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For if every instrument could accomplish its own
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the shuttle weaved and the pick touched the lyre with-
out a hand to guide them, chief workmen would not
need servants, nor masters slaves.
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Abstract

In this thesis, we consider problems connected to navigation and tracking for autonomous
robots under the assumption of constraints on sensors and kinematics. We study formation con-
trol as well as techniques for filtering and smoothing of noise contaminated input. The scientific
contributions of the thesis comprise five papers.

In Paper A, we propose three cascaded, stabilizing formation controls for multi-agent sys-
tems. We consider platforms with non-holonomic kinematic constraints and directional range
sensors. The resulting formation is a leader-follower system, where each follower agent tracks
its leader agent at a specified angle and distance. No inter-agent communication is required to
execute the controls. A switching Kalman filter is introduced for active sensing, and robustness
is demonstrated in experiments and simulations with Khepera II robots.

In Paper B, an optimization-based adaptive Kalman filteringmethod is proposed. The method
produces an estimate of the process noise covariance matrixQ by solving an optimization prob-
lem over a short window of data. The algorithm recovers the observationsh(x) from a system
ẋ = f (x), y = h(x)+v without a priori knowledge of system dynamics. The algorithm is evalu-
ated in simulations and a tracking example is included, for atarget with coupled and nonlinear
kinematics.

In Paper C, we consider the problem of estimating a closed curve in R
2 based on noise

contaminated samples. A recursive control theoretic smoothing spline approach is proposed, that
yields an initial estimate of the curve and subsequently computes refinements of the estimate
iteratively. Periodic splines are generated by minimizinga cost function subject to constraints
imposed by a linear control system. The optimal control problem is shown to be proper, and
sufficient optimality conditions are derived for a special case of the problem using Hamilton-
Jacobi-Bellman theory.

Paper D continues the study of recursive control theoretic smoothing splines. A discretiza-
tion of the problem is derived, yielding an unconstrained quadratic programming problem. A
proof of convexity for the discretized problem is provided,and the recursive algorithm is eval-
uated in simulations and experiments using a SICK laser scanner mounted on a PowerBot from
ActivMedia Robotics.

Finally, in Paper E we explore the issue of optimal smoothingfor control theoretic smoothing
splines. The output of the control theoretic smoothing spline problem is essentially a tradeoff
between faithfulness to measurement data and smoothness. This tradeoff is regulated by the so-
calledsmoothing parameter. In Paper E, a method is developed for estimating the optimalvalue
of this smoothing parameter. The procedure is based on general cross validation and requires no
a priori information about the underlying curve or level of noise in the measurements.

Keywords: formation control, tracking, nonlinear control , optimal smoothing, adaptive
filtering
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Chapter 1

Introduction

This thesis explores control design and filtering for autonomous systems under the assumption of
noise contaminated feedback from onboard sensors. The focus is on applications such as formation
keeping and target tracking for groups of mobile agents, andtracking or estimation of curves from
noisy samples. When noisy data is used for feedback, some filtering or smoothing is generally
required before applying the control law. In addition, under such circumstances, the control law
itself should be robust with respect to measurement errors of some reasonable magnitude.

In this thesis we study both aspects. The particular topics of the thesis are outlined next.

1.1 Thesis Outline

The thesis consists of two introductory chapters and five appended papers. In the remainder of
this chapter, a motivation for the work is provided and the appended papers are summarized, while
Chapter 2 reviews the relevant results and terminology thatconstitute the background of the papers.
The contents of Chapter 2 should be well known to the initiated reader and the chapter may be
skipped at a first reading.

The appended papers may be divided into two categories. The first category is control design
and Kalman filtering, under assumptions of sensor constraints. Paper A treats nonlinear control
design and switching Kalman filters for feedback from directional sensors, for a team of mobile
robots that move in a specified formation. Paper B focuses entirely on adaptive Kalman filtering
with no a priori information about the true system dynamics.

The second category is smoothing of noisy data by control theoretic smoothing splines. The-
oretical results as well as outcomes of simulations and experiments are reported. This part of the
thesis encompasses Papers C, D and E, where Paper C focuses ontheoretical aspects, Paper D treats
implementation and experiments, and Paper E discusses optimal smoothing.

It should be noted that even though the research presented inthis thesis is often motivated
by applications, and demonstrated in simulations or experiments, system and sensor models are
generally simplifications of the true models. For instance,factors such as slip and traction are
overlooked and the pure kinematic equations are used to model robot dynamics.

1.2 Motivation

Early commercial robots were generally designed for industrial applications, such as assembling
cars in a controlled environment mostly inhabited by other industrial robots. Such robots are mainly
designed for performing pre-determined, repetitive tasksat high speed and with good accuracy.
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2 INTRODUCTION

As the market for domestic robots, autonomous surveillancevehicles, and other automatic
agents is expanding, the focus is shifting toward robots with flexible and intelligent behavior that
can safely interact with humans and respond appropriately to unexpected events. For mobile robots,
the ability to interpret and handle events and objects in their surroundings is essential. One aspect of
this concerns the development of better sensors. This is however not the topic of this thesis. Instead,
we explore ways of refining information received in form of noise contaminated data, and how to
design control signals that are robust to errors in the input.

For many applications, robustness and efficiency can be greatly increased by engaging teams
of cooperative mobile robots to carry out tasks together. Examples include mine sweeping, surveil-
lance, lawn mowing and vacuum cleaning. This motivates the current interest in multi-agent systems
or networks. Often inter-agent communication or access to global information is a necessity in such
operations. One of the topics of this thesis is that of achieving cooperative behavior for a team of
agents without global information or communication and with constraints on onboard sensors.

The next section renders a more detailed overview of the appended papers.

1.3 Reader’s Guide to the Appended Papers

In this section, the appended papers are presented. An abstract of each paper is provided together
with a discussion on contributions, work division, limitations, and suggested extensions. In the five
independent papers, notation is introduced separately in each paper. Unless otherwise specified, ˙x
denotes the time derivative ofx and‖x‖ is the euclidian norm ofx. The reader is urged to mind
notational collision.

Paper A: Robust Formation Control using Switching Range Sensors

Authors: M. Karasalo, T. Gustavi, and X. Hu.

Publication: Submitted to Robotics and Autonomous Systems, April 2009.

Abstract: In this paper, control algorithms are presented for formation keeping and path fol-
lowing for non-holonomic platforms. The controls are basedon feedback from onboard directional
range sensors, and a switching Kalman filter is introduced for active sensing. Stability is analyzed
theoretically and robustness is demonstrated in experiments and simulations.

Contributions: The main result is the globally stable, cascaded formation control. The ex-
tensions of this control to adaptable parameters and to monotonic convergence of certain control
parameters are novel contributions of this paper. The experimental evaluation of the globally stable
control and the switching Kalman filter testifies to the robustness of the approach. Some of the
results in this paper have appeared in

[1] T. Gustavi, X. Hu and M. Karasalo,
Multi-Robot Formation Control And Terrain Servoing with Limited Sensor Information,
Proc. of the 16th Congress of the International Federation of Automatic Control (IFAC),
2005.

[2] T. Gustavi, X. Hu and M. Karasalo,
Formation Adaptation with Limited Sensor Information,
invited paper, Proc. of Chinese Control Conference (CCC), 2005.
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[3] J. Samuelsson, T. Gustavi, M. Karasalo and X. Hu,
Robust Formation Adaptation for Mobile Platforms with Noisy Sensor Information,
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2006.

[4] T. Gustavi and X.Hu,
Observer Based Leader-Following Formation Control using On-Board Sensor Information,
IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1457-1462, 2008.

Work Division: The basic cascaded tracking algorithm was developed by Hu, as well as the
extension that results in monotonic convergence of the parametersd andβ . The extension with
adaptable parameters was developed by Karasalo. The experimental evaluation has been previously
published in [3] and is joint work between Samuelsson, Gustavi, and Karasalo. The simulations
were done by Karasalo.

Limitations and Suggested Extensions: In order for the controls to be applicable in practice,
some issues need to be addressed. For instance, the cascadedcontrol is sensitive to the scenario that
one agent breaks down. The implemented Kalman filter yields arather rough estimate of the target
state. An adaptive Kalman filter that produces better estimates is discussed in Paper B. Simulations
and experiments showed that the controls are somewhat sensitive to the method of discretization
used on the dynamic system. To work in practice, the controlsneed feedback with sufficiently high
sampling rate.

Paper B: An Optimization Approach to Adaptive Kalman Filter ing

Authors: M. Karasalo and X. Hu.

Publication: 48th IEEE Conference on Decision and Control (CDC), 2009.

Abstract: In this paper, an optimization-based adaptive Kalman filtering method is proposed.
The method produces an estimate of the process noise covariance matrixQ by solving an optimiza-
tion problem over a short window of data. The algorithm recovers the observationsh(x) from a sys-
tem ẋ = f (x), y = h(x)+v without a priori knowledge of system dynamics. Potential applications
include target tracking using a network of nonlinear sensors, servoing, mapping, and localization.
The algorithm is demonstrated in simulations on a tracking example for a target with coupled and
nonlinear kinematics. Simulations indicate superiority over a standard MMAE algorithm for a large
class of systems.

Contributions: This particular optimization approach is novel. The methodis scalable and
applicable to systems where little or no information on the actual dynamics is available. Some of
the results in this paper have appeared in

[1] T. Gustavi, M. Karasalo, X. Hu, and C.F. Martin,
Recursive Identification of a Hybrid System,
Proc. of the The European Control Conference (ECC), 2009.

Work Division: The idea and method of optimization based adaptive Kalman filtering was de-
veloped by Karasalo. Hu designed the tracking example to connect the theory with applications,
and provided valuable comments on the presentation of the paper.
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Limitations and Suggested Extensions: The cost function in the optimization problem was
chosen because of its appealing simplicity and performancerather than its theoretical properties.
Theoretical results in general are still lacking for the method and alternative cost functions should be
investigated. The method is developed to work for systems with unknown dynamics. An interesting
extension would be to enable incorporation of known traits of the system for increased performance.

Remark 1.3.1 Due to the page limitation for publication in conference proceedings, some of the
figures appearing in Paper B have been removed in the published paper.

Paper C: Periodic and Recursive Control Theoretic Smoothing Splines

Authors: M. Karasalo, X. Hu, and C.F. Martin.

Publication: Submitted to Communications in Information and Systems, August 2009.

Abstract: In this paper, a recursive control theoretic smoothing spline approach is proposed
for reconstructing a closed contour. Periodic splines are generated by minimizing a cost function
subject to constraints imposed by a linear control system. The optimal control problem is shown to
be proper, and sufficient optimality conditions are derivedfor a special case of the problem using
Hamilton-Jacobi-Bellman theory.

The filtering effect of the smoothing splines allows for usage of noisy sensor data. An impor-
tant feature of the method is that several data sets for the same closed contour can be processed
recursively so that the accuracy can be improved stepwise asnew data becomes available.

Contributions: The main contribution is the formulation of the recursive spline problem, which
is appealing since it can be transformed so that it is identical to the closed form smoothing spline
problem. A connection is made between regular periodic smoothing splines and optimal control,
opening up for the formulation of more advanced smoothing problems. Some of the results in this
paper have appeared in

[1] M. Karasalo, X. Hu, and C.F. Martin,
Closed Contour Reconstruction using Iterated Smoothing Splines,
Proc. of the third Swedish Workshop on Autonomous Robotics (SWAR), 2005

[2] M. Karasalo, X. Hu, and C.F. Martin,
Contour Reconstruction and Matching using Recursive Smoothing Splines,
Modeling, Estimation and Control, Springer, pp. 193–206, 2007.

Work Division: The idea of this particular form of recursive smoothing splines was the result
of a collaboration between Hu and Martin. The specific recursion formula was developed by Hu.
The connection with Hamilton-Jacobi-Bellman theory and the convergence results were derived by
Karasalo.

Limitations and Suggested Extensions: Sufficient optimality conditions are only derived for
the caseN → ∞. Conditions for a finiteN are still lacking. Although simulation results indicate
fast convergence of the recursive problem, theoretical conditions for convergence, such as level and
nature of the added noise, and features of the underlying curve, have yet to be investigated. Some
of the results are applicable to optimal control problems with other dynamic constraints than those
examined in this paper. Closer investigation of such problems is of interest.
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Remark 1.3.2 In [2], the definitions of boundary conditions to some differential equations contain
errors. In Paper C they should however be correct.

Paper D: Contour Reconstruction using Recursive SmoothingSplines - Algorithms
and Experimental Validation

Authors: M. Karasalo, G. Piccolo, D. Kragic and X. Hu.

Publication: Robotics and Autonomous Systems, no. 57, pp. 617–628, 2009.

Abstract: In this paper, a recursive smoothing spline approach for contour reconstruction is stud-
ied and evaluated. Periodic smoothing splines are used by a robot to approximate the contour of
encountered obstacles in the environment. The splines are generated through minimizing a cost
function subject to constraints imposed by a linear controlsystem and accuracy is improved iter-
atively using a recursive spline algorithm. The filtering effect of the smoothing splines allows for
usage of noisy sensor data and the method is robust with respect to odometry drift. The algorithm
is extensively evaluated in simulations for various contours and in experiments using a SICK laser
scanner mounted on a PowerBot from ActivMedia Robotics.

Contributions: The recursive spline problem formulated in Paper C is thoroughly evaluated in
simulations and experiments with real sensor data. A discretization is derived, which transforms the
optimal control problem to a simple, unconstrained quadratic programming problem. Some of the
results in this paper have appeared in

[1] G. Piccolo, M. Karasalo, D. Kragic, and X. Hu,
Contour Reconstruction using Recursive Smoothing Splines- Experimental Validation,
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2007.

[2] M. Karasalo, X. Hu, and C.F. Martin,
Localization and Mapping using Recursive Smoothing Splines,
Proc. of the European Control Conference (ECC), 2007.

[3] M. Karasalo, X. Hu, and C.F. Martin,
Contour Reconstruction and Matching using Recursive Smoothing Splines,
Modeling, Estimation and Control, Springer, pp. 193–206, 2007.

Work Division: The implementation and experiments were joint work betweenPiccolo, Kragic
and Karasalo. The simulation results and analysis are due toKarasalo. The recursive formulation
is due to Hu, who also offered invaluable support during troubleshooting of the simulation code.
Kragic’s feedback contributed greatly to the presentationof the material.

Limitations and Suggested Extensions: A weakness of the approach is the need to find a suit-
able level of smoothing by manual tuning. A systematic way ofdetermining the smoothing is
presented in Paper E. Most of the evaluation is performed on simulated data. Experiments with
more challenging contours would be of interest, as well as anevaluation of the lower limit on the
number of added data points at each iteration to achieve convergence.

Remark 1.3.3 After publication of this paper, it has been brought to the authors’ attention that
there was an error in the proof of Proposition D.4.1. The result is however correct. A remedied
proof is provided in this thesis. Some typos have also been corrected.
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Paper E: An Estimated General Cross Validation Function forPeriodic Control
Theoretic Smoothing Splines

Authors: M. Karasalo, X. Hu, and C.F. Martin.

Publication: Perspectives in Mathematical System Theory, Control, and Signal Processing, Lec-
ture Notes in Control and Information Sciences, Springer, to appear 2010.

Abstract: In this paper, a method is developed for estimating the optimal smoothing parameterε
for periodic control theoretic smoothing splines. The procedure is based on general cross validation
(GCV) and requires no a priori information about the underlying curve or level of noise in the
measurements. The optimalε is the minimizer of aGCV cost function, which is derived based on a
discretization of theL2 smoothing problem for periodic control theoretic smoothing splines.

Contributions: The main contribution is the derivation of the estimatedGCV cost function for
the particular periodic control theoretic smoothing spline problem. Simulation results suggest that
with this estimate, the error convergence in the limitN → ∞ corresponds to the convergence for the
analyticGCV function.

Work Division: The method presented in this paper is an adaptation of a general method for
smoothing splines in a statistical setting. Martin and Hu contributed with their knowledge in statis-
tics and control, suggested relevant references and provided constructive feedback on the text. The
estimate of the influence matrix was derived by Karasalo, based on a discretization of the problem
presented in Paper D.

Limitations and Suggested Extensions: This method should be extended to the recursive prob-
lem discussed in Papers C and D. It would be desirable to find anestimate of theGCV cost function
such that error convergence can be obtained using the estimated ε as the number of recursionsk
increases. At present, convergence is only apparent when increasing the number of data pointsN.

Remark 1.3.4 Proposition E.3.1 is essentially equivalent with Proposition D.4.1. The proposition
and the proof are included in Paper E since the proof providedin the published version of Paper D
was incomplete.

1.4 Formulations of the Smoothing Spline Problem in Papers C, D and E

The smoothing spline problems in Papers C, D and E, although closely related, are somewhat dif-
ferently formulated. In this section, the distinctions arepointed out and explained. First, the three
problems are stated.

Problem 1.4.1 Control Theoretic Splines in Paper C

minimize
u∈L2[0,T]

J(u,x) =
1
2

∫ T

0
u(t)TQ−1u(t)dt+

1
2

N

∑
i=1

(ti − ti−1)(zi −Cx(ti))
TR−1(zi −Cx(ti)) (1.1)

subject to ˙x = Ax+Bu (1.2)

x(0) = x(T), (1.3)

with data input defined by zi = z(ti), ti ∈ [0,T], z(T) = z(0) and zi = Cx(ti) + ξi , whereξi is
a symmetric, zero-mean iid noise with bounded variance. A∈ R

n×n, B∈ R
n and CT ∈ R

n, where
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the pair (A,B) is controllable and(A,C) is observable. Q and R are positive definite matrices of
suitable dimension.

Problem 1.4.2 Control Theoretic Splines in Paper D

minimize
u∈L2[0,T]

J(u,x) = x(0)TP−1
0 x(0)+

∫ T

0
u(t)TQ−1u(t)dt+

N

∑
i=1

(ti − ti−1)(zi −Cx(ti))
TR−1(zi −Cx(ti)) (1.4)

subject to ˙x = Ax+Bu (1.5)

x(0) = x(T), (1.6)

with data input defined by(ti ,zi), such that ti ∈ [0,T] is the polar coordinate angle, T= 2π and zi
is the radius in polar coordinates. Further, zi = Cx(ti)+ ξi whereξi is a symmetric, zero-mean iid
noise with bounded variance. A∈ R

n×n, B∈ R
n and CT ∈ R

n, where the pair(A,B) is controllable
and(A,C) is observable. P0, Q and R are positive definite matrices of suitable dimension.

Problem 1.4.3 Control Theoretic Splines in Paper E

minimize
u(t)∈L2[0,T]

J(u, r) =

∫ 2π

0
u(t)2dt+

ε2

N

N

∑
i=1

(r(ti)−zi)
2 (1.7)

subject to r ′′(t) = u(t) (1.8)

r(0) = r(2π) (1.9)

r ′(0) = r ′(2π), (1.10)

with data input defined by(ti ,zi), such that ti ∈ [0,2π ] is the polar coordinate angle and zi is the
radius in polar coordinates. Further, zi = r(ti) + ξi , ξi ∈ N(0,σ2), with σ unknown.

The main distinction of Problem 1.4.1 is the inclusion of thefactor 1/2 in the cost function. The
motivation is simply that with this factor, the differential equations resulting from the Hamilton-
Jacobi-Bellman equation become neater.

Problem 1.4.2 includes the termx(0)TP−1
0 x(0). This is a remnant from early formulations of

control theoretic smoothing splines and is motivated by thefact that it may facilitate solution of the
problem. In Paper D, this term is mainly included because it guarantees that the problem has a well
defined, unique solution even for empty data sets. This is stated and proved in the paper. Due to the
application focus of the paper, the formulation of the problem is slightly less generic than in Paper
C, assuming polar coordinates.

In Paper E, the focus is not on the spline problem itself but onfinding a suitable level of smooth-
ing. Therefore the presentation of the spline problem in itsgeneral form is skipped, and Prob-
lem 1.4.3 is expressed directly in polar coordinates. The assumption on normally distributed data,
as well as the inclusion of the factor 1/N instead ofti − ti−1, is a prerequisite for some results for
general cross validation for regular smoothing splines, and the method presented in Paper E is an
adaptation of this.





Chapter 2

Preliminaries

This chapter offers an overview of fundamental concepts in control theory, mobile robotics, smooth-
ing and filtering. The purpose of the chapter is to give a briefintroduction for readers who are
unfamiliar with some of the theory. The definitions and results of this chapter are established and
well known, thus proofs of theorems are omitted. The focus ofthe following sections will be on
results and techniques that are relevant for the appended papers. For a comprehensive treatment of
the subjects in this chapter, the reader is invited to study the references given at the end of each
section.

The outline of this chapter is as follows. In Section 2.1 we briefly introduce terminology and
results in mathematical systems theory. Section 2.3 gives an overview of the field of mobile robotics.
Section 2.5 concerns filtering and smoothing of data. These sections are independent and the reader
may well skip one if familiar with its topics. The notation used should be unambiguous within each
section but readers are urged to mind notational collision between sections.

2.1 Mathematical Systems Theory

Control systems have been invented and applied since ancient times, such as wind mills and water
supply networks. The scientific field of systems and control theory emerged in the mid 1800s, with
the development of complex machines and engines. Frequencydomain techniques dominated the
field of control theory during the first half of the 20th century. State space approaches emerged
mainly during the second half of the century within the field of mathematical systems theory.

The state space description of a control system is a set of differential equations for astate vector
x, including acontrol signal uthat is to be designed such that the evolvement of the state meets
some specified control objective.

Theoutput yof the control system contains the measurements on the system, which is a function
of the statex and possibly also of the controlu. In this section, basic definitions and results in the
field of mathematical systems theory are summarized. Fundamental concepts such as controllability
and observability are introduced for the special case of linear systems and then extended to nonlinear
systems. First, basic definitions of different types of systems, in the mathematical sense, are stated.

Definition 2.1.1 In the context of mathematical systems theory, acontrol systemis the set of equa-
tions

ẋ(t) = f (x(t),u(t),t) (2.1)

y(t) = h(x(t),u(t),t), (2.2)

9
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or, in discrete time

x(tk+1) = f̂ (x(tk),u(tk),tk) (2.3)

y(tk+1) = ĥ(x(tk),u(tk),tk), (2.4)

where x∈ X ⊂ R
n is the state variable, u∈ R

m is the control input, y∈ R
p is the output and t is the

time. If m= p= 1 the system is called aSISO(single input, single output) system. If m> 1, p> 1 it
is called aMIMO (multiple input, multiple output) system. Correspondingly, the types m= 1, p> 1
and m> 1, p = 1 are calledSIMO andMISO.

Definition 2.1.2 An autonomous system, in the mathematical sense, is a system that does not de-
pend explicitly on the time t:

ẋ(t) = f (x(t),u(t)) (2.5)

y(t) = h(x(t),u(t)). (2.6)

The control systems appearing in this thesis are usually autonomous and affine or even linear. Defi-
nitions of such systems follow.

Definition 2.1.3 Anaffine control systemis a system of the form

ẋ(t) = f (x(t))+g(x(t))u(t) (2.7)

y(t) = h(x(t)). (2.8)

Definition 2.1.4 A linear control systemis a system of the form

ẋ(t) = A(t)x(t)+B(t)u(t) (2.9)

y(t) = C(t)x(t)+D(t)u(t), (2.10)

where A(t),B(t),C(t) and D(t) are matrices of suitable dimensions.

Definition 2.1.5 A time-invariant linear systemis a system of the form

ẋ(t) = Ax(t)+Bu(t) (2.11)

y(t) = Cx(t)+Du(t), (2.12)

where A,B,C and D are constant matrices of suitable dimensions.

Now we move on to definitions concerning certain properties that are relevant for control and ob-
server design for control systems.

Definition 2.1.6 A system(2.1) - (2.2) is calledcontrollable if, for any two points x0 and x1 in R
n,

there exists an admissible control u, such that u drives x from x0 to x1 in some finite time T.

Remark 2.1.1 In the literature, if x0 = 0, (2.1)- (2.2) is sometimes calledreachable, while if x1 = 0
it is called null controllable. In the present context, we use these terms without distinction.
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Definition 2.1.7 Consider the system(2.1) - (2.2). Two states x0 and x1 are calleddistinguishable
if it holds that

y(·,x0) 6= y(·,x1) (2.13)

where y(·,x) is the output trajectory with initial condition x. Furthermore, the system is called
locally observable atx0 if there is a neighborhood N(x0) such that(2.13)holds for all x1 ∈ N(x0).
The system is calledlocally observableif it is locally observable at every x∈ X.

Finally, we introduce some terminology regarding stability of control systems.

Definition 2.1.8 Consider the autonomous system

ẋ = f (x), (2.14)

and let x(t,x0) denote the state x at time t with initial condition x(t0) = x0. We say that

1) x= x0 is anequilibrium of (2.14) if f (x0) = 0. In the following, without loss of generality,
we assume x0 = 0.

2) x= 0 is stableif ∀ ε > 0 ∃ δ (ε) > 0 such that

‖x0‖ < δ (ε) ⇒ ‖x(t,x0)‖ < ε ∀t ≥ 0.

3) x= 0 is unstableif it is not stable.

4) x= 0 is attractiveif ∃ η > 0 such that‖x0‖ < η ⇒ lim
t→∞

x(t,x0) = 0.

5) x= 0 is asymptotically stableif it is stable and attractive.

6) x= 0 is exponentially stableif ∃ k > 0, r > 0 and a neighborhood N(0) of the origin such
that

‖x(t,x0)‖ < k‖x0‖e−rt ∀ t ≥ 0, x0 ∈ N(0).

2.1.1 Linear Systems

In this section, the theory of linear control systems is reviewed. Properties and control design
of linear systems is by now well understood, and a study of this particular type of systems may
facilitate understanding of control systems in general. Here, results on observability, reachability
and stability are presented. First, we introduce the concept of transition matrices.

The Transition Matrix

The transition matrix provides a nice means of expressing the solution of a differential equation. A
definition is provided next.

Definition 2.1.9 Let ej ∈ R
n denote the j: th unit vector inR

n. Consider the linear, uncontrolled
system

ẋ(t) = A(t)x(t) (2.15)

x(t0) = ej , (2.16)

and let Φ j(t, t0) ∈ R
n denote the unique solution of(2.15) - (2.16). Then thetransition matrix

Φ(t,t0) ∈ R
n×n is defined by

Φ(t, t0) = [Φ1(t,t0), . . . ,Φn(t,t0)]. (2.17)
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The following lemma lists properties ofΦ(t,t0).

Lemma 2.1.1 The transition matrix(2.17)satisfies the following properties:

∂Φ(t,s)
∂ t

= A(t)Φ(t,s) (2.18)

Φ(s,s) = I (2.19)

∂Φ(t,s)
∂s

= −Φ(t,s)A(s) (2.20)

x(t0) = a ⇒ x(t) = Φ(t,t0)a (2.21)

Φ(t,s) = Φ(t,τ)Φ(τ,s) ∀ (t,s,τ). (2.22)

Now consider the linear, controlled system

ẋ(t) = A(t)x(t)+B(t)u(t) (2.23)

x(t0) = x0 (2.24)

y(t) = C(t)x(t). (2.25)

It is easy to show that, withΦ(t, t0) defined by (2.17), the solution can be written

x(t) = Φ(t,t0)x0 +

∫ t

t0
Φ(t,s)B(s)u(s)ds. (2.26)

Lemma 2.1.2 For a time-invariant system(2.11)- (2.12)it holds that

Φ(t,s) = eA(t−s) =
∞

∑
k=0

1
k!

Ak(t −s)k. (2.27)

We will now move on to discuss criteria for the essential properties reachability, observability and
stability of linear systems.

Reachability

Investigating reachability (controllability) of a control system is essential before designing a control.
States that are reachable can be manipulated by a feedback control to meet some performance crite-
ria, which are usually expressed for a particular state component as a reference value. Reachability
is defined below.

Definition 2.1.10 Thereachability gramianof (2.23)- (2.25)is the n×n-matrix

W(t0, t1) =
∫ t1

t0
Φ(t1,s)B(s)B(s)T Φ(t1,s)

Tds. (2.28)

Definition 2.1.11 For a time-invariant system, thereachability matrix is the matrix

Γ = [B AB A2B . . . An−1B]. (2.29)
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Theorem 2.1.1Reachability. For the system(2.23) - (2.25), the state transfer from x0 = x(t0) to
x1 = x(t1) is possible if and only if

x1−Φ(t1,t0)x0 ∈ Im W(t0,t1). (2.30)

Furthermore, if(2.23)- (2.25)is time-invariant, it is completely reachable ifrankΓ = n.

The results about observability of linear systems are in many ways analogous to the reachability
results. They are discussed next.

Observability

Usually all states of a control system are not measurable directly. They may however be present
in the output implicitly. The observability properties of asystem tell us which states can be recon-
structed from the output. For linear systems, observable states can be reconstructed or estimated
using an observer or a filter. This will be discussed further in Section 2.5. Such estimates often play
a vital role when designing feedback controls. Definitions of observability are given below.

Definition 2.1.12 Theobservability gramianof (2.23)- (2.25)is the matrix

M(t0, t1) =

∫ t1

t0
Φ(t1,s)

TC(s)TC(s)Φ(t1,s)ds. (2.31)

Definition 2.1.13 For a time-invariant system, theobservability matrixis the matrix

Ω = [C CA CA2 . . . CAn−1]T . (2.32)

Theorem 2.1.2Observability.For the system(2.23)- (2.25), the initial states x0 = x(t0) and x1 =
x(t1) produce the same output on[t0, t1] if and only if

x0−x1 ∈ ker M(t0,t1). (2.33)

Furthermore, if(2.23)- (2.25)is time-invariant, it is completely observable ifrankΩ = n.

Finally, we will cover stability and stabilization of linear systems.

Stability and Stabilization

Stable systems have the nice property that the state converges to, or stays close to, some reference
value. If a linear system is controllable, a stabilizing feedback can be designed so that the closed
loop system is stable. Stability is a property often desiredfor the error dynamics of a control system
- that is, the deviation from reference values should be bounded or even converge to 0 ast → ∞. In
the following, some relevant definitions are stated.

Definition 2.1.14 A linear system(2.9) - (2.10)is calledinput-to-output stableif there is a k such
that, for all initial times t0,

x(t0) = 0,
‖u(t)‖ ≤ 1, t ∈ [t0,∞)

}

⇒ ‖y(t)‖ ≤ k, t ∈ [t0,∞). (2.34)
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Definition 2.1.15 Consider the linear, time-invariant system

ẋ = Ax (2.35)

x(0) = x0. (2.36)

This system is calledstable if the solution is bounded for t∈ [0,∞) for all initial states x0 and
asymptotically stableif x(t) → 0 as t→ ∞ for all x0.

Definition 2.1.16 A matrix A is called astable matrixif the real parts of all eigenvalues of A are
negative.

Theorem 2.1.3The system(2.35) - (2.36) is asymptotically stable if and only if A is a stability
matrix. If at least one eigenvalue is positive, the system isunstable.

Theorem 2.1.4The linear, time-invariant system(2.11)- (2.12)is input-to-output stable if the ma-
trix A is a stability matrix.

For linear systems, a common control objective is to find a feedbacku = Kx such that the closed
loop system ˙x = (A−BK)x is stable,i.e. the matrix(A−BK) is a stability matrix.

For nonlinear systems, analysis is often much more complicated than for linear systems. In the
next section, fundamentals of nonlinear control theory aresummarized.

2.1.2 Nonlinear Systems

For nonlinear systems, the existing results on controllability, observability and stability are in gen-
eral weaker than for linear systems. In this section, the focus is on affine nonlinear systems (2.7) -
(2.8). Control design for robots with nonlinear kinematicsis discussed in Paper A. Although most
of the topics in this section are outside the scope of the appended papers they are included for com-
pleteness of the systems theory overview. Often, a linearization of the nonlinear system is used for
local analysis. A linearization of (2.7) atx0 has the form

ż=
∂ f
∂x

(x0)z+g(x0)v. (2.37)

In the following, terminology and results for nonlinear systems are presented both for local analysis
and in general.

Controllability

Locally, controllability of an affine system can be analyzedby studying a linearization.

Theorem 2.1.5Local Controllability. Consider the system(2.7) - (2.8). Suppose f(x0) = 0 and
u = 0. If the linearization(2.37) is controllable, then the set of points that can be reached from x0
in finite time contains a neighborhood of x0.

For a more general result, some mathematical tools are needed. They are introduced in the defini-
tions below.

Definition 2.1.17 Let N be an open set inRn. Define, for a set of smooth functionsλi , the set

M = {x∈ N : λi(x) = 0, i = 1, . . . ,n−m}. (2.38)

If

rank

[

∂λ1

∂x
, . . . ,

∂λn−m

∂x

]T

= n−m∀ x∈ M, (2.39)

then M is ahypersurface, which is asmooth manifold, of dimension m.
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Definition 2.1.18 Let x∈ M and attach at x a copy ofRn tangential to M. The resulting structure
is called thetangent spaceof M at x, and is denoted by TxM.

Definition 2.1.19 A vector field f on M is a mapping assigning to each point p∈ M a tangent
vector f(p) in TxM.

Definition 2.1.20 Letλ be a smooth real-valued function on M. TheLie derivativeL f λ of λ along
f is a function M7→ R : (L f λ )(p) = f (p)λ . In local coordinates, it is represented by

(L f λ )(p) =
n

∑
i=1

∂λ
∂xi

fi . (2.40)

Definition 2.1.21 For any two vector fields f and g on M, let the new vector field[ f ,g] on M be
defined by

[ f ,g]λ = L f Lgλ −LgL f λ . (2.41)

This vector field is theLie bracketof f and g. In local coordinates, the expression for[ f ,g] is given
by

∂g
∂x

f −
∂ f
∂x

g. (2.42)

Definition 2.1.22 An affine system(2.7) - (2.8)hasrelative degreer at x0 if

LgLk
f h(x) = 0 ∀x in a neighborhood of x0 and k≤ r −2 (2.43)

LgLr−1
f h(x0) 6= 0. (2.44)

Definition 2.1.23 A distribution D on M is a map which assigns to each p∈ M a vector subspace
D(p) of TpM.

Definition 2.1.24 A distribution D isinvariant under the vector field f if d∈ D ⇒ [d, f ] ∈ D.

Definition 2.1.25 Thestrong accessibility distributionRc of an affine control system(2.7) - (2.8)
is the smallest distribution that containsspan{g1, . . . ,gm} and is invariant under the vector fields
f ,g1, . . . ,gm.

Finally we arrive at a controllability result for nonlinearsystems.

Theorem 2.1.6Local Strong Accessibility. Consider the system(2.7) - (2.8). If at a point x0,
it holds thatdim(Rc(x0)) = n, then the system is locally strongly accessible from x0. This means
that for any neighborhood of x0, the set of reachable points in some sufficiently small finitetime T
contains a non-empty open set.

Further, if f = 0 anddim(Rc(x)) = n ∀x∈ X, then the system is controllable.
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Observability

For nonlinear systems, observability is not a trivial issue. In general, observability properties de-
pend on control input as well as initial conditions and observability of a system does not imply the
existence of an observer. A result on local observability for affine systems is given in this section.

Definition 2.1.26 Consider the system(2.7) - (2.8). Theobservation spaceO is the linear space
overR of functions on X in the form of

Lν1Lν2 . . .Lνkh j , j ∈ [1, . . . , p], k = 1,2, . . . , (2.45)

whereνi ∈ { f ,g1, . . . ,gm}. Further, theobservability codistributionis defined by

dO= span{dH : H ∈ O}, (2.46)

where dH is the exterior derivative of H, which in local coordinates has the form

n

∑
i=1

∂H
∂xi

dxi . (2.47)

Theorem 2.1.7Local Observability. Consider the system(2.7) - (2.8). If

dim dO(x0) = n, (2.48)

then the system is locally observable at x0.

Stability is an important issue in nonlinear control and several approaches exist to investigate
whether a system is stabilizable. In the next section, we briefly introduce some of the key results.

Stability and Stabilization

We begin by studying stability locally for nonlinear affine systems. First, two theorems regarding
local stability are stated.

Theorem 2.1.8Local Stability. Consider the system

ẋ = f (x) (2.49)

and its linearization
ż= Az. (2.50)

If the equilibrium z= 0 of (2.50)is exponentially stable, then x= 0 of (2.49)is locally exponentially
stable. If A is a constant matrix with at least one eigenvaluewith positive real part, then x= 0 is
unstable.

Theorem 2.1.9Local Feedback Stabilization. Consider the linearization(2.37)of the affine system
(2.7) - (2.8). Define A= ∂ f (0)/∂x, b= g(0). Then a necessary condition for(2.7) - (2.8) to be
stabilizable by a differentiable feedback control is that

1) (A,b) does not have uncontrollable states associated with unstable eigenvalues.

2) The map(x,u) 7→ f (x)+g(x)u maps onto a neighborhood of x0.



PRELIMINARIES 17

For more general results, more advanced approaches are needed, such as center manifold theory and
Lyapunov functions. We will not go into detail about stabilizability for nonlinear systems here, but
give one result regarding Lyapunov stability.

Definition 2.1.27 A continuous function V: R
+ ×R

n 7→ R is said to be alocally positive definite
function (lpdf) if V (t,0) = 0 ∀ t ≥ 0 and there exists a strictly increasing functionα : R

+ 7→ R
+

andε > 0 such that for x in theε-ball around the origin it holds that

α(‖x‖) ≤V(t,x) ∀ t ≥ 0. (2.51)

Theorem 2.1.10Suppose x= 0 is an equilibrium of the system

ẋ = f (x,t), f ∈C1, x∈ R
n. (2.52)

Then x= 0 is uniformly stable if there exists a C1, decrescent lpdf V(t,x) such that for x in a
neighborhood of the origin, it holds that

∂V(t,x)
∂ t

+
∂V(t,x)

∂x
f (x,t) ≤ 0 ∀t ≥ 0. (2.53)

It is hard to find a systematic approach to determining such anl pd f . Generally, methods of clever
guessing and trial-and-error are applied.

The final topic of this section is control design by means of optimization.

2.1.3 Optimal Control

Optimal control simply means controlling a system in a way that is optimal with respect to a spec-
ified criterion, usually expressed as a cost function or performance index. This is a very useful
method for control design and widely used in fields such as economics, aeronautics and robotics.
The field of optimal control emerged in the 1950s mainly due tothe rapid development of the space
industry.

This section will give a brief introduction to the area by studying the following common form
of optimal control problem:

Problem 2.1.1

minimize
u∈U

J(u) =

∫ t f

t0
f0(t,x(t),u(t))dt + φ(x(t f )) (2.54)

subject to ˙x(t) = f (t,x(t),u(t)) (2.55)

x(t0) = x0 (2.56)

(2.57)

In general,f0, φ , and f are assumed to beC1. While the initial statex(t0) is fixed, the terminal state
x(t f ) is free, but deviations from some desired terminal state arepenalized by the termφ(x(t f )) in
the cost function. We will state results for this formulation and for a special case where the cost
function is quadratic and the constraints are linear. Variations of this formulation can be solved by
similar methods.

First, we state the principle of optimality.
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Lemma 2.1.3 The principle of optimality. Let u∗(t) be the optimal solution of Problem 2.1.1 and
let x∗(t) be the corresponding optimal trajectory. Then, for any t′ ∈ (t0,t f ] the optimal pair(u′,x′)
on the interval[t ′, t f ] is (u∗(t),x∗(t)), where t∈ [t ′,t f ].

This lemma simply states the rather intuitive result that the optimal control on an interval of time is
exactly the optimal control for the entire problem, restricted to that time interval. The principle of
optimality leads to the following result.

Lemma 2.1.4 The dynamic programming equation. Let J∗(t,x(t)) denote the optimal cost-to-go,
which is the optimal cost from the time t to tf . Then, from the principle of optimality, it holds that

J∗(t,x(t)) =
∫ t+∆t

t
f0(s,x(s),u(s))ds+J∗(t + ∆t,x(t + ∆t)), (2.58)

which means that the optimal control can be computed backwards from the terminal time.

From (2.58), we can derive the Hamilton-Jacobi-Bellman Equation (HJBE), which is essential for
the dynamic programming approach to optimal control problems:

−
∂J∗(t,x(t))

∂ t
= minimize

u∈U

{

f0(t,x(t),u(t))+
∂J∗(t,x(t))

∂x

T

f (t,x(t),u(t))

}

(2.59)

J∗(t f ,x(t f )) = φ(x(t f )). (2.60)

The fact that the HJBE holds for the optimal control inputu∗(t) leads to the following theorem,
which is useful for solving Problem 2.1.1.

Theorem 2.1.11The Verification Theorem for Dynamic Programming. Suppose that the function
V : [t0,t f ]×R

n 7→ R is continuously differentiable in t and x and solves the HJBE:

−
∂V(t,x(t))

∂ t
= minimize

u∈U

{

f0(t,x(t),u(t))+
∂V(t,x(t))

∂x

T

f (t,x(t),u(t))

}

(2.61)

V(t f ,x(t f )) = φ(x(t f )). (2.62)

Further, suppose that

µ(t,x(t)) = argmin
u∈U

{

f0(t,x(t),u(t))+
∂V(t,x(t))

∂x

T

f (t,x(t),u(t))

}

(2.63)

is an admissible control. Then V(t,x(t)) = J∗(t,x(t)) for all (t,x) ∈ [t0,t f ]×R
n, andµ(t,x(t)) =

u∗(t) is the optimal control.

It should be noted that the conditions in Theorem 2.1.11 are sufficient but not necessary. A solution
scheme derived from Theorem 2.1.11 follows.

1) Define theHamiltonian H(t,x,u,λ ) = f0(t,x,u)+λ T f (t,x,u), whereλ is a parameter vector
of suitable dimension.

2) Find µ̃(t,x,λ ) = argmin
u∈U

H(t,x,u,λ ).

3) Solve−
∂V(t,x)

∂ t
= H

(

t,x, µ̃
(

t,x,
∂V(t,x)

∂x

)

,
∂V(t,x)

∂x

)

subject toV(t f ,x) = φ(x).

Thenu∗(t) = µ(t,x) = µ̃
(

t,x, ∂V(t,x)
∂x

)

.

Now we move on to the special case of linear quadratic (LQ) control.
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2.1.4 LQ Optimal Control

First, we formulate the linear-quadratic special case of (2.55) - (2.56):

Problem 2.1.2

minimize
u∈U

J(u) =

∫ t f

t0
[x(t)TQx(t)+u(t)TRu(t)]dt+x(t f )

TQ0x(t f ) (2.64)

subject to ˙x(t) = Ax+Bu (2.65)

x(t0) = x0, (2.66)

whereA ∈ R
n×n, B ∈ R

n, and(A,B) is controllable. Q0 ≥ 0, Q ≥ 0, andR > 0 are symmetric
matrices of suitable dimensions. Problems similar to Problem 2.1.2 appear in Papers C, D and E.
We get:

1) H(t,x,u,λ ) = xTQx+uTRu+ λ T(Ax+Bu).

2) µ̃(t,x,λ ) = − 1
2R−1BTλ .

3) SinceH(t,x, µ̃(t,x,λ ),λ ) = xTQx− 1
4λ TBR−1BTλ + λ TAx, andV(t f ,x) = xTQ0x, a suit-

able guess isV(t,x) = xTP(t)x, for some positive semi-definite matrixP(t). Then the HJBE
becomes

xT [Ṗ+Q−PBR−1BTP+PA+ATP]x = 0, xTP(t f )x = xTQ0x, (2.67)

or
Ṗ+Q−PBR−1BTP+PA+ATP = 0, P(t f ) = Q0, (2.68)

which is a matrix Riccati equation. The optimal control is

u∗(t,x) = µ̃
(

t,x,
∂V(t,x)

∂x

)

=−R−1BTP(t)x(t) and the optimal cost isV(t0,x0) = xT
0 P(t0)x0.

This concludes the overview of the field of mathematical systems theory. In the subsequent sections,
we will discuss mobile robotics from a control perspective as well as smoothing and filtering of data.
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2.3 Mobile Robotics

What is a robot? Depending on the context, several differentdefinitions are applicable. Some
examples follow:

• A device that responds to sensory input.

• A program that runs automatically without human intervention.

• A device that automatically performs complicated and oftenrepetitive tasks.

• An electro-mechanical system which conveys a sense that it has intent or agency of its own.

In the context of this thesis, robots are mechanical systemsthat can gather information about their
environment via sensors and respond to that information in an intelligent manner. Further, the robots
that appear in this thesis aremobile, meaning that they, as opposed to industrial robots which are
usually stationary, can move about in their environment in acontrolled fashion. Anautonomous
mobile robot is a robot that can act and react to events without interference or guidance from human
beings. Control design for autonomous mobile robots is one of the topics of this thesis.

There are several kinds of mobile robots. Some of the most common types are listed below.

• Humanoids. These robots are constructed to resemble human beings and usually move about
by walking on two legs. A well known example would be the fictional humanoids in the
Terminator movies, but real humanoids are represented by for instance ASIMO by Honda.

• Unmanned Ground Vehicles (UGVs).These robots generally move on wheels and often
resemble cars. Robots of this type are by now commercially available, in the form of auto-
matic vacuum cleaners such as Trilobite by Electrolux, or lawn mowers such as Robomow by
Friendly Robotics. The robots that appear in this thesis areall UGVs.

• Unmanned Air Vehicles (UAVs).These robots come in the shapes of helicopters or airplanes.
Many existing UAV models today are research models designedfor laboratory use. A growing
area of application for UAVs is military reconnaissance. Anexample model is the Luna X
2000 UAV of the German Army.
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• Autonomous Underwater Vehicles (AUVs).These robots are often designed as unmanned
submarines and used commercially for instance by oil companies to map the ocean floor.
Examples include Sapphires by the Swedish Defense ResearchAgency and SAAB, and the
Norwegian HUGIN 3000 by Kongsberg Maritime and the Norwegian Defense Research Es-
tablishment. AUV models inspired by underwater animals areavailable for research, such as
AquaJelly by Festo.

The focus of the remainder of this section will be on UGVs. Control layers and design are discussed
next.

2.3.1 Control

The control of autonomous robots can be broken down into several layers. The division and degree
of precision should be adapted for the intended applications. In the context of this thesis, a suitable
layering is depicted in Figure 1. One can distinguish between high-level and low-level control.

M i s s i o n  P l a n n i n g

A c t u a t o r  C o n t r o l

M o t i o n  P l a n n i n g  

V e h i c l e

Obse rve r  /  F i l t e r

m e a s u r e d  

o u t p u t

es t ima ted  

s ta te

task

a c t i o n

con t ro l  s i gna l

m o t o r  c o n t r o l

Figure 1: A model of control layers for an autonomous mobile robot.

Usually motor or actuator control are regarded as low level,while mission planning is high level.
One may view the intermediate level of motion planning as a black box that translates mission goals
to executable commands. In this thesis, the focus is usuallyon the level of motion planning. The
scenarios we study generally concern translative motion ofthe robot, either planning of the motion
such as trajectory estimation, or motion relative to other agents, such as formation control. This text
is adapted to the control objectives relevant for the appended papers.

Designing control signals for robotic systems is an important discipline within the field of math-
ematical systems theory. To apply the theory and tools reviewed in Section 2.1, we must relate
the terminology of systems theory to the physical features and control objectives for the mobile
robot. We define thestateof the robot as a vectorx containing relevant information such as current
position, velocity and heading. The state can be manipulated via acontrol signal uthat should be
based both on the control objective and the current state of the robot. To this end, the robot uses
sensorsto measure its state. The measurements are collected in theoutput vector y. Most of the
time, some components of the state vectorx cannot be directly measured. This introduces the need
of anobserver, whose purpose is to compute astate estimatêx, which can be used for feedback con-
trol. Furthermore, as there are no perfect sensors, measurements are generally noise contaminated,
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calling for some preprocessing before the feedback is computed. The preprocessing, and sometimes
also the estimation of unmeasured states, is done by afilter or smoother. This is a major topic of this
thesis. A brief introduction to relevant filtering and smoothing techniques is given in Section 2.5.
An example is provided to illuminate the terminology introduced in this section.

Example 2.3.1A common state model for mobile robots is unicycle kinematics. Unicycle robots
appear in Papers A, B and D. This is a suitable model for robotsthat have two parallel wheels that
can be controlled, and possibly additional passive wheels.See Figure 2. Let the state vector be

x

x

(x  ,x  )

x

1 2

3

1

2

Figure 2: A unicycle robot.

x = [x1 x2 x3]
T , where(x1,x2) is the location of the center of the robot with respect to someglobal

coordinate system, and x3 is the heading, defined as the angle between the x1-axis and the robot’s
motion vector. Then the equations of motion for the robot are

ẋ1 = u1cosx3 (2.69)

ẋ2 = u1sinx3 (2.70)

ẋ3 = u2, (2.71)

where u= [u1 u2]
T is the control input.(2.70) is an example of anon-holonomicsystem, meaning

that the motion is restricted in some directions. For instance, a vehicle with kinematics determined
by (2.70)can not move sideways.

Again, sensing is a prerequisite to feedback control. Naturally, without feedback from surround-
ings and events the robot cannot be controlled in an autonomous manner. Sensing is the topic of the
next section.

2.3.2 Sensing

A device that can measure physical quantities such as temperature, distance or density, is called a
sensor. Usually, a sensor also converts the measurement to asignal that is suitable for data process-
ing. Sensor information is crucial for feedback control formobile robots. In order to react properly
to unexpected events, the robot must be able to gather information about itself and its environment
in real time. In the field of robotics, a typical classification of sensors is as follows.
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• Enteroception. These sensors measure the inner state, such as pressure and temperature.

• Proprioception. These sensors measure quantities such as location and heading, both of the
robot itself and possibly of attached manipulators.

• Exteroception. These sensors measure the state of the robot’s surroundings, such as the
distance to objects or shape of obstacles.

In this thesis, the focus is on proprioception and exteroception. Below we list some common sensor
types for these purposes. The sensors appearing in the appended papers are laser range sensors,
infrared (IR) sensors and wheel encoders. The specific typesare described further in the papers.

• Proprioception.

– Gyros. A gyro measures orientation by utilizing the principle of the preservation of
angular momentum. An example is the XV-3500CB by Seiko EpsonCorporation.

– Accelerometers.An accelerometer usually consists of a cover layer that is fixed in the
robot and an inner core which is not. Due to the inertia of the core, changes in the
robot’s speed can be detected. An example of an accelerometer is the MTN/1100 Series
by Monitran.

– Wheel Encoders.Encoders measure the position of an UGV compared to its initial
position by converting the number of times the wheels have turned to physical distance.
An example is the WW-01 WheelWatcher Encoder Kit by Nubotics. Wheel encoders
are used for localization of robots in Papers A and D.

• Exteroception.

– Laser range sensors.A laser range sensor measures the distance to objects by sending
out a laser beam and measuring the time until the reflected beam returns. An example
is the FG21-LR Long-Range Rangefinder by RIEGL. Laser range sensors are used for
range measurements in Paper D.

– Vision/cameras.Due to the increasing availability of quality low-price digital cameras
the field of computer vision has grown significantly over the past few years. Computer
vision software translates the visual input to digital information on shape, size and loca-
tion of objects surrounding the robot. A lot of open source code is available for computer
vision, for instance Blepo from RoboRealm.

– Active IR.An active IR sensor works in much the same way as a laser sensor, but sends
out a beam of infrared light. They are usually more sensitiveto ambient light and there-
fore have lower accuracy. An example is the GP series by Acroname robotics. Active
IR is used for range measurements in Paper A.

– Active Sonar.An active sonar sensor sends out a sound impulse and computesdistance
based on the time it takes for the echo to return. Sonar is a popular technique for under-
water applications, but is also used for robot navigation inair. An example of a sonar
sensor is the Mini-A from SonaSwitch.
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2.5 Smoothing and Filtering

Smoothing and filtering of measurement data are two closely related concepts. One may view them
as two approaches to the same problem, namely removing disturbances from a data set to refine the
estimate of an underlying signal. Smoothing is a well known topic in statistics, while filtering is a
classical tool in signal processing and systems theory.

Often, smoothing is applied to a complete data set, while filtering is sometimes performed online
and pointwise. Smoothing may also be considered as a form of low-pass filtering, since in most
applications, a smoother removes high-frequency fluctuations from the input signal.

There is a rich literature on both data smoothing and data filtering. A thorough treatment is
beyond the scope of this text. Here, we introduce the techniques relevant for the appended papers,
namely smoothing splines and Kalman filtering.

2.5.1 Smoothing Splines

Classical splines were introduced in the 1940s as functionsdefined piecewise in terms of low-degree
polynomials, with the main purpose to interpolate between points of a given data set. The idea it-
self, of using polynomials for interpolation, is far older,dating back to the mid 1700s. Interpolating
betweenn points using a single polynomial requires a polynomial of degreen− 1 and has disad-
vantages such as the well known Runge’s phenomenon. Using polynomial splines remedies this
problem. A formulation of the spline problem follows.

Problem 2.5.1 Interpolating Splines. Let zi ∈ R be data sampled at times ti ∈ [0,T], i ∈ [1,N], and
define the set F of twice differentiable functions that interpolate(ti ,zi), i.e.

F = { f ∈C2[0,T] : f (ti) = zi}, (2.72)

which is a Banach space under the supremum norm. Then the interpolating spline is the solution of

minimize
f∈F

{

max
t∈[0,T]

∣

∣

∣

∣

d2 f (t)
dt2

∣

∣

∣

∣

}

. (2.73)

The solution of Problem 2.5.1 is thecubicspline, which is a piecewise polynomial of degree three.
Interpolating splines are an excellent means of estimatingcurves from discrete samples, if the

samples are exact. However, this is seldom the case for data sets in real applications. Also, even
with exact samples, an interpolating estimate is not alwaysdesirable. An illustrating example is
in aircraft applications, where exact tracking of way points often requires large control gain and
increased fuel usage. This motivates the introduction of smoothing splines. Smoothing splines
became a major topic in the field of mathematical statistics in the 1970s. The smoothing spline
problem is formulated below.
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Problem 2.5.2 Regular Smoothing Splines. Let zi be data sampled at times ti ∈ [0,T], i ∈ [1,N],
and let L2 be the Hilbert space of square integrable functions. Then the smoothing spline is the
solution of

minimize
f : d2 f (t)

dt2
∈L2

∫ T

0

(

d2 f (t)
dt2

)2

dt+ λ
N

∑
i=1

( f (ti)−zi)
2. (2.74)

The output of this problem is also a cubic spline, but the spline does not necessarily interpolate
directly through the data points.λ > 0 determines the tradeoff between smoothness and faithfulness
to the data. Lettingλ → ∞ results in an interpolating spline.

Control theoretic splines may be viewed as a generalizationof regular smoothing splines. They
are discussed next.

Control Theoretic Smoothing Splines

Control theoretic smoothing splines were introduced in theearly 2000s and the theory is therefore
still emerging. As the name indicates, control theoretic smoothing splines makes a connection be-
tween the fields of mathematical statistics and control theory, or more specifically, between regular
smoothing splines and optimal control. Here, a derivation of the control theoretic smoothing spline
problem is given.

Consider the linear, time invariant, controllable and observable SISO system

ẋ = Ax+Bu (2.75)

y = Cx, (2.76)

wherex∈ R
n, A∈ R

n×n andB and andC are vectors of compatible dimensions. Since

x(t) = eAtx(0)+

∫ t

0
eA(t−s)Bu(s)ds, (2.77)

we can write

y(t) = CeAtx(0)+

∫ t

0
CeA(t−s)Bu(s)ds. (2.78)

The aim of control theoretic smoothing splines is to producea control lawu(t) that drives the output
trajectoryy(t) close to a fixed set of data points

D = {(ti ,zi) : ti < ti+1, ti ∈ [0,T], i ∈ [1,N],zi ∈ R}. (2.79)

A natural approach to achieve this objective is optimal control. Define a cost function

J(u) =

∫ T

0
u(t)2dt+ λ

N

∑
i=1

wi(y(ti)−zi)
2, (2.80)

wherewi are non-negative weights. The desired control is the function u∗(t) that minimizesJ(u)
subject to the affine constraint (2.78). A formal statement of the control theoretic smoothing spline
problem follows.
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Problem 2.5.3 Control Theoretic Smoothing Splines. Let zi be data sampled at times ti ∈ [0,T],
i ∈ [1,N], and let L2 be the Hilbert space of square integrable functions. Then the control theoretic
smoothing spline is the output y(t) of the system(2.77)- (2.78), whose input u(t) is the solution of

minimize
u∈L2

∫ T

0
u(t)2dt+ λ

N

∑
i=1

(y(ti)−zi)
2 (2.81)

subject to ˙x = Ax+Bu (2.82)

y = Cx. (2.83)

Lemma 2.5.1 The optimal solution of Problem 2.5.3 has the form

u(t) =
N

∑
i=1

τigti (t) (2.84)

wheregti (t) =

{

CeA(ti−t)B, t ≤ ti
0 otherwise,

(2.85)

andτi are scalar coefficients.

The computation of the coefficientsτi is non trivial and will not be discussed further here. As a
special case, note that with

A =

(

0 1
0 0

)

, B =

(

0
1

)

, C = (1 0), (2.86)

we obtain
gti (t) = ti − t, (2.87)

so that the resulting spliney(t) computed from (2.78) is again a cubic smoothing spline.
The following theorem follows from Hilbert’s projection theorem (which is stated further down

in Theorem 2.5.2).

Theorem 2.5.1Existence of solutions. LetC be a closed, affine subspace of L2[0,T]. Minimizing
(2.80)subject to(2.77)- (2.78)and u∈ C yields a unique solution u∗(t).

Control theoretic smoothing splines are studied in Papers C, D and E. In the next section, we move
on to filtering by means of the Kalman filter. This is a well known and widely used filter. A
derivation of the Kalman recursions is presented below.

2.5.2 Kalman Filtering

Although named after Rudolf E. Kalman, the Kalman filter was developed simultaneously by several
researchers in the late 1950s and early 1960s. It is probablythe most well known filter in the field
of mathematical systems theory and has many nice properties. A derivation of the Kalman filter is
supplied in this section.

Consider a linear discrete-time system

x(tk+1) = Ax(tk)+Bw(tk), (2.88)

wherex(tk) ∈ R
n and a measurementy(tk) ∈ R

m, governed by

y(tk) = Cx(tk)+Dv(tk), (2.89)
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with A∈ R
n×n, B∈ R

n×s C∈ R
m×n andD ∈ R

m×p. The signalsw(tk) andv(tk) are random process
noise and measurement noise, respectively, and are assumedto be independent, zero-mean, gaussian
noise with covariance matrices

Q(tk) = E(w(tk)w(tk)
T) (2.90)

R(tk) = E(v(tk)v(tk)
T). (2.91)

Here,E(·) is the expectation value of(·) andQ(tk) ∈ R
s×s, R(tk) ∈ R

p×p. Then the Kalman filter is
an observer that gives an optimal estimate ˆx(tk) of the statex(tk) at time stepk, given the estimate
x̂(tk−1) and the observationy(tk), in a least squares sense. In other words, if we define the estimation
error as

e(tk) = x(tk)− x̂(tk), (2.92)

then the Kalman filter is alinear filter that produces an estimate ˆx(tk) which minimizesE(e(tk)Te(tk))
at each time stepk. Now let

P(tk) = E(e(tk)e(tk)
T) (2.93)

denote the covariance matrix ofe(tk) In the following, a derivation of the Kalman recursions is
provided. The estimate ˆx(tk) should be a linear function of the previously gathered information,
namely the sequence of observations

{y(t1), . . . ,y(tk−1)}. (2.94)

Furthermore, ˆx(tk) should minimize (2.93). Define the finite-dimensional innerproduct spaceH that
consists of all linear combinations of the stochastic variables generated by (2.88) - (2.89) Define the
inner product onH as

< ξ ,η >= E(ξ η) (2.95)

and the norm as
‖ξ‖ =< ξ ,ξ >1/2 . (2.96)

Let Hk(y) denote the space of all linear combinations of the sequence (2.94). Then it holds that

H0(y) ⊂ H1(y) ⊂ . . .Hk−1(y) ⊂ Hk(y) ⊂ H (2.97)

andx̂(tk) is the element inHk−1(y) that minimizes‖x(tk)− x̂(tk)‖. The existence of such a minimizer
follows from the following theorem.

Theorem 2.5.2Projection. For a subspace Hk of the finite-dimensional inner product space H, and
x∈ H, there exists a unique elementx̂∈ Hk such that‖x− x̂‖ is minimized. Furthermore,̂x has the
property that(x− x̂)⊥Hk, i.e. with the inner product defined by(2.95), E((x− x̂)hk)= 0 ∀hk ∈Hk.

Define the mapEHk : x 7→ x̂, which is the orthogonal projection ofx ontoHk. The estimate can now
be writtenx̂ = EHkx. Some properties ofEHk are stated in the following lemma.

Lemma 2.5.2 The map EHk has the following properties:

• EHk is linear.

• For a matrix A such that the product Ax is defined, it holds thatEHkAx= AEHkx.

• For Hk ⊥ H j subspaces of H, it holds that EHk
⊕

H j = EHk +EH j .
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The following lemma follows from Theorem 2.5.2 and is usefulfor the derivation of the Kalman
recursions.

Lemma 2.5.3 Linear Least Squares. Let x, y be random vectors and suppose the components of y
are linearly independent. The linear least-squares estimate x̂ of x given by y is

x̂ = EHkx = E(xyT)E(yyT)−1y. (2.98)

Using the properties in Lemma 2.5.2, we can now write

x̂(tk+1) = EHk(y)x(tk+1) = EHk(y)(Ax(tk)+Bw(tk)) = {w(tk) ⊥ Hk(y)} = AEHk(y)x(tk). (2.99)

Now define the vector

ỹ(tk) = y(tk)−EHk−1(y)y(tk) = y(tk)−CEHk−1(y)x(tk)−EHk−1(y)Dv(tk) =

{v(tk) ⊥ Hk−1(y)} = y(tk)−Cx̂(tk) = C(x(tk)− x̂(tk))+Dv(tk) = Ce(tk)+Dv(tk), (2.100)

and let[ỹ(tk)] denote the space spanned by ˜y(tk), so that

EHk(y)x(tk) = EHk−1(y)x(tk)+E[ỹ(tk)]x(tk) = x̂+E[ỹ(tk)]x(tk). (2.101)

From Lemma 2.5.3 it follows that

E[ỹ(tk)]x(tk) = E(x(tk)ỹ(tk))
T(E(ỹ(tk)ỹ(tk)

T))−1ỹ(tk). (2.102)

From the definition of ˜y(tk), R(tk) andP(tk), we get

E(ỹ(tk)ỹ(tk)
T) = CP(tk)C

T +DR(tk)D
T . (2.103)

Now we can define the Kalman gain as

K(tk) = AP(tk)C
T(CP(tk)C

T +DR(tk)D
T)−1, (2.104)

so that (2.99) becomes

x̂(tk+1) = Ax̂(tk)+K(tk)ỹ = Ax̂(tk)+K(tk)(y(tk)−Cx̂(tk)). (2.105)

Now, since

e(tk+1) = x(tk+1)− x̂(tk+1) = (A−K(tk)C)e(tk)+K(tk)Dv(tk)+Bw(tk), (2.106)

we get

P(tk+1) = E(e(tk+1)e(tk+1)
T) =

(A−K(tk)C)P(tk)(A−K(tk)C)T +K(tk)DR(tk)D
TK(tk)

T +BQ(tk)B
T . (2.107)

Summarizing, given initial estimates ˆx0 andP0, and introducing the intermediate variables ˆx(tk)−

andP(tk)− for ease of notation, the discrete Kalman filter is the recursive process

x̂(tk)
− = Ax̂(tk−1) (2.108)

P(tk)
− = AP(tk−1)A

T +BQ(tk−1)B
T (2.109)

K(tk) = P(tk)
−CT (

CP(tk)
−CT +DR(tk)D

T)−1
(2.110)

x̂(tk) = x̂(tk)
− +K(tk)

(

y(tk)−Cx̂(tk)
−
)

(2.111)

P(tk) = (I −K(tk)C)P(tk)
−. (2.112)
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Adaptive Kalman Filtering

R(tk) andQ(tk) play important roles in the recursions. Convergence to the optimal estimate ˆx(tk)
requires accurate values of both matrices. Since these matrices represent uncertainties in the model
and measurements, correct values may be hard to come by. A Kalman filter that tries to estimate
these matrices and possibly adjust them online is called an adaptive Kalman filter.

The adaptive Kalman filtering schemes most frequently foundin the literature are Innovation-
based Adaptive Estimation (IAE) and Multiple Model Adaptive Estimation (MMAE). IAE methods
estimate the covariance matrix of the process noiseQ and/or the measurement noiseR utilizing
the fact that for the right values ofQ andR the innovation sequence of the Kalman filter is white
noise. By tuningQ and/orR and studying the resulting innovation sequence one can get an idea of
the appropriate values of the covariance matrices. Howeverconvergence to the "right" values ofQ
andR is not guaranteed with IAE and most algorithms require estimation made over rather large
windows of data to achieve reliable covariance measurements, making the method impractical for
rapidly changing systems.

MMAE methods handle model uncertainty by implementing a bank of several different models
and computing the bayesian probability for each model to be the true system model given the mea-
surement sequence and under the assumption that one of the models in the model bank is the correct
one. The state estimate can be either the output of the most probable model or a weighted sum of
the outputs of all models. This method is suitable for applications such as fault detection, where
you have some a priori information on the system dynamics. For instance, if the dynamics of an
engine is well known, each model in the bank can represent theengine dynamics if one or several
components fail. With this information, if the probabilityof one of the failure models gets to high
an alarm is raised.

Adaptive Kalman filtering is studied in Paper B.
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