ey

Y
FKTHE

VETENSKAP
39 OCH KONST &%

s

KTH Computer Science
and Communication

Large-scale Simulation of Neuronal Systems

MIKAEL DJURFELDT

Doctoral Thesis
Stockholm, Sweden 2009

TRITA-CSC-A 2009:06

ISSN-1653-5723 KTH School of Computer Science and Communication
ISRN-KTH/CSC/A--09/06--SE SE-100 44 Stockholm
ISBN 978-91-7415-323-1 SWEDEN

Akademisk avhandling som med tillstand av Kungl Tekniska hogskolan framlég-
ges till offentlig granskning for avliggande av teknologie doktorsexamen i data-
logi tisdagen den 9 juni 2009 klockan 10.00 i sal F2, Kungl Tekniska hogskolan,
Lindstedtsvéagen 26, Stockholm.

© Mikael Djurfeldt, april 2009

Tryck: Universitetsservice US AB

To my parents

Abstract

This thesis provides conceptual, mathematical and software methods and
tools to enable and facilitate the simulation of large-scale neuronal systems
on supercomputers. A perspective on the role of large-scale models in neuro-
science is given and a terminology for classifying models of neuronal networks
is proposed. A novel formalism for the description of connectivity of neuronal
network models is presented. This formalism, the connection-set algebra, can
be used both to provide concise and unambiguous descriptions of connectiv-
ity in papers in computational neuroscience, and as a component of simulator
scripting languages. Two different approaches to modularity when simulating
systems of networks are provided in the See simulator and in the MUSIC
API and library. A parallel simulation library for neuronal network models,
SPLIT, is improved and extended to handle large-scale models. Using this
library, a neuronal network model of layers II/III of the neocortex, based on
biophysical model neurons is simulated. Several key phenomena seen in the
living brain appear as emergent phenomena in the simulations. The memory
capacity of two models of different network size is measured and compared
to that of an artificial neural network. We conclude that the layer II/III
model performs as a robust auto-associative memory. Furthermore the model
is robust against perturbation of parameters, which is a hallmark of correct
models of living systems.

Sammanfattning

Denna avhandling tillhandahaller konceptuella, matematiska och program-
varumassiga metoder och verktyg for att mojliggora och underlatta simulering
av storskaliga neuronala system pa superdatorer. Avhandlingen ger ett per-
spektiv pa rollen av storskaliga modeller i neurovetenskapen och foreslar en
terminologi for klassificering av modeller av neuronala néatverk. En ny forma-
lism for beskrivning av konnektivitet i sidana modeller presenteras. Denna
formalism, kopplingsméangdsalgebran, kan anvindas bade for att tillhandahal-
la koncisa och entydiga beskrivningar av konnektivitet i vetenskapliga artiklar
inom berédkningsneurobiologi och som en komponent i skriptsprak for simula-
torer. Tva olika angreppssatt for att astadkomma modularitet vid simulering
av system av natverk presenteras, simulatorn See och API-standarden och
programvaran MUSIC. En parallel simuleringsprogramvara for modeller av
neuronala natverk, SPLIT, forbéttras och uttkas s att storskaliga modeller
kan hanteras. Denna programvara anviands for att simulera en neuronnéts-
modell av lager II/III i neokortex, baserad pa biofysikaliska neuronmodeller.
Flera karaktéaristiska fenomen som férekommer i den levande hjarnan upp-
kommer ocksa i dessa simuleringar. Minneskapaciteten for tvad modeller av
olika storlek uppméts och jamférs med motsvarande métningar for ett arti-
ficiellt neuronnét. Slutsatsen dras att modellen av lager II/III fungerar som
ett robust autoassociativt minne. Vidare &r modellen robust vid stérning av
dess parametrar. Detta ar ett kdnnetecken for korrekta modeller av levande
system.

vii

ix

Acknowledgements

Many thanks to my main supervisor Orjan Ekeberg, my second supervisor An-
ders Lansner and all others at the department for Computational Biology at KTH,
Stockholm. Some of the work presented here was done in collaboration with Mikael
Lundqvist, Johannes Hjorth, Martin Rehn, Christopher Johansson, Anders Sand-
berg, Moritz Helias, Jochen Eppler, Tobias Potjans, Markus Diesmann, Niraj Du-
dani, Upinder S. Bhalla and Jeanette Hellgren. I thank NADA/CSC, SANS/CB
and Anders Lansner for providing a place for me, and resources to complete this
thesis, and would like to direct special thanks to Erik Aurell and Ingrid Melinder
for support in times of need.

The work on this thesis has been performed during an extended period where
I’ve been involved in several projects: the development of the GNU Guile Scheme
interpreter and the See simulator, studies of the basal ganglia with Ann Graybiel
at MIT, tool development and demos in preparation for the acquisition of the Blue
Gene/L supercomputer Hebb, and work in the MUSIC and FACETS projects, to
name the most important ones. During this time, and before, I've met many people
who have taught me, shaped my thinking, and/or been important in other ways.
I would like to thank Tomas Hokfelt, Joacim Halén, Richard M. Stallman, Gerald
Jay Sussman, Jim Blandy, Marius Vollmer, Ann Graybiel, Yasuo Kubota, Naotaka
Fujii, Richard Courtemanche, Bill DeCoteau, Carl G. Tengwall, Andrew Davison,
and many more whom I've arbitrarily omitted.

Orjan Ekeberg has not only given me unfailing support, shaped and strength-
ened my thinking, given the best advice and deepest insights on countless occasions,
but has also been a very good problem solving partner in many, many instances,
especially during our joint design of MUSIC, which was a joy.

I thank Gosta Froléen for important discussions and influences of classical and
empirical thinking, Per Larsson and Anders Holst for all great discussions on meta-
physics and physics, Roland Orre for introducing me to the higher levels of hardware
and software and for being a kind and good friend, Fredrik Ullén for all inspiration
and for being a good friend, Erik Fransén for a sincere attitude towards science and
for being a trustworthy friend with good humor, Johannes Hjorth for brightness
and humor, Anders Sandberg for scolarly insanity and humor, and Peter Loénner-
berg for being the master of humor and the best of friends. I could go on forever
praising all of you good friends and colleagues—please take no offense those of you
not mentioned.

This thesis could not have been made without the help of Alex and Alfred—
special thanks for taking care of your sister on those many occasions. Thanks also
for being such nice and friendly guys! Thanks to Sara for being so bright and
lovely, and easy and fun to be with. Finally, warm thanks to Diana for patience
and support, especially during the final weeks when this thesis was compiled.

This work was partly supported by KTH (doktorandtjéinst), INCF (Interna-
tional Neuroinformatics Coordinating Facility), the Swedish Science Council (Veten-
skapsradet, VR-621-2004-3807), and by the European Union (FP6-2004-IST-FETPI-
015879, FP7-HEALTH-2007-A-201716).

Contents

Contents xi
List of Figures xii
1 Introduction 1
1.1 Overview oo e 2
1.2 Contributions of this thesis 3
1.3 Papers o 4
2 Mathematical modeling in neuroscience 7
2.1 Simulation versus emulation 7
2.2 What do we mean by “model”? oL 8
2.3 The role of the model in current neuroscience 8
2.4 Model complexity o 9
2.5 Abstraction and level of description.o 10
2.6 Realism 11
2.7 Top-down and bottom-up approaches. 11
2.8 Explicitness 12
2.9 Large-scalemodels o 13
2.10 Upscaling o e 17
2.11 The connection-set algebra 17
3 Review of simulation software concepts 21
3.1 Important properties of simulator software 21
3.2 Diversity of simulators o000 22
3.3 Software interoperabilityo 22
3.4 Accuracy of simulationo 26
3.5 Specification of large-scale network models 26
3.6 Declarative versus procedural model description 27
3.7 Postprocessing and visualization 27
3.8 Verification of simulator function 28
3.9 Model verification 29
3.10 Model reproducibility oo 29

Xi

4 Modeling tools
4.1 See e e
4.2 MUSIC . . . e

4.3 The SPLIT simulator

5 A large-scale model of the cerebral cortex
5.1 The cortex as a recurrent attractor network
5.2 Methods e
5.3 Simulation results L
5.4 Memory capacity

6 Outlook
7 Conclusions

Bibliography

List of Figures

2.1 Enumerations as indices of connectivity matrix
2.2 The block operator

4.1 Structure of a See model of the early feline visual pathway
4.2 Typical multi-simulationo 0oL
4.3 Mappingofdata L
4.4 Timing of data transfer, slowdown
4.5 Timing of data transfer, speedup
4.6 Timing of ticks L
4.7 Speedup diagram for SPLIT simulator

5.1 Layer II/TII model structure
5.2 Layer II/TIT model raster plot
5.3 Simulated VSD
5.4 Emergent phenomena in layer II/IIT model
5.5 Memory capacity of layer II/IIl model

xii

31
31
33
38

41
41
42
43
46

51

55

57

Chapter 1

Introduction

In our quest to understand the human mind, this very mind presents some obsta-
cles. The mind arises through the processes of our brain, a physical entity, and is
thus constrained by physical limitations. Just as our immune system, although con-
strained by the physics of our bodies, still is prepared to recognize any pathogen,
our mind may well be prepared to tackle any scientific question. This comes at
a cost, however. Just as our immune system achieves its remarkable universality
by compensating its lack of physical resources with a sufficiently low specificity of
its antibodies (Edelman, 1987), we do not perceive the world as it is, but clad in
human categories, divided into the bits and pieces, and using the strategies, which
were relevant for guiding action in the ecological niche where we evolved.

How is it possible for an entity which cannot hold more than seven objects at
a time in its working memory (Miller, 1956) to understand a system as complex
as the brain? The answer is technology—the technology of reason (see, e.g., Plato,
387-347 BCE; Aristotle, 350 BCE), the technology of our scientific methods and
the technology of our tools. This thesis aims to provide conceptual, mathematical
and software methods and tools to enable and facilitate the simulation of large-scale
neuronal systems on supercomputers.

The field of computational neuroscience has its roots in seminal works of individ-
uals like Hebb (1949), Hodgkin and Huxley (1952), Rall (1959), Hubel and Wiesel
(1962) and Marr (1969, 1982) and in the field of neural networks. This field, in turn,
shares its roots with the field of computer science in the 1940’s and 50’s with works
such as McCulloch and Pitts (1943) and Papert (1960). Hodgkin and Huxley (1952)
described the interaction of ion channels in a patch of neuronal membrane using
a set of coupled non-linear ordinary differential equations and could explain and
quantitatively reproduce the basic features of the action potential. Via the equiv-
alent cylinder model of the dendrite (Rall, 1959), developments in computational
neuroscience led to the first descriptions of the dynamics of neocortical neurons
(see, e.g., Traub, 1979). The speed of computation of computers did not allow

2 CHAPTER 1. INTRODUCTION

simulation of detailed models of neuronal networks until during the 1980’s during
which the first neuronal network simulation programs were developed (e.g., Ekeberg
et al., 1993; Hines, 1993; Bower and Beeman, 1998). Here, detailed means models
based on multi-compartmental units with Hodgkin-Huxley dynamics. The SPLIT
simulator (Hammarlund and Ekeberg, 1998) was the first parallelized software for
simulation of detailed models of neuronal networks. SPLIT made it possible to run
such simulations on supercomputers, such as vector machines and cluster comput-
ers, thereby enabling the simulation of larger network models. This paved the way
for the first biologically detailed model of a cortical associative memory (Fransén
and Lansner, 1998).

As the system under study, and its model, become more complex, we need
techniques to handle this complexity. At the conceptual level, in mathematics as
well as in software, abstraction and the strategy of divide-and-conquer are the main
enabling tools. In this thesis, we will use these tools at all three levels to make
the simulation of a large and complex model of cortical layers II/III (chapter 5)
feasible.

1.1 Overview

The thesis begins with a discussion of mathematical modeling in neuroscience in
chapter 2. Building on the works of Marr (1982) and Churchland and Sejnowski
(1992), this chapter presents a terminology for certain properties which distinguishe
models of neural systems, such as abstraction, degree of detail, realism and explicit-
ness. It concludes with the presentation of a novel formalism for the description of
connectivity in neuronal network models in section 2.11. Chapter 3 provides a re-
view of issues related to simulation of neuronal network models and a discussion of
simulation tools. This is followed by chapter 4 which begins with the presentation
of two different kinds of modular frameworks, the See simulator and MUSIC, which
can be used to simulate systems of networks, and concludes with a description of
the SPLIT simulator for the simulation of very large neuronal networks. In chapter
5, this technology is applied in the simulation of a large-scale model of cortical lay-
ers II/III. The thesis is concluded with an outlook in chapter 6, discussing future
challenges in the field and conclusions in chapter 7.

1.2.

1.2

CONTRIBUTIONS OF THIS THESIS 3

Contributions of this thesis

I discuss the role of mathematical modeling in computational neuroscience.
(Chapter 2)

I present a perspective on the role of large-scale modeling in computational
neuroscience. (Papers I, VI, Chapter 2.)

I present a novel formalism for the representation of connectivity patterns in
neuronal network models—the connection set algebra. (Paper I1.)

I present an analysis of software for simulation of large-scale neuronal network
models. (Chapter 3)

In the See simulator (Paper IIT) I provide an early example of the use of a
general purpose scripting language for model description and simulator ex-
tension.

In the See simulator (Paper III), its modular framework is an early example of
a methodology which has later been absorbed by simulators such as Genesis3
and MOOSE.

I design and implement software which allows parallel applications to commu-
nicate massive amounts of data efficienctly within a cluster computer. (Paper
1v)

I design and implement a framework which enables software modularity and
re-usability in the domain of parallel neuronal network simulators and asso-
ciated tools. (Paper IV.)

I demonstrate that very large scale biologically detailed models of brain net-
works are technologically feasible. (Papers V, VI.)

I demonstrate that a large-scale detailed neuronal network model of cortical
layers II/IIT model displays ground state in addition to the active state and
that these network states are associated with population-level rythms in the
a and v regimes, respectively. (Paper VI.)

I demonstrate that medium and large-scale detailed neuronal network models
of cortical layers II/IIT model show a range of emergent dynamic phenomena
which are also present in vivo. (Papers VI, VIL.)

1.3

I

IIL

II1.

IV.

VL

VII

CHAPTER 1. INTRODUCTION

Papers

Mikael Djurfeldt, Orjan Ekeberg and Anders Lansner, “Large-scale modeling—
a tool for conquering the complexity of the brain”, Front. Neuroinform. 2(1)
(2008), 1-4.

Mikael Djurfeldt, “The Connection-set Algebra—a novel formalism for the
representation of connectivity structure in neuronal network models”, Neu-
roinformatics (2009), submitted.

Mikael Djurfeldt, Anders Sandberg, Orjan Ekeberg and Anders Lansner,
“See—a framework for simulation of biologically detailed and artificial neural
networks and systems”, Neurocomputing 26-27 (1999), 997-1003.

Mikael Djurfeldt, Johannes Hjorth, Jochen Eppler, Niraj Dudani, Moritz He-
lias, Tobias Potjans, Upinder S. Bhalla, Markus Diesmann, Jeanette Hellgren
and Orjan Ekeberg, “Run-time interoperability between neuronal simulators
based on the MUSIC framework”, Neuroinformatics (2009), in preparation.

Mikael Djurfeldt, Christopher Johansson, Orjan Ekeberg, Martin Rehn, Mikael
Lundqvist and Anders Lansner, “Massively parallel simulation of brain-scale
neuronal network models”, KTH, School of Computer Science and Commu-
nication (2005), TRITA-NA-P0513.

Mikael Djurfeldt, Mikael Lundqvist, Christopher Johansson, Martin Rehn,
Orjan Ekeberg and Anders Lansner, “Brain-scale simulation of the neocor-
tex on the Blue Gene/L supercomputer”, IBM J Research and Development
52(1/2) (2008), 31-42

Mikael Lundqvist, Martin Rehn, Mikael Djurfeldt and Anders Lansner, “At-
tractor dynamics in a modular network model of the neocortex”, Network:
Computation in Neural Systems 17 (2006), 253-278

1.3. PAPERS 5

My contributions per paper

I

11
II1

v

VI

VII

I performed the major part of the analysis of the role of large-scale models in
computational neuroscience and wrote the paper.

I conceived the connection-set algebra and wrote the paper.

I designed and implemented the See simulator, took part in the development
of the Guile scheme interpreter and implemented major parts of it. I wrote
the paper.

I coordinated the work described in the paper. I conceived the original idea
behind MUSIC, developed the design together with Orjan Ekeberg and im-
plemented it. I took part in the development of the NEST-MUSIC interface
and assisted the development of the MOOSE-MUSIC interface. I wrote part
of the paper.

I adapted and extended the SPLIT simulator for use with large-scale models.
I implemented a simple but reasonably efficient complete pair-wise exchange
algorithm and the connection-set algebra. I wrote the paper and made the
figures, with exception for the chapter on the abstract model (chapter 5). I
developed a scalable version of the cortical layer II/IIT model.

I designed the experiments. I made the simulation work and the data analysis.
I wrote software for simulation and analysis and extended and adapted the
SPLIT simulator for use with large-scale models. I developed an up-scaled
version of the layer II/IIT cortex model. I made the graphs and wrote the
major part of the paper.

I participated in model development and wrote part of the software used in
the paper. I made figure 3A.

Chapter 2

Mathematical modeling in
neuroscience

In this chapter we discuss the role of mathematical modeling in neuroscience, and
the role of large-scale models in particular. The discussion concludes with section
2.11, which presents the connection-set algebra formalism. This chapter is, with
the exception of section 2.11, based on a report from the 1st INCF Workshop on
Large-scale Modeling of the Nervous System (Djurfeldt and Lansner, 2007).

2.1 Simulation versus emulation

Alan Turing used the term simulation in a very specialized sense. The term referred
to the simulation by a digital computer of a subject discrete-state machine, defined
by a set of state transitions, inputs and outputs.

In computational neuroscience, the term refers to the computation of the nu-
merical approximation of a solution over time to the equations of a mathematical
model. When performed on a digital computer, such computations are subject to
the limitations of the computer. For example, some quantum mechanical processes
can not be simulated on a digital computer. However, such limitations do not seem
to be of any relevance to current computational models of the nervous system.

By an emulation, we refer to a model of the nervous system in the shape of
a physical realization, for example in terms of an electronic circuit. The projects
DAISY (Kennedy, 2005) and FACETS (Meier, 2005) both implement VLSI chips
emulating neural circuits (see, e.g., Schemmel et al., 2008).

While most simulations are slower than real-time (time simulated is shorter than
the wall-clock time required to compute the solution), it is possible to construct an
artefact which can emulate a neural circuit in real-time. The important consequence
is that the artefact can interact with the environment in real time and react to a
continuous flow of events occurring asynchronously. In some cases this is also
achievable with a simulation on a digital computer, as exemplified by the dynamic-

7

8 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

clamp technique (Sharp et al., 1993) or the goal of the Blue Brain project to simulate
a cortical column on a super-computer in real time.

2.2 What do we mean by “model”?

Mathematical models are the language of science. According to Wikipedia, a math-
ematical model is an abstract model expressed in mathematical language. Further:

An abstract model [...] is a theoretical construct that represents some-
thing, with a set of variables and a set of logical and quantitative rela-
tionships between them. Models in this sense are constructed to enable
reasoning within an idealized logical framework [...] and are an impor-
tant component of scientific theories. Idealized here means that the
model may make explicit assumptions that are known to be false (or
incomplete) in some detail. Such assumptions may be justified on the
grounds that they simplify the model while, at the same time, allowing
the production of acceptably accurate solutions [...].

It should be remembered that a mathematical model of reality should always
be regarded as idealized in the sense above. At least this holds true for all types of
model considered here.

2.3 The role of the model in current neuroscience

Let us now briefly list the various roles that models currently have in neuroscience.
As stated above, models are the language of science. We use models to

o formulate hypotheses regarding the function of the nervous system

The activity of formulating a hypothesis in terms of a model requires collection
of experimental data. It is often discovered that crucial data are missing. In this
respect a model could be considered

e a tool to identify what we don’t know

Often, hidden contradictions and inconsistencies are revealed during the formula-
tion process, and it happens that models don’t yield expected results so that a
further role of the model is

 validating self-consistency of the description of a phenomenon or function

If the confidence in the model is strong but the predictions differ from experiment
the model can be used to

o falsify hypotheses

If phenomena in the model are unexpected or unobserved a model can

2.4. MODEL COMPLEXITY 9

e suggest new experiments
Finally, a model can be used as a
o platform for integrating knowledge

unifying experimental data from many sources in a consistent manner.

2.4 Model complexity

The golden standard with regard to model building is well captured by words often
attributed to a certain famous physicist: “Everything should be made as simple as
possible, but not simpler.” Model complexity can be measured in many ways. For
this discussion, two measures are particularly important: 1. the number of model
parameters, and 2. the number of state variables in the model. The latter measure
will here be denoted as model dimension.

A model is always tailored to answer a specific set of questions. For a physicist,
the ideal is to pick the model with the smallest number of parameters which will
still be sufficient to answer the scientific questions posed. This has several good
consequences:

1. A simple model can be analyzed and understood. More complex aspects of
nature can be understood through the strategy of divide-and-conquer.

2. A simpler model expresses a simpler scientific hypothesis in the sense of Oc-
cam’s razor. It cuts away elements that are irrelevant to the problem studied.

3. A model with fewer parameters is better constrained, making it easier to
falsify. A model with many parameters can too easily be adapted to the
results of any experiment.

Of the two measures of model complexity mentioned above, the first one is most
important. A model which has few parameters is more likely to express a well de-
fined piece of scientific knowledge in the form of a strong, i.e. falsifiable, hypothesis,
while the lack of this kind of simplicity threatens all three of the benefits above. A
large model dimension can make the model harder to analyze and understand but
there are many techniques available for handling that kind of complexity.

In addition, it is important to make a distinction between free parameters—
parameters which are tuned by the modeler or software to achieve a certain model
behavior—and parameters constrained by experimental data. A model should have
few free parameters in order not to lose benefit 3 above. Also, all model behavior
which is used to tune parameters is transformed from an “output” of the model to
an “input”, i.e., it can no longer be claimed as a result, or prediction, of the model.

10 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

2.5 Abstraction and level of description

The tool used to achieve a simple model is abstraction. The system is described at
a certain level and elements which are not believed to be important for answering
the scientific questions asked are taken away.

Neuroscience spans many levels of description from molecules to behavior. But
what does level mean? Churchland and Sejnowski (1992) discuss three categories
of levels. The structure of the nervous system has many different spatial scales
with substructures such as molecules, synapses, neurons, microcircuits, networks,
regions and systems (list slightly modified from Churchland). We call these levels
of organization. With some good will, behavior could be added at the top of this
hierarchy.

Marr (1982) described levels along a different dimension in his levels of analysis:
1. the computational level of abstract problem analysis, 2. the algorithmic level,
specifying a formal procedure to perform the task so that a given input will yield
the correct output, 3. the level of physical implementation. Marr argued that
a higher-level question was largely independent of the levels below and could be
analyzed independently of the lower level. However, it should be noted that Marr
used, to a large extent, neurobiological considerations to constrain and inspire his
computational theories and algorithms.

Churchlands third category, levels of processing, will not be discussed here.

For a model of the primate primary visual cortex, V1, Marr’s computational
level would correspond to what computations are being performed in V1 and why.
The algorithmic level would correspond to how the information being processed
on the computational level is represented and how the computations are carried
out, while the level of physical implementation describes the actual computational
elements performing these computations.

A typical large-scale network model, with single- or multicompartment units,
thus belongs to the level of physical implementation, since it deals with neurons
and synapses. But it can still be inspired, and constrained, from the other two
levels, and can embody principles from the “higher” levels.

So far, we have discussed levels of organization and levels of analysis. An abstract
model leaves out aspects of the description of reality in order to achieve simplicity.
Sometimes this means leaving out elements from a lower level of organization, but
it can also mean describing something at a higher level of analysis. A model of
visual processing in terms of filter banks and kernels is considered more abstract
than a model of neuronal populations in V1. Thus, we also talk about level of
abstraction.

A detailed model is often considered the opposite of an abstract model. Here, a
detailed model is defined to mean a model which spans several levels of organization.
A model which spans the levels from networks to behavior can thus simultaneously
be more abstract and more detailed compared to a model restricted to a single
but lower level of organization. A model of brain imaging data which incorporates
networks of simple units can be more detailed than a statistical model of an ion

2.6. REALISM 11

channel. Yet, because it leaves out so much of the detail beneath the level of
networks, it can also be more abstract than the latter model.

2.6 Realism

In order to say something about reality, and in order for a corresponding hypothesis
to be falsifiable, a model needs to be well rooted in empirical data, i.e. formulated
in a way that is consistent with a large set of experimental data.

It should now be made clear that, just as a model can be formulated on all of
the levels of organization discussed in section 2.5, empirical data can be obtained
on different levels of organization. In addition, models can be formulated on higher
levels of analysis (in the sense of section 2.5): A cognitive psychologist can retrieve
behavioral data and construct models at the algorithmic level, without a direct
reference to how these processes are physically implemented in the brain. Brain
imaging retrieves data at the levels of networks, regions and systems. Electrophys-
iology collects data at many levels of organization and this data can be used to
construct models at the level of physical implementation.

A model based on data from a lower level of organization, or formulated in
terms of elements from multiple lower levels of organization, is not necessarily
more realistic than data formulated and rooted at a higher level. Rather, a model
is realistic if it is well rooted in empirical data at the given level, if its parameters
are well constrained by these data, and if it correctly predicts data which has not
been used to tune the model.

Not only the parameters of a model, but also the equations, represent assump-
tions about reality. Some models are based on first principles, that is, their equa-
tions are established laws of physics. Models based on first principles, or models
with equations which can be derived from the laws of physics, can be trusted to
a larger extent than other models, because they rely less than other models on
assumptions in the form of peculiarities of the model equations or fitting of param-
eters.

2.7 Top-down and bottom-up approaches

The top-down approach to modeling most often means using hypotheses on the
computational or algorithmic levels as a starting point when approaching the for-
mulation of a model at the level of physical implementation. These functional
hypotheses guide the formulation of the model at the implementational level in
terms of what elements are included in the model and which experimental data are
considered important. A functional hypothesis can also complement experimental
data in the sense of giving additional constraints. For example, if we have limited
experimental data on the functional connectivity between inhibitory and excitatory
connectivity, an additional functional constraint would be that the activity in the
network must not be allowed to grow in an uncontrolled manner.

12 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

A top-down approach can also start with an abstract model, neglecting detail
below the level of organization at which the model is formulated. Succeeding models
can then increase the amount of detail, enabling them to account for a larger
set of experimental data. For example, a connectionist, rate-based model can be
developed into a spiking network model, followed by a Hodgkin-Huxley style model.
However, it should be noted that models are more typically developed outside of
such sequences, at a specific level of abstraction and detail suitable to the scientific
questions posed.

The bottom-up approach, in contrast, means using the level of physical imple-
mentation as a starting point with the hope of capturing function. For example,
what does the anatomy of the cerebral cortex mean? If we can, from the physical
level of synapses, dendrites, neurons and networks, identify computational primi-
tives of the cortex such primitives can be abstracted and we can move up one level
of analysis. This is one goal of projects like DAISY (Kennedy, 2005), FACETS
(Meier, 2005) and Blue Brain (Markram and Peck, 2004).

As with the top-down approach, a bottom-up approach can be concerned with
levels of organization. In this case, it means to take a lower level of organization as
a starting point for understanding the higher level.

In practise, the approach of a modeller is usually neither purely top-down nor
purely bottom-up, as was already evident in Marr’s work. Also, in the bottom-up
approach, the focus of experiments and the choice of elements to include in the
model is largely guided by functional hypotheses.

2.8 Explicitness

We define model explicitness to mean the degree to which the model is isomorphic
with reality, or, how directly state variables of the model can be mapped to empirical
data.

The degree of detail in a multi-compartment, Hodgkin-Huxley, model of a neu-
ron aids in making this type of model explicit in the sense above. During intracel-
lular recording of a neuron, it is often possible to block a subset of the ion channels
in order to directly measure the current of another channel subset, or, in order to
study the effect on cell behavior. The explicitness of the Hodgkin-Huxley formalism
then makes it easy to perform a corresponding manipulation in the model. It is
also easy to identify and display individual currents in the model.

In comparison, an integrate-and-fire model is less explicit. While recent versions
(e.g. Brette and Gerstner (2005)) of this type of model can faithfully reproduce a
spike train, some state variables correspond to the phenomenological effect of the
coordinated action of multiple channel types in the real neuron. In this case, it
is easy to compare the spike trains, but it is not as easy to map the dynamics of
the model to the individual currents of the real neuron. On the other hand, the
simplicity of the integrate-and-fire model makes it easier to analyze and understand.

Another aspect of explicitness is that it supports the role of the model as a

2.9. LARGE-SCALE MODELS 13

platform for integrating knowledge. An explicit model is more likely to connect
well to a wider range of experimental data, even data which were not targeted
when constructing the model.

2.9 Large-scale models

As defined here, a large-scale model is a model with a high dimension, i.e. a model
with a large number of state variables (on the order of hundreds of millions or
more). Thus, a detailed model of one cortical column can be large-scale while an
abstract model of a large network encompassing multiple columns is not necessarily
large-scale.

Integrate-and-fire models

The classical integrate-and-fire model (MacGregor and Oliver, 1974; Tuckwell, 1988)
has one state variable per neuron, representing the membrane potential. It is basi-
cally a linear leaky integrator with a voltage threshold and a reset mechanism. The
main advantage of this type of model compared to Hodgkin-Huxley type models is
its simplicity. For example, it has far fewer parameters, while it still captures es-
sential features of the neurons. Because it has fewer parameters it is easier to adapt
this type of model to experimental data. In this sense, it is easier to achieve a cer-
tain level of realism with an integrate-and-fire model than with a Hodgkin-Huxley
type model, while, with more effort and more data, the latter model can reach an
even higher degree of realism. Its simplicity also makes it possible to develop au-
tomated procedures for extracting parameters from data (Jolivet et al., 2004; Keat
et al., 2001; Paninski et al., 2004). Because of the low dimension and mathematical
tractability, it is easier to analyze and understand this type of model. Finally, the
simulation of this type of models require fewer computational resources making
it possible to simulate larger networks given the same hardware. For examples of
large integrate-and-fire-based network models, see Mehring et al. (2003); Aviel et al.
(2003); Tetzlaff et al. (2004); Kumar et al. (2007); Morrison et al. (2007a).

The integrate-and-fire paradigm has recently been developed in three directions
(Brette and Gerstner, 2005):

e the addition of a quadratic or exponential term, yielding a smooth spike
initiation zone (Latham et al., 2000; Fourcaud-Trocme et al., 2003);

e the addition of a second state variable, enabling modeling of subthreshold
resonances or adaptation (Izhikevich, 2003; Richardson et al., 2003);

« using active conductances to model synaptic inputs (Destexhe et al., 2003).

14 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

Hodgkin-Huxley models

In the Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952; Ekeberg et al., 1991),
the cell membrane potential, V' (¢), of a neural compartment is expressed as a dif-

ferential equation
av

"dt
where C,, is the membrane capacitance, I.omp the sum of currents from adjacent
compartments, I.,,q the sum of ionic currents through channels in the cell mem-
brane, and I, the sum of synaptic currents. The electrical behavior of the cell
is determined by by the ionic currents which are described through activation and
inactivation functions. For example, the delayed rectifier current, carried by potas-
sium ions, is described by

= Icomp + Ieond + Isyn (21)

Iy = (Exyr — V()G repnFer (2.2)
Here n is an activation function described by

Z—n =an(l —n)— Bun (2.3)
t
where «;, and 3, depend nonlinearly on V(¢).

A network model with multi-compartmental Hodgkin-Huxley type units is more
detailed than its integrate-and-fire counterpart. It is more complex, both by having
more parameters and a larger model dimension. As has been discussed in section
2.9, this requires more labor to determine parameters from experimental data.
Sometimes, not all data is available so that parameters need to be determined
more indirectly. The disadvantage is that this turns an output of the model into an
input (c.f., section 2.4). For example, if we tune the conductance of a K¢, channel
in order to obtain the correct time course of an AHP, instead of measuring this
conductance, we can no longer claim that our model predicts a correct AHP. In
this case, however, the kind of predictions which are of interest in a network model
appear at another level of organization within the model.

In section 2.8, the explicitness of HH-type models was discussed. The higher
level of detail allows this type of model to be connected to a wider range of experi-
mental data. The presence of ionic currents allows for comparatively easy modeling
of pharmacological manipulations. The 3D extent of a compartmental model allows
for the synthesis of EEG and LFP signals (Einevoll et al., 2007).

The bottom-up approach to the cortical column

Regardless of whether we use integrate-and-fire or Hodgkin-Huxley type units in
a network model, an important set of parameters that currently largely lacks an
experimental basis is the set of connectivity parameters. Data from, for example,
Thomson et al. (2002) and Binzegger et al. (2004) gives the statistics of connectivity
between pairs of cell types. This type of data has led to the use of random Gaussian

2.9. LARGE-SCALE MODELS 15

(e.g. Brunel (2000)) or random uniform (e.g. Haeusler and Maass (2007)) connec-
tivity in network models, consistent with such statistics. However, it is reasonable
to assume that the microcircuitry of a column has more structure than that. Also,
there is very limited data on the structure of long-range connectivity.

The Blue Brain project (Markram and Peck, 2004) aims to collect data on
individual cells, for example acquisition of cell morphology through cell labeling and
2-photon microscopy, and then using database techniques and specialized software
to reconstruct a virtual column. The superposition of reconstructed cells in 3D-
space may give additional constraints needed to get a more complete picture of the
microcircuitry. The aim is also to simulate a large-scale network model of a complete
column with multicompartmental Hodgkin-Huxley-type units without reference to
functional hypotheses about the network. Thus, the approach is essentially hard-
core bottom-up.

It is generally very difficult to experimentally determine the existence of a synap-
tic contact between cortical neurons from morphological data since axonal processes
can pass close to the dendritic processes of neurons without forming a synapse. In
essence, the only way to determine anatomically if there is a contact is by looking
at it with an electron microscope. It is also possible to determine the existence of a
connection electrophysiologically by recording from pairs of neurons (e.g., Thomson
et al., 2002).

One particularly interesting development with regard to the acquisition of con-
nectivity data is the method called “serial block-face scanning electron microscopy”
or SBFSEM (Denk and Horstmann, 2004). A microtome is placed in the chamber
of a scanning electron microscope. The face of the tissue sample is scanned and 50—
70 nm slices cut away, generating stacks of thousands of images from which a bulk
3D volume can be reconstructed. The acquired data has enough resolution to trace
thin axons and identify synapses. This method holds the promise of geometrically
reconstructing an entire neocortical minicolumn and extracting its circuitry.

The acquisition of data at multiple levels of organization leads to a new scale
of projects—a development which parallels the study of the genome and studies in
particle physics. There will be new kinds of challenges associated with industrial-
scale data acquisition in projects of thousands of man-years.

Combining the top-down and bottom-up approaches

A survey of existing literature in computational neuroscience shows that the pure
bottom-up approach to understanding network function is very rare. Part of the
explanation is that missing empirical data need to be complemented with functional
hypotheses in order to make progress possible. But a top-down approach may have
importance in other ways than replacing lacking knowledge. One may consider
the question whether a correctly implemented, detailed computer replica of the
cortical column would by itself say very much about network function. Because
a detailed model can be complex and hard to analyze and understand, modellers
tend to see functional hypotheses and abstract models as a necessary complement

16 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

in dissecting cortical function. It should still be noted that a computer replica is
much more accessible to experimentation than the living tissue in the sense that
any set of state variables can be logged and an arbitrary set of variables can be
simultaneously perturbed in a precise fashion.

An example of how a top-down approach can be combined with the bottom-up
approach is given by the model of paper VII (see paper VI for a large-scale version
of the model). The model is mainly designed to target the question: Is neocorti-
cal microarchitecture consistent with the hypothesis of attractor memory network
function? Here, most parameters of the neuron models are determined from exper-
imental data in a bottom-up manner. However, the connectivity parameters are
determined by combining a long-range connectivity structure required for attrac-
tor memory network function with the currently existing empirical constraints on
connectivity mentioned in section 2.9.

Another aspect of this model, and most or all other network models, is that the
parameters of a neuron type are replicated over the population of model neurons,
with or without random perturbation, in a crystal-like manner. This means that
even if a large-scale model of this type has a large model dimension, it can still have
a comparatively small number of parameters and, thus, be simple in the important
sense (c.f. section 2.4).

Volume simulation

Until now, Hodgkin-Huxley type models have represented the most basic level of or-
ganization at which we simulate neurons and circuits, with the exception of hybrid
models also including biochemical processes inside the cell. Data from the SBFSEM
method mentioned in section 2.9 opens up the prospect of a full 3D volume simu-
lation of a cortical column. Queisser et al. (2008) have presented initial attempts
in this direction at the level of a single cell. In the Hodgkin-Huxley approach, the
neuron is modelled as an electrical circuit. Here, instead, the 3D volume in which
the neuron is embedded is described in its entirety by partial differential equations
(PDEs) and simulated using the solver G (Bastian et al., 1997; Wittum, 2007).

A model of the 3D volume can be based on first principles in the sense discussed
in section 2.6. In this case, the model is based on Maxwell’s equations which
describe the dynamics of the electromagnetic field.

Simulation of growth processes

In order to fully understand the cortical architecture, it is necessary to understand
the development and growth processes from which it results. Within the DAISY
project (Kennedy, 2005), initial steps are currently taken to simulate the migration
of neuroblasts. This adds a requirement on the simulator which is not yet fulfilled by
standard neuron simulators such as Neuron and Genesis: there is a need to quantize
space. Simulation tools are being developed within DAISY to meet this demand.
The solver uG is based on a communication layer, DDD (Dynamic Distributed

2.10. UPSCALING 17

Data), which allows computational loads to migrate within a parallel computer
during simulation. This layer could also be a suitable substrate for the simulation
of growth processes.

2.10 Upscaling

A model of the bulk 3D volume of neural tissue using PDEs (section 2.9), if well-
rooted in empirical data, can be considered more realistic than the Hodgkin-Huxley
model. It is based on first principles (sections 2.9, 2.6) while the Hodgkin-Huxley
model is partly based on simplifying assumptions and curve fitting. This means
that we can use the 3D volume model to validate the multicompartmental Hodgkin-
Huxley model.

At the 1st INCF Workshop on Large-scale Modeling of the Nervous System,
Wittum (2006) reported on simulations of a single cell where ephaptic interac-
tions could be observed between two of the dendritic processes of the cell itself.
Such a phenomenon would not arise in the Hodgkin-Huxley model. It is also clear
that the surrounding interstitial fluid, neuropil, and dendritic processes have sub-
stantial effects on the electric behavior of the cell membrane, diverging from the
Hodgkin-Huxley model. Clearly, however, the 3D volume simulation is not a good
replacement for the Hodgkin-Huxley model, because it is computationally heavier.
The question then arises what alternatives we have to the HH model.

An important answer is given by the 3D model itself: There exist mathematical
techniques for deriving a model at a coarser scale from a model at a finer scale.
This methodology is called upscaling (Eberhard et al., 2004). Through upscaling
techniques it might be possible to derive a candidate model which might serve as a
better replacement for the Hodgkin-Huxley model.

2.11 The connection-set algebra

When building models of neuronal networks or systems, regardless if it is connec-
tionist rate-based, integrate-and-fire or Hodgkin-Huxley models, we are confronted
with the problem of describing how neurons connect to each other. As model com-
plexity increases, especially if the model contains multiple populations of neurons,
network connectivity can become demanding to handle. In this section, we present
a mathematical tool to describe the structure of connections between two neuronal
populations in a concise manner which captures the ideas of the model constructor
without introducing unnecessary complexity.

Introduction

The connection-set algebra is a novel formalism for the description of connectivity in
neuronal network models. It is described in detail in paper II. Some model script-
ing languages contain higher level constructs which abstract aspects of the model

18 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

description. For example, PyNN (Davison et al., 2009), the NEST Topology Mod-
ule (Plesser and Austvoll, 2009), and, EpsiloNN (Strey, 1997) contain constructs
for concisely treating sets of neurons collectively as populations, and standard con-
nection patterns such as “all-to-all”, “one-to-one” and random connectivity. All
languages mentioned allows the user to resort to a lower-level description where
neurons and connections are dealt with individually.

Here, we suggest a new way to describe connectivity in neuronal network models,
a connection-set algebra, which is declarative, compact and expressive. The scope
is more specialized compared to the model description languages referred to above
in that it only provides a representation of connectivity structure and does not deal
with neuronal populations, model composition, parameters or dynamics.

The connection-set algebra may be used to describe types of connectivity, i.e.
connection patterns, both to humans and to neuronal network simulators. It is
not restricted to a basic set of connection patterns. Rather, new ones can be
constructed using the operators of the algebra. The description is independent of
sizes of pre- and postsynaptic populations and of synapse and neuron models. It
decouples the description of connectivity structure from details of parallelization,
such as the partitioning of the problem and mapping of neurons and connections
to processors. A pilot implementation of the algebra has been used in a large-scale
neuronal network simulation (paper VI).

Connection-sets

In the connection-set algebra, a connection-set represents a connection pattern.
It can be regarded as the infinite connection matrix between two infinitely large
neuronal populations. When setting up connections between the populations the
neurons are first enumerated. For the standard case that the populations are enu-
merated using contiguous intervals of integers starting at 0, a rectangle, with one
corner in origo, is cut out of the infinite matrix. This rectangular matrix then be-
comes the connection matrix between the two populations (see Figure 2.1). When
describing a connection pattern, we are both interested in which connections exist
and in assigning wvalues, such as synapse efficacy and axonal delay, to connections.
In the connection-set algebra, the first purpose is served by masks, the second by
value sets.

A connection-set is a tuple of a mask, M and zero or more value sets, Vo, Vi, .. .:

(M, Vo, Vi,...) (2.4)

A mask describes which of all possible pairs of neurons are connected. A mask
can be viewed as a boolean matrix or as an indicator function

IsiNQXNOH{]:,T} (25)

Here, the domain Ny x Ny is the set of all possible pairs of pre- and postsynaptic
neuron indices, i.e. all pairs of non-negative integers.

2.11. THE CONNECTION-SET ALGEBRA 19

Ny S

\]

Nx

Figure 2.1: Enumerations of neuronal populations X and Y give integer indices
into the finite connection matrix S cut out of the infinite connection-set C.

In analogy to masks, a value set can be viewed as a matrix or as a function
V:Ny x Ny — RV (2.6)

where the domain Ny x Ny is the set of all possible pairs of pre- and postsynaptic
neuron indices and N = 1 in the common case.

Computing with connection-sets

The connection-set algebra includes a set of elementary (pre-existing) connection-
sets. One of these is the mask § which is used to specify one-to-one connectivity.
It is defined:

o - T ifi=yj,
V(i,5) € Ng x Ng : 6(4,5) = {}_ otherwise (2.7)

One of the operators of the algebra is the block operator, B. It expands elements
of a connection-set into blocks of a block structured connection-set. For example,
the connection matrix of a network consisting of independent, unconnected, groups
of four cells with all-to-all connectivity within each group is a block diagonal matrix

B(4)§ (2.8)

This matrix is illustrated in Figure 2.2. With two arguments, B generates rectan-
gular blocks. Paper II contains a more thorough explanation and definition of the
algebra.

20 CHAPTER 2. MATHEMATICAL MODELING IN NEUROSCIENCE

Figure 2.2: The block operator B(n) expands a connection-set into a block-matrix
where every element of the original connection-set becomes an n x n block in the
new matrix. B(4) is here applied to § to yield the connectivity of independent
groups of 4 fully connected neurons each.

A more complex example

The following is, with the exception of constants and the minicolumn-level connec-
tivity matrix P, the full description of the connectivity structure of the model in
chapter 5 and papers VI-VII.

Cvp = p(0.7)NB(hy, hp)o (2.9)
Cop = p(0.7)NB(my,mp)d (2.10)
Ch, = p(0.25)NB(m;)5 -4 (2.11)
C& = pB(mp)0(acP) —B(my)s (2.12)
Cor = pB(mp,my)0(—a; P)) — B(mp, m;)d (2.13)
Cob = p(0.7) N B(mp, mp)n_ closestpre(gm, Am, 8) (2.14)

Here, equations 2.9-2.14 each describe the mask of one of the projections in the
model. (Cell types are p for pyramidal cells, b for basket cells and r for regu-
lar spiking non-pyramidal interneurons; this example is more thoroughly covered
in paper II.) The connection-set algebra here gives a concise and unambiguous
description of a comparatively complex connectivity between three populations of
neurons. Also note how the algebra makes no reference to sizes of the participating
populations making the model description scalable.

Chapter 3

Review of simulation software
concepts

In the previous chapter, we have presented conceptual and mathematical tools to
handle the complexity of neural systems. In this chapter we will discuss software
tools and issues related to simulation of neuronal network models. The chapter is
based on the report from the 1st INCF Workshop on Large-scale Modeling of the
Nervous System (Djurfeldt and Lansner, 2007).

3.1 Important properties of simulator software

When selecting software for large-scale simulation, there are many criteria that
need to be examined, some of which will be mentioned in this section. Brette et al.
(2007) reviews existing tools for simulation of networks of spiking neurons.

« Model types supported What neuronal /synaptic/plasticity models can be
simulated?

e Accuracy Does the simulator give correct results? Recent work (Brette,
2006; Rudolph and Destexhe, 2006; Morrison et al., 2007b) has presented
methods for determining spike times in a simulator more precisely, and has
shown that this can have effects on discharge statistics and temporal precision
in resolving synaptic inputs. This is discussed further in section 3.4 below.

e Scalability In general, it is difficult to write efficient parallel implementa-
tions. How does speedup (simulation time divided by simulation time on one
processor) scale with the number of processors used? Ideally it should grow
linearly. How does simulation time scale as a function of the size of the model?

¢ Documentation How good is the documentation?

21

22 CHAPTER 3. REVIEW OF SIMULATION SOFTWARE CONCEPTS

e Support How quickly will the developers respond to bug-reports or feature
requests?

e License and availability of source code In a research environment, it is
an advantage to have the source code for the simulator available, and to have
permission to modify it. This is guaranteed for all software covered by the
GPL license from the Free Software Foundation and some related licenses.

e Adaptability How easy is it to adapt the simulator to your purpose? How
easy is to to add new mechanisms?

e Portability Does it run on my preferred platform?

o Interoperability How easy is it to collaborate with others using a different
simulator? This is discussed further in section 3.3 below.

e Is there a graphical interface?

« What analysis/post-processing tools are available?

3.2 Diversity of simulators

One might ask if it is sensible for the computational neuroscience community to
split efforts into the large and growing set of neuron simulators available today
rather than focussing on one or a few tools. Here, it is important to note that
there is currently a strong ongoing development of simulation technology, and that
simulators tend to have unique strong points not shared by others.!

The reproducibility of models, that is the possibility for another research group
to reproduce the original research results, is a major problem (see section 3.10). The
diversity of simulators might allow for simulating the model on a different platform
from that on which it was originally developed, thereby verifying the reproducibility
of results. Thus, in the first major finding of the report on the 1st INCF Workshop
on Large-scale Modeling of the Nervous System (Djurfeldt and Lansner, 2007),
workshop participants agreed that the current diversity of simulators creates vigor
in the field and has benefits for the validation of models.

3.3 Software interoperability

Given the diversity of simulators, it is important to find ways to share the gains
produced by the efforts put into individual simulators by both developers and
users. There exists some approaches to simulator-independent modeling environ-
ments which allow a model to be simulated using more than one simulation engine.

1Michael Hines, tha author of Neuron, has once noted that “The reason why we keep rein-
venting the wheel is that we haven’t got it quite round yet.”

3.3. SOFTWARE INTEROPERABILITY 23

This is important for verification of simulator accuracy, for the reproduction, test-
ing and extension of published models, and for collaboration between modellers
using different simulation tools. Examples are graphical environments, declara-
tive model specifications using XML, and procedural model specifications using
an API implemented in the Python programming language. One such simulator-
independent environment (‘meta-simulator’) which has emerged strongly is PyNN
(Davison et al., 2009). In the second major finding of the the 1st INCF Workshop
on Large-scale Modeling of the Nervous System (Djurfeldt and Lansner, 2007) the
workshop participants agreed upon the importance of facilitating software interop-
erability and re-use of simulation software components.

Modularity

The practise of dividing software into modules with well-defined roles has many
advantages. It eases development and increases maintainability of the code. If
such modules have well-defined interfaces, modules can be re-used in other circum-
stances. Such an interface can be in the form of

1. an application programming interface (API), enabling a module in the form of
a compilation unit or a library to be linked into an application. This includes
the definition of data structures required to pass information through the
interface.

2. a communication interface, enabling modules in the form of processes to com-
municate while running simultaneously on the same or on different machines

3. a file format, allowing the output of a module in the form of an application to
be read as input to another application. Here, “input” can be a model spec-
ification. In this case, the interface takes the shape of a model specification
language.

As an example of the first form of modularity, a simulator can be divided into
a simulator kernel, responsible for the distribution and allocation of data struc-
tures over a cluster, for building the model on the nodes, and for performing the
computations during a simulation, and other modules required for module specifi-
cation, input and output. The simulator kernel can be further divided into a solver,
with the sole responsibility of performing computations, and modules required for
allocation, distribution etc.

Another possibility is to enable on-line interaction between simulators during a
simulation (see below). This would entail modularity of the second type.

An example of the third type of modularity is neuroConstruct which is a software
application for creating 3D models of networks of biologically realistic neurons
through a graphical user interface (GUI) (Gleeson et al., 2007). neuroConstruct
can import morphology files in Genesis, Neuron, Neurolucida, SWC and MorphML
formats for inclusion in network models and can generate model specification files

24 CHAPTER 3. REVIEW OF SIMULATION SOFTWARE CONCEPTS

for Genesis and Neuron. Efforts put into developing neuroConstruct further will
thus benefit both the Genesis and Neuron communities. Note, though, that the
choice of two output formats is forced by the current lack of a standard format for
model description. This will be discussed further below.

The next generation of Genesis, Genesis 3 (Cornelis et al., 2008), aims to foster
collaborative modeling through a rich set of interfaces.

We cannot gain fully from a modularization of simulation software until we have
developed standard interfaces between software components.

On-line interaction between simulators

As was discussed in section 3.2, different simulators have different strengths. Cur-
rent development is moving in the direction of simulation of large systems of net-
works. The situation could arise that one simulation framework is most suitable
for one part of the system while another framework is needed for another part. For
example, a retina model could provide input for a model of LGN/PGN/V1, or, a
medium-sized network of detailed structurally realistic neurons could interact with
a very large network of simple integrate-and-fire point neurons. In the former ex-
ample, one solution would be to perform the simulation in batch mode, letting the
retina model generate spikes and save the spike times to file. Such spike files can
then be read by the second simulator. This would be an example of the third type
of modularity discussed above. In the latter example, this is not possible due to
the need for bi-directional interaction. This situation is resolved if the simulators
can transfer spikes on-line through a communication interface.

Even in cases where batch mode simulation is possible, it may be desirable to let
such a simulation interact with the environment in real time. Another argument for
preferring on-line communication between simulators over batch mode simulation
is if the amount of data generated is of such a large magnitude that it is undesirable
or impossible to store intermediate data in files.

If both simulators are run on the same parallel computer, some further coordi-
nation may be required with regard to allocation of nodes, initialization of MPI, etc.
This could be achieved if the communication interface has the form of a communica-
tions library, providing services like initialization of MPI and the option of external
communication. There is also a need for a naming or addressing mechanism to
allow for flexible connectivity between modules through multiple communication
links.

The development of such an interface may or may not result in a software com-
ponent that will be generally adopted, but has value in itself as an exploration
of the concept. The 1st INCF Workshop on Large-scale Modeling of the Nervous
System (Djurfeldt and Lansner, 2007) gave as a recommendation to implement an
experimental framework for connecting software components and that a feasibil-
ity study should be performed regarding the possibility of on-line communication
between different software modules, for example two parallel simulators. This rec-
ommendation led to the development of MUSIC, an APT allowing large scale neuron

3.3. SOFTWARE INTEROPERABILITY 25

simulators using MPT internally to exchange data during runtime (see section 4.2
and paper IV).

Common specification language

Different simulator environments have different ways of specifying a model. For
example, Neuron and Genesis have distinct specification languages. The translation
of a model description from one environment to another can entail substantial effort.
This is especially true in the case that environments use different formalisms. If
the differential equation for the activation factor in the Hodgkin-Huxley model
of a channel has different forms in the two environments, the translation of the
model will even involve finding a new set of parameters. This situation creates
barriers between laboratories using different simulators, makes it harder for one
laboratory to freely choose the tool suitable for the problem at hand, and threatens
the reproducibility of scientific results. A common, standard specification language,
supported by all simulators, would alleviate such problems and increase the utility
of model repositories such as ModelDB (Hines et al., 2004) and databases such as
NeuronDB (Mirsky et al., 1998).

NeuroML (Goddard et al., 2001) is one viable candidate for a model description
standard. NeuroML is a collection of projects with the aim of developing standards
for specification of neuroscience models in XML. It is organized into four levels of
scale, where each succeeding level extends the features of the language. The first
level covers the neuronal level of organization while the last level (level 4) covers all
levels of organization from biochemical networks to systems. It includes the XML
schemas MorphML, ChannelML and NetworkML. NetworkML (Crook et al., 2007)
is currently the least developed schema and needs input from simulator developers.

PyNN, discussed in the following section, is another candidate as a model de-
scription standard.

Common scripting language

A scripting language is an interpreted language which is used to control an ap-
plication. It is often embedded in the sense that much of the functionality of the
application is available as function or procedure calls in the language—a language
binding. If it is possible to add new functionality to the application in terms of code
written in the scripting language, it is also called an extension language. The use
of a full-fledged general purpose programming language as scripting/extension lan-
guage has emerged as a powerful concept. Scripting languages such as Emacs Lisp,
TCL, Matlab and Python have each given rise to prolific user communities and rich
sets of software tools and libraries, and can provide a backbone in a framework
with multiple modules.

Within the FACETS project (Meier, 2005), Andrew Davison has proposed the
PyNN framework (Davison et al., 2009) as a standard scripting language binding
for neuronal network simulators. This abstracts differences between simulators

26 CHAPTER 3. REVIEW OF SIMULATION SOFTWARE CONCEPTS

and provides a common way to specify models and run simulations. The goal is
that simulation scripts in PyNN for simulator A will run on simulator B without
modification.

PyNN is based on the Python programming language and includes the devel-
opment of an API and the binding to individual simulation engines. The API has
two parts, a low-level, procedural API, and a high-level, object-oriented API. The
low-level API can be used for small networks, and gives more flexibility than the
high-level API. The high-level API hides details and book-keeping, and is intended
to have a one-to-one mapping with NeuroML, i.e. a population element in Neu-
roML will correspond to a Population object in PyNN, etc. Another requirement
for a common scripting language is standard cell models. PyNN translates standard
cell-model names and parameter names into simulator-specific names.

The use of Python in PyNN results in a free, Matlab-like environment with tools
for data analysis, plotting, mathematical libraries, etc., leveraging the efforts of the
Python user community.

3.4 Accuracy of simulation

Very large networks of spiking neurons can be simulated efficiently in parallel under
the constraint that spike times are bound to an equidistant time grid. Within this
scheme, the subthreshold dynamics of a wide class of integrate-and-fire type neuron
models can be integrated exactly from one grid point to the next. However, the
loss in accuracy caused by restricting spike times to the grid can have undesirable
consequences, which has led to interest in interpolating spike times between the
grid points to retrieve an adequate representation of network dynamics. The exact
integration scheme can be combined naturally with off-grid spike events found by
interpolation (Morrison et al., 2007b). By exploiting the existence of a minimal
synaptic propagation delay, the need for a central event queue is removed, so that
the precision of event-driven simulation on the level of single neurons is combined
with the efficiency of time-driven global scheduling. Further, for neuron models with
linear subthreshold dynamics, even local event queuing can be avoided, resulting
in much greater efficiency on the single neuron level. A measure of the efficiency of
network simulations in terms of their integration error shows that, for a wide range
of input spike rates, these novel techniques are both more accurate and faster than
standard techniques.

3.5 Specification of large-scale network models

In section 2.9 we discussed the bottom-up approach to large-scale modeling of the
cortical column using data from the SBFSEM method. For a 3D volume simu-
lation (section 2.9), a corresponding 3D volume of dielectric properties must be
generated as part of the model specification. For a more traditional simulation

3.6. DECLARATIVE VERSUS PROCEDURAL MODEL DESCRIPTION 27

based on compartment model neurons, the data must be analyzed with respect to
cell morphology and a list of network connections be generated.

In section 2.9 we discussed a combined top-down/bottom-up approach where
the connectivity is based on functional hypotheses regarding cortical function. The
Brunel (2000) and Haeusler and Maass (2007) models also belong to this type. In
such models, there is a large contrast between the seemingly complex connectivity
of the simulated model and the simple ideas upon which the connectivity is based.
Usually the connectivity is expressed by a serial algorithm that sets up connections
one by one. On a parallel machine, several simulators use the approach of running
the serial algorithm in each process independently and simply ignoring attempts
to set up connections not belonging to the local process. The advantage is that
the complexity of parallelism is hidden from the user. However, this approach
does not scale well. Papers IT and V present an approach which scales well at the
same time as expressing the connectivity in a form that preserves the underlying
ideas explicitly in the program code. Projections between neuronal populations are
described by iterators representing infinite connection matrices. Only the relevant
finite piece of a matrix is used to connect the populations during model setup.
A Dbasic set of parameterized matrices can be combined through a connection-set
algebra to form new connectivity structures. This algebra is presented in section
2.11 and paper II.

A third way to specify networks is to generate them based on empirical struc-
ture parameters. Regarding automatic generation of realistic, large-scale neural
networks, there is a need to distinguish between generation and growing of cells.
Growing of cells might depend on local or global parameters in the network. Fur-
ther, an open question is how to specify and generate spatial connectivity. The
easiest way of generating connectivity is using experimental data about the local-
ization of different neuron types in the brain. This approach is commonly used in
the available software tools.

3.6 Declarative versus procedural model description

What are the relative merits of declarative versus procedural model specifications?
Model definitions based on NeuroML are basically declarative, although it is in
principle possible to specify algorithmic elements in XML. In contrast, a model
description in a Python-based scripting language is often procedural.

A declarative description is often easier to read and understand than a proce-
dural description. It also usually gives a software tool more leeway for internal
optimizations.

However, in a certain respect, a declarative descriptions throws away structural
knowledge about the problem already available to the researcher. This knowledge
is expressed in algorithms which can be close to the mathematical formulation of
the model. We should look for a good high-level description that allows a human
reader to see from the code what the point is.

28 CHAPTER 3. REVIEW OF SIMULATION SOFTWARE CONCEPTS

3.7 Postprocessing and visualization

Large-scale have, by definition, a large number of state variables. When the number
of variables is in the order of hundreds of millions or more, the problem how to
visualize network activity becomes important. DAVIS (Robbins et al., 2004) is one
example of an existing tool. However, there seems to be a great need of further
tool development in this area. For example, for sufficiently large data volumes, the
visualization tool needs to be parallelized.

A large-scale model spans many levels of organization, and, thus, needs to con-
nect to experimental data on many levels. There is, therefore, a need for tools
which can transform logged data from model state variables, such as cell mem-
brane voltages, into synthetic versions of common brain imaging methods such as
fMRI, VSD and EEG.

3.8 Verification of simulator function

In science, an individual experiment carries little weight, but when the result is
reproduced in other laboratories, by different people, in slightly different ways, this
gives strong validation. In parallel to this, there is a need for validation of simulator
function.

It is an established software engineering fact that any sufficiently complex pro-
gram does contain errors, regardless of the quality of the developer team. For
a simulator, there can be errors at the level of a model built in implicitly in a
simulator—e.g. the Hodgkin-Huxley neuron model, at the level of the numerical
method used, and at the level of its implementation. Furthermore, different simu-
lators can have different accuracy and vary in their efficiency.

Section 3.2 discusses the diverse set of existing neuron simulators. One of the
ways in which to draw advantage from this diversity is to use the fact that different
simulators are programmed differently to cross-validate simulators: If simulation
results can be reproduced using a differently programmed simulator, this gives a
relatively strong verification of the correctness of both simulators.

For such cross-validation to work well, there is a need to agree on a common set
of simulator “benchmarks”. Such a framework could also make possible comparisons
of accuracy and efficiency. This could work as an inspiration and driving force for
simulator developers, and help in focussing development. Without quantitative
comparison data it is difficult for developers to know what is practically feasible.

A standard benchmark suite would be of great community value. It is impor-
tant that such benchmarks be with respect to published models not contrived by
the developers. There is otherwise a risk to neglect good methods because they
had poor performance in artificial benchmarks. This experience parallels that in
software engineering, where the trend during the previous two decades has been
from artificial contrived benchmarks towards more application-like. It is also im-
portant that the data on the web pages be updateable so that old information can

3.9. MODEL VERIFICATION 29

be superseded by current best practices in each simulator.

Examples of possible benchmarks are the DeSchutter Purkinje cell model (Schut-
ter, 1998) and the model of Vogels and Abbott (2005). ModelDB (Hines et al., 2004)
contains 280+ such published models from which a selection could be drawn.

3.9 Model verification

In section 3.8, the verification of the simulation tools was discussed. Here we will
discuss the verification of models and the reproducibility of modeling results.

A crucial point for a simulation is: How do you know that what you're sim-
ulating is correct? As was discussed in section 2.6, the model needs to be well
rooted in empirical data. This can be achieved if test problems are chosen with
care. Such problems should deal with basic traits of the domain under study and
be chosen so that many aspects of the problem are easily accessible through ex-
perimental measurement. The test problems can validate the simulation technique
so that simulations can then be extrapolated to other problems with some degree
of confidence. Some areas in the brain are easier to work with, with regard to
model validation, than others. It is especially important to look at a region with
well-defined inputs and outputs, such as, for example, the barrel cortex.

Section 2.6 also discussed how models based on first principles, such as a 3D
volume model of the electromagnetic field in neural tissue, increase confidence in
the model; section 2.10 discussed how this gives the possibility of validating the
Hodgkin-Huxley model and how upscaling techniques could be used to derive, from
the 3D volume model, a new model at the same level of organization as the Hodgkin-
Huxley model.

From the top-down perspective, there is doubt whether a 3D volume model of
an entire network, such as those discussed in section 2.9, would really say anything,
and, in particular, that such very detailed network models lack measures of verifia-
bility. An approach to the latter problem could be to verify the simulation tool on
simpler problems, such as the test problems discussed above.

In order to develop good test problems, there is a need for experiments tai-
lored towards simulation. There is a sociological, or structural problem in the field
such that experimentalists will not go very far in answering such needs. On the
other hand, there are now some experimental laboratories which use modeling as a
fundamental research tool.

3.10 Model reproducibility

Published simulation results are, in general, very hard to reproduce. In the third
major finding of the 1st INCF Workshop on Large-scale Modeling of the Nervous
System (Djurfeldt and Lansner, 2007) workshop participants reported on difficulties
in reproducing simulations from published articles.

There seem to be several common reasons for this:

30 CHAPTER 3. REVIEW OF SIMULATION SOFTWARE CONCEPTS

e The model description is incomplete. It is often necessary to contact the
authors to get additional information required to run the simulation.

e The model description differs from the model used to produce the results. It
occurs that last-minute modifications are made to the model, while the same
modifications do not find their way into the methods section.

e The model description uses a formalism not supported on the simulator used
to reproduce the results. One example of this is given in section 3.3.

It may also happen that the simulations described in the article have been
carried out on peculiar hardware and/or with custom code, entailing substantial
re-implementation efforts when running the simulation with standard software on
standard hardware.

One may ask whether the concept of reproducibility should include exact quan-
titative reproducibility, i.e. reproduction of not only the behavior of the model but
also the exact numerical values of simulation output. Such a requirement is harsh,
because it means not only that identical algorithms must be used, but also that
numerical operations need to be performed in an identical order so that cancellation
effects, rounding errors, etc. do not cause noticeable differences.

An intermediate requirement would be that every simulation of the model with
the same simulation software on the same machine gives identical results. This kind
of reproducibility is important, for example during development and debugging.
Even this is far from trivial on a cluster, since this requires a mechanism for seeding
the pseudo random number generator in each process. It may even be impossible to
make the result independent of the number of processes, because the uses of random
numbers occur in a different order depending on how the model is distributed over
processes.

Chapter 4

Modeling tools

This chapter begins with the presentation of two different kinds of modular frame-
works, the See simulator and MUSIC, which can be used to simulate systems of
networks, and concludes with a description of a series of improvements to the SPLIT
simulator for the simulation of very large neuronal networks. This chapter builds
on material from papers IIT and VI.

4.1 See

“See” is a software framework for simulation of biologically detailed and artificial
neural networks and systems. See represents an approach to software modularity
(see section 3.3) where the simulator framework provides APIL:s for services such
as scheduling of events and communication. In this respect, it is an early example
of a methodology which has later been absorbed by simulators such as Genesis3
(Cornelis et al., 2008) and MOOSE. Tt is also an early example of using a general
purpose language as simulation scripting language. The scripting language is based
on Scheme, while the basic framework is written in C++. Models can be built on the
Scheme level from “simulation objects”, each representing a population of neurons,
a projection, etc. The simulator provides a flexible and efficient protocol for data
transfer between such objects. See contains a user interface to the parallelized,
platform independent, library SPLIT intended for biologically detailed modeling of
large-scale networks and is easy to extend with new user code, both on the C++
and Scheme levels. The See simulator has been used in a simulation of the primary
visual pathway of the cat (Djurfeldt, 1997).

Modularity

Similar to MatLab’s Simulink and Genesis, See is built around the idea of interact-
ing simulation objects which exchange data through links (figure 4.1). For example,

31

32 CHAPTER 4. MODELING TOOLS

:
- g

Spikewindow

CONT

SPIKES|

SPIKES --

Figure 4.1: Structure of a See model of the early feline visual pathway Djurfeldt
(1997).

a simulation object can be a population of neurons, a complex projection, sensor//-
effector arrays, a graphical display or data sources/recorders.

Links connect the interfaces of two objects, not unlike cables and connectors on
computers. Several objects can connect to the same output interface. Links can
contain separate channels of data, not unlike the pins of a connector. For example,
it might be desirable to send both spike and continuous data through the same link.
The recipient objects can then select which channels to use.

The user can easily write a new See module with his own, dedicated, C++ code.
The complexity involved in moving data between components of a model is hidden
by the interfaces. The programmer of a piece of dedicated simulation code only
needs to declare an interface in order to create a source or sink for data. By building
on previously defined classes, using inheritance and predefined object components,
the user can concentrate on the essentials of his model. The C++ library, which can
be loaded into the simulator without recompilation, provides a simulation object
which can be created and manipulated from the scripting language. It is possible
to prototype new simulation objects as scripts, and later implement them in a more
efficient manner.

The modularity in See is coarse: In Genesis, a “module” can be a compartment
or a channel object with scalar values communicated between them. In See, the
module is instead typically a population of cells, and the link between objects
typically convey chunks of information or vector data. This gives flexibility (the
user is almost as free as if he wrote his own simulator) and high performance. It
makes it easy to implement two forms of parallelism. On workstation clusters,
different objects can be placed on different machines. On vector computers, objects
are vectorized through the use of parallel versions of standard numerical libraries.

4.2. MUSIC 33

General Purpose Scripting Language

The scripting language in See is a superset of Scheme, a dialect of Lisp, provided
by the Guile scheme interpreter. Since the scripting language is based on a general
purpose language, the user has maximum flexibility. It makes it possible to use the
same language for model specification and control of simulation experiments. It
can further be used to write tools for data analysis and extensions to the simulator.
In fact, similar to the Emacs editor Stallman (1981), many parts of See are imple-
mented in the extension language. In the case of Emacs this type of architecture
has proven very successful. See also the discussion in Cannon et al. (2007).

Simulation protocols and tools, e. g. for parameter search, can be written in the
scripting language and saved for the future. This enables testing different models
with the same protocol, and setting up procedures to do extended experiments
overnight or longer. The choice to base the scripting language on Scheme was due
to its expressiveness.

The See simulator framework combines the ease of use of a general purpose
simulation package with the flexibility of a general purpose programming language
by providing a set of libraries of C++ classes which are utilized from an embedded
Scheme interpreter.

4.2 MUSIC

MUSIC is a standard for run-time exchange of data between parallel applications
in a cluster environment. The standard is designed specifically for interconnecting
large scale neuronal network simulators, either with each-other or with other tools
(Ekeberg and Djurfeldt, 2009).

A typical usage example is illustrated in figure 4.2, where three applications
(A, B, and C) are executing in parallel while exchanging data via MUSIC. We will
refer to this as a multi-simulation, since the participating applications typically
are neuronal simulators, or tools to support such simulators. In this example,
application A produces runtime data which is then used by B and C. In addition,
B and C mutually send data to each other. The data sent between applications
can be either event based, such as neuronal spikes, or graded continuous values, for
example membrane voltages.

The primary objective of MUSIC is to support multi-simulations where each
participating application itself is a parallel simulator with the capacity to produce
and/or consume massive amounts of data. This promotes inter-operability by al-
lowing models written for different simulators to be simulated together in a larger
system. It also enables re-usability of models or tools by providing a standard
interface. The fact that data is spread out over a number of processors makes it
non-trivial to coordinate the transfer of data so that it reaches the right destination
at the right time. The task for MUSIC is to relieve the applications from handling
this complexity.

Paper IV describes the addition of a MUSIC interface to the simulators NEST

34 CHAPTER 4. MODELING TOOLS

Appl. C

Appl. A

Appl. B

Figure 4.2: Illustration of a typical multi-simulation using MUSIC. Three applica-
tions, A, B, and C, are exchanging data during runtime.

(Diesmann and Gewaltig, 2002) and MOOSE and a multi-simulation involving
a cortex model using integrate-and-fire units and a striatum model using multi-
compartmental Hodgkin-Huxley units.

Design Goals
Portability

The MUSIC library and utilities have been designed to run smoothly on state-
of-the-art high-performance hardware. For maximal portability, the software is
written in C+4++, which is the de facto standard for current high-end hardware.
MUSIC also provides a C-interface, making it possible for applications written in
C or FORTRAN to participate in a MUSIC multi-simulation.

Most, if not all, current efforts in large scale neuronal simulations are based on
the MPI standard. MUSIC is built on top of MPI, and uses it to run the different
simulators. MUSIC provides means to allow each simulator to use MPI internally
without interfering with the others.

MUSIC has been developed using two reference platforms: Intel-based multi-
core workstations and the IBM BlueGene/L supercomputer. These platforms can
be considered as two extremes, where the multi-core machine represents a small
parallel environment while the BlueGene/L represents a large scale massively par-
allel supercomputer with special requirements. In particular, the compute nodes
on the BlueGene/L do not support multiple threads or processes.

4.2. MUSIC 35

Simplicity

For MUSIC to be useful, it must be possible to adapt existing simulators so that
they can participate in a multi-simulation without too much effort. We rely on
the simulator developers to make these adaptations. An important design goal has
therefore been to adapt the design to the typical structure of current simulators.
It should be possible to add MUSIC library support without invasive restructuring
of the existing code.

The primary requirements on an application using MUSIC is that it declares
what data should be exported and imported and that it repeatedly calls a function
at regular intervals during the simulation to allow MUSIC to make the actual data
transfer.

Independence

The MUSIC interface ensures that each individual application does not need special
adaptation to specific properties of other applications. The application only needs
to adhere to the specification of the MUSIC interface in order to communicate with
other applications performing complementary tasks. This makes the development of
MUSIC-aware software independent of what other applications it will communicate
with.

We hope that this will facilitate the development of general purpose tools. For
example, a researcher can develop a tool for calculating synthetic EEG from sim-
ulation data. Via MUSIC, this tool should then be useful for anybody using any
neuronal simulator which supports the common MUSIC interface.

Performance

The MUSIC API has been designed to allow for data transport of high bandwidth
and low latency within the cluster. One means of ensuring the best use of the
hardware while maintaining portability is to use the facilities of MPI for communi-
cation. MPI encapsulates software optimizations for specific hardware. By basing
the interface on MPI we can benefit from such optimizations.

Extensibility

Where possible, MUSIC allows for extensions by the application programmer. Some
classes in the MUSIC APIT (such as the index and data maps) can be subclassed in
order to provide facilities not available directly in the API.

Spatial Distribution of Data

Communication between applications is handled by ports. Ports are named sources
(output ports) or sinks (input ports) of data flows. The data to be communicated
may be differently organized in process memory on the receiver side compared to

36 CHAPTER 4. MODELING TOOLS

the sender side. The applications may run on different numbers of processes, and,
the data may be differently distributed among the sender processes and the receiver
processes, as is shown in Figure 4.3. How does MUSIC know which data to send
where?

In MUSIC, there are two views of the data to be communicated over a connec-
tion. Data elements are enumerated differently according to these views. MUSIC
uses shared global indices to enumerate the entire set of data to be sent over the
connection while local indices enumerate the subset of data which is stored in the
memory of a particular MPI process. Data does not need to be ordered in the
same way according to the two views. For example, data stored in an array may
be associated with an arbitrary subset of global indices in an arbitrary order.

The MUSIC library is informed about the relationship between global and local
indices and how data is stored in memory during the setup phase. Two abstractions
are used to carry this information:

The IndexMap maps local indices to global indices. That is, the IndexMap tells
which parts of a distributed data array are handled by the local process and how
the data elements are locally ordered.

The DataMap encapsulates how a port accesses its data. The DataMap contains
an IndexMap. While an index map is a mapping between two kinds of indices, the
data map also contains information about where in memory data resides, how it is
structured, and, the type of the data elements. The type is used for marshalling
when running on a heterogeneous cluster.

During setup every process of the application individually provides the port
with a DataMap (or an IndexMap in the case of event ports).

Timing Considerations

Different applications may use different time steps and it is the responsibility of
MUSIC to ensure that data is delivered at the appropriate time. In order to min-
imize handshaking, both parts of a connection pair locally calculate when the ac-
tual data transfer over MPI takes place. To ensure that these calculations produce
predictable results, simulation time is internally represented using integers with a
global micro-timestep common for all applications.

Simulation time is local for each application and MUSIC does not enforce unnec-
essary synchronization between these local clocks. Thus, an application producing
data may be running ahead of another application which consumes the same data.
MUSIC internally builds a schedule which ensures that data arrives at the appro-
priate local time in the receiving application. Scheduling becomes more complex
when data is not only transferred in a feed-forward manner, i.e. when the con-
nection graph contains loops. In this case MUSIC has to rely on the existence of
sufficient delays in the simulated model, typically corresponding to axonal delays.

Figures 4.4 and 4.5 illustrate how MUSIC handles time when transferring con-
tinuous data over a connection. In figure 4.4, the sender application uses a shorter
tick interval than the receiver. The sender side uses values sampled at the tick

4.2. MUSIC 37

Sender Receiver
(g —]
—— —
< o
|y — — |
<— ! \\] T T ="
5 Width —Z
"g — — 3
Q — — o
B Sy S
5] Q
S el
= L
o —c
2 g
B L [W S S SR _
B — — |z
o =
—® — o

Figure 4.3: Data transfer over a connection from an application running in four
processes to an application running in three processes. The light gray areas in the
sender and receiver represents the MUSIC port. Dashed lines divide the application
into distinct processes.

MUSIC
1 Tzi
i Receiver i
Simulated Time Simulated Time
Figure 4.4: Transfer of data when Figure 4.5: Transfer of data when
sender has a shorter tick interval than sender has a longer tick interval than

the receiver. the receiver.

38 CHAPTER 4. MODELING TOOLS

points to interpolate a value corresponding to the point in time when the receiver
makes its tick call.

The dark middle area (labelled “MPI”) is where the actual data transfer takes
place. MUSIC makes use of the fact that the receiving application can run with its
simulation clock set independently of the sender. The arrows going “backwards in
time” in this area reflect the fact that the receivers clock is lagging. This makes it
possible for data to arrive in time despite the fact that it was available later (e.g.
at tick s5) than when it was arriving (at r1), when talking about simulated time.

Figure 4.5 illustrates what happens when the receiver of continuous data is
calling tick faster then the sender. The sender will then buffer up values from the
preceding and current ticks and transfer this at a suitable tick call. The receiver
will portion these values out by interpolating at the appropriate ticks.

The strategy of having the receiver application running with a delayed local
clock only works when the connection graph forms a directed acyclic graph (DAG).
When loops occur it is necessary to allow for data arriving late, at least somewhere
along each loop. MUSIC handles this via acceptable latency which is a property of
event input ports. The receiving application declares how late, according to simu-
lation time, data may arrive, thus giving MUSIC room for resolving the scheduling
problem. In the case of continuous data, the application specifies a delay which
fulfills the same purpose.

In figures 4.4 and 4.5, the sending application must be running ahead of the
receiver in order to maintain the illusion that communication is instantaneous.
Figure 4.6 illustrates the timing relation between sender and receiver along a real
time axis (wallclock time) when the receiver accepts a delay of incoming data. This
allows the receiver (B) to run ahead of the sender (A), thus creating the slack
necessary to make schedules for communication loops.

4.3 The SPLIT simulator

SPLIT is a parallel neuronal network simulator for models using multi-compartmental
Hodgkin-Huxley units. Paper V describes a series of improvements made to the
simulator in order to support large-scale simulations. These improvements included
the addition of the connection-set algebra described in paper IT and resulted in the
scaling performance presented below. The improved version of SPLIT was used in
the simulations in papers VI and VII.

The development of parallel simulation in computational neuroscience has been
relatively slow. Today there are a few publicly available parallel simulators. These
are far from as general, flexible, and well documented as commonly used serial
simulators, such as Neuron (Hines and Carnevale, 1997) and Genesis (Bower and
Beeman, 1998). There is some development going on, however. For Genesis there
is PGenesis and the development of a parallel version of Neuron has started. In
addition there exists simulators like NCS (Frye, 2005), NEST (Morrison et al.,
2005), and our own parallelizing simulator SPLIT (Hammarlund and Ekeberg,

4.3. THE SPLIT SIMULATOR 39

———o
delay delay delay

Wallclock Time

Figure 4.6: This figure illustrates how MUSIC can allow one application (B) to
execute ahead of another (A) when transferring continuous data. The receiver (B)
has specified a delay on the input port which means that the value to be delivered
at each tick (gray areas) corresponds to a simulated time in A (blue arrows) which
has already happened. Note that the tick times when MUSIC actually transfers
data will be aligned on the real time axis, since blocking communication is used. In
practice, one of the applications will have to wait for the other to reach the same
point in its execution.

1998). However, they are in many ways still in the experimental and developmental
stage.

The SPLIT simulator (Hammarlund and Ekeberg, 1998) was developed in the
mid 90’s with the aim of exploring how to efficiently use the resources of vari-
ous parallel computer architectures for large-scale biophysically detailed neuronal
network simulations. Since different computer architectures benefit from different
kinds of optimizations, the code uses programming techniques which encapsulate
such optimizations and hardware specific features from the rest of the program, and
in particular from the neural network model specification. SPLIT has also served
as a platform for experiments with communication algorithms.

SPLIT takes the form of a C4++ library which is linked into the user program.
The SPLIT API is provided by an object of the class split which is the only
means of communicating with the library. The user program specifies the model
using method calls on the split object. The user program is serial, and can be
linked with a serial or parallel version of the library. Parallelism is thus completely
hidden from the user. In the parallel case, the serial user program runs in a master
process which communicates, through mechanisms internal to the SPLIT library,
with a set of slave processes. On clusters, SPLIT uses MPI.

The library exploits data locality for better cache-based performance. To benefit
from vector architectures, state variables are stored in sequence. It uses adjacency
lists for compact representation of the neural projections and AER (Address Event
Representation) for spike events (Bailey and Hammerstrom, 1988).

40 CHAPTER 4. MODELING TOOLS

10

T T
ideal —+—
actual ---x---

speedup compared to 511 tasks: T(511)/T(P)

500 1000 1500 2000 2500 3000 3500 4000
number of MPI tasks: P

Figure 4.7: Speedup for model with 4 million cells and 2 billion synapses on BG/L
simulated with SPLIT. Data points up to 2048 processors were collected on the
Rochester BG/L while the last data point is obtained on the Watson Research
BG/L.

The neurons in the model can be distributed arbitrarily over the set of slaves.
This gives great freedom in optimizing communication so that densely connected
neurons reside on the same CPU and so that axonal delays between neurons simu-
lated on different slaves are maximized.

SPLIT also makes use of a novel abstraction, the connection set algebra, which
implements an efficient domain decomposition of the connectivity meta data. With
the connection set algebra, connectivity structure can be described in a modular
way by using operators to make combinations of a set of basic connectivity types
(paper II).

Figure 4.7 shows scaling results from simulations on the Blue Gene/L installa-
tions at Rochester, MN, and at Watson Research center in Yorktown Heights, NY.
The figure shows the speedup for a model with 4 million cells and 2 billion synapses
on BG/L up to 4096 processors. Data points up to 2048 processors were collected on
the Rochester BG/L while the last data point is obtained on the Watson Research
BG/L.

Chapter 5

A large-scale model of the cerebral
cortex

In this chapter, the technology developed in previous chapters is applied in the
simulation of a large-scale model of cortical layers II/III. This chapter partly builds
on material in paper VI.

5.1 The cortex as a recurrent attractor network

The view of the cortex as an attractor network has its origin more than fifty years
back in Hebb s cell assembly theory (see, e.g., Fuster (1995) for a review). Hebb
suggested that the functional unit of the cortex is a subset of neurons which are
repeatedly active together, and that such a cell assembly is the basis of mental
representation. The thought of an apple would invoke one cell assembly, the thought
of an orange another. The theory has since been mathematically instantiated in
the form of the Willshaw-Palm (Willshaw and Longuet-Higgins, 1970; Palm, 1982)
and Little-Hopfield models (Hopfield, 1982) and has subsequently been elaborated
on and analyzed in great detail (Amit, 1989; Hertz et al., 1991). This has resulted
in the view of the persistent firing of cell assemblies as attractors in a dynamic
system.

The olfactory cortex (Haberly and Bower, 1989) as well as the hippocampal
CA3 field (Treves and Rolls, 1994) have previously been perceived and modeled
as prototypical neuronal auto-associative attractor memory networks. The connec-
tions in the network form a landscape of attractors, each representing a memory.
When the state of the system slips into the attractor, the memory has been re-
called. More recently, sustained activity in an attractor memory of a similar kind
has been proposed to underlie prefrontal working memory, although in this case
the attractor state itself and not the connectivity is assumed to hold the memory
(Compte et al., 2000).

41

42 CHAPTER 5. A LARGE-SCALE MODEL OF THE CEREBRAL CORTEX

Minicolumns in the cerebral cortex

If cell assemblies, or attractor states, are the basis of cortical function, how do
they relate to cortical anatomy? In a classic work on the visual system, Hubel
and Wiesel (Hubel and Wiesel, 1977) penetrated the primary visual cortex with a
recording electrode. They found that cells responded most strongly to a specific
orientation of an oblong bar in the visual field, and that the preferred angle seemed
to shift discretely as the electrode moved tangentially to the cortical surface, while
cells along a line normal to the surface tended to have similar response properties.
They deduced that the basic unit of cortical organization must be what they called
a functional column and suggested that the cortex is a lattice of such columns.
They also suggested that the sets of such columns are grouped into larger entities,
hypercolumns, that together form a complete representation of all possible attribute
values within each region of retinotopic space.

Later, Mountcastle (1978) suggested the concept of anatomical minicolumns.
These were described in detail by Peters and Sethares (1991). Could such a mini-
column, consisting of some hundred neurons, be the basic functional unit of the
cortex? If so, a Hebbian cell assembly may consist of a set of such columns and
the activation of these columns would correspond to entering a dynamic attractor
of the cortical network.

The organization of visual cortex into minicolumns and hypercolumns has in-
spired our view of cortical associative memory, which has been expressed in the
form of an abstract neural network model (Lansner et al., 2003; Sandberg et al.,
2002, 2003), and in biophysically detailed models (Fransén and Lansner, 1998; pa-
per VII).

5.2 Methods

The simulations in paper VI are based upon a model of layers II/III of the associ-
ation cortex of the rat. It is an upscaled version of the model presented in paper
VII.

The overall architecture of our model is illustrated in Figure 5.1. Figure 5.1A
illustrates the geometric layout of a subset of 100 hypercolumns in the plane of the
cortical sheet, each marked with a distinct color. Each hypercolumn consists of
100 minicolumns. Each minicolumn contains 30 pyramidal cells which excite each
other through short-range axons and excite pyramidal neurons of other minicolumns
through long-range axons (Figure 5.1B). This long-range projection constitutes the
memory matrix of the attractor memory and forms the cell assemblies: Only mini-
columns belonging to the same memory pattern, or cell assembly, excite each other.

Each hypercolumn also contains a population of 100 inhibitory basket cells which
are excited by the minicolumns of the local hypercolumn. They, in turn, inhibit the
pyramidal cells of the local hypercolumn, thereby normalizing activity. This enables
the hypercolumn to operate like a winner-take-all module, where different patterns
can compete. Fach minicolumn also contains 2 inhibitory RSNP cells (regular

5.3. SIMULATION RESULTS 43

spiking non-pyramidal) which contact the local pyramidal cells. The abstract neural
network model, upon which the long-range connectivity of the present model is
based, suggests an additional way in which cell assemblies can compete. This
means of competition has been realized in the present model through long-range
axons from pyramidal cells to RSNP cells of minicolumns belonging to other cell
assemblies, which indirectly suppress their activity. Such connections have not yet
been identified anatomically. Connectivity is compatible with experimental data to
the extent that such data is available. However, for simplicity, we have made borders
of mini- and hypercolumns sharp, in contrast to the local approximately Gaussian
structure observed experimentally (see, e.g., Buz’as et al., 2006). For details, see
paper VII. A separate set of cells model cortical layer IV which provides input
to the pyramidal cells described above. External input to the attractor memory is
provided as simulated synaptic events in these cells.

Cells are modeled using the Hodgkin-Huxley formalism described in section 2.9.
A pyramidal cell in our model consists of six compartments, one state variable each
for the potentials, carrying up to five ionic currents, one to two state variables
per current. Some compartments have a flow of calcium into an intracellular store
described by an additional state variable. Furthermore, some synapses carry a
separate flow of calcium with yet another associated state variable. Synapses are
generally governed by three state variables, one for the degree of opening, and two
for short term changes in synapse strength (facilitation and depression).

For the simulations in papers VI-VII and here, an orthogonal set of non-
overlapping memory patterns was formed. One minicolumn was selected from each
hypercolumn to form one pattern. A long-range connection between two distant
minicolumns was formed probabilistically if the two minicolumns belonged to the
same pattern. Each pyramidal cell, thus, received long-range excitation only from
a subset of the cells in the pattern. Similarly, each RSNP cell received excitation
from a subset of pyramidal cells belonging to minicolumns of foreign patterns.

5.3 Simulation results

Figure 5.2 shows the spiking activity of a simulation of 49 hypercolumns (100 mini-
columns each). Each row of the raster plot shows the spikes of one neuron. The
lower portion (the first 9800 cells) of the raster shows activity in all RSNP cells, the
mid portion (147000 cells) shows the pyramidal cells, and the upper portion (4900
cells) shows the basket cells. The long-range pyramidal-pyramidal and pyramidal-
RSNP synapses store orthogonal memories. As a consequence of stimulation of the
cells in layer IV between t=0.5-0.64 s and t=1.5-1.64 s, the network state can be
seen switching from a ground state to an active memory state. Only cells in layer IV
representing a part of one of the memory patterns stored in the interhypercolumnar
memory matrix are stimulated. This partial pattern is quickly completed to the
full memory pattern. This behavior was robust for all memories stored and shows
that, although each pyramidal cell only connects to a random subset of cells in the

44 CHAPTER 5. A LARGE-SCALE MODEL OF THE CEREBRAL CORTEX

7% 2.5 mV “30%0.30 mv

Figure 5.1: A. Geometric layout of 100 hypercolumns consisting of 100 minicolumns
each. B. Schematic connectivity of the model. White triangles, pyramidal cells,
project locally as well as to pyramidal cells in other minicolumns belonging to
the same cell assembly and RSNP cells in minicolumns belonging to other assem-
blies. Black circle, basket cell, normalizes activity in the local hypercolumn. Black
rhombs, RSNP cells provides local inhibition of pyramidal cells. Percentages and
voltages show connection probability and size of EPSP (excitatory postsynaptic
potential) respectively.

pattern, on a population level the cells has formed a cell assembly corresponding
to the pattern. Apart from pattern completion, the model is capable of all the
functionality usually ascribed to attractor networks, such as noise reduction and
resolution of ambiguity.

In the present version of the model, the ground state is characterized by oscil-
lations at a frequency of approximately 15 Hz (Figure 5.4D), where the oscillations
of individual minicolumns are phase-locked to other minicolumns in the containing
hypercolumn. The coexistence of a stable ground state with active memory states
was first shown in a model of delay period activity in the prefrontal cortex (Amit
and Brunel, 1997). In the ground state of our model, pyramidal cells fire at around
0.1 Hz. The 15 Hz rhythm thus emerges as a collective network level phenomenon.
The fact that it only appears when there is no input to the network and the net-

5.3. SIMULATION RESULTS 45

160000

w0000 |§ Y

120000

100000 |3

80000 |

Cell index (RSP, pyranid, basket)

80000

40000 |- ¥

20000 -

Sinulated tine (s)

Figure 5.2: Raster plot for a simulation of 49 hypercolumns. 100 minicolumns are
shown per hypercolumn. The lower portion (first 9800 cells) of the raster shows
activity in all RSNP cells, mid portion (147000) shows pyramidal cells, and upper
portion (4900) basket cells. The long-range pyramidal-pyramidal and pyramidal-
RSNP synapses store orthogonal memories. As a consequence of stimulation (sim-
ulated incoming action potentials) of another part of the network at t=0.5 s and
t=1.5 s, the network state can be seen switching from a ground state to an active
memory state.

work is not in one of its active memory states is suggestive the class of o rythms,
which has been proposed to reflect cortical idling (Pfurtscheller et al., 1996). The
frequency lies close to the o band and is consistent with the cat g rythm (Hughes
and Crunelli, 2005).

In the active state, only the pyramidal cells of a single minicolumn are active
in each hypercolumn. In this state, pyramidal cells fire at 10-15 Hz, basket cells
at 50 Hz and RSNP cells at 25-35 Hz. One particularly interesting phenomenon,
which consistently arises in our simulations for a broad range of parameters and all
model sizes, is a rhythmic modulation of pyramidal cells during active states with
a frequency of 25-40 Hz (Figure 5.4D). This is reminiscent of the v band activity
observed in working memory tasks (Pesaran et al., 2002).

One of the experimental techniques used to study activity in populations of
neurons is to record changes in color of a voltage sensitive dye (VSD) (Grinvald
et al.,, 1994). Figure 5.3 shows a synthesized VSD-signal for a network with 49
hypercolumns during three phases of activity. The signal was computed as the low-

46 CHAPTER 5. A LARGE-SCALE MODEL OF THE CEREBRAL CORTEX

pass filtered sum of the membrane potentials of all cells in each minicolumn. Figure
5.3A shows the ground state condition. Figure 5.3B shows the VSD-signal just after
stimulation of a partial pattern. In Figure 5.3C, the network has completed the
shift to the active memory state.

Our model exhibits some emergent phenomena that have also been observed
in the brain. When the network attains an active memory state, pyramidal cells
participating in the active cell assembly get bombarded with synaptic events. This
elevates their membrane potential, so that the global shift of dynamic state is
reflected in a shift of their membrane potential from a hyperpolarized state to a
more depolarized state (Figure 5.4A). These states are very similar, respectively,
to the DOWN and UP states that have been observed physiologically (Steriade
et al., 1996; Cossart et al., 2003). These shifts cause many cells to have a bimodal
distribution of membrane potentials (Figure 5.4B), also consistent with physiology
(Anderson et al., 2000). Despite the regularities seen on a network level, the firing
of individual pyramidal cells is Poisson distributed in the active state (Figure 5.4B)
(see, e.g., Bedard et al., 2006). One particularly attractive feature of the model is
that it is robust to perturbation of parameters (paper VII), which is to be expected
from a biological system.

The largest simulation was performed on 8192 nodes of a Blue Gene/L super-
computer. The simulation occupied 336 MB of memory at each node, giving a total
of 2.8 TB. The model used consisted of 22 million neurons and 11 billon synapses
which corresponds to a cortical surface area of 16 cm?, comparable to the cortex
of a small mammal. While real pyramidal cells have 10000 synapses, the average
number of synapses per neuron is only 500 in our model due to the orthogonality
of the memory matrix and due to the lack of connections to other cortical areas.
One question was if such a large patch of cortex could maintain a stable attractor
state despite the significant propagation delays caused by axonal conduction time.
Our results show that this is indeed the case.

5.4 Memory capacity

The memory capacity of attractor networks has been explored in highly abstract
artificial neural networks (ANNSs) (see, e.g., Johansson et al., 2001). In this section,
we study to what extent network models closer to biology compare to ANNs. In
previous sections of this chapter, a biologically detailed model of cortical layers
II/111, using spiking, multicompartmental neurons and Hodgkin-Huxley formalism
for ion channels, was presented. To what extent can this type of model match
artificial recurrent networks with regard to memory capacity?

We ran simulations of the detailed model and a Bayesian Confidence Propagat-
ing Neural Network (BCPNN) (Johansson and Lansner, 2006a), counting correctly
recalled memory patterns. Long-range connections in the detailed model were de-
termined using a weight matrix w;; obtained by training the ANN. After training,
connections in both networks were set up probabilistically with uniform connection

5.4. MEMORY CAPACITY 47

Figure 5.3: Simulated VSD-signal of 4900 minicolumns in a simulated cortical patch
of size 3x3mm. A. The ground state with waves of hypercolumnar activity. B. A
part of a memory pattern is stimulated through layer IV. C. The network has
attained an attractor memory state.

48 CHAPTER 5. A LARGE-SCALE MODEL OF THE CEREBRAL CORTEX

5X5x32-05-2 pyr # 2

120

100

membrane potential (V)

T
o 50 100 150 200 250 300 350 400 0 5 10 15 20 25 30 35 I
181 (ms) Frequency (Hz)

Figure 5.4: A. A model pyramidal neuron switching from a hyperpolarized state
(similar to DOWN state) to a more depolarized state (similar to an UP state)
and back. The mean membrane potential becomes elevated at ¢ = 2.5 s due to
network activity when the neuron starts participating in an active attractor state.
The attractor state was activated through simulated electrical stimulation of other
member neurons. B. Membrane potential histogram. Many cells show a bimodal
distribution of membran potentials. C. Exponentially distributed activity of pyra-
midal cells in the depolarized state in a network with 25 hypercolumns. ISI:s (9443
spikes) were collected from all pyramidal cells during a total of 2 s of simulated time
when the network was in a globally active state, i.e. one in which a subset of cells
shows UP-state activity. The logarithm of the distribution of ISI was plotted as a
function of ISI length. An exponential distribution was fitted to the data and is
shown as a straight line. r? was 0.98 for the exponential fit and 0.86 for a power-law
distribution (not shown). D. Normalized power spectrum for VSD signal from one
minicolumn. Red: ground state. Green: active state.

5.4. MEMORY CAPACITY 49

patterns correctly recalled from stimulus with one error
450 T T T T T T T

350 |- a —

300

150

50

0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

patterns stored in 9x9 and 25x25 networks

Figure 5.5: Memory capacity assessment for two network sizes (9x9 and 25x25
minicolumns). The x-axis shows the number of random memory patterns stored
in the long-range connectivity matrix. The y-axis shows the number of correctly
recalled memory patterns. Dashed lines shows performance of layer II/III model,
solid lines shows ANN performance.

strengths: For each pair of units ((,7); elementary units in the ANN, minicolums
in cortex model), the absolute value abs(w;;) of the weight matrix value was scaled
to a connection probability Pj;. In the cortex model, P;; was used to determine
the probability in a Bernoulli trial for each possible pair of cells (¢;, ¢;) where ¢;
was a cell of the presynaptic minicolumn and c¢; a cell of the postsynpatic mini-
column. A positive w;; implied long-range excitatory pyramidal-pyramidal connec-
tions (with no pyramidal-RSNP connections), while a negative value implied long-
range pyramidal-RSNP connections (with no pyramidal-pyramidal connections; see
section 5.2).

Figure 5.5 shows an assessment of the memory capacity of the ANN and cortex
models, for two different network sizes. For each recall cycle, the models were
stimulated with a partial pattern, 2/3 of one of the stored patterns & (k). The stored
pattern was considered correctly recalled if the activity sampled between 200-300
ms after stimulation corresponded to the stored pattern) with at most one
mismatch. The lower curves show performance for a network with 9 hypercolumns
of 9 minicolumns each (9x9). The upper curves show the performance of a 25x25
network. Memory performance varies in a similar way for the two classes of model
(ANN vs detailed cortex model) when increasing the number of patterns stored in

50 CHAPTER 5. A LARGE-SCALE MODEL OF THE CEREBRAL CORTEX

the network. More specifically, the detailed model and the ANN display a similar
maximum memory capacity, demonstrating that a spiking network with detailed
neuronal and synaptic dynamics can perform the function of a robust attractor
memory. While a full understanding of cortical memory must cover more than static
memory patterns, we regard the present approach as an essential step in bridging
the gap between attractor theories of memory function and cortical anatomy and
electrophysiology.

Chapter 6

Outlook

In the simulation results of papers VI and VII, when the network attains one of the
attractor states associated with a stored memory, network spiking activity exhibits
a ~y-like rythm. But this oscillation frequency is higher than the firing frequency of
any of the excitatory neurons participating in this activity! That is, neurons of a
minicolumn “take turns” in contributing to the v rythm. The rythm of the attractor
state, which is clearly visible in the raster plot in Figure 5.2, is not as visible at
the level of individual cells—we are seeing a network-level phenomenon. In fact,
the attractors of an attractor network are also network-level phenomena. While
traces of attractor states are reflected in single-cell activity, the attractor state is
not always discernible at the single-cell level. Attractor states in the networks of
papers VI and VII are also not causally dependent on the activity of any single
cell in the sense that we can remove any cell without loosing the attractor state.
The ~-like rythm and the attractors are emergent properties at the network level
which occur due to the interaction of the cells in the network, similarly to how air
waves can arise due to the interaction of air molecules.

The model was designed using the combined top-down and bottom-up ap-
proaches described in section 2.9. The emergent attractor dynamics was not a
surprise, but rather imposed from a pre-existing, more abstract, description, even
though it is an interesting result that units of detailed minicolumns built from mul-
tiple cells with Hodgkin-Huxley dynamics collectively perform as a robust attractor
network. But, when moving from an abstract model of an attractor network to a
biologically detailed model, new, unpredicted, phenomena arise, among them the
network-wide 7-like oscillation when recalling a memory. One role of such cortical
rythms could be to increase efficiency of communication, since multiple action po-
tentials arriving within a small time window have more effect on the postsynaptic
cell than if they arrived asynchronously. The rythmicity also means that cells are
more likely to fire in response to synaptic input during one part of the cycle than in
other parts. If we want to study phenomena where this phase dependency matters,
we could move back again to an abstract description where minicolumns are treated

51

52 CHAPTER 6. OUTLOOK

as units, as in the abstract attractor network, but where we also include the phase
of the oscillation as a state varible. Such models have been studied previously (e.g.
Rao et al., 2008). The conclusion we can draw from this example is that it is worth-
while to move back and forth between models at different levels of abstraction. We
might start from a simple abstract model, use this as a functional hypothesis for a
biologically detailed model, and move back to a different abstract model.

The model of papers VII and VI can be seen as an initial attempt to under-
stand information processing in cortical layers IT/III. The model is unique in that it
simultaneously incorporates a relatively high degree of biological detail at the same
time as it performs the information processing functions of an attractor network.
However, the current model only incorporates point attractors (or limit cycles de-
pending on viewpoint) while the real cortex needs to deal with dynamic patterns.
If we look ahead towards the challenges of the future, we need to explore further
how the cortex handles spatiotemporal patterns. Another near-term goal is to un-
derstand the interplay with other cell groups spread through the cortical layers.
The apparent existence of a canonical microcircuit for the cerebral cortex urges us
to explain its function. While many feel this holy grail of cortical physiology is now
within reach, we can only conclude that it has not yet been found.

The understanding of the canonical microcircuit is connected to the question
of how brain areas work together as systems of networks. This implies challenges
for hardware, software as well as modeling. In paper VI we have seen a detailed
model of a cortical region which still only corresponds to a part of a brain area of
a higher animal. In addition, note that this work was based only on a handful of
simulation runs, while, in order to probe properties of the network, such as mem-
ory capacity (see section 5.4), thousands of runs are required. In this respect, the
large network of paper VT is still out of reach also on the impressive BG/L super-
computer at Watson Research. The road ahead thus means to initially use more
abstract models for the exploration of systems of networks until the advent of still
more powerful supercomputers. An exciting possibility for the near future is to use
the wafer-scale integrated neural hardware developed within the FACETS project
(Schemmel et al., 2008) which enables emulations of large networks 10000 times
faster than real-time (see section 2.1). Simulating systems of networks becomes
easier if taking a modular approach (see section 3.3), for example through using a
simulator providing a modular framework (section 4.1) or using a framework such
as MUSIC (section 4.2) to connect multiple simulators together. When modeling
systems of networks, the question of how to connect networks together is a rela-
tively unexplored territory (see, e.g., Johansson and Lansner, 2006b; Dileep and
Hawkins, 2005). Also, while this thesis discusses techniques for simulating cortical
networks, a full understanding of such networks will never come about without
understanding the complex network of diverse cortical areas as components in a
larger system, together with the thalamus, the basal ganglia, the cerebellum, the
additional components of the mediotemporal lobe, and, modulatory nuclei of the
basal forebrain and brain stem, with associated circuitry.

If we look far ahead, the ultimate challenge for a thorough understanding of

53

the brain is how consciousness arises as a result of brain activity. According to
the global workspace theory of consciousness (Baars, 2005, 1989), consciousness
provides access to information between brain functions that are otherwise separate.
Using Baars theory as a starting point, Gaillard et al. (2009) recorded intracranial
electroencephalogram (iEEG) from ten patients during non-conscious as well as
conscious processing of words. Conscious processing, in contrast to non-conscious,
was charaterized by sustained voltage changes, large increases in spectral power in
the v band, increases in long-distance phase synchrony, and increases in long-range
Granger causality (Granger, 1969). Could consciousness be explained as a brain-
wide attractor state, binding together participating networks, shifting in shape
and memberships over time, creating a flexible, immaterial, information processing
structure reconfigurable at the 100 ms timescale?

Returning to the discussion of emergence, we should remember that sound is
better described with the wave equation than as a particle system. Might there
be completely new abstractions to discover and use as tools on our long journey of
modeling starting with networks and moving to larger and larger systems? Might
the ultimate object of our study, the human mind, be best described with very
different tools than those imaginable today?

In this theses we have focused on the development and use of tools to conquer
the complexity of neural systems. However, as a final word, we must never forget
that there is more to technology than its tools:

Socrates to Glaucon: [T@&v] 8 8AwVY Opydvewy 00USEY 0UBEVA SNULOVEYOV
008¢ ddAnTNV Angiev Tooel, 0LB” EoTtan YooV T¢ PRTe THY ETOTHUNY
ExdoTtou hNoPdvt ufte Ty yerétny ixavipy napoaoyopéve (Plato, 380 BCE).

[No] tool will make a man be an artist or an athlete by his taking it in
hand, nor will it be of any service to those who have neither acquired
the science of it nor sufficiently practised themselves in its use

Chapter 7

Conclusions

This thesis has presented a set of contributions to the technology involved in large-
scale simulations of neuronal networks. Chapter 2 and paper I gave a perspective
on modeling in neuroscience in general and on the role of large-scale models in
particular. Chapter 2 also provided a terminology which is useful when discussing
models in neuroscience. For example, it was pointed out that the questions whether
a model is abstract, detailed or realistic are to some degree mutually independent.
The concept of model explicitness was introduced. The role of the model in neuro-
science was discussed as well as the strategy of a combined top-down and bottom-up
approach during model development.

In section 2.11 and paper II we presented a novel formalism for the description
of connectivity in neuronal network models. This formalism, the connection-set
algebra, can be used both to provide concise and unambiguous descriptions of con-
nectivity in papers in computational neuroscience, and as a component of simulator
scripting languages. Chapter 3 provided a review of issues related to simulation of
neuronal network models and a discussion of simulation tools, while chapter 4 re-
viewed three contributions to simulator technology. An early example of the use of
a general purpose, interpreted, scripting language for model description and simula-
tor extension was given in the See simulator (section 4.1, paper III). Two different
approaches to modularity when simulating systems of networks were provided in
the See simulator and in the MUSIC API and library (section 4.2). The See sim-
ulator has been used in a simulation of the primary visual pathway of the cat
(Djurfeldt, 1997) while MUSIC was used in the memory capacity measurements of
section 5.4. Paper V shows a set of improvements to the SPLIT simulator (section
4.3), enabling the simulation, in chapter 5, of a model with 11 billion synapses and
22 million neurons (paper VI).

Chapter 5 reviewed a neuronal network model of layers II/III of the neocortex
built with biophysical model neurons. Several key phenomena seen in the living
brain appeared as emergent phenomena in the simulations. The memory capacity
of two models of different network size was measured and compared to that of an
artificial neural network. We conclude that the layer II/TII model performs as a
robust auto-associative memory. Furthermore, paper VII demonstrated that the
model is robust against perturbation of parameters, which is a hallmark of correct
models of living systems.

95

Bibliography

Amit, D. (1989). Modeling Brain Function: The World of Attractor Neural Net-
works. Cambridge University Press, New York.

Amit, D. J. and Brunel, N. (1997). Model of global spontaneous activity and
local structured activity during delay periods in cerebral cortex. Cereb. Cortex,
7:237-252.

Anderson, J., Lampl, 1., Reichova, I., Carandini, M., and Ferster, D. (2000). Stim-
ulus dependence of two-state fluctuations of membrane potential in cat visual
cortex. Nat. Neurosci., 3(6):617—-621.

Aristotle (350 BCE). I-III. Loeb Classical Library. Harvard University Press,
Cambridge, MA, USA.

Aviel, Y., Mehring, C., Abeles, M., and Horn, D. (2003). On embedding synfire
chains in a balanced network. Neural Computation, 15(6):1321-1340.

Baars, B. J. (1989). A cognitive theory of consciousness. Cambridge University
Press, Cambridge, UK.

Baars, B. J. (2005). Global workspace theory of consciousness: toward a cognitive
neuroscience of human experience. In Laureys, S., editor, Prog. Brain Res.,
volume 150, chapter 4, pages 45-53. Elsevier.

Bailey, J. and Hammerstrom, D. (1988). Why VLSI implementations of associative
VLCNs require connection multiplexing. In International Conference on Neural
Networks, San Diego, U.S.A.

Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., and
Wieners, C. (1997). Ug - a flexible software toolbox for solving partial differential
equations. Computing and Visualization in Science, 1:27-40.

Bedard, C., Kroger, H., and Destexhe, A. (2006). Does the 1/f frequency scaling of
brain signals reflect self-organized critical states? Phys Rev Lett, 97(11):118102.

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative map of
the circuit of cat primary visual cortex. J. Neurosci., 39:8441-8453.

57

58 BIBLIOGRAPHY

Bower, J. M. and Beeman, D. (1998). The book of GENESIS: Exploring realistic
neural models with the GEneral NEural SImulation System. Springer-Verlag, New
York, 2 edition. ISBN 0-387-94938-0.

Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic
conductances. Neural Computation, 18(8):2004-2027.

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol., 94:3637-3642.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Jr., Zirpe, M.,
Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A.
Rochel, O., Vieville, T., Muller, E., Davison, A. P., Boustani, S. E., and Des-
texhe, A. (2007). Simulation of networks of spiking neurons: a review of tools
and strategies. J. Comp. Neurosci. Online.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. J. Comp. Neurosci., 8:183-208.

Buz’as, P., Kov'acs, K., Ferecsk’o, A. S., Budd, J. M. L., Eysel, U. T., and
Kisv’arday, Z. F. (2006). Model-based analysis of excitatory lateral connections
in the visual cortex. J. Comp. Neurol., 499:861-881.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines,
M. L., Howell, F. W., Miiller, E., Stiles, J. R., Wils, S., and De Schutter, E.
(2007). Interoperability of neuroscience modeling software: Current status and
future directions. Neuroinform., 5:127-138.

Churchland, P. S. and Sejnowski, T. J. (1992). The Computational Brain. The
MIT Press, Cambridge, Massachusetts.

Compte, A., Brunel, N., Goldman-Rakic, P. S., and Wang, X. J. (2000). Synap-
tic mechanisms and network dynamics underlying spatial working memory in a
cortical network model. Cereb Cortex, 10(9):910-23.

Cornelis, H., Edwards, M., Coop, A. D., and Bower, J. M. (2008). The cbi architec-
ture for computational simulation of realistic neurons and circuits in the genesis
3 software federation. BMC' Neuroscience, 9(Suppl 1):P88.

Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network up
states in the neocortex. Nature, 423(6937):283-8.

Crook, S. M., Gleeson, P., and Silver, R. A. (2007). NetworkML: Level 3 of the neu-
roml standards for multiscale model specification and exchange. In Soc. Neurosci.
Abstr.

59

Davison, A. P., Briderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2009). PyNN: a common interface for neuronal network
simulators. Frontiers in Neuroinformatics, 2:1-10.

Denk, W. and Horstmann, H. (2004). Serial block-face scanning electron microscopy
to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11):1900—
19009.

Destexhe, A., Rudolph, M., and Pare, D. (2003). The high-conductance state of
neocortical neurons in vivo. Nat. Rev. Neurosci., 4:739-751.

Diesmann, M. and Gewaltig, M.-O. (2002). NEST: An environment for neural sys-
tems simulations. In Plesser, T. and Macho, V., editors, Forschung und wisschen-
schaftliches Rechnen Beitrage zum Heinz-Billing-Preis 2001, volume 58, pages
43-70. Gottingen: Ges. fiir Wiss. Datenverarbeitung.

Dileep, G. and Hawkins, J. (2005). A hierarchical bayesian model of invariant
pattern recognition in the visual cortex. In IJCNN 2005.

Djurfeldt, M. (1997). Modeling the primary visual pathway of the cat, using spiking
Hodgkin-Huxley style units. Tech. Rep. TRITA-NA-E9742, Dept. of Numerical
Analysis and Computing Science, Royal Institute of Technology, Stockholm, Swe-
den.

Djurfeldt, M. and Lansner, A. (2007). Large-scale modeling of the nervous sys-
tem. Tech. rep., International Neuroinformatics Coordinating Facility (INCF).
Workshop report.

Eberhard, J., Attinger, S., and Wittum, G. (2004). Coarse graining for upscaling
of flow in heterogeneous porous media. Multiscale Model. Simul., 2(2):269-301.

Edelman, G. M. (1987). Neural Darwinism, chapter 3. Basic Books, New York,
USA.

Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, 1., Halgren, E., and Dale, A. M.
(2007). Laminar population analysis: Estimating firing rates and evoked synaptic
activity from multielectrode recordings in rat barrel cortex. J. Neurophysiol. In
press.

Ekeberg, O. and Djurfeldt, M. (2009). MUSIC — Multi-Simulation Coordinator,
Users Manual. INCF, Karolinska Institutet, Nobels vig 15 A, SE-171 77 Stock-
holm, Sweden, 1st edition. http://software.incf.org/software/music.

Ekeberg, O., Hammarlund, P., Levin, B., and Lansner, A. (1993). SWIM — A simu-
lation environment for realistic neural network modeling. In Skrzypek, J., editor,

Neural Network Simulation Environments, pages 47-71. Kluwer, Hingham, MA,
USA.

60 BIBLIOGRAPHY

Ekeberg, O., Wallén, P., Lansner, A., Travén, H., Brodin, L., and Grillner, S.
(1991). A computer based model for realistic simulations of neural networks. i:
The single neuron and synaptic interaction. Biol. Cybern., 65(2):81-90.

Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How
spike generation mechanisms determine the neuronal response to fluctuating in-
puts. J. Neurosci., 23:11628-11640.

Fransén, E. and Lansner, A. (1998). A model of cortical associative memory based
on a horizontal network of connected columns. Network: Computation in Neural
Systems, 9:235—264.

Frye, J. (2005). http://brain.cse.unr.edu/ncsdocs/.

Fuster, J. M. (1995). Memory in the Cerebral Cortex. The MIT Press, Cambridge,
Massachusetts.

Gaillard, R., Dehaene, S., Adam, C., Cl’emenceau, S., Hasboun, D., Baulac, M.,
Cohen, L., and Naccache, L. (2009). Converging intracranial markers of conscious
access. PLOS Biology, 7(3):1-21.

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: A tool for
modeling networks of neurons in 3D space. Neuron, 54(2):219-235.

Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., and Beeman, D.
(2001). Towards neuroml: model description methods for collaborative modelling
in neuroscience. Philos. Trans. R. Soc. Lond. B Biol. Sci., 356(1412):1209-28.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37(3):424-438.

Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R. (1994). Cortical
point-spread function and long-range lateral interactions revealed by real-time
optical imaging of macaque monkey primary visual cortex. J Neurosci, 14(5 Pt
1):2545-68.

Haberly, L. B. and Bower, J. M. (1989). Olfactory cortex: model circuit for study
of associative memory? Trends Neurosci, 12(7):258-64.

Haeusler, S. and Maass, W. (2007). A statistical analysis of information-processing
properties of lamina-specific cortical microcircuit models. Cerebral Cortez,
17:149-162.

Hammarlund, P. and Ekeberg, O. (1998). Large neural network simulations on
multiple hardware platforms. J Comput Neurosci, 5(4):443-59.

Hebb, D. O. (1949). The Organization of Behavior. John Wiley, New York.

61

Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood, CA.

Hines, M. (1993). NEURON—a program for simulation of nerve equations. In
Eeckman, F., editor, Neural Systems: Analysis and Modeling, pages 127-136.
Kluwer, Norwell, MA, USA.

Hines, M. and Carnevale, N. T. (1997). The neuron simulation environment. Neural
Comput., 9:1179-1209.

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M.
(2004). Modeldb: A database to support computational neuroscience. J Comput
Neurosci, 17(1):7-11.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.,
117:500-544.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences,
USA, 79:2554-2558.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol., 160:106-154.

Hubel, D. H. and Wiesel, T. N. (1977). Ferrier lecture. functional architecture of
macaque monkey visual cortex. Proc R Soc Lond B Biol Sct, 198(1130):1-59.

Hughes, S. W. and Crunelli, V. (2005). Thalamic mechanisms of eeg alpha rythms
and their pathological implications. Neuroscientist, 11(4):357-372.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IFEE Trans Neural
Networks, 14:1569-1572.

Johansson, C. and Lansner, A. (2006a). Attractor memory with self-organizing
input. In LNCS, volume 3853, pages 265-280. Springer Verlag.

Johansson, C. and Lansner, A. (2006b). A hierarchical brain-inspired computing
system. In International Symposium on Nonlinear Theory and its Applications
(NOLTA ’06), Bologna, Ttaly.

Johansson, C., Sandberg, A., and Lansner, A. (2001). A capacity study of a bayesian
neural network with hypercolumns. Tech. Rep. TRITA-NA-P0120, Dept. of Nu-
merical Analysis and Computing Science, Royal Institute of Technology, Stock-
holm, Sweden.

Jolivet, R., Lewis, T. J., and Gerstner, W. (2004). Generalized integrate-and-fire
models of neuronal activity approximate spike trains of a detailed model to a
high degree of accuracy. J. Neurophysiol., 92:959-976.

62 BIBLIOGRAPHY

Keat, J., Reinagel, P., Reid, R. C., and Meister, M. (2001). Predicting every spike:
a model for the responses of visual neurons. Neuron, 30:803-817.

Kennedy, H. (2005). The DAISY Project. http://daisy.ini.unizh.ch.

Kumar, A., Schrader, S., Aertsen, A., and Rotter, S. (2007). The high-conductance
state of cortical networks. Neural Computation. In press.

Lansner, A., Fransén, E., and Sandberg, A. (2003). Cell assembly dynamics in
detailed and abstract attractor models of cortical associative memory. Theory
Biosci, 122:19-36.

Latham, P. E., Richmond, B. J., Nelson, O. G., and Nirenberg, S. (2000). Intrinsic
dynamics in neuronal networks. i. theory. J. Neuophysiol., 83:808-827.

MacGregor, R. J. and Oliver, R. M. (1974). A model for repetitive firing in neurons.
Kybernetik, 16:53-64.

Markram, H. and Peck, C. (2004). The Blue Brain Project. http://
bluebrainproject.epfl.ch.

Marr, D. (1969). A theory of cerebellar cortex. J. Physiol., 202:437-470.
Marr, D. (1982). Vision. Freeman, New York, USA.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. Bull. Maths. and Biophysics, 5:115.

Mehring, C., Hehl, U., Kubo, M., Diesmann, M., and Aertsen, A. (2003). Activity
dynamics and propagation of synchronous spiking in locally connected random
networks. Biol. Cybern., 88(5):395-408.

Meier, K. (2005). The FACETS Project. http://facets.kip.uni-heidelberg.
de.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63:81-97.

Mirsky, J. S., Nadkarni, P. M., Healy, M. D., Miller, P. L., and Shepherd, G. M.
(1998). Database tools for integrating and searching membrane property data
correlated with neuronal morphology. J. Neurosci. Methods, 82(1):105-121.

Morrison, A., Aertsen, A., and Diesmann, M. (2007a). Spike-timing dependent
plasticity in balanced random networks. Neural Computation. In press.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005). Ad-
vancing the boundaries of high-connectivity network simulation with distributed
computing. Neural Computation, 17:1776-1801.

63

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007b). Exact sub-
threshold integration with continuous spike times in discrete-time neural network
simulations. Neural Computation, 19(1):47-79.

Mountcastle, V. B. (1978). An organizing principle for cerebral function: The unit
module and the distributed system. In Edelman, G. M. and Mountcastle, V. B.,
editors, The mindful brain. The MIT Press, Cambridge, Massachusetts.

Palm, G. (1982). Neural assemblies. An alternative approach to artificial intelli-
gence. Springer.

Paninski, L., Pillow, J. W.; and Simoncelli, E. P. (2004). Maximum likelihood es-
timation of a stochastic integrate-and-fire neural encoding model. Neural Com-
putation, 16:2533-2561.

Papert, S. (1960). Redundancy and linear logical nets. In Bionics symposium. Day-
ton, OH, Washington D.C., USA. Office of Technical Services, U. S. Department
of Commerce.

Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A. (2002).
Temporal structure in neuronal activity during working memory in macaque
parietal cortex. Nat. Neurosci., 5(8):805-11.

Peters, A. and Sethares, C. (1991). Organization of pyramidal neurons in area 17
of monkey visual cortex. J Comp Neurol, 306(1):1-23.

Pfurtscheller, G., Stancak, Jr, A., and Neuper, C. (1996). Event-related syn-
chronization (ers) in the alpha band—an electrophysiological correlate of cortical
idling: a review. Int J Psychophysiol, 24(1-2):39-46.

Plato (380 BCE). Book II: Socrates — Glaucon. In V: Republic I, Loeb Classical
Library, page 167. Harvard University Press, Cambridge, MA, USA.

Plato (387-347 BCE). [-XII. Loeb Classical Library. Harvard University Press,
Cambridge, MA, USA.

Plesser, H. E. and Austvoll, K. (2009). Specification and generation of structured
neuronal network models with the NEST topology module. In preparation.

Queisser, G., Xylouris, K., Kolozis, E., Otto, C., Draguhn, A., Bading, H., and
Wittum, G. (2008). Detailed 3d-models of cells and their functional units. In
Frontiers in Computational Neuroscience. Conference Abstract: Bernstein Sym-
postum 2008.

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity.
Exp. Neurol., 1:491-527.

64 BIBLIOGRAPHY

Rao, A. R., Cecchi, G. A., Peck, C. C., and Kozloski, J. R. (2008). Unsupervised
segmentation with dynamical units. IEEE Trans. Neural Networks, 19(1):168—
182.

Richardson, M. J., Brunel, N., and Hakim, V. (2003). From subthreshold to firing-
rate resonance. J. Neurophysiol., 89:2538-2554.

Robbins, K. A., Grinshpan, 1., Allen, K., and Senseman, D. M. (2004). Synchro-
nized views for exploring populations of neurons. In Erbacher, R. F., Chen, P. C.,
Roberts, J. C., Grohn, M. T., and Boérner, K., editors, Papers selected from Vi-
sualization and Data Analysis, volume 5295 of Proc. SPIE, pages 235-245.

Rudolph, M. and Destexhe, A. (2006). Analytical integrate-and-fire neuron models
with conductance-based dynamics for event-driven simulation strategies. Neural
computation, 18(9):2146-2210.

Sandberg, A., Lansner, A., Petersson, K. M., and Ekeberg, O. (2002). Bayesian
attractor networks with incremental learning. Network: Computation in neural
systems, 13:179-194.

Sandberg, A., Tegner, J., and Lansner, A. (2003). A working memory model based
on fast hebbian learning. Network, 14(4):789-802.

Schemmel, J., Fieres, J., and Meier, K. (2008). Wafer-scale integration of analog
neural networks. In Neural Networks, 2008. IJCNN 2008, pages 431-438.

Schutter, E. D. (1998). Dendritic voltage and calcium-gated channels amplify the
variability of postsynaptic responses in a purkinje cell model. Journal of Neuro-
physiology, 80:504-519.

Sharp, A. A., O’Neil, M. B., Abbott, L. F., and Marder, E. (1993). Dynamic clamp:
Computer-generated conductances in real neurons. J. Neurophysiol., 69(3):992—
995.

Stallman, R. M. (1981). Emacs the extensible, customizable, self-documenting
display editor. Al Memo 519a, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

Steriade, M., Amzica, F., and Contreras, D. (1996). Synchronization of fast (30-40
hz) spontaneous cortical rhythms during brain activation. J Neurosci, 16(1):392—
417.

Strey, A. (1997). EpsiloNN - a specification language for the efficient parallel simu-
lation of neural networks. In IWANN ’97: Proceedings of the International Work-
Conference on Artificial and Natural Neural Networks, pages 714-722, London,
UK. Springer-Verlag.

65

Tetzlaff, T., Morrison, A., Geisel, T., and Diesmann, M. (2004). Consequences of re-
alistic network size on the stability of embedded synfire chains. Neurocomputing,
58-60:117-121.

Thomson, A. M., West, D. C., Wang, Y., and Bannister, A. P. (2002). Synaptic
connections and small circuits involving excitatory and inhibitory neurons in layer
2-5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin
labelling in vitro. Cerebral Cortex, 12:939-953.

Traub, R. D. (1979). Neocortical pyramidal cells: A model with dendritic cal-
cium conductance reproduces repetitive firing and epileptic behavior. Brain Res.,
173:243-257.

Treves, A. and Rolls, E. T. (1994). Computational analysis of the role of the
hippocampus in memory. Hippocampus, 4(3):374-91.

Tuckwell, H. C. (1988). Linear Cable Theory and Dendritic Structure, volume 1
of Introduction to Theoretical Neurobiology. Cambridge University Press, Cam-
bridge.

Vogels, T. P. and Abbott, L. F. (2005). Signal propagation and logic gating in
networks of integrate-and-fire neurons. J. Neurosci., 25:10786—-10795.

Willshaw, D. and Longuet-Higgins, H. (1970). Associative memory models. In
Meltzer, B. and Michie, O., editors, Machine Learning, volume 5. Edinburgh
University Press, Edinburgh, Scotland.

Wittum, G. (2006). Personal communication.

Wittum, G. (2007). uG. http://sit.iwr.uni-heidelberg.de/~ug/.

