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For if every instrument could accomplish its own
work, obeying or anticipating the will of others... if
the shuttle weaved and the pick touched the lyre with-
out a hand to guide them, chief workmen would not
need servants, nor masters slaves.

Aristotle
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Abstract

In this thesis, we consider problems connected to navigati@ tracking for autonomous
robots under the assumption of constraints on sensors aathktics. We study formation con-
trol as well as techniques for filtering and smoothing of a@sntaminated input. The scientific
contributions of the thesis comprise five papers.

In Paper A, we propose three cascaded, stabilizing formatmtrols for multi-agent sys-
tems. We consider platforms with non-holonomic kinematiostraints and directional range
sensors. The resulting formation is a leader-followereystwhere each follower agent tracks
its leader agent at a specified angle and distance. No iggtaommunication is required to
execute the controls. A switching Kalman filter is introddider active sensing, and robustness
is demonstrated in experiments and simulations with Kreeflepbots.

In Paper B, an optimization-based adaptive Kalman filtemeghod is proposed. The method
produces an estimate of the process noise covariance rmgahyxsolving an optimization prob-
lem over a short window of data. The algorithm recovers thgeplationsh(x) from a system
x = f(x), y =h(x) + v without a priori knowledge of system dynamics. The algaritis evalu-
ated in simulations and a tracking example is included, farget with coupled and nonlinear
kinematics.

In Paper C, we consider the problem of estimating a closedecimr R? based on noise
contaminated samples. A recursive control theoretic shiogtspline approach is proposed, that
yields an initial estimate of the curve and subsequentlymgdss refinements of the estimate
iteratively. Periodic splines are generated by minimizingost function subject to constraints
imposed by a linear control system. The optimal control fgabis shown to be proper, and
sufficient optimality conditions are derived for a speciabe of the problem using Hamilton-
Jacobi-Bellman theory.

Paper D continues the study of recursive control theoraticathing splines. A discretiza-
tion of the problem is derived, yielding an unconstraineddyatic programming problem. A
proof of convexity for the discretized problem is providead the recursive algorithm is eval-
uated in simulations and experiments using a SICK lasem&anounted on a PowerBot from
ActivMedia Robotics.

Finally, in Paper E we explore the issue of optimal smootfiimgontrol theoretic smoothing
splines. The output of the control theoretic smoothingrepfproblem is essentially a tradeoff
between faithfulness to measurement data and smoothnkeisstradeoff is regulated by the so-
calledsmoothing parameteitn Paper E, a method is developed for estimating the optuaak
of this smoothing parameter. The procedure is based on@erress validation and requires no
a priori information about the underlying curve or level ofige in the measurements.

Keywords: formation control, tracking, nonlinear control , optimal smoothing, adaptive
filtering
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Chapter 1

Introduction

This thesis explores control design and filtering for autonas systems under the assumption of
noise contaminated feedback from onboard sensors. The f®au applications such as formation
keeping and target tracking for groups of mobile agents,teaaking or estimation of curves from
noisy samples. When noisy data is used for feedback, somearfdtor smoothing is generally
required before applying the control law. In addition, undgech circumstances, the control law
itself should be robust with respect to measurement erfcgsroe reasonable magnitude.

In this thesis we study both aspects. The particular toditsethesis are outlined next.

1.1 Thesis Outline

The thesis consists of two introductory chapters and fiveeaged papers. In the remainder of
this chapter, a motivation for the work is provided and thpeagled papers are summarized, while
ChaptefR reviews the relevant results and terminologydbiastitute the background of the papers.
The contents of Chaptél 2 should be well known to the inidatader and the chapter may be
skipped at a first reading.

The appended papers may be divided into two categories. iteditegory is control design
and Kalman filtering, under assumptions of sensor constaiRaper A treats nonlinear control
design and switching Kalman filters for feedback from di@tal sensors, for a team of mobile
robots that move in a specified formation. Paper B focusasenbn adaptive Kalman filtering
with no a priori information about the true system dynamics.

The second category is smoothing of noisy data by contrar#éiE smoothing splines. The-
oretical results as well as outcomes of simulations andraxgats are reported. This part of the
thesis encompasses Papers C, D and E, where Paper C focubkesm@tical aspects, Paper D treats
implementation and experiments, and Paper E discussesastinoothing.

It should be noted that even though the research presenttuisithesis is often motivated
by applications, and demonstrated in simulations or erpants, system and sensor models are
generally simplifications of the true models. For instarfeetors such as slip and traction are
overlooked and the pure kinematic equations are used toInmatatg dynamics.

1.2 Motivation

Early commercial robots were generally designed for indisapplications, such as assembling
cars in a controlled environment mostly inhabited by othdustrial robots. Such robots are mainly
designed for performing pre-determined, repetitive tagksgh speed and with good accuracy.
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2 INTRODUCTION

As the market for domestic robots, autonomous surveillaretgcles, and other automatic
agents is expanding, the focus is shifting toward robotk Wéxible and intelligent behavior that
can safely interact with humans and respond appropriaielpéxpected events. For mobile robots,
the ability to interpret and handle events and objects iim tugroundings is essential. One aspect of
this concerns the development of better sensors. This isvewmot the topic of this thesis. Instead,
we explore ways of refining information received in form ofiseocontaminated data, and how to
design control signals that are robust to errors in the input

For many applications, robustness and efficiency can belgieareased by engaging teams
of cooperative mobile robots to carry out tasks togetheanies include mine sweeping, surveil-
lance, lawn mowing and vacuum cleaning. This motivatestineeat interest in multi-agent systems
or networks. Often inter-agent communication or acces$atoadinformation is a necessity in such
operations. One of the topics of this thesis is that of achggeeooperative behavior for a team of
agents without global information or communication anchvgibnstraints on onboard sensors.

The next section renders a more detailed overview of therajgzbpapers.

1.3 Reader’s Guide to the Appended Papers

In this section, the appended papers are presented. Araetbstreach paper is provided together
with a discussion on contributions, work division, limitats, and suggested extensions. In the five
independent papers, notation is introduced separatelggh paper. Unless otherwise specified,
denotes the time derivative afand||x|| is the euclidian norm ok. The reader is urged to mind
notational collision.

Paper A: Robust Formation Control using Switching Range Sesors

Authors: M. Karasalo, T. Gustavi, and X. Hu.
Publication:  Submitted to Robotics and Autonomous Systems, April 2009.

Abstract:  In this paper, control algorithms are presented for foramakieeping and path fol-
lowing for non-holonomic platforms. The controls are basadeedback from onboard directional
range sensors, and a switching Kalman filter is introduceddtive sensing. Stability is analyzed
theoretically and robustness is demonstrated in expetsward simulations.

Contributions: ~ The main result is the globally stable, cascaded formatmmtrol. The ex-
tensions of this control to adaptable parameters and to tonimconvergence of certain control
parameters are novel contributions of this paper. The éxgatal evaluation of the globally stable
control and the switching Kalman filter testifies to the rdbess of the approach. Some of the
results in this paper have appeared in

[1] T. Gustavi, X. Hu and M. Karasalo,
Multi-Robot Formation Control And Terrain Servoing withrhited Sensor Information,
Proc. of the 16th Congress of the International FederatiérAotomatic Control (IFAC)
2005.

[2] T. Gustavi, X. Hu and M. Karasalo,
Formation Adaptation with Limited Sensor Information,
invited paper, Proc. of Chinese Control Conference (CQ0p5.
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[3] J. Samuelsson, T. Gustavi, M. Karasalo and X. Hu,
Robust Formation Adaptation for Mobile Platforms with No8ensor Information,
Proc. of the IEEE/RSJ International Conference on IntelligRobots and Systems (IRQS)
2006.

[4] T. Gustavi and X.Hu,
Observer Based Leader-Following Formation Control usingBdard Sensor Information,
IEEE Transactions on Roboticgol. 24, no. 6, pp. 1457-1462, 2008.

Work Division:  The basic cascaded tracking algorithm was developed by slwedl as the
extension that results in monotonic convergence of thenpatersd and 3. The extension with
adaptable parameters was developed by Karasalo. The exqretdl evaluation has been previously
published in[[B] and is joint work between Samuelsson, Giiistand Karasalo. The simulations
were done by Karasalo.

Limitations and Suggested Extensions: In order for the controls to be applicable in practice,
some issues need to be addressed. For instance, the casoattetlis sensitive to the scenario that
one agent breaks down. The implemented Kalman filter yieldsteer rough estimate of the target
state. An adaptive Kalman filter that produces better estisnia discussed in Paper B. Simulations
and experiments showed that the controls are somewhatigerisi the method of discretization
used on the dynamic system. To work in practice, the contretsl feedback with sufficiently high
sampling rate.

Paper B: An Optimization Approach to Adaptive Kalman Filter ing

Authors: M. Karasalo and X. Hu.
Publication:  48th IEEE Conference on Decision and Control (CDC), 2009.

Abstract:  In this paper, an optimization-based adaptive Kalman ifiltemethod is proposed.
The method produces an estimate of the process noise aosarizatrixQ by solving an optimiza-
tion problem over a short window of data. The algorithm rezsthe observatiortgx) from a sys-
temx = f(x), y = h(x) + v without a priori knowledge of system dynamics. Potentiadlmations
include target tracking using a network of nonlinear sesiseervoing, mapping, and localization.
The algorithm is demonstrated in simulations on a trackixayeple for a target with coupled and
nonlinear kinematics. Simulations indicate superioritgioa standard MMAE algorithm for a large
class of systems.

Contributions:  This particular optimization approach is novel. The meti®dcalable and
applicable to systems where little or no information on tbial dynamics is available. Some of
the results in this paper have appeared in

[1] T. Gustavi, M. Karasalo, X. Hu, and C.F. Martin,
Recursive Identification of a Hybrid System,
Proc. of the The European Control Conference (ECXD09.

Work Division:  The idea and method of optimization based adaptive Kalmgarifig was de-
veloped by Karasalo. Hu designed the tracking example to@cirthe theory with applications,
and provided valuable comments on the presentation of therpa
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Limitations and Suggested Extensions: The cost function in the optimization problem was
chosen because of its appealing simplicity and performaattter than its theoretical properties.
Theoretical results in general are still lacking for the hoetand alternative cost functions should be
investigated. The method is developed to work for systerntts wiknown dynamics. An interesting
extension would be to enable incorporation of known tréfithe system for increased performance.

Remark 1.3.1 Due to the page limitation for publication in conference @gedings, some of the
figures appearing in Paper B have been removed in the puldigbper.

Paper C: Periodic and Recursive Control Theoretic Smoothig Splines
Authors: M. Karasalo, X. Hu, and C.F. Matrtin.

Publication:  Submitted to Communications in Information and Systemsgusiti2009.

Abstract:  In this paper, a recursive control theoretic smoothingngphpproach is proposed
for reconstructing a closed contour. Periodic splines areegated by minimizing a cost function
subject to constraints imposed by a linear control systeme. dptimal control problem is shown to
be proper, and sufficient optimality conditions are derif@da special case of the problem using
Hamilton-Jacobi-Bellman theory.

The filtering effect of the smoothing splines allows for usad noisy sensor data. An impor-
tant feature of the method is that several data sets for time s#osed contour can be processed
recursively so that the accuracy can be improved stepwisevaslata becomes available.

Contributions:  The main contribution is the formulation of the recursivérspproblem, which
is appealing since it can be transformed so that it is idehtecthe closed form smoothing spline
problem. A connection is made between regular periodic $hiog splines and optimal control,
opening up for the formulation of more advanced smoothimplgms. Some of the results in this
paper have appeared in

[1] M. Karasalo, X. Hu, and C.F. Martin,
Closed Contour Reconstruction using lterated Smoothirio&y
Proc. of the third Swedish Workshop on Autonomous Rob@W&AR) 2005

[2] M. Karasalo, X. Hu, and C.F. Martin,
Contour Reconstruction and Matching using Recursive ShingtSplines,
Modeling, Estimation and Control, Springgap. 193-206, 2007.

Work Division:  The idea of this particular form of recursive smoothing ispé was the result
of a collaboration between Hu and Martin. The specific rdoarformula was developed by Hu.
The connection with Hamilton-Jacobi-Bellman theory arel¢bhnvergence results were derived by
Karasalo.

Limitations and Suggested Extensions: Sufficient optimality conditions are only derived for

the caseN — . Conditions for a finiteN are still lacking. Although simulation results indicate
fast convergence of the recursive problem, theoreticallitioms for convergence, such as level and
nature of the added noise, and features of the underlyingechiave yet to be investigated. Some
of the results are applicable to optimal control problemthwiher dynamic constraints than those
examined in this paper. Closer investigation of such probles of interest.
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Remark 1.3.2 In [2], the definitions of boundary conditions to some difaial equations contain
errors. In Paper C they should however be correct.

Paper D: Contour Reconstruction using Recursive Smoothin@plines - Algorithms
and Experimental Validation

Authors: M. Karasalo, G. Piccolo, D. Kragic and X. Hu.
Publication:  Robotics and Autonomous Systems, no. 57, pp. 617—628, 2009.

Abstract:  In this paper, a recursive smoothing spline approach fotozomeconstruction is stud-
ied and evaluated. Periodic smoothing splines are used bha to approximate the contour of
encountered obstacles in the environment. The splinesarergted through minimizing a cost
function subject to constraints imposed by a linear cordystem and accuracy is improved iter-
atively using a recursive spline algorithm. The filterinfeef of the smoothing splines allows for
usage of noisy sensor data and the method is robust withaetgpedometry drift. The algorithm
is extensively evaluated in simulations for various corsa@and in experiments using a SICK laser
scanner mounted on a PowerBot from ActivMedia Robotics.

Contributions:  The recursive spline problem formulated in Paper C is thghbuevaluated in
simulations and experiments with real sensor data. A digatéon is derived, which transforms the
optimal control problem to a simple, unconstrained quad@bgramming problem. Some of the
results in this paper have appeared in

[1] G. Piccolo, M. Karasalo, D. Kragic, and X. Hu,
Contour Reconstruction using Recursive Smoothing Splifiegperimental Validation,
Proc. of the IEEE/RSJ International Conference on IntelligRobots and Systems (IRQS)
2007.

[2] M. Karasalo, X. Hu, and C.F. Martin,
Localization and Mapping using Recursive Smoothing Sgline
Proc. of the European Control Conference (EC20)07.

[3] M. Karasalo, X. Hu, and C.F. Martin,
Contour Reconstruction and Matching using Recursive ShingtSplines,
Modeling, Estimation and Control, Springgap. 193—-206, 2007.

Work Division:  The implementation and experiments were joint work betwRienolo, Kragic
and Karasalo. The simulation results and analysis are ddar@asalo. The recursive formulation
is due to Hu, who also offered invaluable support during ltteshooting of the simulation code.
Kragic's feedback contributed greatly to the presentatithe material.

Limitations and Suggested Extensions: A weakness of the approach is the need to find a suit-
able level of smoothing by manual tuning. A systematic waydefermining the smoothing is
presented in Paper E. Most of the evaluation is performedrnlated data. Experiments with
more challenging contours would be of interest, as well asvatuation of the lower limit on the
number of added data points at each iteration to achieveecgence.

Remark 1.3.3 After publication of this paper, it has been brought to thehaws’ attention that
there was an error in the proof of Proposition D.4.1. The tesihowever correct. A remedied
proof is provided in this thesis. Some typos have also beraated.
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Paper E: An Estimated General Cross Validation Function forPeriodic Control
Theoretic Smoothing Splines

Authors: M. Karasalo, X. Hu, and C.F. Martin.

Publication:  Perspectives in Mathematical System Theory, Control, ageProcessing, Lec-
ture Notes in Control and Information Sciences, Springeagpear 2010.

Abstract:  In this paper, a method is developed for estimating the gdtimoothing parameter

for periodic control theoretic smoothing splines. The gahare is based on general cross validation
(GCV) and requires no a priori information about the underlyingve or level of noise in the
measurements. The optimeis the minimizer of &5CV cost function, which is derived based on a
discretization of the., smoothing problem for periodic control theoretic smoogisplines.

Contributions: ~ The main contribution is the derivation of the estima@@V cost function for
the particular periodic control theoretic smoothing splproblem. Simulation results suggest that
with this estimate, the error convergence in the lilit> c corresponds to the convergence for the
analyticGCV function.

Work Division: ~ The method presented in this paper is an adaptation of a @emethod for
smoothing splines in a statistical setting. Martin and Hotdbuted with their knowledge in statis-
tics and control, suggested relevant references and mowodnstructive feedback on the text. The
estimate of the influence matrix was derived by Karasaloedas a discretization of the problem
presented in Paper D.

Limitations and Suggested Extensions: This method should be extended to the recursive prob-
lem discussed in Papers C and D. It would be desirable to firdtimate of th&SCV cost function
such that error convergence can be obtained using the ¢éstimas the number of recursiotks
increases. At present, convergence is only apparent wisegaising the number of data poifis

Remark 1.3.4 Proposition E.3.1 is essentially equivalent with PropiositD.4.1. The proposition
and the proof are included in Paper E since the proof provittetthe published version of Paper D
was incomplete.

1.4 Formulations of the Smoothing Spline Problem in Papers (D and E

The smoothing spline problems in Papers C, D and E, altholagiely related, are somewhat dif-
ferently formulated. In this section, the distinctions poénted out and explained. First, the three
problems are stated.

Problem 1.4.1 Control Theoretic Splines in Paper C

inimize J —1TtT*ltdt1Nt- ti_1)(z —Cx(t)) "R 1(z — Cx(t; 1.1
minimize (“’X)_E/o ut)' Q u(t) +5i:(|—.71)(2.— X)) R (z—Cxt)) (1.1)
subjectto x° = Ax+Bu (1.2)

x(0) = x(T), (1.3)

with data input defined by z z(t)), t € [0,T], ZT) =z0) and z = Cx(ti) + &, whereé; is
a symmetric, zero-mean iid noise with bounded variance. B®*", B € R" and C' € R", where
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the pair (A, B) is controllable and(A,C) is observable. Q and R are positive definite matrices of
suitable dimension.

Problem 1.4.2 Control Theoretic Splines in Paper D

minimize J(u,x) = x(0 +/ (t)dt+
UEL,[0,T]

Z“ |~ t1)(m — Cx(t)) TRz —Cx(t))  (L4)

subjectto x’ Ax+Bu (1.5)

x(0) = x(T), (1.6)

with data input defined bft;,z), such thatit € [0,T] is the polar coordinate angle,  2rrand z
is the radius in polar coordinates. Further, 2 Cx(ti) + & whereé; is a symmetric, zero-mean iid

noise with bounded variance. AR™", Bc R" and C" € R", where the paifA, B) is controllable
and(A,C) is observable. { Q and R are positive definite matrices of suitable dimension

Problem 1.4.3 Control Theoretic Splines in Paper E

P . _ 2 c
L’?tl)ryLmz[gﬁ J(u,r)_/O dt+ Z .7)
subjectto r’(t) = u(t) (1.8)
r0) = r(2m (1.9)
r'(0) = r'(2m), (1.10)

with data input defined bft;,z), such thatit € [0,2] is the polar coordinate angle ang s the
radius in polar coordinates. Further; z= r(t) + &, & € N(0,0?), with o unknown.

The main distinction of Probleii 1.4.1 is the inclusion of taetor 1/2 in the cost function. The
motivation is simply that with this factor, the differentiequations resulting from the Hamilton-
Jacobi-Bellman equation become neater.

ProblenLZR includes the temi0)T Py *x(0). This is a remnant from early formulations of
control theoretic smoothing splines and is motivated byfélsethat it may facilitate solution of the
problem. In Paper D, this term is mainly included becausedtrgntees that the problem has a well
defined, unique solution even for empty data sets. Thisisdtnd proved in the paper. Due to the
application focus of the paper, the formulation of the peobis slightly less generic than in Paper
C, assuming polar coordinates.

In Paper E, the focus is not on the spline problem itself biftrating a suitable level of smooth-
ing. Therefore the presentation of the spline problem irgéseral form is skipped, and Prob-
lem[1.4.3 is expressed directly in polar coordinates. Tlsaraption on normally distributed data,
as well as the inclusion of the factoyM instead oft; —t;_1, is a prerequisite for some results for
general cross validation for regular smoothing splines, tie method presented in Paper E is an
adaptation of this.






Chapter 2

Preliminaries

This chapter offers an overview of fundamental conceptsntrol theory, mobile robotics, smooth-
ing and filtering. The purpose of the chapter is to give a brgbduction for readers who are
unfamiliar with some of the theory. The definitions and resof this chapter are established and
well known, thus proofs of theorems are omitted. The focutheffollowing sections will be on
results and techniques that are relevant for the appengeatpa-or a comprehensive treatment of
the subjects in this chapter, the reader is invited to sthéyréferences given at the end of each
section.

The outline of this chapter is as follows. In Section] 2.1 wiefty introduce terminology and
results in mathematical systems theory. Se¢fiah 2.3 giveserview of the field of mobile robotics.
Sectior Z.b concerns filtering and smoothing of data. Thestioss are independent and the reader
may well skip one if familiar with its topics. The notationagsshould be unambiguous within each
section but readers are urged to mind notational collisetwben sections.

2.1 Mathematical Systems Theory

Control systems have been invented and applied since aricress, such as wind mills and water
supply networks. The scientific field of systems and contrebty emerged in the mid 1800s, with
the development of complex machines and engines. Frequamgin techniques dominated the
field of control theory during the first half of the $0century. State space approaches emerged
mainly during the second half of the century within the fiefdrmthematical systems theory.

The state space description of a control system is a setfefeiiftial equations for state vector
X, including acontrol signal uthat is to be designed such that the evolvement of the stag¢ésme
some specified control objective.

Theoutput yof the control system contains the measurements on thensysteich is a function
of the statex and possibly also of the contral In this section, basic definitions and results in the
field of mathematical systems theory are summarized. Fuadticoncepts such as controllability
and observability are introduced for the special case e#lirsystems and then extended to nonlinear
systems. First, basic definitions of different types of sy, in the mathematical sense, are stated.

Definition 2.1.1 In the context of mathematical systems theoiggmatrol systemis the set of equa-
tions

X(t) = f(x(t),u(t),t) (2.2)
y(t) = h(X(t),U(t),t), (2.2)
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or, in discrete time

X(te) = f(x(), ult) ) (2.3)
Y1) = h(X(t), u(ti), t), (2.4)

where xe X C R" is the state variable, & R™ is the control input, y¢ RP is the output and t is the
time. If m= p = 1the system is called @ISO (single input, single output) system. s, p > 1it
is called aMIMO (multiple input, multiple output) system. Correspondyntiie typesm-1,p> 1
and m> 1, p = 1 are calledSIMO andMISO.

Definition 2.1.2 An autonomous systenin the mathematical sense, is a system that does not de-
pend explicitly on the time t:

Xt) = f(x),u() (2.5)
yt) = h(xt),ut)). 2.6)

The control systems appearing in this thesis are usualbnamous and affine or even linear. Defi-
nitions of such systems follow.

Definition 2.1.3 Anaffine control systenis a system of the form

X(t) = f(x()+gxt)u(t) (2.7)
yt) = h(x(t)). (2.8)

Definition 2.1.4 Alinear control systenis a system of the form

X(t) = A(t)x(t)+B(t)u(t) (2.9)
y(t) = C(t)x(t)+D(t)u(t), (2.10)

where At),B(t),C(t) and D(t) are matrices of suitable dimensions.
Definition 2.1.5 Atime-invariant linear systems a system of the form

X(t) = AXt)+Bu(t) (2.11)
y(t) = Cx()+Du(t), (2.12)

where AB,C and D are constant matrices of suitable dimensions.

Now we move on to definitions concerning certain properties are relevant for control and ob-
server design for control systems.

Definition 2.1.6 A systen{Z.1)- (2.2)is calledcontrollableif, for any two points g and » in R",
there exists an admissible control u, such that u drivesmmfxgto X, in some finite time T.

Remark 2.1.1 In the literature, if ¥ = 0, (2.7)- (2.2) is sometimes callegachable while if ; = 0
it is called null controllable. In the present context, we dilsese terms without distinction.
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Definition 2.1.7 Consider the systeZ.]) - (Z.2). Two states gand % are calleddistinguishable
if it holds that

y(-%0) # Y(+X1) (2.13)
where ¥-,X) is the output trajectory with initial condition x. Furtheore, the system is called
locally observable axy if there is a neighborhood () such that{Z.13)holds for all % € N(xg).
The system is callddcally observabléf it is locally observable at every X.

Finally, we introduce some terminology regarding staypitit control systems.
Definition 2.1.8 Consider the autonomous system

x= f(x), (2.14)
and let Xt,xp) denote the state x at time t with initial conditioft®y = Xo. We say that

1) x=xg is anequilibrium of (ZI3)if f (Xg) = 0. In the following, without loss of generality,
we assumege= 0.

2) x=0isstableif V € >0 3 (&) > 0such that
[%ll < &(¢) = [Ix(t,%0)[| <& Vt=0.

3) x=0is unstableif it is not stable.
4) x=Oisattractiveif 3 n > 0 such that||Xo| < n étlim X(t,xo) = 0.
5) x= 0is asymptotically stablé it is stable and attractive.

6) x=0is exponentially stablef 3 k> O,r > 0 and a neighborhood [0) of the origin such
that
IX(t,%0)[| <Klxoll€™ ¥ =0, xo&N(0).

2.1.1 Linear Systems

In this section, the theory of linear control systems iseewd. Properties and control design
of linear systems is by now well understood, and a study af plairticular type of systems may
facilitate understanding of control systems in generalretleesults on observability, reachability
and stability are presented. First, we introduce the carafdpansition matrices.

The Transition Matrix

The transition matrix provides a nice means of expressiagtiution of a differential equation. A
definition is provided next.

Definition 2.1.9 Lete; € R" denote the j th unit vector inR". Consider the linear, uncontrolled
system

X(t) = At)x(t) (2.15)
X(to) = €, (2.16)

and let®;(t,tp) € R" denote the unique solution ¢.158)- (2.168) Then thetransition matrix
®(t,1p) € R™"is defined by

P(t,tp) = [P1(t, 1), ..., Pn(t,t0)]. (2.17)
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The following lemma lists properties df(t,to).

Lemma 2.1.1 The transition matrixZ_17)satisfies the following properties:

dq’(;:’s> — AL)D(LS) (2.18)
Pb(s,s) = | (2.19)
dcba(':s) — _Ot9A®) (2.20)
X(to) = a = xt)=d(t,1p)a (2.21)
P(t,s) = P, 1)P(1,5) V (t,571). (2.22)

Now consider the linear, controlled system

Xt) = A{MX1)+B)u(t) (2.23)
X(to) = %o (2.24)
yit) = CxX(). (2.25)

It is easy to show that, with(t,tp) defined by[(2.1]7), the solution can be written

X(t) = ®(t,10)Xo + tCD(t,s)B(s)u(s)ds (2.26)

fo

Lemma 2.1.2 For a time-invariant syster@@.11)- (Z.12)it holds that

d(t,s) z i Ak t—s (2.27)

We will now move on to discuss criteria for the essential grtips reachability, observability and
stability of linear systems.
Reachability

Investigating reachability (controllability) of a contgystem is essential before designing a control.
States that are reachable can be manipulated by a feedhatcilto meet some performance crite-
ria, which are usually expressed for a particular state aorapt as a reference value. Reachability
is defined below.

Definition 2.1.10 Thereachability gramianof (2.23)- (2.23)is the nx n-matrix

Witoty) = [ ®(ts,9B(9)B(S)T d(ty, 9 ds (2.28)

to

Definition 2.1.11 For a time-invariant system, theachability matrixis the matrix

r=[BABAB... A" B|. (2.29)
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Theorem 2.1.1 Reachability. For the systenfZ.23)- (2.28) the state transfer fromgx= X(tg) to
x1 = X(t1) is possible if and only if

X1 — ®(t1,t0)%o € IMm W(to,t1). (2.30)
Furthermore, if (2.23)- (2.28)is time-invariant, it is completely reachablerénkl™ = n.

The results about observability of linear systems are inynvealys analogous to the reachability
results. They are discussed next.
Observability

Usually all states of a control system are not measurabéettjr They may however be present

in the output implicitly. The observability properties ofgstem tell us which states can be recon-
structed from the output. For linear systems, observablestcan be reconstructed or estimated
using an observer or a filter. This will be discussed furthe3ectiod Z.6. Such estimates often play
a vital role when designing feedback controls. Definitiohsluservability are given below.

Definition 2.1.12 Theobservability gramiarof (2.23)- (2.28)is the matrix

M(to,t1) = ./t.tl d(t1,5)"C(s)TC(9)D(1y,5)ds (2.31)

Definition 2.1.13 For a time-invariant system, th@bservability matrixis the matrix

Q=[CCACE ...CA™ YT, (2.32)

Theorem 2.1.2 Observability.For the systenf2.23)- (2.28) the initial states g = X(tp) and x =
X(t1) produce the same output g, t1] if and only if

X0 — X1 € ker M(to,t1). (2.33)
Furthermore, if (Z.23)- (2.28)is time-invariant, it is completely observabla#nkQ = n.

Finally, we will cover stability and stabilization of lineaystems.

Stability and Stabilization

Stable systems have the nice property that the state cas/gygor stays close to, some reference
value. If a linear system is controllable, a stabilizingdieack can be designed so that the closed
loop system is stable. Stability is a property often dedioethe error dynamics of a control system

- that is, the deviation from reference values should be dedrmr even converge to 0 is» . In

the following, some relevant definitions are stated.

Definition 2.1.14 A linear systenfZ.9) - (Z.10)is calledinput-to-output stablef there is a k such
that, for all initial times b,

X(to) = 0,

Ju(t)|| < 1, tg[to,oo)} =yl <k tefto, ). (2.34)
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Definition 2.1.15 Consider the linear, time-invariant system

X = AX (2.35)
x(0) = Xo. (2.36)

This system is calledtableif the solution is bounded for ¢ [0,) for all initial states % and
asymptotically stablé x(t) — 0 as t— oo for all x.

Definition 2.1.16 A matrix A is called astable matrixif the real parts of all eigenvalues of A are
negative.

Theorem 2.1.3 The systenfZ.35) - (Z.38) is asymptotically stable if and only if A is a stability
matrix. If at least one eigenvalue is positive, the systeam&table.

Theorem 2.1.4 The linear, time-invariant syste(@.11)- (2.12)is input-to-output stable if the ma-
trix A is a stability matrix.

For linear systems, a common control objective is to find @lf@eeku = Kx such that the closed
loop systenx = (A— BK)x s stablej.e. the matrix(A — BK) is a stability matrix.

For nonlinear systems, analysis is often much more contplicthan for linear systems. In the
next section, fundamentals of nonlinear control theorysaramarized.

2.1.2 Nonlinear Systems

For nonlinear systems, the existing results on contrditgbdbservability and stability are in gen-
eral weaker than for linear systems. In this section, thagds on affine nonlinear systenis {2.7) -
(2.8). Control design for robots with nonlinear kinemaisliscussed in Paper A. Although most
of the topics in this section are outside the scope of theraggrkpapers they are included for com-
pleteness of the systems theory overview. Often, a linatioiz of the nonlinear system is used for
local analysis. A linearization of (2.7) & has the form

of

z= - (X0)z+g(xo)v. (2.37)

In the following, terminology and results for nonlineartras are presented both for local analysis
and in general.

Controllability

Locally, controllability of an affine system can be analybgdstudying a linearization.

Theorem 2.1.5Local Controllability. Consider the systei.7) - (Z.8). Suppose () = 0 and
u= 0. If the linearization(Z.317)is controllable, then the set of points that can be reachechfy
in finite time contains a neighborhood af. x

For a more general result, some mathematical tools are deéthey are introduced in the defini-
tions below.

Definition 2.1.17 Let N be an open set iR". Define, for a set of smooth functiohs the set

M={xeN:A(Xx)=0,i=1,....,n—m}. (2.38)
If
aAl dAnfm T_
rank[W,..., EM ] =n—mVYXeM, (2.39)

then M is ahypersurface which is asmooth manifold of dimension m.
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Definition 2.1.18 Let xe M and attach at x a copy &" tangential to M. The resulting structure
is called thetangent spacef M at x, and is denoted byM.

Definition 2.1.19 A vector field f on M is a mapping assigning to each poingM a tangent
vector f(p) in TxM.

Definition 2.1.20 LetA be a smooth real-valued function on M. Tlhie derivativeLtA of A along
f isafunction M— R: (L;A)(p) = f(p)A. Inlocal coordinates, it is represented by

LAP) = Y St (2.40)

Definition 2.1.21 For any two vector fields f and g on M, let the new vector fiélg)] on M be
defined by

[f,9JA = LiLgA — LgL¢A. (2.41)

This vector field is theie bracketof f and g. In local coordinates, the expression[fbrg] is given
by
ag of

a5l (2.42)

Definition 2.1.22 An affine syster@.4) - (2.8) hasrelative degree at Xy if

LgLﬁh(x) = 0 Vxinaneighborhood ofxand k<r —2 (2.43)
Lol th(xo) # O. (2.44)

Definition 2.1.23 A distribution D on M is a map which assigns to eactepM a vector subspace
D(p) of TM.

Definition 2.1.24 A distribution D isinvariant under the vector field f if & D = [d, f] € D.

Definition 2.1.25 Thestrong accessibility distributiorR. of an affine control systei@.1) - (2.89)
is the smallest distribution that contaispar{gi,...,gm} and is invariant under the vector fields

f,01,---,0m-
Finally we arrive at a controllability result for nonlinesystems.

Theorem 2.1.6 Local Strong Accessibility Consider the systerfZ.1) - (Z.8). If at a point ,
it holds thatdim(R:(xp)) = n, then the system is locally strongly accessible frgmPhis means
that for any neighborhood ofyxthe set of reachable points in some sufficiently small fiivite T
contains a non-empty open set.

Further, if f = 0 anddim(R:(x)) = nVx € X, then the system is controllable.
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Observability

For nonlinear systems, observability is not a trivial isstregeneral, observability properties de-
pend on control input as well as initial conditions and oleability of a system does not imply the
existence of an observer. A result on local observabilityefine systems is given in this section.

Definition 2.1.26 Consider the systei2. 1) - (Z.8). Theobservation spac® is the linear space
overR of functions on X in the form of

Lv,Lv,...Lyhj, je[l....p, k=12,..., (2.45)

wherev; € {f,qg1,...,0m}. Further, theobservability codistributions defined by
dO=spardH:H € O}, (2.46)

where dH is the exterior derivative of H, which in local comrates has the form

" 9H
——dx. (2.47)
i; 28

Theorem 2.1.7 Local Observability Consider the syste@.4) - (2.8). If
dim dO(xg) = n, (2.48)
then the system is locally observable gt x

Stability is an important issue in nonlinear control andesal’ approaches exist to investigate
whether a system is stabilizable. In the next section, waflgrintroduce some of the key results.
Stability and Stabilization

We begin by studying stability locally for nonlinear affingsgems. First, two theorems regarding
local stability are stated.

Theorem 2.1.8 Local Stability. Consider the system
x= f(x) (2.49)

and its linearization
z=Az (2.50)

If the equilibrium z= 0 of (Z.50)is exponentially stable, then=x0 of (2.49)is locally exponentially
stable. If A is a constant matrix with at least one eigenvalitd positive real part, then x 0 is
unstable.

Theorem 2.1.9 Local Feedback StabilizationConsider the linearizatio@.317)of the affine system
(22)- (2.8). Define A= 9f(0)/0x, b= g(0). Then a necessary condition f@1) - (2.8) to be
stabilizable by a differentiable feedback control is that

1) (A,b) does not have uncontrollable states associated with ufestgenvalues.

2) The magx,u) — f(x)+g(x)u maps onto a neighborhood af.x
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For more general results, more advanced approaches aresadh as center manifold theory and
Lyapunov functions. We will not go into detail about statalbility for nonlinear systems here, but
give one result regarding Lyapunov stability.

Definition 2.1.27 A continuous function VR™ x R" — R is said to be docally positive definite
function (Ipdf) if V (t,0) = 0V t > 0 and there exists a strictly increasing function R — R
ande > 0 such that for x in the-ball around the origin it holds that

a(|[x]) <V(t,x) Vt>0. (2.51)

Theorem 2.1.10Suppose x 0 is an equilibrium of the system
x=f(xt), feCl, xeR" (2.52)

Then x= 0 is uniformly stable if there exists a'Cdecrescent Ipdf \t,x) such that for x in a
neighborhood of the origin, it holds that
oV (t,x) n oV (t,x)
ot ox

f(xt)<0 Vt>D0. (2.53)

Itis hard to find a systematic approach to determining sudipdm. Generally, methods of clever
guessing and trial-and-error are applied.
The final topic of this section is control design by means dirojzation.

2.1.3 Optimal Control

Optimal control simply means controlling a system in a waat ik optimal with respect to a spec-
ified criterion, usually expressed as a cost function orqraréince index. This is a very useful
method for control design and widely used in fields such as@wics, aeronautics and robotics.
The field of optimal control emerged in the 1950s mainly dunéorapid development of the space
industry.

This section will give a brief introduction to the area bydsting the following common form
of optimal control problem:

Problem 2.1.1
minimize  J(u) = fm@nmmmm+mmg) (2.54)
subjecttox(t) = f(t,x(t),u(t)) (2.55)
X(to) = Xo (2.56)
(2.57)

In general,fo, @, andf are assumed to &' While the initial statex(to) is fixed, the terminal state
X(tf) is free, but deviations from some desired terminal statgoaralized by the termp(x(t¢)) in
the cost function. We will state results for this formulatiand for a special case where the cost
function is quadratic and the constraints are linear. ara of this formulation can be solved by
similar methods.

First, we state the principle of optimality.
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Lemma 2.1.3 The principle of optimality Let u*(t) be the optimal solution of Problem2.11.1 and
let X*(t) be the corresponding optimal trajectory. Then, for ahg {to,t;] the optimal pair(u’,x)
on the intervalt’, t;] is (u*(t),x*(t)), where te [t/ t;].

This lemma simply states the rather intuitive result thatgptimal control on an interval of time is
exactly the optimal control for the entire problem, reg&ttto that time interval. The principle of
optimality leads to the following result.

Lemma 2.1.4 The dynamic programming equatiarLet J(t,x(t)) denote the optimal cost-to-go,
which is the optimal cost from the time t to Then, from the principle of optimality, it holds that

t+At
J*(t,x(t)):/t fo(s,X(S), U(S))ds-+ I (t + At X(t + AL)), (2.58)

which means that the optimal control can be computed badsviaom the terminal time.

From [2.58), we can derive the Hamilton-Jacobi-Bellmandigun (HIBE), which is essential for
the dynamic programming approach to optimal control pnoiste

* * T
_w = minimize {fo(t,x(t)#(t))‘f‘w f(t,x(t),u(t))} (2.59)

J(te,x(tr) = @(X(tr)). (2.60)

The fact that the HIBE holds for the optimal control inpiitt) leads to the following theorem,
which is useful for solving ProblemZ.1.1.

Theorem 2.1.11The Verification Theorem for Dynamic ProgrammingSuppose that the function
V : [to,t:] x R" — R is continuously differentiable in t and x and solves the HIBE

T
—w = mir&iernize {fo(t,x(t),u(t))er f(t,x(t),u(t))} (2.61)
V(tex(t) = @(x(tr)). (2.62)

Further, suppose that

H(t,x(t)) = argmin { fo(t,x(t),u(t)) + w:‘(t,x(t), u(t))} (2.63)

ueU

is an admissible control. Then(¥x(t)) = J*(t,x(t)) for all (t,x) € [to,t;] x R", and u(t,x(t)) =
u*(t) is the optimal control.

It should be noted that the conditions in Theofem 2]1.11 @ffecent but not necessary. A solution
scheme derived from Theorédm 2.7.11 follows.

1) Define theHamiltonian H(t,x,u,A) = fo(t,x,u) +A T f(t,x,u), whereA is a parameter vector
of suitable dimension.

2) Findfi(t,x,A) =argmin H(t,x,u,A).

uey
ov(t,x) ~ ov(t,x)\ oV (t,x) _ B
3) Solvefiat =H (t,X,[.l (t,x, X ' ax subject toV (tf,x) = @(x).
Thenu (t) = u(t,x) = ft (1%, 2422 ).

Now we move on to the special case of linear quadratic (LQjrodn
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2.1.4 LQ Optimal Control
First, we formulate the linear-quadratic special casé &Hp- (2.56):

Problem 2.1.2
minimize  J(u) = /t'tf[x(t)TQx(t)+u(t)TRu(t)]dt+x(tf)TQox(tf) (2.64)
subjecttox(t) = Ax+Bu (2.65)
X(t) = ¥, (2.66)

whereA € R™", B € R", and (A,B) is controllable. Qo > 0, Q > 0, andR > 0 are symmetric
matrices of suitable dimensions. Problems similar to RnofZ. 1.2 appear in Papers C, D and E.
We get:

1) H(t,x,u,A) = X" Qx+uTRu+ A T(Ax+ Bu).
2) fi(t,x,A) =—3R1BTA.

3) SinceH(t,x, fi(t,x,A),A) = x"Qx— FATBRIBTA + ATAx andV/(tf,x) = X" Qox, a suit-
able guess i¥ (t,x) = x" P(t)x, for some positive semi-definite matiiXt). Then the HIBE

becomes _
X [P+Q—PBRIBTP+PA+ATPjx=0, X P(t;)x=x"Qox, (2.67)
or .
P+Q-PBR'B'P+PA+ATP=0, P(tf)=Qo, (2.68)
which is a matrix Riccati equation. The optimal control is

u* (t,x) = fi (LX, dv(g(’ X)) = —R1BTP(t)x(t) and the optimal cost ¥ (to, Xo) = X P(to)o-

This concludes the overview of the field of mathematicaleysttheory. In the subsequent sections,
we will discuss mobile robotics from a control perspectigewll as smoothing and filtering of data.
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2.3 Mobile Robotics

What is a robot? Depending on the context, several diffedefinitions are applicable. Some
examples follow:

e A device that responds to sensory input.

e A program that runs automatically without human intervemti

e A device that automatically performs complicated and ofegretitive tasks.

e An electro-mechanical system which conveys a sense thasitritent or agency of its own.

In the context of this thesis, robots are mechanical systeatsan gather information about their
environmentvia sensors and respond to that information intalligent manner. Further, the robots
that appear in this thesis aneobile meaning that they, as opposed to industrial robots whieh ar
usually stationary, can move about in their environment goatrolled fashion. Arautonomous
mobile robot is a robot that can act and react to events witihéerference or guidance from human
beings. Control design for autonomous mobile robots is dileeotopics of this thesis.

There are several kinds of mobile robots. Some of the moshwamtypes are listed below.

e Humanoids. These robots are constructed to resemble human beings aaltl/uaove about
by walking on two legs. A well known example would be the fiotd humanoids in the
Terminator movies, but real humanoids are representedrbggtance ASIMO by Honda.

e Unmanned Ground Vehicles (UGVSs). These robots generally move on wheels and often
resemble cars. Robots of this type are by now commercialylale, in the form of auto-
matic vacuum cleaners such as Trilobite by Electrolux, wnlanowers such as Robomow by
Friendly Robotics. The robots that appear in this thesiabtdGVs.

e Unmanned Air Vehicles (UAVs). These robots come in the shapes of helicopters or airplanes.
Many existing UAV models today are research models desifprédboratory use. A growing
area of application for UAVs is military reconnaissance. éxample model is the Luna X
2000 UAV of the German Army.
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e Autonomous Underwater Vehicles (AUVs).These robots are often designed as unmanned
submarines and used commercially for instance by oil coegaio map the ocean floor.
Examples include Sapphires by the Swedish Defense Reségaity and SAAB, and the
Norwegian HUGIN 3000 by Kongsberg Maritime and the Norwaddefense Research Es-
tablishment. AUV models inspired by underwater animalssaaglable for research, such as
Aqualelly by Festo.

The focus of the remainder of this section will be on UGVs. ttaayers and design are discussed
next.

2.3.1 Control

The control of autonomous robots can be broken down intorablagers. The division and degree
of precision should be adapted for the intended applicatibnthe context of this thesis, a suitable
layering is depicted in Figudg 1. One can distinguish betwieigh-level and low-level control.

task

Mission Planning

estimated
Motion Planning state

control signal Observer / Filter

Actuator Control
measured
output

motor control

action

Vehicle

Figure 1: A model of control layers for an autonomous moluleat.

Usually motor or actuator control are regarded as low lewkile mission planning is high level.
One may view the intermediate level of motion planning asaalobox that translates mission goals
to executable commands. In this thesis, the focus is usoallyre level of motion planning. The
scenarios we study generally concern translative motidhefobot, either planning of the motion
such as trajectory estimation, or motion relative to otlygmds, such as formation control. This text
is adapted to the control objectives relevant for the appémpadpers.

Designing control signals for robotic systems is an impurtéscipline within the field of math-
ematical systems theory. To apply the theory and tools wadein Sectio 2]1, we must relate
the terminology of systems theory to the physical featureb @ntrol objectives for the mobile
robot. We define thetateof the robot as a vectorcontaining relevant information such as current
position, velocity and heading. The state can be manipdilgteacontrol signal uthat should be
based both on the control objective and the current statkeofdbot. To this end, the robot uses
sensorgo measure its state. The measurements are collected outpat vector y Most of the
time, some components of the state vestoannot be directly measured. This introduces the need
of anobserveywhose purpose is to computstate estimatg, which can be used for feedback con-
trol. Furthermore, as there are no perfect sensors, measats are generally noise contaminated,
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calling for some preprocessing before the feedback is céedpThe preprocessing, and sometimes
also the estimation of unmeasured states, is dondiligieor smoother This is a major topic of this
thesis. A brief introduction to relevant filtering and snitiag techniques is given in Sectibn R2.5.
An example is provided to illuminate the terminology intuoed in this section.

Example 2.3.1 A common state model for mobile robots is unicycle kinematitnicycle robots

appear in Papers A, B and D. This is a suitable model for roltivés have two parallel wheels that
can be controlled, and possibly additional passive whe8lse Figuré 2. Let the state vector be

X
A

\ 4

Figure 2: A unicycle robot.

X = [X1 X2 X3]T, where(xq, %) is the location of the center of the robot with respect to sgiobal
coordinate system, ang xs the heading, defined as the angle between thaxis and the robot’s
motion vector. Then the equations of motion for the robot are

Xy = UpCOSX3 (2.69)
Xo = UpSinxg (2.70)
X3 = Uy, (2.71)

where u= [u; up]" is the control input(2.70)is an example of aon-holonomicsystem, meaning
that the motion is restricted in some directions. For instana vehicle with kinematics determined
by (2.70)can not move sideways.

Again, sensing is a prerequisite to feedback control. Néliywithout feedback from surround-
ings and events the robot cannot be controlled in an autonsmanner. Sensing is the topic of the
next section.

2.3.2 Sensing

A device that can measure physical quantities such as tatyper distance or density, is called a
sensor. Usually, a sensor also converts the measuremesigoed that is suitable for data process-
ing. Sensor information is crucial for feedback controlficobile robots. In order to react properly
to unexpected events, the robot must be able to gather iat@mabout itself and its environment
in real time. In the field of robotics, a typical classificatiof sensors is as follows.
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e Enteroception. These sensors measure the inner state, such as pressueengedature.

e Proprioception. These sensors measure quantities such as location ana¢eaatih of the
robot itself and possibly of attached manipulators.

e Exteroception. These sensors measure the state of the robot’'s surroundings as the
distance to objects or shape of obstacles.

In this thesis, the focus is on proprioception and extertioapBelow we list some common sensor
types for these purposes. The sensors appearing in the ggibeapers are laser range sensors,
infrared (IR) sensors and wheel encoders. The specific gqmedescribed further in the papers.

e Proprioception.

— Gyros. A gyro measures orientation by utilizing the principle oétpreservation of
angular momentum. An example is the XV-3500CB by Seiko Efg3mrmporation.

— AccelerometersAn accelerometer usually consists of a cover layer that &dfir the
robot and an inner core which is not. Due to the inertia of theecchanges in the
robot’s speed can be detected. An example of an accelerpimiédte MTN/1100 Series
by Monitran.

— Wheel Encoders.Encoders measure the position of an UGV compared to itslniti
position by converting the number of times the wheels haxeetlito physical distance.
An example is the WW-01 WheelWatcher Encoder Kit by Nubotidheel encoders
are used for localization of robots in Papers A and D.

e Exteroception.

— Laser range sensordA laser range sensor measures the distance to objects byngend
out a laser beam and measuring the time until the reflected betarns. An example
is the FG21-LR Long-Range Rangefinder by RIEGL. Laser rargsas are used for
range measurements in Paper D.

— Vision/camerasDue to the increasing availability of quality low-price daj cameras
the field of computer vision has grown significantly over thstfew years. Computer
vision software translates the visual input to digital imf@tion on shape, size and loca-
tion of objects surrounding the robot. A lot of open sourceéeis available for computer
vision, for instance Blepo from RoboRealm.

— Active IR.An active IR sensor works in much the same way as a laser séng@ends
out a beam of infrared light. They are usually more sensitvembient light and there-
fore have lower accuracy. An example is the GP series by Agnanrobotics. Active
IR is used for range measurements in Paper A.

— Active SonarAn active sonar sensor sends out a sound impulse and contjistizsce
based on the time it takes for the echo to return. Sonar is alaofechnique for under-
water applications, but is also used for robot navigatioaiin An example of a sonar
sensor is the Mini-A from SonaSwitch.
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2.5 Smoothing and Filtering

Smoothing and filtering of measurement data are two closddiyad concepts. One may view them
as two approaches to the same problem, namely removinghistces from a data set to refine the
estimate of an underlying signal. Smoothing is a well knoapid in statistics, while filtering is a
classical tool in signal processing and systems theory.

Often, smoothing is applied to a complete data set, whikiiit is sometimes performed online
and pointwise. Smoothing may also be considered as a formwephss filtering, since in most
applications, a smoother removes high-frequency fluanatirom the input signal.

There is a rich literature on both data smoothing and datxifilj. A thorough treatment is
beyond the scope of this text. Here, we introduce the teciasigelevant for the appended papers,
namely smoothing splines and Kalman filtering.

2.5.1 Smoothing Splines

Classical splines were introduced in the 1940s as functlefised piecewise in terms of low-degree
polynomials, with the main purpose to interpolate betweaints of a given data set. The idea it-
self, of using polynomials for interpolation, is far olddating back to the mid 1700s. Interpolating
betweem points using a single polynomial requires a polynomial ajréen — 1 and has disad-
vantages such as the well known Runge’s phenomenon. Usigggmial splines remedies this
problem. A formulation of the spline problem follows.

Problem 2.5.1 Interpolating Splines Let z € R be data sampled at timesd [0, T], i € [1,N], and
define the set F of twice differentiable functions that iptdate(t,z), i.e.

F={feC?0,T]: f(t) =2z}, (2.72)

which is a Banach space under the supremum norm. Then thrpafating spline is the solution of

minimize {max d*t () ‘} (2.73)

feF tefoT)| dt2

The solution of Problei Z.5.1 is tleebicspline, which is a piecewise polynomial of degree three.

Interpolating splines are an excellent means of estimatinges from discrete samples, if the
samples are exact. However, this is seldom the case for detansreal applications. Also, even
with exact samples, an interpolating estimate is not alvelgrable. An illustrating example is
in aircraft applications, where exact tracking of way psinften requires large control gain and
increased fuel usage. This motivates the introduction adathing splines. Smoothing splines
became a major topic in the field of mathematical statistiche 1970s. The smoothing spline
problem is formulated below.
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Problem 2.5.2 Regular Smoothing SplinesLet z be data sampled at times< [0,T], i € [1,N],
and let L, be the Hilbert space of square integrable functions. Thensimoothing spline is the
solution of

T dRE()) N )
m|r21|m|ze/ < e ) dt+A Z(f(ti)fzi). (2.74)
e, 70 =

The output of this problem is also a cubic spline, but thengptioes not necessarily interpolate
directly through the data point. > 0 determines the tradeoff between smoothness and fait®sin
to the data. Lettind — oo results in an interpolating spline.

Control theoretic splines may be viewed as a generalizafioegular smoothing splines. They
are discussed next.

Control Theoretic Smoothing Splines

Control theoretic smoothing splines were introduced inghdy 2000s and the theory is therefore
still emerging. As the name indicates, control theoretiosthing splines makes a connection be-
tween the fields of mathematical statistics and controlew more specifically, between regular
smoothing splines and optimal control. Here, a derivatiothe control theoretic smoothing spline
problem is given.

Consider the linear, time invariant, controllable and oballe SISO system

= Ax+Bu (2.75)
Cx (2.76)

wherex € R", A€ R™" andB and andC are vectors of compatible dimensions. Since
t
x(t) = €x(0) + / A-9By(s)ds 2.77)
Jo

we can write

y(t) = CeMx(0) + /O t cé\=9Bu(s)ds (2.78)

The aim of control theoretic smoothing splines is to producentrol lawu(t) that drives the output
trajectoryy(t) close to a fixed set of data points

D={(t,z):ti <t1, i €[0,T], i €[1,N],z € R}. (2.79)

A natural approach to achieve this objective is optimal mnDefine a cost function
T N
o) = [ A 5 w(y) ) (2.:80)
o i=

wherew; are non-negative weights. The desired control is the fonaff(t) that minimizesJ(u)
subject to the affine constrainf{Z]78). A formal stateméihe control theoretic smoothing spline
problem follows.
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Problem 2.5.3 Control Theoretic Smoothing SplinesLet z be data sampled at timesa [0, T],
i € [1,N], and let L, be the Hilbert space of square integrable functions. Therctntrol theoretic
smoothing spline is the outputty of the systen2.717)- (2.78) whose input (t) is the solution of

T N

e 2 N N2
m|rL]|€r’{12|ze /o u(t) dt+)\i;(y(tl) z) (2.81)
subjecttox’ = Ax+Bu (2.82)
y = Cx (2.83)

Lemma 2.5.1 The optimal solution of Problem 2.5.3 has the form

N

Y 10 (2.84)

u(t)

cefi-iB  t <t

whereg; (t) = {O otherwise (2.85)

andT; are scalar coefficients.

The computation of the coefficientsis non trivial and will not be discussed further here. As a
special case, note that with

A:(g (1)) B:(g), c—(1 0, (2.86)

0y (t) =t —t, (2.87)

so that the resulting splingt) computed from[{2.78) is again a cubic smoothing spline.
The following theorem follows from Hilbert’s projectiongbrem (which is stated further down

in Theoreni 2.512).

Theorem 2.5.1 Existence of solutionsLet% be a closed, affine subspace ¢fQ, T]. Minimizing
(2.80)subject to2.71)- (2.78)and uc ¥ yields a unique solution*(t).

Control theoretic smoothing splines are studied in PapeB &hd E. In the next section, we move
on to filtering by means of the Kalman filter. This is a well kmoand widely used filter. A
derivation of the Kalman recursions is presented below.

we obtain

2.5.2 Kalman Filtering

Although named after Rudolf E. Kalman, the Kalman filter wagaloped simultaneously by several
researchers in the late 1950s and early 1960s. It is proliadlsnost well known filter in the field
of mathematical systems theory and has many nice prope#idsrivation of the Kalman filter is
supplied in this section.

Consider a linear discrete-time system

X(tk+l) = AX('[k) + BW('[k), (2.88)
wherex(tx) € R"and a measuremeptty) € R™, governed by

Y(t) = Cx(t) + DV(t), (2.89)
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with A€ R™" B e R™SC e R™"andD € R™P. The signalsv(t,) andv(ts) are random process
noise and measurement noise, respectively, and are assoilmethdependent, zero-mean, gaussian
noise with covariance matrices

Qty) = E(w(tgw(t)") (2.90)

Ritk) = E(V(tvit)"). (2.91)
Here,E(-) is the expectation value ¢f) andQ(tx) € RS*3, R(tx) € RP*P. Then the Kalman filter is
an observer that gives an optimal estime(g) "of the statex(tx) at time stefk, given the estimate

X(tk—1) and the observatioy(ty), in a least squares sense. In other words, if we define theat#in
error as

e(tk) = X(tk) — R(t), (2.92)

then the Kalman filter is bnear filter that produces an estimatgt) which minimizesE (e(ty) " e(ty))
at each time stek. Now let
P(t) = E(e(tx)e(t)") (2.93)

denote the covariance matrix efty) In the following, a derivation of the Kalman recursions is
provided. The estimate(ty) should be a linear function of the previously gathered imiation,
namely the sequence of observations

{y(ta), ., y(tk—1) }- (2.94)

Furthermorex(tc) should minimize[(2.93). Define the finite-dimensional inperduct spacél that
consists of all linear combinations of the stochastic \@eisa generated by (2.88)-(2189) Define the
inner product orH as

<&,n>=E(n) (2.95)

and the norm as
€]l =< &,& >Y2. (2.96)

Let Hy(y) denote the space of all linear combinations of the sequ&h8é)( Then it holds that
Ho(y) € Hi(y) C ... Hi-a(y) € H(y) € H (2.97)

andx{ty) is the elementiidy_1(y) that minimizes|x(tx) — X(tx)||. The existence of such a minimizer
follows from the following theorem.

Theorem 2.5.2 Projection For a subspace Kof the finite-dimensional inner product space H, and
X € H, there exists a unique element Hy such that|x — X|| is minimized. Furthermore has the
property that’x—X) L Hy, i.e. with the inner product defined f2.93) E((x—X)hy) =0 Vhy € Hy.

Define the majE« : x — %, which is the orthogonal projection &fontoHy. The estimate can now
be writtenX’= E"kx. Some properties & are stated in the following lemma.

Lemma 2.5.2 The map Kk has the following properties:
e EMkis linear.
e For a matrix A such that the product Ax is defined, it holds E#tAx = AEHkx.

e For Hy L H; subspaces of H, it holds that&®H = EHk - EMi.
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The following lemma follows from Theorem 2.5.2 and is usdtulthe derivation of the Kalman
recursions.

Lemma 2.5.3 Linear Least SquaresLet X, y be random vectors and suppose the components of y
are linearly independent. The linear least-squares ed@Raf x given by y is

% = EMx=E(xy"E(yy")ty. (2.98)

Using the properties in Lemma2.b.2, we can now write
R(tr1) = EMWIx(tq) = ERWV) (AX(t) + Bw(t)) = {w(ti) L Hi(y)} = AEWYx(t).  (2.99)
Now define the vector
§(tk) = Y(t) — EM10y(ty) = y(t) — CE™ 1V)x(t) — EM 1Dy (ty) =
{v(ti) L Hi1(y)} = y(t) — CX(t) = C(X(t) — X(t)) + Dv(t) = Ce(t) + Dv(t), (2.100)
and let[yi(tx)] denote the space spannedyly); so that

EMOx(t) = EM10x () + EFWIx(t) = R+ EF®Ix(t). (2.101)
From Lemmd&2.513 it follows that
EVx(t) = E(x(1)9(t) T (EWt)5(t)T) ¥t (2.102)
From the definition of/(t), R(tx) andP(t), we get
E(J(t)¥(t) ") = CP(t)C" + DR(t)D". (2.103)
Now we can define the Kalman gain as
K(tx) = AP(t)CT (CP(t)CT 4+ DR(t)D") 1, (2.104)
so that[(Z2.9P) becomes
R(ti 1) = AR(t) + K (1§ = AR(t) + K (1) (y(t) — CR(t)). (2.105)
Now, since
(k1) = X(ti1) — X(tks1) = (A— K(t)C)e(ti) + K (t) Dv(te) + Bw(t), (2.106)
we get

P(ter1) = E(e(tir1)e(tirs) ") =
(A~ K()C)P(t)(A~ K(4)C)T +K(t)DR(t)DTK ()" +BQ(t)BT. (2.107)

Summarizing, given initial estimates andPy, and introducing the intermediate variablét )™
andP(ty)~ for ease of notation, the discrete Kalman filter is the reeansrocess

X))~ = AXtk-1) (2.108)
Pit)~ = AP(tc_1)AT +BQ(tc_1)B' (2.109)
K(t) = P(t)CT (CP(t) C+DRt)D") * (2.110)
R(t) = Rt~ +K(t) (y(t) —CR(%)") (2.111)

Pt) = (I—K(t)C)Pt) . (2.112)
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Adaptive Kalman Filtering

R(tx) andQ(tx) play important roles in the recursions. Convergence to fhitenal estimate(iy)
requires accurate values of both matrices. Since thesécemtepresent uncertainties in the model
and measurements, correct values may be hard to come by. rAaidilter that tries to estimate
these matrices and possibly adjust them online is calledlaptave Kalman filter.

The adaptive Kalman filtering schemes most frequently faarttie literature are Innovation-
based Adaptive Estimation (IAE) and Multiple Model AdagtiZstimation (MMAE). IAE methods
estimate the covariance matrix of the process n@Qisend/or the measurement noiReutilizing
the fact that for the right values @ andR the innovation sequence of the Kalman filter is white
noise. By tuningQ and/orR and studying the resulting innovation sequence one canmngeea of
the appropriate values of the covariance matrices. Howawarergence to the "right" values f
andR is not guaranteed with IAE and most algorithms require estiibm made over rather large
windows of data to achieve reliable covariance measuresnargking the method impractical for
rapidly changing systems.

MMAE methods handle model uncertainty by implementing akafrseveral different models
and computing the bayesian probability for each model tdbdrue system model given the mea-
surement sequence and under the assumption that one of tledsimothe model bank is the correct
one. The state estimate can be either the output of the malsable model or a weighted sum of
the outputs of all models. This method is suitable for agioms such as fault detection, where
you have some a priori information on the system dynamics.if&tance, if the dynamics of an
engine is well known, each model in the bank can represergrigae dynamics if one or several
components fail. With this information, if the probability one of the failure models gets to high
an alarm is raised.

Adaptive Kalman filtering is studied in Paper B.
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