con-
nection originates in the same way but targets the
RSNP cells in the postsynaptic minicolumn, which, in
turn, provide a di-synaptic inhibition onto the pyra-
midal cells in the receiving minicolumn.

terneuron and model the hypercolumn in full scale,
meaning that there is a one-to-one correspondence
between model neurons and real neurons of the se-
lected types in layers II/III of the minicolumn.

As in the abstract model, each hypercolumn oper-
ates like a soft winner-take-all module in which activ-
ity is normalized among the minicolumns, such that
the sum of activity is kept approximately constant.
We propose that the lateral inhibition mediated by
basket cells may achieve this normalization in cor-
tex. Normalization models of a similar kind have re-
cently been proposed for the primary visual cortex
(Blakeslee and McCourt, 2004).

Since our model is built using the connection set
algebra tool described in section 3.2.5, it is easily scal-
able. That is, we can easily adjust structure param-
eters such as the number of minicolumns per hyper-

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 5: Spatial layout of minicolumns in a network
with 9 hypercolumns (centers marked with a cross),
each comprising 100 minicolumns. Each small disc
represents one minicolumn. Minicolumns with the
same color belong to the same hypercolumn.

column, or the total number of hypercolumns in the
network. Our model contains scaling equations for
connection probabilities which ensure that different
cell types see similar currents in an attractor state
for different model size and structure. For natural
structure parameters, connection probabilities corre-
spond to empirical estimates of cortical connectivity
(see Lundqvist et al. (2006) for details). Figure 4
shows, in an abstract fashion, the structure of a ver-
sion of our network model consisting of 12 hyper-
columns with 8 minicolumns each (all simulations in
this report use 100 minicolumns per hypercolumn ex-
cept where noted).

The cell models used in the simulations described
here are conductance based and multi-compartmental
of intermediate complexity . They are to a large ex-
tent similar to those developed previously (Fransén
and Lansner, 1995, 1998). The cells included are lay-
ers II/III pyramidal cells and two different types of in-
hibitory interneurons, assumed to correspond to hor-
izontally projecting basket cells and vertically pro-
jecting double bouquet and/or bipolar cells (Dou-
glas and Martin, 2004; Kawaguchi and Kubota, 1993;
Markram et al., 2004). Following Kawaguchi (1995)
we will here refer to the latter type as regular spiking
non-pyramidal or RSNP cells.

The pyramidal cells are modeled with six com-
partments and the inhibitory interneurons with three.

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 2 2.2 2.4 2.6 2.8 3 3.2 3.4

m
em

br
an

e
po

te
nt

ia
l (

V
)

time (s)

Figure 6: Model pyramidal neuron switching from
DOWN to UP state and back. The mean membrane
potential becomes elevated at t = 2.5 s due to net-
work activity when the neuron starts participating
in an active attractor state. The attractor state was
activated through simulated electrical stimulation of
other member neurons. (The varying height of action
potentials is an artefact due to a large plotting time
step.)

Voltage-dependent ion channels for Na+, K+, Ca2+,
and Ca2+-dependent K+-channels are modeled using
Hodgkin-Huxley formalism.

The excitatory synapses between pyramidal cells
and between pyramidal and RSNP cells are of a mixed
kainate/AMPA and NMDA type while the pyramidal
to basket cell synapse only has a kainate/AMPA com-
ponent and the inhibitory synapses are of GABAA

type.
The network connectivity is set up to store a num-

ber of memory patterns (attractor states) such as
would have resulted from long-term plasticity using
a Hebbian learning rule (Sandberg et al., 2002). The
synaptic plasticity actually included in the model is
restricted to fast synaptic depression of pyramidal to
pyramidal synapses.

Axonal delays are determined by using a geomet-
ric model of the cortical sheet grown using cellular
automata. Figure 5 shows the spatial layout of mini-
columns in a network with 9 hypercolumns. For fur-
ther details see Lundqvist et al. (2006).

The raster plot in Figure 7 shows a typical ex-
ample of network dynamics in our simulations. The
network spends a few hundreds of milliseconds in each
attractor state. For simplicity, the memory patterns
stored in this network are orthogonal—every minicol-
umn only belongs to a single pattern. Since patterns
compete within each hypercolumn, this gives rise to

14

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6

ce
ll

in
de

x
(R

S
N

P
, p

yr
am

id
, b

as
ke

t)

time (s)

Figure 7: Raster plot for network with 9 hypercolumns and 8 minicolumns per hypercolumn. The lower
portion of the raster shows activity in all RSNP cells, mid portion shows pyramidal cells, and, upper portion
basket cells. The long-range pyramidal-pyramidal and pyramidal-RSNP synapses store orthogonal memories.
The network can be seen jumping spontaneously between these memory states.

the structure of regular bands in the figure—only one
minicolumn wins in each hypercolumn. Depending
on the level of background drive, attractor states can
either be attained spontaneously (as in the figure) or
by afferent input to neuronal members of the mem-
ory pattern. The average spike frequency for pyra-
midal cells participating in an active memory state is
around 6 Hz, compared to a base line firing rate of
0.2 Hz. Competition between attractors is resolved
within 30-40 ms.

A striking feature of our model is that this dynam-
ics, which corresponds well to data on UP states (see
Figure 6) seen in vivo (Anderson et al., 2001) and in
slice preparations (Cossart et al., 2003), is preserved
over all model sizes and structures we have yet sim-
ulated. That is, even for the largest simulation de-
scribed in this report, a global memory pattern can
be correctly recalled within tens of milliseconds.

4.1 Results

When considering how to use super-computing power
to boost performance of a neuronal network simula-
tor, there are two main directions in which to trim
the software: On one hand, we can use the increased
capacity for computing to run larger models. On the
other, we can use it to compute faster. In this work
we have primarily focused on the first possibility. Af-

ter the adaptations of our software tool SPLIT de-
scribed in section 3, we obtained generally good scal-
ing performance, particularly for large models where
computation time at the nodes dominates overhead
due to communication.

Figure 8 shows a scaling diagram for a version of
the model described in section 4 containing 4 mil-
lion cells and 2 billion synapses. Real pyramidal cells
have in the order of 10000 synapses. The number
of synapses in our model is lower than this due to
the fact that we only consider connections within one
layer of a local area, and, that the inter-minicolumn
connectivity contains a small number of memory pat-
terns due to their orthogonality. Note, though, that
the number of active synapses is the same as in a
network with a more natural connection matrix.

Setup and simulation wall-clock times for 1 second
of simulated activity are shown for various number
of slave processes. The model comprises 1225 hy-
percolumns with 100 minicolumns per hypercolumn,
Note how, even for a model of this size, setup time
decreases with increasing number of processes, in ac-
cordance with the earlier results described in section
3.3.3.

Note also that simulation time is roughly inversely
proportional to the number of processes. This is
shown more clearly in the speedup diagram in Fig-
ure 9, which, for practical reasons, is normalized rel-

15

 0

 2000

 4000

 6000

 8000

 10000

 500 1000 1500 2000

tim
e

in
 s

ec
on

ds

number of MPI tasks

Setup
Simulate

Total

Figure 8: Scaling diagram for model with 4 million cells and 2 billion synapses. Wall-clock setup and
simulation time for 1 sec of simulated activity.

 0

 1

 2

 3

 4

 500 1000 1500 2000

sp
ee

du
p

co
m

pa
re

d
to

 5
11

 ta
sk

s:
 T

(5
11

)/
T

(P
)

number of MPI tasks: P

ideal
actual

Figure 9: Speedup for model with 4 million cells and 2 billion synapses.

16

procs. Setup Simulation
1024 2272 9489
2048 1582 4749

Table 1: Setup and simulation times in seconds for a
model with 8 million cells and 4 billion synapses on
1024 and 2048 BG/L processors.

ative to the data point for 511 processes rather than
1. The lower trace shows that scaling is nearly linear.

The largest model we have simulated so far is a
network consisting 2401 hypercolumns (see table 1 for
setup and simulation times on 1024 and 2048 proces-
sors of one full BG/L rack). This model comprises 8
million neurons and 4 billion synapses.

Even for the largest models, the brain-like dynam-
ics we have observed (see section 4 and Lundqvist
et al. (2006)) in the network is preserved, although
some phenomena show quantitative changes which we
report on separately (Djurfeldt et al., 2006).

5 An abstract model of
neocortex

Here we present a connectionist abstract model of
cortex, and its implementation, which provides func-
tional constraints for the biologically detailed model
described in section 4. Both the computational and
memory requirements for this model are smaller than
for its more biologically detailed counterpart. In-
stances of this model that are a few orders of magni-
tude larger than the biologically detailed version can
run in close to real time. Areas of interest for this
type of connectionist model are to explore, test, and,
verify theories on how the neocortex processes infor-
mation in cases which are difficult to investigate with
a computationally more demanding model.

As described in section 4, the abstract model (Jo-
hansson and Lansner, 2004a,b) on which the biologi-
cally detailed model is based, makes the assumption
that a cortical minicolumn is the smallest functional
unit in cortex. Each such minicolumn is modeled
by a single unit in the abstract network. One hun-
dred such units are grouped into a hypercolumn. The
functional role of the hypercolumn is to normalize the
activity in its constitutive units to one. The average
neuron in the mammalian brain has approximately
8000 synapses, and a cortical minicolumn has on av-
erage 100 neurons (Johansson and Lansner, 2004b).
With the assumption that five synapses are required
to link two minicolumns together, the average mini-
column potentially has 120000 incoming connections

(Johansson and Lansner, 2004a).
In this report we study networks of randomly con-

nected units. This type of connectivity is very gen-
eral and is often used in attractor neural networks.
In turn, the dynamics of attractor neural networks
are hypothesized to be a first and very rough approx-
imation of the cortical dynamics (Rolls and Treves,
1998; Palm, 1982).

In the abstract model, the hypercolumn has a
computational grain size that maps very well onto
the computational resources in a cluster computer.
The hypercolumn has a constant number of units and
connections, and in turn constant computational re-
quirements.

5.1 Bayesian Confidence Propagating
Neural Network

The units and synapses of the abstract model are
implemented with a Bayesian Confidence Propagat-
ing Neural Network (BCPNN) (Lansner and Ekeberg,
1989; Lansner and Holst, 1996; Sandberg et al., 2002).
This type of neural network can be used to implement
both feed-forward classifiers and attractor memory.
In the latter case, it is similar to a Hopfield net-
work, the main difference being the local structures
imposed by the hypercolumns. It has a Hebbian
type of learning-rule, which is local in both space
and time (only the activity of the pre- and postsy-
naptic units at one particular moment are needed
to update the weights) and therefore it can be ef-
ficiently parallelized. Further, the network can be
used with both unary-coded activity (spiking activ-
ity) and real-valued activity, o ∈ (0, 1). In the current
implementation we use spiking activity that allows for
efficient address event communication (AER) (Bailey
and Hammerstrom, 1988; Mortara and Vittoz, 1994;
Deiss et al., 1999; Mattia and Giudice, 2000). The
network has N units grouped into H hypercolumns
with Uh units in each. Here, h is the index of a par-
ticular hypercolumn and Qh is the set of all units
belonging to hypercolumn h.

The computations of the network can be divided
into two parts; training (Figures 10–12) and retrieval
(equations 1–3). In the training phase the weights,
wij , and biases, βj , are computed. In the retrieval
phase the units’ potential and activities, oi, are up-
dated. The training phase is presented for three dif-
ferent levels of computational complexity. Real-time
performance for the computations is set to one up-
date of both phases in 10 ms. Next, we first discuss
the retrieval and then, in section 5.1.1, the training
phase.

In the retrieval phase a process called relaxation

17

is run in which the potential and activity is updated.
When using the network as an autoassociative mem-
ory the activity is initialized to a noisy or a partial
version of one of the stored patterns. The relaxation
process has two steps; first the potential, m, is up-
dated (eq. 2) with the current support, s (eq. 1).
Secondly, the new activity is computed from the po-
tential by randomly setting a unit active according
to the softmax distribution function in eq. 3. The
parameters τm = 10 and G = 3 are fixed throughout.

sj = log(βj) +
H

∑

h=1

log

∑

k∈Qh

wkjok

 (1)

τm

dmj

dt
= sj −mj (2)

oj ←
eGmj

∑

k∈Qh
eGmk

: j ∈ Qh (3)

for each h = {1, . . . , H}

5.1.1 Three implementations of the training
phase

Here we present three different implementations of
the learning phase, each with different computational
complexity. Up to three different state variables are
used to represent a unit; which are called Z-, E-, and
P-trace variables. A connection can have up to two
state variables; P- and E-trace. In the simplest im-
plementation, with the lowest complexity, the units’
P-trace variables are computed by leaky integrators
directly from the input as in Figure 10. Here, S is the
input and P is the P-trace state variable. This im-
plementation uses delayed update of both unit and
connection variables. Further, these trace variables
are efficiently computed in the logarithmic domain
(Johansson and Lansner, 2006a,b). The sparse con-
nectivity is implemented with adjacency lists. We call
this a P-type implementation. A connection need 10
bytes of memory; 4 bytes for storing Pij , 4 bytes for
the index of the presynaptic unit, and 2 bytes for the
time stamp associated with the delayed update.

In a slightly more complex implementation, called
Z-type, the units’ state variables, Z and P , are com-
puted with two leaky integrators as in Figure 11.
Here, we only implement the state variables of the
connections with delayed update. A connection in
the Z-type network requires as much memory as in
the P-type.

In most complex implementation, called E-type,
two leaky integrators compute the state variables of
the connections and three leaky integrators compute
the state variables of the units as shown in Figure 12.
Here, it is not possible to use delayed update for any

i
P i i

dP
S P

dt
τ = − ij

P i j ij

dP
S S P

dt
τ = − j

P j j

dP
S P

dt
τ = −

iS jS

presynaptic activity postsynaptic activity

ij
ij

i j

P
w

PP
=

logj jPβ =

Figure 10: The minimal set of equations needed to
implement an associative BCPNN, called P-type.

i
Z i i

dZ
S Z

dt
τ = −

i
P i i

dP
Z P

dt
τ = − ij

P i j ij

dP
Z Z P

dt
τ = −

j
Z j j

dZ
S Z

dt
τ = −

j
P j j

dP
Z P

dt
τ = −

iS jS

presynaptic activity postsynaptic activity

ij
ij

i j

P
w

PP
=

logj jPβ =

Figure 11: The equations used to compute the
weights, wij , and biases, βj , for the Z-type network.

of the state variables and hence the training time in-
creases considerably. In each iteration during train-
ing all connections are updated. A connection need
12 bytes of memory; 4 bytes for storing Pij , 4 bytes
for storing Eij , 4 bytes for the index of the presynap-
tic unit, and 2 bytes for the timestamp.

5.1.2 Implementation details

The abstract model was implemented with a focus
on efficiency. Four techniques were used to achieve
good performance; delayed updating of the units and
connections, computation of the leaky integrators in
the logarithmic domain, adjacency lists for effective
indexing of the units in the sparse connectivity ma-
trix, and AER for effective communication. We used
the programming language C with calls to two stan-
dard routines in the MPI application programming
interface; MPI Bcast() and MPI Allgather().

Further, a fixed-point arithmetic implementation

18

i
Z i i

dZ
S Z

dt
τ = −

i
E i i

dE
Z E

dt
τ = −

i
P i i

dP
E P

dt
τ = −

ij

E i j ij

dE
Z Z E

dt
τ = −

ij

P ij ij

dP
E P

dt
τ = −

j
Z j j

dZ
S Z

dt
τ = −

j
E j j

dE
Z E

dt
τ = −

j
P j j

dP
E P

dt
τ = −

iS jS

presynaptic activity postsynaptic activity

ij
ij

i j

P
w

PP
=

logj jPβ =

Figure 12: The equations of the network with the
highest complexity, called E-type.

of the BCPNN has been developed. The target use
for this implementation is in hardware implementa-
tions but it can also be advantageous to use in other
applications because it reduces the memory require-
ments with 30%.

5.2 Results

Since a node on BG/L only has 1/16 of the memory
of a node on Lenngren, the scaling experiments on
BG/L were set up to use 16 times more nodes than
corresponding experiments on Lenngren. This means
that the programs filled the memory on every node
on both clusters. Scaling was studied under the con-
dition that the problem size was increased together
with the number of processors, which is referred to as
scaled speedup. If the program parallelizes perfectly
the scaled speedup measure is constant with increas-
ing number of processors.

We did not use the speedup measure where the
running time of a problem of constant size is plotted
as a function of the number of processors is increased,
the reason being that the application studied has a
relatively large and fixed part that runs on each node.
When the problem size is scaled more than an order
of magnitude, this part influences the running times
for the smaller sized networks.

Neither did we plot the scaling of the parallel pro-
gram relative to an optimal implementation on a sin-
gle processor. This is because the problem is very
memory intensive and it is not possible to run on a

Train Retrieval Total
P-type 0.0130 0.0196 0.0326
Z-type 0.0270 0.0825 0.109
E-type 2.29 0.0538 2.344

Table 2: The iteration times for three different net-
work complexities on 128 processors on Lenngren.
Time is measured in seconds.

Train Retrieval Total
P-type 0.007 0.0184 0.0254
Z-type 0.018 0.0736 0.0916
E-type 0.718 0.0415 0.756

Table 3: The iteration times for three different net-
work complexities on 2048 processors (16 · 128) on
BG/L. Time is measured in seconds.

single processor. We need to run it on a cluster com-
puter not only for the processing power but also for
the available memory resources.

The problem size was varied in two ways; Firstly,
the number of units was increased, each having a con-
stant number of connections. Secondly, the number
of connections per unit was increased, holding the
number of units constant. Here, we present scaling
results for both types of scaling.

5.2.1 Running times for a mouse sized
network

Here we run a network with 2048 hypercolumns and
1.2 · 105 connections per unit. This network is 30%
larger than a mouse cortex equivalent network (Jo-
hansson and Lansner, 2004b,a).

Table 2 shows the iteration times on 128 pro-
cessors on Lenngren. On each processor 16 hyper-
columns were allocated. Running the Z-type network
was 3.3 times slower and E-type network was 72 times
slower than a P-type network.

Table 3 shows the iteration times on 2048 proces-
sors on BG/L. On each processor one hypercolumn
was allocated. Running the Z-type network was 3.6
times slower and E-type network was 30 times slower
than a P-type network.

The more complex units and connections were,
the better the scaling became because more compu-
tations were done in each iteration. In the case of the
most simplistic network, the computations needed to
administrate the sparse connectivity and to compute
the resident part of the network on each processor
were noticeable.

The retrieval times for the Z-type network were

19

the longest because two logarithms are computed for
each weight in the synaptic summation for each unit.
In case of the P-type network no logarithm needs to
be computed in the synaptic summation, and for the
E-type one logarithm is computed for each weight in
the synaptic summation.

5.2.2 Scaling of Hypercolumns

In Figure 13 the scaling, on Lenngren, of the network
when the number of hypercolumns was increased is
plotted. The number of connections per unit was
fixed to 4 · 104. The retrieval times scaled linearly
and with a factor smaller than the rate by which
the number of processors was increased. The train-
ing times scaled linearly, but slightly faster, than the
rate by which the number of processors was increased
for the P- and Z-type networks. The Z-type network
does not have delayed update of the units’ state vari-
ables and, consequently, it has a poorer scaling than
the P-type network. In case of the E-type network,
the training times scaled no faster than the increase
in processing power. This was because the training
phase of the E-type network is much more computa-
tionally demanding than for the other two network
types.

In Figure 14, the scaling on BG/L is showed for
the same three networks but run on 16 times more
processors. The general results were the same with
one exception; the training times for the computa-
tionally intensive E-network increase slightly faster
than the increase in processing power. The probable
cause is that the execution time of the resident part
of the problem was becoming proportionally larger
since the problem is dived into a smaller computa-
tional grain size.

5.2.3 Scaling of Connections

In Figure 15 the scaling, on Lenngren, of a P-type net-
work when the number of connections per unit was
increased is plotted. The number of hypercolumns
was fixed to 2048. Figure 16 shows the iteration times
on BG/L, where 16 times more processors were used
that on Lenngren. From these results we can con-
clude that neither the training nor the retrieval times
scales faster than the increase in processing power
when more connections are added.

5.2.4 A network model of record size

The largest simulation was a P-type network run on
256 nodes on Lenngren. This network had 1.6 million
units and 200 billion connections. The iteration time
of the training phase was 51 ms and for the retrieval

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

Figure 13: The iteration times on Lenngren for net-
works with 64 hypercolumns per processor. The top
plot is for P-type, the middle for Z-type, and the
lower plot is for E-type networks. The number of
connections per unit was fixed to 40000.

20

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors

T
im

e
pe

r
Ite

ra
tio

n
(s

)

training
retrieval

Figure 14: The iteration times on BG/L for networks
with four hypercolumns per processor. The top plot is
for P-type, the middle for Z-type, and the lower plot
is for E-type networks. The number of connections
per unit was fixed to 40000.

20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Processors

T
im

e
pe

r
Ite

ra
tio

n

training
retrieval

Figure 15: The iteration times on Lenngren for a P-
type network with a constant number of 2048 hyper-
columns.

phase it was 61 ms, which is close to real-time perfor-
mance. The network was used for doing pattern com-
pletion and noise reduction on color images. A testi-
mony of the code’s efficiency comes from setting the
unofficial record in power use on the Lenngren clus-
ter. Lenngren actually used more power to run this
network than it used when running the benchmark
programs for the top-500 supercomputers list. The
power usage peaked at around 120 kW, which meant
that the average connection drew 6 · 10−7 W. Trans-
lated into the biological equivalent this is roughly
10−8 W per synapse. The corresponding figure for
the human brain is 3 · 10−14 W per synapse given
that the human body consumes energy at a rate of
150 W (Henry, 2005) and that 20% of this energy is
used by the 1011 neurons and 1015 synapses of the
brain (Kandel et al., 2000).

6 Discussion

A reason sometimes given for staying away from large
scale neuronal network models is that there would be
no point to build a biophysically detailed model of a
brain scale neuronal network since the model would
be as complex as the system it represents and equally
hard to understand. This is a grave misconception,
since, on the contrary, if we actually had an exact
quantitative model of a human brain in the computer,
which, of course, is impossible, it would be extremely
beneficial. Obviously, since we would have full access
to every nitty-gritty detail in this “brain” that would

21

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Processors

T
im

e
pe

r
Ite

ra
tio

n

training
retrieval

Figure 16: The iteration times on BG/L for a P-
type network with a constant number of 2048 hyper-
columns.

dramatically speed up progress in understanding of
this extremely complex structure. Unfortunately, or
perhaps fortunately, this is a complete utopia, and
we have to bear with much simpler models in the
foreseeable future.

6.1 Trade-off between numbers and
complexity

The starting point for network modeling is the com-
ponent cells and their synaptic interactions, including
transmission, conduction delays, and, synaptic plas-
ticity. The level of complexity of model neurons now
becomes more of an issue. Given our limited compu-
tational resources, there is a trade-off between com-
plexity of the cell models and the size of the network.
It is a painful fact that a high-end PC of today gets
unbearably slow as model network size grows beyond
some hundred cells.

There is some light in the tunnel, however, since
one reason for avoiding large-scale or full-scale simu-
lations is now gradually disappearing. Although the
reduction of physical dimensions of integrated circuits
and increasing clock speed may be approaching their
limits, the number of processors operating in paral-
lel in computers is now starting to increase dramat-
ically. Parallel computing is beginning to reach the
consumer market resulting in a drop in prices. It
is quite likely that we will have desktop boxes with
hundreds of parallel processors within the next five
years. Since neuronal networks represent computa-
tionally homogeneous computational structures, par-

allel simulation is relatively straightforward. Thus, in
the near future, computer power will no longer pre-
vent us from putting together and study large and
even full-scale models of global brain networks.

6.2 Number of free parameters

A real and unavoidable, but disturbing, fact is that
the number of free parameters increases as you go
from the single cell model to a network with a num-
ber of cell types and different types of interactions
between them. Even rather simplistic, conductance
based multi-compartmental model neurons comprise
tens of equations and hundreds of parameters. The
number of synapses in a big network model are many
more and they too require some equations and param-
eters. Thus, any brain-scale network model would
contain on the order of billions of parameters. Even
with advanced, automated, parameter search it would
be hopeless to find a reasonably adequate combina-
tion of these massive amounts of parameters. This
appears to put unreachable demands on the avail-
ability of experimental data to constrain the model.
Fortunately, the situation is not that bad. Neuronal
networks are typically described as comprising a quite
limited number of cell types, with basically the same
properties but some variation within the population.
The parameter used for one neuron of a certain type
is likely to do for the others as well, possibly with
some compact description of a distribution around
a mean. This holds for the synaptic interactions as
well, though now we need to consider pairs of cell
types. Moreover, synaptic conductances are not de-
termined arbitrarily, but are presumably the result of
the action of some kind of, so far unknown, learning
rule coupling them to historical network activity.

Thus, the good news is that the number of truly
free parameters is to some extent independent of the
actual number of neurons and synapses used in a
model. The same averages, distributions and learn-
ing rules hold for the huge network model as well as
the tiny one. Knowledge about the distribution of
cell and synaptic properties of course becomes im-
portant. On the other hand, the actual details of,
e.g., dendritic arborization of one individual cell is
less important than in single cell modeling, since this
is a typical thing that varies within the population.
What really increases with increasing numbers is the
match between model and reality.

22

6.3 Cost of complex cell models in
large scale simulations

Large-scale network models shift the balance so that
synaptic complexity takes over as the limiting factor.
Somewhat unintuitive, for really large networks it
comes with little extra cost to have complex cell mod-
els! Contrary to the case for single cells and small net-
works, the solution methods used for, e.g., dendritic
integration does not add significantly to the cost of
computation, since synaptic computation dominates.

Furthermore, perhaps surprisingly, parallel neural
simulation is often bound by local computation and
not by inter-neuronal communication. A factor of
major influence on communication speed is whether
neuronal interactions can be represented by spiking
events or if they are graded. It is crucial for scala-
bility that the action potential can be represented as
a binary event and that we can use AER (Address
Event Representation) based communication (Bailey
and Hammerstrom, 1988). As soon as we need to in-
corporate graded interaction of some sort in the cell-
to-cell interaction, like gap junctions or sub-threshold
transmitter release, parallel simulations needs to be
organized very differently and the neuronal interac-
tion becomes potentially performance limiting. Even
so, parallelization of the model will be beneficial in
this case as well, and good simulator design will be
able to provide reasonable simulation times in such
cases as well. Given this development we are likely to
see an increasing use of complex network modeling in
neuroscience in the coming years.

6.4 Mapping the model onto the Blue
Gene/L torus

In BG/L, every node is connected to six neighbours
through the 3D torus network. Communication is
particularly efficient with nodes a small number of
hops away. Since SPLIT makes extensive use of pair-
wise communication, it should be possible to gain effi-
ciency from this but we have not yet explored how to
map our model onto the torus. As described above,
the SPLIT library already has support for specifica-
tion of the mapping from neurons to slave processes.
The solution should be fairly straightforward since
our cortex model has an inherent 2D geometry where
most data is exchanged between 2D-neighbors. The
problem thus reduces to folding a 2D sheet onto the
3D torus.

7 Conclusions

Our study demonstrates that supercomputing power
is now sufficient to simulate neuronal networks with
numbers of model neurons and synapses approach-
ing those in the brains of small mammals. Most
importantly, this can be done without totally sac-
rificing the level of biological detail in neuron and
synapse models. The model neurons used in our sim-
ulations were multi-compartmental and of a conduc-
tance based, Hodgkin-Huxley type, representing an
intermediate level of biological detail.

The largest network model simulated so far com-
prises eight million neurons and four billion synap-
tic connections. Considering that we only simulate
specific cell types in one cortical layer, this corre-
sponds to 240000 minicolumns or almost half of the
rat neocortex (Johansson and Lansner, 2004a). To
our knowledge this is, by far, the largest simulation
of this type ever performed. It takes about one and
a half hour to simulate one second of dynamic net-
work activity. Simulation time is dominated by local
computation and there is a significant potential gain
of further parallelization of local computation.

We have also shown that an abstract, connection-
ist type, model of neocortex has linear scaling charac-
teristics, both when the number of units and connec-
tions is increased. Generally the model scales as ZH ,
where Z is the number of connections per unit and
H the number of hypercolumns. The largest network
simulated had about a million units and 200 billion
connections. It takes about ten seconds to simulate
one second of network activity, including synaptic
plasticity. Finally, we conclude that the simulated
network requires five to six orders of magnitude more
energy per synapse than its biological counterpart;
the human brain.

Four techniques were used to achieve good per-
formance; delayed update, computation of the leaky
integrators in the logarithmic domain, adjacency lists
for effective indexing of the units in the sparse con-
nectivity matrix, and AER for effective communica-
tion. For future explorations of the brain’s cognitive
functions, this type of abstract model is an important
tool.

Finally, we conclude that the simulation tools de-
scribed here can efficiently utilize the massive paral-
lelism in today’s fastest computer, Blue Gene/L.

8 Acknowledgments

We would like to thank Carl G. Tengwall and Erling
Weibust, Blue Gene Solutions, IBM Deep Computing
EMEA, IBM Svenska AB, and, Cindy Mestad, James

23

C. Pischke, Steven M. Westerbeck and Michael Hen-
necke for excellent support when running on the Blue
Gene/L installation at the Deep Computing Capacity
on Demand Center, IBM, Rochester. Many thanks
also to PDC, KTH, and, SNIC, for access to the Dell
cluster Lenngren.

References

Amit, D. (1989). Modeling Brain Function: The
World of attractor neural networks. Cambridge
University Press, New York.

Anderson, J. S., Lampl, I., Gillespie, D. C., and Fer-
ster, D. (2001). Membrane potential and conduc-
tance changes underlying length tuning of cells in
cat primary visual cortex. J Neurosci, 21(6):2104–
12.

Bailey, J. and Hammerstrom, D. (1988). Why vlsi
implementations of associative vlcns require con-
nection multiplexing. In International Conference
on Neural Networks, San Diego, U.S.A.

Blakeslee, B. and McCourt, M. E. (2004). A unified
theory of brightness contrast and assimilation in-
corporating oriented multiscale spatial filtering and
contrast normalization. Vision Res, 44(21):2483–
503.

Bower, J. M. and Beeman, D. (1998). The book of
GENESIS: Exploring realistic neural models with
the GEneral NEural SImulation System. Springer-
Verlag, New York, 2 edition. ISBN 0-387-94938-0.

Churchland, P. S. and Sejnowski, T. J. (1992). The
Computational Brain. The MIT Press, Cambridge,
Massachusetts.

Compte, A., Brunel, N., Goldman-Rakic, P. S., and
Wang, X. J. (2000). Synaptic mechanisms and net-
work dynamics underlying spatial working mem-
ory in a cortical network model. Cereb Cortex,
10(9):910–23.

Cossart, R., Aronov, D., and Yuste, R. (2003). At-
tractor dynamics of network up states in the neo-
cortex. Nature, 423(6937):283–8.

Deiss, S. R., Douglas, R. J., and Whatley, A. M.
(1999). A pulse-coded communication infrastruc-
ture for neuromorphic systems. In Maass, W. and
Bishop, C. M., editors, Pulsed Neural Networks,
pages 157–178. The MIT Press, Cambridge, Mas-
sachusetts.

Djurfeldt, M., Rehn, M., Lundqvist, M., and Lansner,
A. (2006). Attractor dynamics in a modular net-
work model of neocortex. In preparation.

Douglas, R. J. and Martin, K. A. (2004). Neu-
ronal circuits of the neocortex. Annu Rev Neurosci,
27:419–51.

Fransén, E. and Lansner, A. (1995). Low spiking
rates in a population of mutually exciting pyrami-
dal cells. Network: Computation in Neural Sys-
tems, 6(2):271–288.

Fransén, E. and Lansner, A. (1998). A model of cor-
tical associative memory based on a horizontal net-
work of conneted columns. Network: Computation
in Neural Systems, 9:235–264.

Frye, J. (2005). http://brain.cse.unr.edu/ncsdocs/.

Fuster, J. M. (1995). Memory in the Cerebral Cortex.
The MIT Press, Cambridge, Massachusetts.

Gara, A., Blumrich, M. A., Chen, D., Chiu, G. L.-
T., Coteus, P., Giampapa, M. E., Haring, R. A.,
Heidelberger, P., Hoenicke, D., Kopcsay, G. V.,
Liebsch, T. A., Ohmacht, M., Steinmacher-Burow,
B. D., Takken, T., and Vranas, P. (2005). Overview
of the Blue Gene/L system architecture. IBM Jour-
nal of Reasearch and Development, 49(2/3):195–
212.

Gross, J. L. and Yellen, J. (1998). Graph theory and
its applications. CRC Press, Boca Raton, Florida,
2 edition.

Haberly, L. B. and Bower, J. M. (1989). Olfactory
cortex: model circuit for study of associative mem-
ory? Trends Neurosci, 12(7):258–64.

Hammarlund, P. and Ekeberg, O. (1998). Large neu-
ral network simulations on multiple hardware plat-
forms. J Comput Neurosci, 5(4):443–59.

Henry, C. (2005). Basal metabolic rate studies in hu-
mans: measurement and development of new equa-
tions. Public Health Nutr, 8(7A):1133–52.

Hertz, J., Krogh, A., and Palmer, R. (1991). In-
troduction to the Theory of Neural Computation.
Addison-Wesley, Redwood, CA.

Hines, M. and Carnevale, N. T. (1997). The neuron
simulation environment. Neural Comput., 9:1179–
1209.

Hopfield, J. J. (1982). Neural networks and physi-
cal systems with emergent collective computational
abilities. Proceedings of the National Academy of
Sciences, USA, 79:2554–2558.

24

Hubel, D. H. and Wiesel, T. N. (1977). Ferrier
lecture. functional architecture of macaque mon-
key visual cortex. Proc R Soc Lond B Biol Sci,
198(1130):1–59.

Johansson, C. and Lansner, A. (2004a). Towards cor-
tex sized artificial nervous systems. In Negoita,
M. G., Howlett, R. J., and Jain, L. C., editors,
Knowledge-Based Intelligent Information and En-
gineering Systems, volume 3213 of Lecture Notes
in Artificial Intelligence, pages 959–966, Berlin.
Springer.

Johansson, C. and Lansner, A. (2004b). Towards
cortex sized attractor ann. In Ijspeert, A. J.,
Masayuki, M., and Naoki, W., editors, First In-
ternational Workshop on Biologically Inspired Ap-
proaches to Advanced Information Technology, vol-
ume 3141 of Lecture Notes in Computer Science,
pages 63–79, Berlin. Springer.

Johansson, C. and Lansner, A. (2006a). A fixed-
point arithmetic implementation of an exponen-
tially weighted moving average. Submitted to IEEE
Trans. on Neural Networks.

Johansson, C. and Lansner, A. (2006b). Towards cor-
tex sized artificial neural systems. Submitted to
Neural Networks.

Kandel, E. R., Schwartz, J. H., and Jessell, T. M.,
editors (2000). Principles of Neural Science.
McGraw-Hill, New York, 4th edition.

Kawaguchi, Y. (1995). Physiological subgroups of
nonpyramidal cells with specific morphological cha-
racteristics in layer II/III of rat frontal cortex.
J. Neurosci., 15:2638–2655.

Kawaguchi, Y. and Kubota, Y. (1993). Correla-
tion of physiological subgroupings of nonpyrami-
dal cells with parvalbumin- and calbindind28k-
immunoreactive neurons in layer v of rat frontal
cortex. J Neurophysiol, 70(1):387–96.

Lansner, A. and Ekeberg, Ö. (1989). A one-layer
feedback artificial neural network with a bayesian
learning rule. International Journal of Neural Sys-
tems, 1(1):77–87.

Lansner, A. and Fransén, E. (1992). Modeling heb-
bian cell assemblies comprised of cortical neurons.
Network: Computation in Neural Systems, 3:105–
119.

Lansner, A., Fransén, E., and Sandberg, A. (2003).
Cell assembly dynamics in detailed and abstract at-
tractor models of cortical associative memory. The-
ory Biosci, 122:19–36.

Lansner, A. and Holst, A. (1996). A higher order
Bayesian neural network with spiking units. Inter-
national Journal of Neural Systems, 7(2):115–128.

Lundqvist, M., Rehn, M., Djurfeldt, M., and Lansner,
A. (2006). Attractor dynamics in a modular net-
work model of neocortex. Network: Computation
in Neural Systems. Submitted.

Markram, H., Toledo-Rodriguez, M., Wang, Y.,
Gupta, A., Silberberg, G., and Wu, C. (2004).
Interneurons of the neocortical inhibitory system.
Nat Rev Neurosci, 5(10):793–807.

Mattia, M. and Giudice, P. (2000). Efficient event-
driven simulation of large networks of spiking neu-
rons and dynamical synapses. Neural Computation,
12:2305–2329.

Morrison, A., Mehring, C., Geisel, T., Aertsen,
A., and Diesmann, M. (2005). Advancing the
boundaries of high-connectivity network simulation
with distributed computing. Neural Computation,
17:1776–1801.

Mortara, A. and Vittoz, E. (1994). A communica-
tion architecture tailored for analog vlsi artificial
neural networks: intrinsic performance and limi-
tations. IEEE Transactions on Neural Networks,
5(3):459–466.

Mountcastle, V. B. (1978). An organizing principle
for cerebral function: The unit module and the dis-
tributed system. In Edelman, G. M. and Mount-
castle, V. B., editors, The mindful brain. The MIT
Press, Cambridge, Massachusetts.

Palm, G. (1982). Neural assemblies. An alternative
approach to artificial intelligence. Springer.

Peters, A. and Sethares, C. (1991). Organization of
pyramidal neurons in area 17 of monkey visual cor-
tex. J Comp Neurol, 306(1):1–23.

Rolls, E. T. and Treves, A. (1998). Neural Networks
and Brain Function. Oxford University Press, New
York.

Sandberg, A., Lansner, A., Petersson, K. M., and
Ekeberg, Ö. (2002). Bayesian attractor networks
with incremental learning. Network: Computation
in neural systems, 13:179–194.

Sandberg, A., Tegner, J., and Lansner, A. (2003).
A working memory model based on fast hebbian
learning. Network, 14(4):789–802.

25

Tam, A. and Wang, C. (2000). Efficient schedul-
ing of complete exchange on clusters. In 13th In-
ternational Conference on Parallel and Distributed
Computinh Systems, Las Vegas, USA.

Treves, A. and Rolls, E. T. (1994). Computational
analysis of the role of the hippocampus in memory.
Hippocampus, 4(3):374–91.

Willshaw, D. and Longuet-Higgins, H. (1970). Asso-
ciative memory models. In Meltzer, B. and Michie,
O., editors, Machine Learning, volume 5. Edin-
burgh University Press, Edinburgh, Scotland.

26

