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Abstract 
Cellular biophysics deals with the physical aspects of  cell biology. This thesis presents a 
number of  studies where mathematical models and data analysis can increase our 
understanding of  this field. 

During recent years development in experimental methods and mathematical 
modeling have driven the amount of  data and complexity in our understanding of  
cellular biology to a new level. This development has made it possible to describe cellular 
systems quantitatively where only qualitative descriptions were previously possible. To 
deal with the complex data and models that arise in this kind of  research a combination 
of  tools from physics and cell biology has to be applied; this constitutes a field we call 
cellular biophysics. The aim of  this doctoral thesis is to develop novel approaches in this 
field. I present eight studies where quantitative modeling and analysis are involved.  

The first two studies concern cells interacting with their surrounding environment in 
the kidney. These cells sense fluid flow and respond with calcium (Ca2+) signals. The 
interaction between fluid and cells in renal tubular epithelium can be described by 
biomechanical models. This thesis describes a mathematical model of  flow sensing by 
cilia with focus on the flow frequency response and time delay between the mechanical 
stress and the Ca2+ signaling response.  

Intracellular Ca2+ is kept at a very low level compared to the extracellular 
environment, while several intracellular compartments have higher Ca2+ concentration 
than the cytoplasm. This makes Ca2+ an efficient messenger for intracellular signaling, the 
process whereby signals are transduced from an extracellular stimulus to an intracellular 
activity such as gene expression. An important type of  Ca2+ signaling is oscillations in 
intracellular Ca2+ concentration which occur due to the concerted interplay between 
different transport mechanisms within a cell. A study in this thesis examines ways to 
explain these mechanisms in terms of  a mathematical model. Another study in the thesis 
reports that erythropoietin can regulate the water permeability of  astrocytes and that it 
alters the pattern of  Ca2+ oscillations in astrocytes. In this thesis the analysis of  this Ca2+ 
signaling is described. 

Simulations described in one of  the studies show how different geometries can affect 
the fluorescence recovery and that geometrically constrained reactions can trap diffusing 
receptors in dendritic spines. When separate time scales are present in a fluorescence 
revovery after photobleaching (FRAP) experiment the reaction and diffusion 
components can be studied separately. 

Applying single particle tracking methods to the migration trajectories of  natural 
killer cells shows that there is a correlation between the formation of  conjugates and 
transient confinement zones (TCZs) in these trajectories in vitro. TCZs are also present 
in in vivo experiments where they show strong similarities with the in vitro situation. This 
approach is a novel concept in data analysis methods for tracking immune cells.  
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Sammanfattning (in Swedish) 
Cellens biologiska fysik behandlar de fysikaliska aspekterna av cellbiologi. Denna 
avhandling presenterar ett antal studier där matematiska modeller och dataanalys kan öka 
vår förståelse av detta område.  

Under senare år har utvecklingen av experimentella metoder och matematisk 
modellering drivit mängden data och komplexiteten i vår förståelse av cellbiologi till en 
ny nivå. Denna utveckling har gjort det möjligt att beskriva cellulära system kvantitativt 
där endast kvalitativa beskrivningar tidigare var möjliga. För att hantera de komplexa data 
och modeller som uppstår i denna typ av forskning krävs en kombination av verktyg från 
fysik och cellbiologi; detta utgör ett område vi kallar cellens biologiska fysik. Syftet med 
denna avhandling är att utveckla nya metoder inom detta område. Jag presenterar åtta 
studier där kvantitativ modellering och analys ingår.  

De första två studierna behandlar hur celler interagerar med sin omgivning i njurarna. 
Dessa celler känner av ett vätskeflöde och svarar med kalcium (Ca2+)-signaler. Samspelet 
mellan vätska och celler i tubulärt njurepitel kan beskrivas med biomekaniska modeller. 
Denna avhandling beskriver en matematisk modell för flödeskänslighet hos cilier med 
fokus på flödesfrekvenssvar och tidsfördröjningen mellan den mekaniska påverkan och 
Ca2+-signaleringssvaret.  

Intracellulärt Ca2+ hålls på en mycket låg nivå jämfört med den extracellulära miljön, 
samtidigt som flera intracellulära delar har högre Ca2+-koncentrationen än cytoplasman. 
Detta gör Ca2+ till en effektiv bärare för intracellulär signalering, den process där signaler 
överförs från ett extracellulärt stimuli till en intracellulär händelse, exempelvis genuttryck. 
En viktig typ av Ca2+-signalering är de oscillationer i intracellulär Ca2+-koncentration som 
uppstår på grund av det ordnade samspelet mellan olika transportmekanismer i en cell. 
En studie  i denna avhandling undersöker olika sätt att förklara dessa mekanismer i form 
av en matematisk modell. En annan studie i avhandlingen rapporterar att erytropoietin 
kan reglera vattenpermeabilitet av astrocyter och att det ändrar mönstret av Ca2+-
oscillationer i astrocyter. I denna avhandling beskrivs analysen av denna Ca2+-signalering.  

Simuleringar som beskrivs i en av studierna visar hur olika geometrier kan påverka 
fluorescensåterhämtning och att geometriskt begränsade reaktioner kan fånga in 
receptorer in i dendrittaggar. När separata tidsskalor förekommer i ett fluorescence revovery 
after photobleaching (FRAP)-experiment kan reaktions- och diffusionskomponenter studeras 
separat.  

Tillämpande av single particle tracking-metoder på naturliga mördarceller visar att det 
finns ett samband mellan bildandet av konjugat och transient confinement zones (TCZs) i 
dessa trajektorier in vitro. TCZs förekommer också i in vivo-experiment där de visar stora 
likheter med in vitro-situationen. Denna strategi är ett nytt grepp inom dataanalys-
metoder för att spåra immunceller.  
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Summary and contributions by the author 
Below is a brief  summary of  the papers that this thesis is based on. It also lists the 
contributions by the author of  this thesis, below called the respondent.  

Paper I describes microfluidic devices used to study flow induced cellular responses 
in living cultured cells using confocal microscopy imaging. To assess the 
performance of  the channel geometries of  these devices the respondent 
performed the fluid mechanical simulations presented in Figure 3.  

Paper II presents experimental data and a computational model, using a finite 
element method, which explains the role of  membrane properties in this 
signaling process and how mechanical stress is built up in the 
plasmamembrane by a fluid drag force that bends cilia. It includes a novel 
application of  planar flow to study the bending of  primary cilia and the Ca2+ 
response of  cultured kidney epithelial cells using confocal microscopy. The 
respondent designed the model together with P. Kamali-Zare and 
implemented the finite element method simulations.  

Paper III describes a general model of  Ca2+ signaling including active and passive 
transport of  Ca2+ in between the cytosol, endoplasmic reticulum and the 
extracellular environment. The paper explores the effects of  different models 
of  the inostitol-trisphosphate receptor and the inclusion of  store-operated 
Ca2+ entry of  Ca2+ oscillations. The model was designed by the respondent 
together with H. Brismar and P. Uhlén. The manuscript was written by the 
respondent, P. Uhlén and H. Brismar. For this paper, a MATLAB® toolbox, 
described in Appendix A of  this thesis, was created by the respondent who 
implemented the model and ran the computer simulations.  

Paper IV explains the impact of  erythropoietin on water permeability in astrocytes 
and suggests a neuroprotective role for this substance. A signaling pathway 
through a metabotropic glutamate receptor is explored as a source of  this 
modulation. This exploration is done by studying Ca2+ signaling induced by 
the receptor. The respondent analyzed the data from the Ca2+ signaling 
measurements and developed a tool for semi-automatic classification of  Ca2+ 
responses as described in the paper and its supplementary text.  

Paper V presents a novel concept in geometrical modeling as it tests how K+ and 
water transport in kidney principal cells is affected by cellular and subcellular 
geometry. In particular it explores extracellular diffusion limited spaces where 
the local concentration can differ from the rest of  the extracellular 
environment. The respondent developed the model together with P. Kamali-
Zare and took part in the implementation of  the geometrical model and the 
effect of  water on K+ conductance of  channels.  

Paper VI introduces a novel mechanism for localizing dopamine 1 receptors to 
spines in the neuronal plasmamembrane. A confocal microscopy method used 
in this study is fluorescence recovery after photobleaching (FRAP). The paper 
includes experimental data showing the recovery of  fluorescently tagged 
proteins and a mathematical model explaining this recovery in terms of  
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diffusion. The respondent contributed to the paper by creating the model 
together with H. Brismar. The respondent performed the calculations 
presented in the paper and its supplementary material. The respondent also 
performed part of  the data analysis. 

Paper VII finds new roles for p21-activated kinase 4 in integrin dynamics and its 
roles in cell migration. One of  the methods in this study is FRAP resulting in 
the data fitted to a model of  protein dynamics that was developed by the 
respondent and J. Lock. The respondent developed the model, optimized it 
and performed the analysis of  the FRAP data in terms of  recovery rate as 
presented in Figure 6.  

Paper VIII explores a novel method to characterize experimental trajectories of  
migrating natural killer cells in culture and in animal studies. The method uses 
statistical properties of  trajectories based on the assumption of  unrestricted 
diffusion and identifies transient confinement zones in space and time where 
this assumption does not hold. For this paper the respondent developed the 
tools for analyzing the trajectories that were recorded and detected by B. 
Vanherberghen. The respondent also wrote the manuscript together with B. 
Vanherberghen and B. Önfelt.  
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1 Introduction 
A cell is in many aspects the smallest living unit, characterized by a living interior 
separated from the rest of  the world by a membrane. The membrane has a hydrophobic 
interior that acts as a barrier between the hydrophilic inside of  a cell and its external 
environment. The cell has a whole architecture of  possibilities to communicate with its 
external environment in a controlled manner; cilia sense motion in the fluid surrounding 
the cell [1], gases, such as oxygen, can diffuse freely across the membrane while ions and 
water have to pass via specialized proteins in the membrane [2].  

During recent years development in experimental methods and mathematical 
modeling has driven the amount of  data and complexity in our understanding of  cellular 
biology to a new level [3]. This development has made it possible to describe cellular 
systems quantitatively where only qualitative descriptions were previously possible. To 
deal with the complex data and models that arise in this kind of  research a combination 
of  tools from physics and cell biology has to be applied; this constitutes a field we call 
cellular biophysics. The aim of  this doctoral thesis is to develop novel approaches in this 
field. I present eight studies where quantitative modeling and analysis are involved.  

The first two studies concern cells interacting with their surrounding environment in 
the kidney. Renal tubular epithelial cells are believed to sense fluid flow as a shear and 
bending stress on the primary cilium. This stimulus generates Ca2+ signals via two 
proteins called polycystin-1 and polycystin-2. Dysfunction in this signaling system can 
lead to polycystic kidney disease and kidney failure [4]. The interaction between fluid and 
cells in renal tubular epithelium can be described by biomechanical models [5, 6]. In this 
thesis I describe a mathematical model of  flow sensing by cilia with focus on the flow 
frequency response and time delay between the mechanical stress and the Ca2+ signaling 
response, presented in Papers I and II.  

Mathematical modeling is a valuable tool, helping us to understand the mechanisms 
involved in biological systems. This has especially been the case within the field of  Ca2+ 
dynamics. One reason for this is that modern, experimental methods in fluorescent and 
confocal microscopy provide accurate measures of  spatiotemporal Ca2+ distribution in 
cells, making it possible to test mathematical models and biological theories. Also, the 
high number of  coupled mechanisms regulating the Ca2+ level makes Ca2+ dynamics a 
field that is too complex for simple intuitive models.   

Intracellular Ca2+ is kept at a very low level compared to the extracellular 
environment, while several intracellular compartments have higher Ca2+ concentration 
than the cytoplasm. This makes Ca2+ an efficient messenger for intracellular signaling, the 
process whereby signals are transduced from an extracellular stimulus to an intracellular 
activity such as gene expression [7-9]. An important type of  Ca2+ signaling is oscillations 
in intracellular Ca2+ concentration which occur due to the concerted interplay between 
different transport mechanisms within a cell. Paper III examines ways to explain these 
mechanisms in terms of  a mathematical model.  



Jacob Kowalewski 

 2

Astrocytes belong to a type of  cells, known as glia cells which constitute about 90 % 
of  the total number of  cells in the central nervous system [10]. Their name is derived 
from the Greek word for glue as they glue together and support neurons. Astrocytes are 
known to express the water channel protein aquaporin-4 and can easily change their 
volume [11]. Astrocytes are also known to express metabotropic glutamate receptors 
which can induce Ca2+ signaling [12]. The Ca2+ signals induced by these receptors are 
often seen as oscillations. In Paper IV we report that erythropoietin can regulate the 
water permeability of  astrocytes and that it alters the pattern of  Ca2+ oscillations in 
astrocytes. In this thesis the analysis of  this Ca2+ signaling is described.  

An important aspect of  Ca2+ signaling is that Ca2+ can have a transient positive 
feedback on the conductance of  Ca2+ channels which leads to a phenomenon known as 
Ca2+ induced Ca2+ release. Through this phenomenon Ca2+ signals can form geometrical 
patterns as they move in cells [13]. Similar mechanisms are the basis of  electrical 
signaling in the nervous system where Na+ and K+ currents form electrical signals in 
neurons [10]. This neural activity increases the extracellular K+ concentration in the brain 
which can interfere with continued neuronal activity. One role for astrocytes is to regulate 
this K+ level by conducting it to other areas of  the brain, such as perivascular regions, 
where neuronal activity cannot be affected. Similar types of  K+ regulation appear in the 
kidney. A common aspect of  these types of  Ca2+ signals and K+ regulation is the effect 
of  geometry [14-16]. To model the influence of  geometry we set up spatial models that 
use partial differential equations to describe both spatial and temporal patterns of  ion 
and water dynamics. Paper V describes how the geometry of  cells and subcellular 
structures can influence the dynamics of  K+ and water.  

Mathematical modeling has also been very successful in computational neuroscience 
and network modeling [2, 8, 17, 18]. Previously investigators in our group have proposed 
diffusion as a mechanism for lateral transport of  dopamine 1-receptors within the 
membranes of  neurons, and as a way for these receptors to be trapped in dendritic spines 
[19]. Paper V in this thesis describes experimental studies using confocal microscopy and 
mathematical modeling to examine and describe the mobility of  these receptors. The 
physical concepts in this study are lateral diffusion and chemical reactions between 
protein molecules. In this thesis, analytical and numerical methods to solve reaction 
diffusion equations that describe this system are explained.  

In case the diffusion and reaction components of  the system are on different time 
scales, they can be treated independently. In the case of  integrin dynamics the diffusion 
dominated the initial part of  the fluorescence recovery in a focal adhesion. After two 
minutes the diffusion reached its final level and a slower reaction took over. In Paper VII 
we describe how reaction rates can be extracted from this data.   

Integrins and focal adhesions are important components in cell migration. In Paper 
VIII we have tracked migration of  human natural killer (NK) cells and applied Transient 
Confinement Zone analysis [20] as a way to characterize their trajectories. The goal of  
this project is to use mathematical methods to automatically detect features such as cell-
cell interaction and immunoresponses by studying in vitro and in vivo systems.  
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2 Background 
Biological systems are characterized by being open systems that interact with their 
environment but maintain a state far from thermodynamic equilibrium. This state is 
achieved by the biochemical systems that convert molecules with a high content of  
chemical energy to stable ones such as CO2 and water. The chemical energy in these 
reactions drives active processes which are responsible for phenomena ranging from 
steep ion gradients across cellular membranes to movement of  cells and organisms. 
Active processes are counteracted by passive ones that drive the system towards 
equilibrium [2, 13].  

Life cleverly combines active and passive processes on different time and length 
scales to create signaling systems such as action potentials, where the slowly built up 
electrochemical gradients of  Na+ and K+ are utilized to transmit fast electrical signals on 
scales ranging from µm to meters [10]. The smallest systems that can be considered 
living, in the sense of  combining active and passive dynamical phenomena, are cells. A 
characteristic feature of  cells is that they are surrounded by a membrane that selectively 
permeates certain molecules and thereby separates the intracellular environment from its 
surroundings.  

2.1 Quantification and modeling in biology 
Compared to physics, biology has often been a qualitative rather than quantitative branch 
of  science. One explanation to this is that questions in biology often only have qualitative 
answers e.g. dead or alive? In many cases qualitative answers are an oversimplification. 
These questions include: response or no response, sick or healthy? Here of  course a 
quantitative measure can give the investigator more details, when it comes to strength of  
a response or severity of  sickness.  

Modern methods in biology have the strength to give quantitative rather than 
qualitative measures, also allowing for mathematical descriptions of  the systems [3, 13]. 
The combination of  quantitative measurements and mathematics has the potential to 
strengthen biology and strongly deepen our understanding in this field. 

2.1.1 Quantitative methods in biology 
During the last decades a large number of  experimental methods to quantify biological 
processes in living cells have evolved. These methods range from ratiometric fluorescent 
dyes allowing for calibrated measurements of  ionic concentrations to atomic force 
microscopy that makes it possible to measure mechanical properties of  the cytoskeleton 
and individual protein molecules. These quantitative measurements often require a 
mathematical model for their interpretation; this combines the modeling and data 
analysis which have given this thesis its title.   
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2.1.2 Biophysical modeling and computational biology 
Biological systems are characterized by a complex and often also symbiotic nature where 
several mechanisms act in concert and simultaneously in large networks. Cell biological 
phenomena, such as Ca2+ signaling, can be present on time scales ranging from ms to 
days [3]. To fully understand and describe these systems mathematical tools used to 
describe dynamical systems are necessary [2].  

Differential equations 
Dynamical biological systems can be modeled by ordinary differential equations (ODEs) 
involving time derivatives, describing changes over time in e.g. chemical reactions. 
Systems of  ODEs describe the change over time of  several interacting quantities. In 
simple cases these systems have an exact analytical solution, but often numerical methods 
have to be used to solve them. When spatial variations are considered, the system is 
described by both time and spatial derivatives. Such systems are known as partial 
differential equations (PDEs) and can describe several phenomena such as reaction-
diffusion systems, but also non dynamical systems such as stationary fluid flow [2, 3, 13, 
18, 21, 22]. Examples of  PDEs are Fick’s laws of  diffusion, see Section 2.4.1 and Navier-
Stokes equations, see Section 2.2. In general PDEs involve three spatial dimensions, 
often making them very complex. However, the use of  symmetry and simplifications can 
reduce the number of  considered dimensions and thereby making simulations of  the 
systems feasible; see e.g. Section 3.3.2 and Paper VI.  

2.1.3 Levels of biophysical modeling 
To make a biological model requires a choice of  level, in detail, complexity, and time 
scale. Detailed studies of  the nature of  individual molecules in a membrane can be done 
using molecular dynamics simulations, solving a system of  differential equations 
describing a discrete system of  molecular interactions which can require months of  
computational time to even reach a µs in simulated time [23].  

To reach a longer time scale simplifications are done so that individual molecules are 
not considered, but rather concentrations of  substances. These kinds of  simplifications 
describe biological systems as continuous. Rather than being built by individual molecules 
and ions we can describe reactions in terms of  kinetics, changing concentration, and ion 
fluxes in terms of  currents driven by voltages across membranes. [13] 

When considering the mechanical properties of  cells, membranes and subcellular 
structures, such as cilia, biomechanical models can be used. In these types of  models 
fluid mechanical and structural mechanical descriptions are used. These types of  models 
also take a continuous approach describing the systems in terms of  viscosity, elasticity 
and damping [24].  

2.1.4 Cellular biomodeling  
Cells are systems that to a certain extent can be described both as discrete systems when 
individual genes are considered and as continuous when considering the large number of  
water molecules or K+ ions in a cell. This is also the case of  mechanical characteristics of  
membranes and subcellular structures which have been studied both as molecular 
structures and larger scale systems [25-28].  
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Cellular biomechanical modeling 
Several types of  cells interact with and sense their environment. In mammals these 
include several cell types, among those epithelial cells. These cells often have protruding 
organelles called cilia that can be divided into subtypes known as primary and motile cilia. 
The two types of  cilia are both supported by an axoneme, a scaffolding structure 
consisting of  a ring of  microtubules, see Section 2.2.1. Motile cilia have an active role in 
transporting material e.g. in our airways while primary cilia have lately been shown to be 
sensors of  flow in the liquid environment surrounding them [29]. In Paper II we present 
a study of  the biomechanical properties of  primary cilia and, using a mathematical 
model, how the mechanical structure of  a cilium is related to the fluid flow response in 
kidney epithelial cells 

Mechanical modeling of  a cellular structure like a primary cilium requires knowledge 
about the material properties of  both the axoneme and the membrane covering it. These 
types of  materials are soft and have both elastic and viscous properties, often referred to 
as viscoelastic. Elasticity is a measure relating stress to strain in a material, while viscosity 
is a measure of  resistance to stress in a fluid. These material properties make cells and 
particularly cilia flexible but also sensitive to time and frequency as the viscous properties 
of  these structures damp any build up of  stress [30].  

Reaction kinetical modeling 
Reaction kinetics relates concentrations to reaction rates [31]. This allows us to put 
together differential equations and calculate how concentrations vary in time and space. 
This can for example involve enzymes. An important step in this area was taken by Hill 
[32] who constructed the first mathematical model for hemoglobin oxygen uptake 
already in 1910. Hill’s equation has since then been applied to several types of  
cooperative enzyme reactions and can be written as: 

 max

1/2

n

n n

V c
j

c K
=

+
 (2.1) 

where j is the reaction rate, c is the substrate concentration and 1/2K is the half  rate of  
reaction constant, equal to the concentration at which the reaction rate is half  of  the 
maximal, Vmax. n is often referred to as the Hill coefficient and indicates the number of  
cooperative sites in the enzyme [33]. The Hill equation has also proven to be a good 
model for ATP-driven ion pumps in cell membranes [34].  

A very successful model for passive ion channels was originally presented by Hodgkin 
and Huxley in 1945 [35] and could explain action potentials in neurons in terms of  Na+ 
and K+ currents through voltage gated ion channels. In this thesis a model describing 
Ca2+ signaling is included. Ca2+ is characterized by remarkably high concentration 
gradients across membranes which dominate over the electrical gradients that drive 
currents of  other ions through ion channels [34].  

2.2 Cellular signaling and mechanosensitivity 
To explore epithelial cells in vitro as well as in vivo environments their interaction with an 
external environment has to be understood. Typical length scales of  these cells are on the 
order of  10 µm. In order to model systems on this scale the fundamental properties of  
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such systems are central. Epithelial cells are characterized by having one side facing a 
liquid environment with which they interact both chemically and mechanically.  

In cell biological applications, unless single molecules are considered, liquids can be 
viewed as continuous and incompressible. Such liquids are generally known as 
Newtonian fluids and fully characterized by their density and viscosity [36]. The 
mechanical properties of  an incompressible, Newtonian fluid can in principle be 
described by the Navier-Stokes equation [37, 38]:  

 p
t

r h
æ ö¶ ÷ç + ⋅ = - +  +÷ç ÷çè ø¶

2v v v v f , (2.2) 

where v is the fluid flow velocity, r the density, h the viscosity, p the pressure field and f 
the external force. It can basically be derived from Newton’s second law and the 
conservation of  momentum. The left hand side corresponds to mass density × 
acceleration and the right hand side to a volume force. In its general form the equation 
can become highly nonlinear but in many practical cases in microfluidics the inertial 
effects in the left hand side can be ignored.  

To characterize the type of  flow that is present in a certain case the Reynolds 
number, which is the dimensionless ratio between inertial and viscous quantities in a 
system, can be calculated as [36]:  

 
vR

Re
r

h
= , (2.3) 

with R being the characteristic length scale of  the system. Typically R is the radius of  a 
particle or some other obstruction to the flow. On a cellular level the Reynolds number is 
almost always low ( 1)Re £  meaning that the viscous effects are dominant and that the 
flow is laminar and non-mixing.  

2.2.1 Primary cilia 
Motile and primary cilia, introduced above, differ both in function and structure. In 
motile cilia the axoneme is built up of  a ring of  doublet microtubules with two singlet 
microtubules inside the ring and dynein arms connecting the ring with the singlet 
microtubules in the middle. This is known as a 9+2 structure. The structure of  primary 
cilia is referred to as a 9+0 structure, as they lack the two singlet microtubules and dynein 
arms. In a number of  studies Praetorius et al. [1, 39-41] have shown that the primary 
cilium acts a flow sensor in kidney epithelial cells.  These studies show that this response 
is manifested as a Ca2+ signal which is not seen until at least 20 s after the flow starts.  

There are two proteins known to form a mechanosensitive complex. These proteins 
are named polycystin-1 and polycystin-2. A third protein known as fibrocystin may also 
be a part of  this complex. These proteins are located in primary cilia and mutations in 
these proteins are known to cause polycystic kidney disease which commonly leads to 
end stage kidney failure. There are few details known about the exact mechanosensation 
mechanism in cilia [25, 42-44].  

Mathematical modeling of  kidney epithelial mechansosensation and Ca2+ response 
dates back to before the role of  cilia was known [27, 45]. In these models the 
mechanosensation is caused by shear stress on the cells without any clear sensing 
mechanism. Curently, there are a number of  models that model the mechanosensation of  
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cilia [46, 47]. These models predict that the sensitive complex is located near the base of  
the cilium as that is the location of  the highest stress. However, they do not explain the 
delay between flow onset and Ca2+ response.  

2.3 Intracellular signaling and ion dynamics 
All eukaryotic cells respond to signals originating from chemicals in the extracellular 
environment [7, 48, 49]. These chemicals can be hormones that bind to receptors in the 
plasma membrane. Other signaling molecules are neurotransmitters and mediators 
involved in local cell communication. Some signaling molecules are cell permeable and 
bind to intracellular receptors [50]. The process in which extracellular signals are 
translated into the intracellular environment is called signal transduction, which involves 
second messenger molecules. Common second messengers are ions such as Na+ or Ca2+ 

[51]. Both of  these ions are present in high extracellular and low intracellular 
concentrations [9]. In the case of  Ca2+ the intracellular concentration is around 100 nM, 
while the extracellular concentration is 10,000 times higher. Ca2+ is also stored in 
intracellular organelles or compartments such as the endoplasmic reticulum (ER), which 
has a Ca2+ concentration several orders of  magnitude higher than the cytosol. This 
organelle has a membrane which constitutes around half  of  the total membrane area in a 
eukaryotic cell [52]. Na+ and Ca2+ ions access the cytosol via ion channels in a process 
described as passive transport. The process which transports these ions out of  the cell or 
Ca2+ into the ER is called active transport.  

The study of  Ca2+ dynamics has grown tremendously as a field over the past years 
due to the introduction of  effective dyes that make it possible to study the dynamics in 
real time [9]. This has also made it possible to create and test mathematical models of  
this phenomenon and increase our knowledge in the field [8]. The mechanisms involved 
in Ca2+ dynamics are Ca2+ channels in the plasma membrane and ER which can rapidly 
increase the cytosolic Ca2+ concentration and pumps in the plasma membrane and ER 
that decrease this concentration.  

2.3.1 Cellular membranes 
The plasma membrane is the main barrier between a living cell and its exterior 
environment. Intracellular membranes separate organelles from the surrounding cyto-
plasmic environment in the cell. The concept of  cellular membranes originates from the 
nineteenth century. Charles Ernest Overton studied cellular membranes and discovered 
that there is a wide variety in permeabilities across cellular membranes for different 
substances. Overton used this knowledge to propose that membranes are constituted of  
phospholipids and cholesterol. Overton’s theory of  a dissolve and diffuse mechanism of  
solutes across membranes is a simple model of  membrane flux [2]. Overton also 
suggested that there must be an active transport mechanism to concentrate certain 
solutes in the intracellular environment. Overton summarized his theory in a set of  rules 
for membrane structures [2].  

Since then one has discovered that cellular membranes are composed of  a phospho-
lipid bi-layer containing large amounts of  proteins which are involved in transporting 
ions, nutrients and other solutes. Proteins called aquaporins transport water across 
membranes, resulting in cell volume changes [53]. One description of  the membrane 
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structure is the fluid mosaic model which describes cellular membranes as phospholipid 
bi-layers containing clusters of  proteins with hydrophobic interiors [54]. Other studies 
have reformulated this picture into one where low mobility proteins can bind to different 
parts of  the cytoskeleton and lipid bi-layer. This binding, known as trapping, can result 
from extracellular signals [55], see also Section 2.4.2.  

Passive transport 
The simplest possible model for transport across a cellular membrane is a description of  
different permeabilities for different solutes. This description is called the dissolve and 
diffuse-model and for a thin membrane can be summarized as: 

 ( )i o
n n n nJ P c c= - , (2.4) 

where Jn is the flux of  a solute n through a membrane in the outward direction, i
nc is the 

inside concentration of  that solute, o
nc  is the outside concentration of  solute n, and Pn is 

the permeability of  that solute. The permeability is given by: 

 n n
n

D k
P

d
= , (2.5) 

where Dn is the diffusion coefficient of  solute n in the membrane, d is the thickness of  
the membrane, and kn is the partition coefficient, which is the ratio between the 
membrane and water solubilities of  solute n. Equation (2.4) is basically a special case of  
Fick’s first law as described by Equation (2.7) on page 14, with the membrane being in a 
steady state. Although the dissolve and diffuse model is a very simple description which, 
while not considering modern concepts of  transport proteins, remains a good 
description of  passive transport at moderate solute concentrations. However, there are 
many solutes that can cross the plasma membrane via pure diffusion; this includes gases 
such as O2 and CO2 as well as hydrophobic substances such as many anesthetic agents.  

Passive transport gated by proteins, such as ion channels, can often be described by a 
modified version of  (2.5), where Pn is replaced by an opening probability multiplied by 
the permeability of  an open channel and the number of  channels in the considered 
membrane [2, 13, 48]. Because there is a voltage across the plasma membrane, ion 
channel permeability will depend both on this voltage and the concentration gradient 
through a process called electrodiffusion. In the case of  Ca2+ the concentration gradient 
is so high that it dominates over the effect of  voltage [8, 13], and in this thesis the 
membrane voltage will not be considered as a contributing factor in Ca2+ dynamics.  

Active transport 
Some of  the most energy consuming mechanisms in living cells are involved in 
maintaining the concentration gradients of  ions across intra- and extracellular 
membranes. These gradients are created by transport against a concentration gradient in 
a process called active transport. Active transport is performed by carrier proteins that 
take up free energy from one reaction to lower the entropy by increasing a concentration 
gradient. The most common source of  free energy for active transport is the 
dephosphorylation of  adenosine-triphosphate (ATP). The membrane proteins which are 
involved in this transport are popularly called pumps. Other types of  active transport 
take up free energy from concentration gradients in processes called exchange and co-
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transport [48]. Many carrier proteins exploit the Na+ gradient across the plasma 
membrane to actively transport other solutes uphill against their concentration gradient. 
Examples of  this process, called secondary active transport, are the Na+/Ca2+ exchanger 
and the Na+-glucose cotransporter [2]. Secondary active transport does not consume 
ATP.  

2.3.2 Calcium channels 
Calcium channels are present both in the plasma membrane and the intracellular 
membranes. They are passive transporters, often with high permeability, that are efficient 
because of  the steep Ca2+ concentration gradients across these membranes. Ca2+ 
channels are opened because of  a gating variable, which can be either a ligand or voltage 
across the membrane. An important ligand for Ca2+ channels in the ER membrane is 
inositol 1,4,5-triphosphate (IP3), which is produced in the plasma membrane from 
phosphatidylinositol biphosphate (PIP2) upon extracellular signals. IP3 diffuses rapidly in 
the cytosol and binds to the IP3 receptor (IP3R), a ligand gated Ca2+ channel in the ER 
membrane, and thereby increases its open probability [10, 56].  

In the plasma membrane, voltage operated Ca2+ channels (VOCs) as well as other 
types of  Ca2+ channels are present. Some of  these channels are gated by mechanisms that 
are not fully known. Polycystin-2 is a protein present in the plasma membrane which is 
thought to be involved in Ca2+ signaling caused by mechanical stimulation [4], while store 
operated Ca2+ channels (SOC) are gated by a decrease in the Ca2+ concentration in the 
ER [57].  

Inositol 1,4,5-triphosphate receptor (IP3-receptor) 
IP3R is a large protein located in the ER membrane of  most eukaryotic cell types. It 
functions as a Ca2+ channel with the specific ligand IP3. This ligand is typically produced 
through G protein linked receptor signaling [56, 58]. Interestingly Ca2+ release through 
IP3R is also stimulated by Ca2+ itself  at low concentrations. This is known as Ca2+ 
induced Ca2+ release (CICR), which works as a positive feedback mechanism. At higher 
concentrations Ca2+ instead works as an inhibitor for Ca2+ release, resulting in negative 
feedback. This combination of  positive and negative feedback of  Ca2+ on the IP3R has 
been described as a bell shaped response curve [59]. 

There are three subtypes of  the IP3R, known as types 1, 2 and 3 [60]. It has been 
shown that these receptors show similar basic properties but have different types of  
regulation. IP3R types 2 and 3 in lipid bi-layers are not inhibited by Ca2+ [61, 62]. 
However IP3R type 3 has been shown to be so in intact cells [63]. Knockdown of  
specific type 1 and type 3 IP3Rs have shown that these two receptor types play different 
roles in Ca2+ oscillations [64]. It has been suggested that IP3R type 1 maintains Ca2+ 
oscillations while IP3R type 3 can be involved in the activation of  Ca2+ signaling as it is 
not as readily inhibited as the IP3R type 1 receptor.  

Miyakawa-Naito et al. [65] have proposed a new mechanism in gating of  the IP3R. 
Their study showed that ouabain induced Ca2+ oscillations in renal proximal tubular cells 
are not caused by an increased level of  IP3 but by a specific physical interaction between 
ouabain bound Na,K-ATPase (NKA) and IP3R. The study also showed a close proximity 
between ouabain bound NKA and IP3R using fluorescent energy transfer (FRET).  
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The complex mechanisms of  the IP3R that control the positive and negative feedback 
of  the IP3R is a well studied subject by both experimentalists and modelers [59, 61, 66-
69]. The modeling of  IP3R was thoroughly reviewed by Sneyd and Falcke [70]. One of  
the first models was the De Young and Keizer model [67] which assumes that there are 
three independent subunits in the IP3R. These subunits have to be in a conducting state 
to allow for Ca2+ flux. Another model is the Mak-McBride-Foskett model that is a 
phenomenological model in which the open probability has been fitted to measured data 
from IP3R types 1 and 3 [66]. In Paper III we have compared these two models and how 
they are affected by store-operated Ca2+ channels.  

Store operated calcium channels (SOC channels) 
Non-excitable cells often lack voltage operated Ca2+ channels, but have other means to 
let Ca2+ into the cytosol. One such way, thought to be involved in Ca2+ oscillations, is 
through store-operated Ca2+ (SOC) entry. The exact mechanism involved in this kind of  
Ca2+ influx, as well as the identity of  SOC channels, is not known [71]. When Ca2+ is 
released from intracellular stores it is taken up by Ca2+ pumps in the ER and plasma 
membrane of  the cell. This may cause a decrease in the total amount of  intracellular 
Ca2+, which must somehow be replenished. This was modeled by Putney [72] and termed 
capacitative Ca2+ entry (CCE). At first it was thought that CCE took place through a 
direct link between the ER and extracellular space. It has later been shown that Ca2+ 
stores are replenished by a relatively slow increase of  cytosolic Ca2+, which can be 
pumped into the ER [71].  

One important discovery was that of  Ca2+ release activated Ca2+ (CRAC) current, 
which was shown to be highly selective for Ca2+ compared to some other divalent 
cations. This was done by whole-cell patch clamp measurements combined with 
ratiometric Ca2+ imaging that showed Ca2+ currents that were activated by depletion of  
the ER in mast cells. CRAC is today considered to be one of  perhaps several SOC 
pathways [71, 73, 74].  

At the time of  publishing Paper III it was not how the ER communicates Ca2+ 
depletion to the plasma membrane. At least three different qualitative explanations had 
been proposed [74]. One of  these models describes vesicular transport, according to 
which SOC channels are transported in vesicles and fused into the plasma membrane. 
Another model suggests physical interaction between the membranes of  the ER and the 
cell, possibly through the IP3R. The third possible explanation was first presented by 
Randriamampita and Tsien [75] and includes a diffusible Ca2+ influx factor (CIF) that 
diffuses through the cytosol and activates SOC in the plasma membrane. In Paper III we 
have made use of  the CIF explanation when modeling SOC and its impact on Ca2+ 
oscillations.  

Some studies suggest that that there is a physical interaction between the IP3R in the 
ER membrane and SOC channels in the plasma membrane. Mikoshiba, Gill and 
colleagues [76] have shown that IP3R is required to activate SOC. These studies have 
suggested that transient receptor potential (TRP) channels are functionally similar to 
SOC channels. TRP is a large family of  Ca2+ channels, first found in Drosophila, but 
several members of  this family have also been found in mammalian cells, amongst 
others, in human embryonic kidney cells [68, 76, 77]. Today there is a general view that a 
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common view that a type proteins called STIM communicates ER depletion to 
complexes in the plasma membrane involving the protein Orai or TRP channels [78].  

2.3.3 Calcium pumps 
The low, cytosolic Ca2+ concentration is maintained by active transporters, in non-
excitable cells mainly by ATP consuming pumps. These pumps are found in the 
mitochondria, ER and plasma membranes. A well understood protein for this kind of  
transport is the Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA). This pump 
consumes ATP and transports Ca2+ from the cytosol to the ER. A similar pump for 
active Ca2+ transport is the plasma membrane Ca2+ ATPase (PMCA) which pumps Ca2+ 
across the plasma membrane, out of  the cell.  

There are mathematical, well-established models on how the active Ca2+ transport 
works in the ER membrane, see the modeling section. These models are based on 
measurements of  uptake of  the radioactive isotope 45Ca2+ into vesicles prepared from 
intracellular membranes. The PMCA and SERCA proteins have also been crystallized 
and their three dimensional molecular structure is known [13, 79]. 

2.3.4 Calcium oscillations 
A high cytosolic Ca2+ concentration is toxic to a cell, especially if  this level is sustained 
for a longer period of  time. As mentioned above, Ca2+ signaling is involved in a large 
number of  cellular processes. Some of  these processes, such as neural activity and muscle 
contraction are triggered by single Ca2+ transients, while many complex processes such as 
gene transcription respond to oscillating Ca2+ signals. Ca2+ oscillations can have periods 
ranging from seconds to days. It is believed that this diversity in frequencies, as well as 
amplitudes, can be an explanation of  the large number of  mechanisms involving Ca2+ 
signaling [9, 80-83].  

The channels and pumps described above serve as ON and OFF mechanisms in Ca2+ 
signaling. One important actor in Ca2+ oscillations is IP3 receptor (IP3R), with its 
combination of  positive and negative feedback on cytosolic Ca2+ levels. It is clear that 
Ca2+ oscillations are driven by a system with inertia. As we show in Paper III stimulation 
of  the IP3R can create a system where Ca2+ is released from the ER and undergoes 
reuptake by the SERCA pump in a periodic manner.  

The most common way to activate the IP3R is through phospholipase C via G 
proteins that produce IP3 and diacylglycerol from PIP2. IP3 increases the open probability 
of  the IP3 receptor which in turn rapidly releases Ca2+ into the cytosol. The rate of  Ca2+ 
release is at first increased through CICR, and later decreases by negative feedback. At 
this point the OFF processes, mainly pumps in the plasma and ER membranes begin to 
dominate and cause a decrease in cytosolic Ca2+ [84]. As mentioned above, Miyakawa-
Naito et al. [65] have shown that Ca2+ oscillations can also be caused by a novel 
mechanism involving physical interaction between the Na,K-ATPase and IP3R, without 
involving IP3.  

The large range of  frequencies at which Ca2+ oscillations occur in combination with 
the large number of  cellular processes that they are involved in make it plausible that 
these processes are sensitive to the frequency of  Ca2+ oscillations. This is generally 
believed, but there is very little experimental evidence for this view. One important 
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finding in this area was made by De Koninck and Schulman [85], showing that 
calmodulin-dependent protein kinase II (CaM kinase II) has an activity which is highly 
regulated by the Ca2+ oscillation frequency. CaM kinase II in turn affects synaptic 
plasticity in neurons, which is the basic principle for learning and memory, and gene 
transcription, the main process behind cell differentiation.  

2.3.5 Calcium dynamics in astrocytes 
The human central nervous system consists of  around 1011 neurons and ten times as 
many glial (supporting) cells. One kind of  glia are astrocytes, star shaped cells with 
processes that face neuronal synapses and endfeet that face capillaries in the brain [48, 
86]. A key discovery in understaning the physiological role of  astrocytes was made as late 
as 1990 by Cornell-Bell et al. [12] who reported that metabotropic glutamate receptors 
(mGluRs) in astrocytes can induce Ca2+ signals in these cells and are believed to form 
signaling networks in the brain. Ca2+ signaling in astrocytes often occurs as oscillations 
with periods ranging from seconds to minutes [87, 88]. Ca2+ oscillations in astrocytes 
with a period of  a few minutes have also been demonstrated by Liu et al. [89]. They also 
showed that these oscillations were not caused by the glutamate pathway.  

Glutamate has been shown by our group to increase the water permeability of  
astrocytes [90]. Gunnarson et al. [90] also showed that this effect was dependent on a 
certain amino acid (Serine 111) in the aquaporin-4 (AQP4) primary structure. They also 
showed that the mGluR group I agonist dihydroxyphenylglycine (DHPG) had similar 
effects as glutamate on astrocytes, both increasing water permeability and inducing Ca2+ 
signaling. Finally the authors show that there is a pathway including mGluR1/5 Ca2+ 
signaling and nitric oxide that causes an increase in AQP4 water permeability.  

2.3.6 Potassium spatial buffering 
One role of  astrocytes, originally discovered by Orkand et al. [15] in 1966, is their ability 
to stabilize the extracellular K+ concentration. This is accomplished by an electrical effect 
that makes K+ currents go from a region of  high concentration to regions with lower 
concentration through selective channels in the astrocytic plasma membrane. A channel 
present in this membrane is an inward rectifying K+ (Kir) channel known as Kir4.1 [91, 
92]. Kir channels are characterized by a high conductance while the membrane is 
hyperpolarized, with a strongly negative and thus attractive electrical potential on its 
inside [10].  

Several studies [93-99] have shown that there is enrichment of  both Kir4.1 and the  
water channel AQP4 in the endfoot region of  astrocytes. As described below, there are 
reasons to believe that there is a coupling between the water and K+ permeabilities of  
astrocytic endfoot membranes.  

2.3.7 Osmotic gradients and water permeability 
Water is the most abundant substance in cells. Many cell membranes are highly 
permeable to water. Two types of  water transport across membranes are known. These 
are water diffusion and osmosis. The driving forces behind these two types of  transport 
are differences in water concentration and osmolarity between the two sides of  the 
membrane. Osmolarity can be seen as a form of  pressure built up by the kinetic energy 
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of  solute molecules. By applying the ideal gas law to the concentrations of  solutes the 
osmotic pressure can be calculated as: RTcp S= , where R is the molar gas constant, T is 
the temperature and cS  is the total solute concentration [2]. The osmotic water flux is 
proportional to the osmotic pressure difference across the membrane and can be written 
as: 

 fw V P cLf p SD = D=  (2.6) 

where VL  is the hydraulic conductivity and f VP L RT=  is the osmotic permeability 
coefficient. In Paper IV fP  is measured by studying the change of  fluorescent dye 
concentration in a small intracellular volume using confocal microscopy as previously 
described by Zelelnia and Brismar [11] and Gunnarson [86].  

Until the discovery of  water channel proteins in 1992 [100] there was no explanation 
for the difference in water permeability between different cells. Since then there has been 
a whole range of  studies suggesting different roles for the family of  proteins, later named 
aquaporins, in many cell types [11, 86, 92, 93, 96, 101-106]. 

Aquaporin-4 (AQP4) is expressed in mammalian brain and kidney. It is believed to 
have a role in the brain K+ regulation [107]. Knock out of  AQP4 in mice has been found 
to reduce brain edema [108]. There are two isoforms of  AQP4, known as M1 and M23. 
M1 has a longer NH2 terminus than M23. In astrocyte endfeet electron microscopy has 
revealed that AQP4 forms orthogonal arrays and that there is a higher likelihood for this 
formation by the M23 isoform [86, 109]. Regulation of  AQP4 water permeability has 
been shown. Unlike other forms of  AQP it is unaffected by mercury but lead can 
increase the water permeability of  cells expressing AQP4 [86, 103, 110]. 

2.3.8 Cellular geometry and ion transport 
One of  the most abundant intracellular substances is K+. It is also a substance to which 
the membrane is highly conductive due to the fact that there are selective K+ channels in 
the membrane. K+ is kept inside the cell by an electrostatic potential which is maintained 
by electrogenic transporters such as Na+/K+-ATPase [10]. The high K+ concentration 
and conductance cause it to be an important osmolyte and by that to have an important 
part in cell volume dynamics.  

One question addressed in this thesis is the role of  cellular geometry in the transport 
of  ions and water. In brain and retina K+ and water channels are co-expressed and show 
enrichment in some subcellular areas, such as astrocytic endfeet. Studies have shown that 
these channels and their distribution is involved in seizures and edema [97, 107, 108, 
111]. Müller cells in retina are believed to clear extracellular space from K+ in a process 
known as siphoning, where K+ is excreted into the vitreous body of  the eye [96, 112].  

In kidney there are principal cells that actively take up K+ via Na+/K+-ATPase in the 
basal membrane and secrete it into tubular lumen. Some K+ is also recycled through the 
basal membrane. It is believed that this shuttling of  K+ is important for the maintenance 
of  membrane potential [113].  

2.4 Cellular transport and migration 
Transport processes of  solutes and solvents are central in biology. Such processes take 
place on length scales ranging from nm in subcellular compartments to tens of  meters of  
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water transport from the roots to the tree tops. On a cellular scale membranes act as 
chemical transport barriers for many substances. A membrane can also regulate its 
electrical conductance and thereby create an electrical potential difference between each 
of  its sides. In eukaryotic cells membranes also separate subcellular compartments 
known as organelles [2, 10].  

2.4.1 Fick’s laws of diffusion 
The simplest mechanism for transport on cellular scales is diffusion, the process that 
transports solvents from regions of  high concentration to regions of  low concentration. 
The nature of  diffusion is typically irreversible, increasing the entropy of  the system. The 
flux of  solute through a given area is given by Fick’s first law of  diffusion:  

 D c= - J , (2.7) 

where c is the concentration gradient. The flux vector J  is measured in mol/(m2·s), 
the SI unit of  concentration is mol/m3 or mM, and consequently the diffusion 
coefficient D is measured in m2/s [2]. Combining Fick’s first law with the continuity 
equation one obtains:  
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which states that the divergence in the flux is equal to the rate of  decrease in 
concentration. Using Gauss’ theorem, this can be expressed as:  

 ( )
V S V

c
dV d dV

t

¶
⋅ = ⋅ =-

¶òòò òò òòòJ J S , (2.9) 

where S is the surface of  the volume V. This means that the total flux through the 
surface of  a given closed volume is equal to the rate of  concentration decrease in that 
given volume [2]. Combining (2.7) and (2.8) gives Fick’s second law, also known as the 
diffusion equation: 

 2c
D c

t

¶
= 

¶
. (2.10) 

The consequences of  the equations above are illustrated in Figure 2.1. 
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The physical explanation of  diffusion is that thermal energy induces random 
collisions between solute and solvent particles [114]. One can show that in the 
continuous limit, the location of  a random walking particle, undergoing the process 
known as Brownian motion, will have a probability distribution equal to the 
concentration given by the diffusion equation [2, 21].  

In real biological systems diffusion plays an important role in all kinds of  passive 
transport, such as exchange of  gases, neurotransmission and Ca2+ signaling. The time 
scale for diffusion over a certain distance is proportional to the square of  that distance, 
making diffusion a fast process over short length scales such as synaptic clefts, but an 
extremely slow process over longer length scales, such as neuronal axons or the whole 
human body. As an example of  this we can note that a synaptic cleft is approximately 10 
nm in distance, this results in a 100 ns diffusion time with D = 10-9 m2/s [2, 115], while 
the same diffusion coefficient results in a 30 year diffusion time over a distance of  1 m! 
The concentration gradient is also an important driving force for transport across cellular 
membranes, and as we shall see further on in this thesis, for localization of  receptor 
proteins in neuronal membranes.  

2.4.2 Lateral diffusion in membranes  
One of  the first studies of  lateral diffusion in cellular membranes was performed by Frye 
and Edidin in the early 1970s [116] and was one of  the main motivations of  Singer and 
Nicolson’s fluid mosaic model [54]. Frye and Edidin used immunofluorescence to study 
the mixture of  two different proteins in cellular membranes from mouse and human cell 
cultures that were fused together with the Sendai virus. The two proteins were allowed to 
mix for 40 min and then were seen to have mixed almost completely. This mixing was 
proven to be decreased by lowering the temperature below 15 ºC. Also it was not 
affected by inhibitors of  protein synthesis, by adenosine triphosphate (ATP) formation 
or by glutamine-dependent synthetic pathways. The diffusion coefficient was estimated 
to be [54]:  

 

Figure 2.1  The diffusive flux J, indicated by the arrows, depends on the concentration c according to 
Equation (2.7). c is a function of the spatial coordinate x. At extreme points in concentration 
(maxima and minima) the flux is zero.
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where l = 5 µm is the distance of  mixing and t = 40 min is the time that the proteins 
were allowed to mix.  

During the mid 1970s, a new experimental method called Fluorescence Recovery After 
Photobleaching (FRAP) was developed to study the mobility of  membrane lipids [117]. In 
this method a small, fluorescent target area is bleached using strong laser light. The 
bleached fluorophores are thereby no longer visible, but are replaced by mobile 
molecules from the surrounding area in the studied object. The speed of  this recovery 
can be used to measure the mobility of  the fluorophores. Axelrod et al. [117] developed a 
mathematical method to fit recovery time series to a solution of  an equation given by an 
expanded version of  Fick’s second law.  

Axelrod et al. assume that fluorescent recovery in a region where a small subregion is 
bleached follows: 

 2
0

c c
D c V

t x

¶ ¶
=  -

¶ ¶
, (2.11) 

where D is the diffusion coefficient of  the fluorophore whose distribution is given by the 
concentration c. V0 is the velocity of  a uniform flow of  fluorophores in the x-direction. 
Axelrod et al. provide a solution to the equation given above for a two-dimensional plane 
where a circular region with radius w is bleached initially. According to their solution, the 
mean concentration in the bleached region is given by: 

 , (2.12) 

where K is the “amount of  bleaching”, given as (0)K TIaº , with a being the rate of  
bleaching, T, the time interval during which the bleaching take place, and I(0) the 
intensity of  the bleaching radiation. Ft  and Dt  are time constants of  flow and diffusion 
respectively, defined as 0/F w Vt º and 2 / 4D w Dt º . Axelrod et al. suggest ways to 
estimate the diffusion or flow rate for a circular bleaching beam by:  
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where 1/2t  is the time at which the recovery has reached half  of  its final intensity above 
the initial level.  

FRAP was later developed to study protein mobility in excitable membranes of  
neural and muscle cells, amongst others by Poo [55]. One of  the main targets in the 
studies presented by Poo was acetylcholine (ACh) receptors. Several studies have been 
conducted showing that the diffusion coefficient can vary between different membrane 
proteins, and ranges from immobility up to around 0.5 µm2 /s, 100 times higher than the 
diffusion coefficient first reported by Singer and Nicolson. The recovery of  membrane 
protein fluorescence is often not complete which suggests that a fraction of  the proteins 
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are immobile. The mechanism behind this immobility is called trapping and can be of  
various origins, such as extracellular ACh receptors which are strongly concentrated close 
to nerve terminals in muscle membranes. The nerve terminals are thought to chemically 
attract the ACh receptors [55].  

2.4.3 Cell migration as a random walk 
Migrating cells can show different patterns in the directional characteristics of  
movement. A central role in directing epithelial cell migration is the formation of  large 
protein complexes known as focal adhesions. The complexes form attachments of  the 
actin cytoskeleton and the extracellular matrix through proteins known as integrins. The 
trafficking and turnover rate of  integrins is believed to have a central role in how focal 
adhesion form and thereby how cells migrate [118]. 

Immune cells are known to follow a random walk type of  trajectory as they move in 
organs such as lymph nodes [119]. A random walk suggests that there is no preferred 
direction in the movement and no correlation over time between the directions of  the 
movement of  these cells on the time scale at which they are observed. The random walk 
nature of  immune cells can be observed by measuring how their total displacement 
grows with time [119]. A class of  immune cells that have recently received large attention 
are natural killer (NK) cells [119] currently thought to be parts of  both the adaptive and 
inate immune response [120].  

A random walk description is also the basis of  diffusion models where the collision 
time determines the nature of  the movement. In most applications the collision time is 
much smaller than the resolution of  the observation system, in which case the total 
displacement grows as the square root of  time [2]. A general term for the technique of  
observing the nature of  diffusing particles is single particle tracking. It has successfully 
been applied to the tracking of  single membrane proteins in neurons, and especially the 
synaptic region [121-125].  

The square root time dependence of  the displacement is commonly illustrated by 
plotting the mean square displacement (MSD) as a function of  time lag. The physical 
laws of  diffusion claim that the MSD grows linearly with time lag as MSD = 2dDDt, 
where d is the number of  dimensions that the particle is free to move in and D is the 
diffusion coefficient [20, 124]. In the case of  cell trajectories the term motility coefficient 
is often used instead of  diffusion coefficient (D).  

2.5  Thesis objective 
One aim of  this thesis is to mathematically model behavior found experimentally in 
living cells. A necessary principle in this kind of  work is to simplify the biological system 
in such a way that only a limited number of  parameters are present. This simplification is 
a major part in the creation of  a model, introducing a hypothesis that can be compared 
with experimental results. Using physical laws, a hypothesis can be formulated into a 
mathematical model, normally describing the studied system by differential equations. 
Computer simulations can be used to numerically solve these differential equations and 
make it possible to compare hypothetical model results to actual experiments. 
Hypotheses that may seem realistic may be excluded if  they make predictions that do not 
agree with the experimental results [13].  
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The study of  cilia requires novel microfluidic devices and models for biomechanical 
signal transduction. In this thesis finite element methods are used to study the flow 
profile in microfluidic devices and to simulate bending of  membrane surrounded cilia in 
order to explain the nature of  flow induced Ca2+ signals. 

The discovery of  Ca2+ oscillations induced by a-haemolysin [81] and ouabain [80] 
have led to questions concerning the specific mechanisms. Experimental studies have 
shown that ouabain-induced oscillations are caused by a signaling microdomain with 
physical protein-protein interactions [65]. This thesis proposes a mathematical model 
with characteristics resembling the experimental results as well as a novel model for SOC.  

Ca2+ signals are further studied in astrocyte cultures to understand the role of  
erythropoietin and its regulation of  astrocyte water permeability. Ca2+ signals are semi-
automatically classified in terms of  oscillatory nature and number of  peaks. K+ 
regulation in the kidney by principal cells has a similar function as K+ clearance by 
astrocytes. This thesis presents a novel mechanism for understanding K+ regulation in the 
kidney by spatial models of  diffusion limited space in subcellular structures of  the 
kidney.  

Protein transport is crucial for neuronal function and cell migration as the 
localization of  proteins is in many aspects what drives these types of  cell function. The 
method described in this thesis to study protein mobility is FRAP [55, 117]. A selected 
fluorescent fusion protein is bleached by intense laser light [19]. The recovery of  
fluorescence is studied and can be analyzed to measure the transport properties in these 
systems. To describe the recovery processes mathematical models are developed. 
Analytical and numerical methods are used in this thesis to fit the experimental data of  
the FRAP experiments to the models.  

Finally this thesis presents methods to study characteristics of  migrating cells  and 
suggests ways to characterize trajectories using methods previously used for single 
particle tracking [20].  
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3 Modeling and experimental methods 

3.1 Biomechanical modeling of cell flow sensitivity 
The two studies described in Papers I and II contain computer simulations of  fluid 
mechanics in a microfluidic system and flow induced structural deformation of  a 
membrane covered cilium. The microfluidic device was originally designed for studies of  
fluid flow induced bending of  cilia in living cells. This device later proved to be 
insufficient as the time dependence of  the fluid flow could not be fully controlled. For 
this reason in Paper II a new device using planar flow is used. The new device has a 
higher time resolution and can produce strong enough shear forces to show 
unambiguous flow induced Ca2+ responses in cells growing on a cover slip.  

3.1.1 Assumptions 
The purpose of  modeling the channels in the microfluidic device in Paper I was to see 
the distribution of  velocity and pressure in the device and thereby optimize these 
quantities before fabrication. The aim was to create an environment for the cells with a 
homogeneous flow profile and by that a reliable set up for flow induced cell signaling 
experiments. The model was simulated using a finite element method (FEM) in Comsol 
Multiphysics (Comsol AB, Stockholm).  

As further described in Paper II the cilium was modeled as a cylindrical structure with 
a semi-spherical top loaded by a drag force similarly to the previously published model by 
Resnick and Hopfer [47]. To be consistent with a FEM description the bending rigidity 
(EI) previously published by Schwartz et al. [6] and Liu et al. [126] had to be converted to 
Young’s modulus (E) by simply dividing it with the area moment of  inertia, which for a 
cylinder is given by 4I ap= , where a is the cylinder’s radius. The drag force per area is 
given by:  
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where z is the distance above the apical cell surface, h, the fluid viscosity and r its density. 
Compared to the equations in Paper II there is a factor of  p difference in the spherical 
top part due to a difference in cross-sectional area.  

The cell membrane was modeled using the shell description in the Structural 
mechanics module in Comsol Multiphysics. Material parameters came from previously 
published studies [5, 6, 126, 127]. Some of  these studies did not use a three dimensional 
model and therefore their parameters had to be adjusted to the current geometry. These 
parameters include the membrane spring constant from which Young’s modulus was 
calculated as Em = Kml/A and the Rayleigh stiffness damping bdK which relates to the 
more common damping parameter ξ as ξ = adMm+bdKk [128, p. 199]. The first term in 
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1−10 s as described in Section 3.1.1. The same shell properties were used for the circular, 
apical part of  the membrane. Details of  this description are given in Paper II.  

3.2 Modeling of calcium signaling 
In Paper III we created a compartmental mathematical model of  a cell. The model 
contains a cytosolic compartment, an endoplasmic reticulum (ER) and an extracellular 
environment. As the extracellular environment is large and has a high Ca2+ concentration 
it can be viewed as a non-emptying source of  Ca2+. In the model presented in Paper III 
the compartments are assumed to be well-stirred with uniform concentrations that are 
only dependent on time [2, 8, 34, 129]. The model is summarized in Figure 3.2. 

A more detailed way to model cellular dynamics is to construct a spatial model where 
the mixing time is limited by diffusion [130]. In this kind of  model, the concentration of  
a substance n with concentration cn is described by a modified version of  the diffusion 
equation known as the reaction diffusion equation [131]. 
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where j is the rate of  reactions that consume or produce the substance n. j can depend on 
a number of  different quantities such as cn, spatial coordinates or the concentration of  
other substances, for example cm. A flux, through a membrane, between two different 

 

 

Figure 3.2  A Summary of the Ca2+ signaling model shows three compartments that are present in the 
model. The density of Ca2+ ions represents relative differences in Ca2+ concentration. 
Graphics by Linda Westin. 
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compartments is given as a Neumann boundary condition at the location of  that 
membrane [132]: 

 membrane transporterˆ ( , , )n n nD c x y z Ja⋅  =n , (3.2) 

where membranen̂  is the unit vector normal to the membrane, transportera  is the distribution 
of  transporters of  substance n and Jn is the flux of  that substance n through these 
transporters. This boundary condition is a special case of  Fick’s first law given by 
equation (2.7). A well-stirred or compartmental model can be viewed as a spatial model 
in the limit where the diffusion coefficients are considered large enough to assume that 
the time scale of  diffusion is much shorter than the time scale of  change in 
concentration by flux of  reactions. In a well-stirred compartmental model the equations 
(3.1) and (3.2) can be summed into [2]: 

 membrane

compartment

( , , )n
n m n

dc A
j c c J

dt V
= + , (3.3) 

where Amembrane/Vcompartment is the surface to volume ratio of  the compartment where cn is 
measured. This description significantly reduces the complexity of  the problem.  

Ca2+ signaling is modeled as a combination of  ON and OFF mechanisms working 
together to create a signal. This signal may be either a steady increase in cytosolic Ca2+ 
concentration, a transient increase, where the cytosolic Ca2+ returns to base level after 
some time or an oscillating signal [9, 82]. In a mathematical model the ON and OFF 
mechanism are described as terms contributing to the total flux of  Ca2+, 2Ca

J + . The three 
compartments that have been considered in our model are the cytosol, the endoplasmic 
reticulum (ER) and the extracellular (EC) environment, each one having a certain Ca2+ 
concentration. A compartmental model of  this system can be written as a system of  
ordinary differential equations (ODEs). The model which is described in detail in 
Appendix A contains eight different concentrations, and ten reactions or fluxes, which 
can be summed into a system of  ODEs using a generalized form of  equation (3.3) [133]: 

 
d

dt
=

S Nj , (3.4) 

where S is a column vector of  all the species in the model, N is the 8×10 stoichiometry 
matrix and j is a column vector of  all reactions or fluxes in the model. The rows in j that 
contain fluxes have to be multiplied by the surface to volume ratio as described by 
equation (3.3). This has been done using the OOR toolbox, which automatically can 
calculate the matrix N, by specifying the species and reactions between them, as well as 
the volume of  each compartment present in the model. The toolbox was made using 
MATLAB®, see Appendix A.  

To summarize the compartmental model in Paper III: it consists of  a species vector: 
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S ,  (3.5) 

where the first four elements are the concentrations of  Ca2+ and IP3 present in the three 
compartments of  the model. The other four species are described below as they take part 
in the dynamics of  IP3 and the SOC channels. The reaction vector:  

 ( )
3 3PMCA SERCA IP R SOC IP CIF prod SOC bindning SOC deg CIF, , , , , , , , ,

T

GJ J J J j j j j j J=j  (3.6) 

contains the ten fluxes and reaction rates that are described below. Figure 3.2 shows a 
representation of  the species and transporters present in the model. 

In Equation (3.6) jG and jIP3
 are reaction rates involved in the negative feedback 

mechanism of  Ca2+ on the level of  IP3. This mechanism has previously been reported 
[129, 134, 135]. In our model it has been implemented as a reaction starting at time t0 
which produces IP3 at a rate: 

 
3IP signal deg 3 max deg 3 cyt[IP ] [IP ]j G I I= - . (3.7) 

Gsignal depends on a hypothetical substance G which is produced and degraded at a rate: 

 2
cyt cyt[Ca ] [G]G G Gj k I+= - , (3.8) 
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K
= -

+
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The parameters in the equations above are defined in Paper III, Table 1.  

3.2.1 Calcium channels 
Ca2+ channels are passive transporters of  Ca2+ that open and close with certain 
probabilities.  The general form of  flux through a Ca2+ channel is, as given by (2.4): 

 ( )2 2
2 2

Ca
[Ca ] [Ca ]i oCa

J P+ +
+ += - . (3.10) 

The permeability of  the channels, 2Ca
P + , is given as a product of  the permeability of  a 

single open channel, the number of  channels in the membrane and the open probability 
of  a single channel.  

IP3-receptors 
As described in the background of  this thesis there are several models of  IP3R. In our 
study we have compared two different models. Both of  these models obey the general 
expression: 
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 ( )( )
3 3

2 2
IP R IP R leak ER ER cyt[Ca ] [Ca ]J V V + += + - , (3.11) 

where VIP3R and Vleak ER are the permeabilities of  the IP3R by regulated flux and leak, 
respectively. The De Young and Keizer [67] model is not specific to any subtype of  IP3R 
and according to this model: 
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The parameters in this model are explained in Paper III, Table 3.  
The second IP3R model was proposed by Mak et al. [66] and is described by the 

equations:  
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where 
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Again, the parameters are described in Paper III, Table 3. 

SOC channels 
In Paper III we propose a phenomenological model of  SOC channel activation. This 
model involves a diffusible Ca2+ influx factor (CIF) which is released from the ER and 
binds to a channel in the plasma membrane. The model suggests that CIF slowly binds to 
and opens SOC channels; these channels are in turn deactivated after some time given by 
the coefficient ISOC. The flux of  CIF across the ER membrane is controlled by the Ca2+ 
concentration in the ER lumen. When this concentration falls below a certain value, CIF 
is released into the cytosol. CIF is regenerated in the ER up to the level [CIF]max. In 
Equation (3.6) JSOC is the Ca2+ flux through the SOC channels, JCIF is the flux of  CIF 
across the ER membrane, jCIF prod is the production rate of  CIF through the regeneration 
process, jSOC binding is the binding rate of  CIF to the SOC channels and jSOC deg the 
deactivation rate of  SOC channels in the plasma membrane. These quantities are coupled 
through Equation (3.4) as described in detail in Appendix A. The mathematical definition 
of  the Ca2+ flux through SOC is given by: 

 ( ) [ ]2 2
SOC SOC leak PM EC cyt SOC SOC PM

( ) [Ca ] [Ca ] , SOCJ V V V v+ += + - = , (3.15) 

where VSOC is the SOC channels permeability. The flux of  CIF across the ER membrane 
is given by: 
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The reaction rates involved in the regulations of  CIF and SOC channels are given by: 
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 [ ] [ ]( )CIF prod CIF max ER
CIF CIF ,j k= -  (3.17) 

 [ ] [ ]SOC binding SOC SOC deg SOCcyt PM
CIF , SOCj k j I= = - .  (3.18) 

See Paper III, Table 3 for definitions of  the parameters.  

3.2.2 Calcium pumps 
The activities of  the Ca2+ pumps were implemented as in Baker et al. [34]. The SERCA 
and PMCA activities are thus: 
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The parameters in these expressions are found in Paper III, Table 4.  

3.2.3 Calcium oscillation models 
To model Ca2+ oscillations the parameter [IP3]max was varied. This corresponds to a varied 
degree of  stimulation of  the IP3R that has been shown in both experimental and 
modeling studies to result in Ca2+ oscillations [18, 65, 129]. In the present model Ca2+ 
oscillations were induced by increasing the [IP3]max after the resting time t0 which was set 
to 500 s. The maximum IP3 concentration was varied in a range between 1 and 80 nM. In 
the model, other variations that have been implemented were to inhibit SERCA and to 
remove SOC channels from the model.  

3.3 Numerical computation 
A system of  differential equations can be solved using numerical methods where the 
problem is discretized in a way where the solution can be described by a limited number 
of  values at different points in space and time [131].  

3.3.1 Compartmental models 
A compartmental model describes a cell as a system of  compartments where the 
concentration in each compartment is homogeneous at all times. As the concentration of  
species in the compartments varies in time, but is independent of  space, this system can 
be modeled using ordinary differential equations (ODEs) [131].  

As described in Appendix A, the system of  ODEs was coupled and solved using the 
MATLAB® ode15s function [136, 137]. This is a variable order, multistep solver that uses 
numerical differentiation formulas. It can handle stiff  problems where the problem 
contains several different time scales [138]. Physically, the short time scale corresponds to 
sudden opening of  Ca2+ channels and the long time scale to the time at which the cell is 
in nearly steady state.  
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3.3.2 Spatial models 
A computational tool that is specialized in solving a system of  reaction diffusion 
equations is Virtual Cell [131, 139]. By using this program, the Ca2+ signaling model 
described by Equations (3.7)–(3.20) was entered and coupled according to Equations 
(3.1)–(3.2). A geometry based on data from an image of  a COS-7 cell taken by a confocal 
microscope was added to the model, see Section 4.3.2. This resulted in a system of  PDEs 
which was solved using simulations based on the finite volume method. Using this 
method, the geometry is discretized into two or three dimensional rectangular spaces, or 
volume elements. Within each element, the change of  concentration of  a species is the 
sum of  flux and production through reactions in this element. Virtual Cell uses a 
constant time step to numerically integrate the resulting equations [131, 132].  

3.4 Characterizing calcium oscillations in astrocytes 
To evaluate Ca2+ signaling properties of  astrocytes ratiometric Ca2+ imaging was done on 
astrocytes treated with dihydroxyphenylglycine (DHPG). A set of  measurements 
involved pre-treatment with erythropoietin (EPO), 10 minutes before Ca2+ imaging 
commenced. The DHPG treatment induced a clear response in most of  the cells. To 
compare the EPO pre-treated and non EPO pretreated groups, Ca2+ response was 
characterized according to a few different criteria.  

Power spectra were calculated using spectral analysis software as described by Uhlén 
[140]. The Ca2+ signals were in many cases not sufficiently well resolved to find clear 
peaks at oscillatory frequencies in the spectra. However, the spectral information proved 
to contain information which could be used for characterization of  whether a Ca2+ signal 
was oscillatory or not. This was done by summing up the total power of  the spectrum 
and determining whether the center of  mass was above 10 mHz, meaning oscillatory or 
below 10 mHz, meaning non-oscillaotory. To exclude weak signals, i.e. non-responding 
cells a power threshold value was used.  

In order to further characterize the Ca2+ signals, peaks were manually counted for 
each responding cell. Peaks were identified if  they were clearly above 20 % of  the base 
line Ca2+ level.  

3.5 Modeling of potassium and water in astrocytes and 
kidney principal cells 

In Paper V we have constructed a spatial model that combines geometry, osmotic water 
transport and electrodiffusive properties of  K+ channels. The model is constructed using 
a geometry including subcellular basal invaginations. These invaginations form a 
diffusion limited space (DLS) in which the K+ and water concentration can differ from 
that in the rest of  the extracellular space. The model was implemented in Virtual Cell  
[131, 139].  

The electrodiffusion was modeled as a K+ flux given by:  
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KG  is the local conductance of  the membrane, F  is Faraday’s constant, mV  is the 
membrane potential, R is the molar gas constant, T is the temperature, and o and i 
indicate outer and inner K+ concentration. The membrane potential is considered non-
local and thereby calculated as a single number for the whole cell, but is allowed to vary 
over time. As ions pass the membrane, forming a current Im the membrane potential 
changes as:  

 m m

m

,
dV I

dt C
=  (3.22) 

where Cm is the membrane capacitance. To simplify the model, the osmotic difference in 
(2.6) is calculated for just K+:  

 init init([K ] [K ] ) ([K ] [K ] )o i
o ic + + + +

SD = - - - . (3.23) 

The total water flux, including diffusive flux of  water and a hydrostatic pressure by the 
shape of  the cell is given by:  

 ( )
2H O AQP f 2 2([H O] [H O] ) ,i oJ N P c bS= D + -

 
 (3.24) 

where AQPN is the number of  water channels is the local membrane segment, Pf is the 
water permeability of  a single channel and b is a correction factor relating the included 
driving forces. The diffusion of  K+ and water is modeled by Fick’s second law as 
presented in Equation (2.10).  

3.6 Modeling of diffusion in cells 

3.6.1 Reducing the number of dimensions in Fick’s laws 
In the Background of  this thesis diffusion in three dimensions is described. Solving the 
diffusion equation in three dimensions can be a difficult problem, both analytically and 
numerically, because of  the high number of  degrees of  freedom. In many problems the 
number of  dimensions can be reduced to two or even one. When studying 
transmembrane diffusion, the concentration gradient is often one dimensional, in the 
direction normal to the membrane surface [2]. Lateral membrane diffusion is usually a 
two dimensional problem, where proteins or other substances can move in any of  the 
dimensions parallel to the membrane surface. Let us consider a diffusion equation as 
given by (2.10) where a substance is free to move in a d-dimensional space.  

To solve a partial differential equation (PDE), like the diffusion equation, two 
principal methods exist. When the whole space is considered Green’s functions can be 
used. In this method the solution for a point source concentration is calculated to be:  
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where r = r  is the distance from the original point source. The concentration of  a 
diffusing substance with an initial point source is equal to the probability distribution of  
a random walking particle. For an arbitrary initial concentration ( , 0)c r the solution is 
calculated as a convolution between ( , 0)c r  and the Green’s function given by (3.25) [21]:  
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When a confined region of  space is considered, the Green’s function method is often 
not practical. The boundary conditions around a confined region in space make it 
possible to solve a PDE using the product method instead. This method reduces a PDE 
to a set of  ordinary differential equations, which together with the boundary conditions 
form a set of  eigenfunctions whose product can be shown to be a solution to the original 
PDE. The number of  factors in the solution is equal to the number of  degrees of  
freedom in the PDE. A sum of  an infinite number of  eigenfunctions can fulfill the initial 
conditions of  the PDE, and thus solve the problem. This kind of  method is used in 
Paper VI to solve the FRAP problem in a dendritic spine (see below). In general the 
solution to the diffusion equation is given by: 
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where kn and f  depend on the geometry and boundary conditions of  the problem, and cn 
is a series expansion of  the initial concentration. For one-dimensional problems ( )nf k x  
is a periodic function and cn is given by the corresponding series expansion [21].  

3.6.2 Solving the theoretical FRAP problem  
Fluorescence recovery after photobleaching (FRAP) is a microscopy method further 
described in Section 3.9.3. It can be used to study the mobility of  intracellular molecules. 
To understand the relation between this mobility and experimental data a mathematical 
model is described below.  

Diffusion in dendrite 
In Paper VI we model the dendrite as a long cylinder. A piece of  the dendrite is bleached, 
leading to diffusion of  unbleached and bleached fluorescent molecules independently of  
each other. To simulate the fluorescent intensity in this system we consider the 
concentration of  fluorescent material and assume that the fluorescent intensity is 
proportional to this concentration. Because the diffusion only takes place along the 
dimension of  the symmetry axis of  the cylindrical dendrite, we can view this problem as 
one-dimensional. We assume that the bleached area is centered on the origin and has a 
length of  2l, Fick’s second law can thus be written as:  
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as shown in Figure 3.3a. This PDE can be solved analytically using Green’s functions [2, 
21] and has the solution:  
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where erfc is the complementary error function defined as: 
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The solution is shown in Figure 3.3b. 
When doing FRAP studies the mean fluorescence intensity in the bleached area as a 

function of  time is measured. Under the assumption that fluorescence intensity is 
proportional to concentration, using the substitution 2/a D l= , this quantity can be 
calculated as: 
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This expression could be fitted to a measured recovery curve using nonlinear least-square 
optimization. However, the measured recovery curve is influenced by focus drift caused 
by small movements of  the dendrite. Because the study is done in a confocal microscope, 
focus drift has a large impact on the recovery curve. It is often not possible to fit the data 
well to the expression given by Equation (3.31). A quantity which is less influenced by 
focus drift is the half  time of  the recovery, t1/2. This is the time from the beginning of  
the recovery until the intensity has reached half  of  its final recovery value. This intensity 
is given by ( )1/2 / 2i e iI I I I= + - , where Ii is the intensity after photobleaching and Ie is 
the intensity at the end of  the recovery as shown in Supporting Figure 9 in Paper I. To 
calculate t1/2 we identify ( )c t  given by (3.31) as a function of  at and numerically solve the 
equation:  
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which gives the result: 1/2 0.925at » . Thereby the diffusion coefficient can be calculated 
as: 
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Diffusion in spines 
A FRAP experiment in a dendritic spine can be described as diffusion in a small tube 
with a closed end, through which the flux of  fluorophores is zero. In the other end of  
the tube is the dendrite, which is much larger than the spine, see Figure 3.4a. The 
dendrite can thus be viewed as a non-emptying pool. At the connection between the 
dendrite and the spine the fluorophore concentration is considered to be constantly equal 
to C0. These two boundary conditions combined with Fick’s second law leads to a one-
dimensional diffusion problem in a confined region. Using a series expansion that fulfills 
the boundary conditions and Equation (3.27), the solution to this problem can be written 
as:  
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Figure 3.3 (a) The initial condition and (b) analytical solution for the FRAP problem of a dendrite 
as given by Equation (3.30). The parameters in the solution are D = 1 µm2/s and 
l = 1 µm 
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where x is the coordinate along the axis of  the spine. The length of  the spine, and 
thereby also the bleached region, is 2l. The solution is shown in Figure 3.4b. When taking 
the mean concentration over the bleached area in the same way as was done above for 
the dendrite, the solution becomes: 
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Supporting Figure 8 in Paper VI compares the results of  Equations (3.31) and (3.34), 
showing that the recovery in a spine is faster than in a dendrite. 

The time t1/2 can be calculated as above by numerically solving the equation: 
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The right hand side of  this equation is the first 11 terms of  the expression for the mean 
concentration divided by C0. This gives the result: 
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A more accurate model can be made when assuming that diffusion of  the 
fluorophore into the spine depletes the concentration of  fluorophore in the dendrite. 
This makes the problem two-dimensional and it cannot easily be solved analytically. 
Therefore Comsol Multiphysics has been used to numerically simulate this problem using 
a finite element method (FEM). There is no exact, simple relationship between the half  
time of  recovery and the diffusion coefficient in this model, but a first order 
approximation when l is near 375 nm and t1/2 is near 1 s is found to be:  
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where l is half  the length of  the spine.  
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Figure 3.4 The initial condition (a) and analytical solution (b) of the FRAP problem for a spine 

given by the first 11 terms in Equation (3.33). The limited number of terms gives rise to 
the oscillatory behavior known as Gibb’s phenomenon seen to the left in the picture. The 
parameters are the same as in Figure 3.3.  
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3.7 Trapping of dopamine 1 receptors in spines  
The trapping of  diffusing dopamine 1 receptors (D1R) by N-methyl-D-aspartate 
(NMDA) receptors can be described by a diffusion reaction equation given by Fick’s 
second law and an additional reaction term, R. In two dimensions this reaction diffusion 
equation is given by:  
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where R is the reaction rate for a species with concentration c. In the current model it has 
been assumed that there are two diffusing species present. One is the D1R, having a 
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concentration c1, and the other species, with concentration c2, is D1R bound to the 
NMDA receptor. This leads to a system of  differential equations:  
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  (3.39) 

where R1 = –R2. This means that the reactions taking place are binding and dissociation 
between the bound and unbound states. The model of  the reactions can be described as: 
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where ka is the binding rate and kd is the dissociation rate in the reactions. The binding 
only takes place in the head of  the spine while the dissociation can occur everywhere in 
the cell. cmax is the binding site concentration in the spine head. The model has been 
simulated using FEM in Comsol Multiphysics where it has been mapped onto an 
analytical geometry, see Figure 3.5. 
 

 

Figure 3.5 The geometry of the FEM model of the spine and the dendrite. The grey mesh shows the 
discretization used by the FEM solver. The geometry is described by a 1 µm wide, long 
dendrite with a spine that consists of a 0.10 µm wide and 0.25 µm long tube connected to a 
circle with a radius of 0.25 µm (the spine head). The spine head is centered at the coordinates 
(0,1 µm). The scales on the axes are in meters. 
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3.8 Reaction modeling of integrins 
In the case of  FRAP studies of  focal adhesions we study the recovery of  fluorescently 
labeled integrins in these regions. In order to understand this process a turnover rate was 
calculated by studying the recovery of  fluorescence after bleaching as described in Paper 
VII. The reaction and diffusion system in this case has a strong similarity to the trapping 
of  dopamine 1 receptors in spines; however the dominating mechanism in this system is 
the reaction that traps integrins in the focal adhesion rather than the diffusion of  
proteins. The source of  integrins being trapped is also to a large extent intracellular 
rather than in the plasma membrane.  

3.8.1 FRAP in a reaction diffusion system 
Since the dominating factor in the recruitment of  integrins into focal adhesions is a 
reaction that during the time course of  the experiment is dominated by an increase of  
concentration in the focal adhesion, which is much higher than in the surrounding 
membrane we can ignore the dissociation and use the simplest form of  the reaction 
diffusion equation:  
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where c is the concentration and R the reaction rate. The time scale of  diffusion in this 
system was seen to be shorter than the time during which the reaction could be 
observed. By this assumption we can conclude that after a certain time tD the diffusive 
term in (3.41) becomes negligible. Thereby the equation for the concentration of  
integrins in the focal adhesion after the time tD becomes: 

 end( ),
dc

R k c c
dt

= = -  (3.42) 

where k is a reaction rate and endc is the concentration at stationary state. The solution to 
(3.42), with initial and boundary conditions as described above, is: 

 ( ) D( )
end end D( ) ( ) .k t tc t c c c t e- -= - -  (3.43) 

Curve fitting can determine the parameters endc and k, but this requires a non-linear 
algorithm. A more statistically reliable method is to do curve fitting for each individual 
recovery curve and thereby calculate average values of  the parameters. This was not 
possible due to the large amount of  noise in the data. By using the estimate of  endc from 
the average for all recovery curves we can calculate ( )endlog ( )c c t-  and fit this to 

D( ) ,k t t m- - +  where ( )end Dlog ( )m c c t= -  and corresponds to the amount of  recovery 
through the described first order reaction. In this case a non-iterative linear curve fit, 
which is more stable, can be done.  

3.9 Fluorescence microscopy 
Fluorescence microscopy is a powerful and sensitive technique for real time live cell 
measurements. Using this method images of  cells are recorded by using short wavelength 
excitation light and detecting longer wavelength emission light with a camera or 
photomultiplier tube (PMT).  
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3.9.1 Ratiometric measurements of intracellular calcium 
Using fluorescent dyes such as Fura-2, intracellular Ca2+ concentrations can be measured. 
This is done by measuring the ratio of  fluorescent intensity at two different excitation 
wavelengths. In Paper III cells were incubated with Fura-2. During measurements, each 
image was recorded by exciting sequentially with 340 and 380 nm UV light. The images 
were detected by a Charge Coupled Device (CCD) camera and 510/45 nm bandpass 
filter. The absolute intracellular, time dependent Ca2+ concentration in such a recording 
can be calculated by: 

 2 0min
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where R(t) is the intensity of  an image excited by 340 nm at time t pixelwise divided by 
the image excited by 380 nm at approximately the same time; Rmin and Rmax are the same 
ratios calculated at minimum and saturated intracellular Ca2+ concentrations, usually 
taken as average values for a cell. F0 and Fs are the intensities of  images excited by 380 
nm at minimum and saturated Ca2+ concentrations; KD is the dissociation constant of  
Ca2+ and Fura-2, approximately equal to 225 nM [9, 81, 140].  

3.9.2 Confocal microscopy  
A special type of  fluorescence microscopes is the laser scanning confocal microscope in 
which focused laser light is used for excitation; emitted light passes a pinhole and is 
detected by a PMT. This makes it possible to resolve images in three dimensions. The 
spatial resolution of  a fluorescence microscope is ideally given by the diffraction limit 
and is approximately equal to half  the wavelength of  the emission light. 

The original idea of  confocal microscopy  was patented by Minsky in 1961 [141] but 
it took more than two decades before it was implemented by a research group which 
today is present at the Applied physics department at KTH [142]. One reason for the 
long time was the need of  laser excitation and computer graphics in order to collect and 
store the images. 

The laser scanning principle, implemented by Carlsson et al. [142], is shown in Figure 
3.6. It allows for arbitrary movement of  the focus in three dimensions, and thereby for 
three dimensional volume reconstruction. It is also present in modern, commercially 
available confocal microscopes [143].  

Another confocal technique is two photon microscopy where a nonlinear optical 
effect allows long wavelength light, usually in the near infrared, to excite fluorophores as 
if  its photon energy was double, that is the wavelength was half. To achieve this 
nonlinear excitation, highly intense light from a femtosecond laser is used. Two photon 
microscopy has a higher penetration depth for excitation light than ordinary confocal 
microscopy and does not require a pinhole [119]. In Paper VIII it is used to record in vivo 
images of  NK cells in lymph nodes.  
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3.9.3 Fluorescence recovery after photobleaching 
Fluorescence recovery after photobleaching (FRAP) is a method using confocal 
microscopy to bleach a limited area in the sample. Using this method, the influx of  
unbleached fluorescent material, known as fluorescence recovery, is studied. In Paper I 
FRAP has been used to study the movement of  dopamine 1 receptors (D1R) in 
dendrites. Neurons in organotypic striatal cultures were transfected with the fluorescent 
protein Venus tagged to D1R. An approximately 10 µm long region of  the dendrite in a 
transfected neuron was bleached and the images of  the recovery were collected for 5 min 
by recording a frame every 5 s [19, 144, 145].  

The fluorescent signal from the area that had previously been bleached was averaged 
in each frame and plotted as a function of  time. The resulting data is known as the 
recovery curve and was compared to the theoretical values given by Equation (3.31) as 
described in Section 3.6.2. From recovery curves the diffusion coefficient was calculated 
using Equation (3.32).  
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Figure 3.6 This principal drawing of a confocal microscope shows how a laser is focused onto the 
fluorescent specimen. The short wavelength excitation light is reflected by the beam splitter 
and focused onto the specimen. In focus emission light (solid line) follows the same path 
through the objective but passes the beam splitter and is focused onto the pinhole aperture. 
Out of focus emission light (dashed line) will not pass the pinhole aperture and will therefore 
not be detected. 
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3.10 Analyzing NK cell migration 
To characterize a trajectory of  a migrating cell the coordinates in the two dimensional 
trajectory are given as a discrete series of  x and y coordinate pairs separated by a time 
step Dt. The mean square displacement is then calculated as:  
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where N is the number of  time steps in the trajectory. By fitting log(MSD) to log( )n tD  
an exponent p characterizing the kind of  motion can be calculated as MSD( ) pn t ktD =
where the time t is given by t n t= D  and 4k D=  in the case of  random walk in two 
dimensions. D is the diffusion or migration coefficient. For an ideal random walk 1p =  
and for straight directed motion 2p = , however due to the fluctuating, discrete nature 
of  cell trajectories these numbers show a high variation.  

When cells experience an unrestricted random walk their average squared distance 
from any known location increases linearly with time. Simson et al [20] calculated the 
probability Y  for a random walking particle to stay within a region with radius R  to be 
given by: 
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A probability index L was calculated by  
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and averaged over a varying time window. The total probability index was compared to a 
threshold level over which it was considered as transiently confined. A transient 
confinement zone was considered as such when a cell stayed confined over several 
consecutive time steps. The calculations were implemented in MATLAB®.   
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4 Results 

4.1 Flow profiles in a microchannel 
Paper I describes a microstructure device for studying flow induced responses in cells. 
Here, I will describe the simulations that were done to characterize the flow in the 
channels of  the device. The two geometries, one with two channels crossing each other 
and one with four channels creating a large opening in the middle of  the device, are 
compared. In the two channel geometry, opening either end of  the two channels as an 
inlet or outlet created the most favorable, uniform profile. Similarly, in the four channels 
configuration, closing one channel, and having the other three with an inlet and an outlet 
on each side, created a fairly uniform flow profile. 

Additionally to what is presented in Paper I we performed a simulation of  convective 
transport in the device. This allowed us to verify the flow field by performing a similar 
experiment by adding a fluorescent dye to two of  the inlets and taking confocal 
microscopy images of  the device, see Figure 4.1.  

4.2 Flow induced build-up of stress 
In Paper II we compare the response of  Madin-Darby canine kidney (MDCK) cells to 
fluid flow and how it relates to the bending of  cilia and the stress in the membrane 
surrounding a cilium. To do so a FEM model is compared to an experimental setup 
where regular step shaped pulses of  fluid flow stimulate the ciliated MDCK cells.  

The simulations of  cilia bending show that the maximum stress in the axoneme 
occurs where it crosses the plane of  the membrane. The stress in the membrane itself  is 
lower than in the axoneme as it is more flexible. As described in Paper II it takes the 

  

Figure 4.1  Simulated (a) and experimentally verified (b) flow profile in a microfluidic device. The 
arrows in (a) indicate the magnitude and direction of flow, axes are in metres. The image in 
(b) is recorded with a 10X/0.3 numerical aperture objective. Dashed lines show overlayed 
approximate edges of the channels. 

a b
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stress in the membrane about 23 s to reach 90% of  its maximum while the tip reaches 
90% of  its displacement in as little as 8 s. This difference corresponds well with our 
experimental findings that there is a 20-50 s delay between onset of  flow and the Ca2+ 
signal. 

We also study how single pulses of  different duration as well as series of  short pulses 
induce a Ca2+ response. The model predicts that the cilium bending and the build-up of  
stress in the membrane has low pass filter characteristics. We simulate step pulses at 
different frequencies in time. As the frequency of  pulses increases, the stress response 
approaches that of  to a continuous step stimulus with half  of  the strength of  the pulse 
amplitude. In terms of  a low pass filter this means that the ciliated cell only senses the 
zero-frequency (DC) component of  the stimulus. The model’s prediction corresponds to 
the experimental results showing that at half  of  the flow speed the response is similar to 
a high frequency (2 Hz) stimulus, see Figure 4.2.  

4.3 The impact of store-operated calcium entry on calcium 
oscillations 

In the Ca2+ signaling model in Paper III Ca2+ oscillations appear mainly as a cyclic 
exchange of  Ca2+ between the ER and cytosol. The cause of  these oscillations is 
stimulation of  the IP3R. In the model, this is controlled by changing the parameter 
[IP3]max. This parameter determines the maximum IP3 concentration and can be viewed as 
the strength of  an extracellular signal. Figure 4.3 shows the cyclic movement of  Ca2+ 
between the two intracellular regions.  

 

Figure 4.2  Simulated build-up of stress in a small (200 nm) membrane region surrounding the  
axoneme at different frequencies of pulsed flow and steps functions of full and half 
strength.  
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4.3.1 Comparing two models of the IP3 receptor 
The two different models of  the IP3R show strikingly different Ca2+ oscillations 
properties, see Fig. 3 and 6 in Paper III. Mainly the DeYoung and Keizer model that is 
given by Equation (3.12) results in Ca2+ oscillations with lower amplitude, but higher 
frequency than the Mak-McBride-Foskett model of  the IP3R, given by Equations (3.13) 
and (3.14). Also the DeYoung and Keizer model shows Ca2+ oscillations only within a 
narrow range of  IP3 concentrations, while the Mak-McBride-Foskett model results in 
Ca2+ oscillations for all IP3 concentrations above 12 nM.  

As shown in Figs. 4-6 in Paper III Store-operated Ca2+ entry (SOC) has a strong 
effect on Ca2+ oscillations. When SOC, as given by Equations (3.15)-(3.18), is excluded 
from the model Ca2+ oscillations appear in a wider range and with other characteristics 
using the DeYoung and Keizer description compared to the same model where SOC is 
included. The effect of  excluding SOC from the Mak-McBride-Foskett model is an 
increase in oscillation frequency above a certain level of  IP3 concentration, where the 
Ca2+ flux out of  the ER causes a depletion of  ER Ca2+ which is sufficient to activate 
SOC channels.  

 
Figure 4.3 Two phase plots showing the cytosolic versus ER Ca2+, corresponding to the two traces in 

Paper IIIII, Fig. 3. The red curve is based on the De Young and Keizer model of IP3R and 
the blue curve on the Mak-McBride-Foskett model. The oscillations appear to the left in 
the figure, seen as bounded regions where Ca2+ is exchanged cyclically between the two 
compartments. The figure clearly shows the difference in amplitude between the 
oscillations in the two models, while the period of the oscillations cannot be seen. 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

[Ca2+]
ER

  (μM)

[C
a2+

] cy
t  (

μM
)

 

 

DeYoung and Keizer model
Mak-McBride-Foskett model



4 Results 

 41

4.3.2 Spatial model 
In Paper III a compartmental model of  Ca2+ signaling and oscillations is presented. A 
similar spatial model has also been constructed using Virtual Cell. The IP3 dynamics 
model is simplified compared to the compartmental model and does not depend on Ca2+. 
However, because IP3 is produced in the plasma membrane and degraded throughout the 
cytosol, there will be a stationary distribution of  IP3 in the cell. In an irregular geometry 
this distribution is non uniform. This causes stimulation of  IP3R that is different in 
different parts of  the ER membrane. The results from this model show similar 
oscillations compared to the model in Paper III. The oscillations in this model show 
frequencies around 1 mHz. In the current geometry some regions of  the cytosol between 
the ER and plasma membranes are narrow causing large variation in the peak levels of  
Ca2+ concentration within the cytosol. Between peaks the Ca2+ concentration is lower and 
shows a smaller variation, see Figure 4.4.  

Figure 4.5a shows the distribution of  cytosolic Ca2+ concentrations over time and 
Figure 4.5b shows the distribution of  Ca2+ concentration in both ER and cytosol 
integrated over time. To the left in the figure is a darker area showing the oscillations. 
The wide upper part of  this area represents the bursts of  Ca2+ which are much more 
distributed than the lower part representing the time in between bursts. As in Figure 4.3 
oscillations appear as a closed curve in the lower left part of the panel.  

4.3.3 Geometry dependence 
As I have shown earlier [18], narrow regions in a geometry can strongly increase the 
amplitude of  Ca2+ transients and oscillations. This is a result of  geometry and diffusion 
and can potentially affect reactions in the cell, such as opening of  the IP3R Ca2+ channels.  

Figure 4.4 The distribution of Ca2+ in the modeled cell shown at two points in time. The left panel 
shows the cells in between two peaks of a Ca2+ oscillation while the right panel shows a cell 
during a peak of cytosolic Ca2+ concentration. 
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Figure 4.5 (a) Cytosolic Ca2+ oscillations in the spatial model. The gray scale shows the distribution of 
cytosolic Ca2+ concentration over time. The red trace shows the mean Ca2+ concentration. 
(b) The same distribution of Ca2+ in phase space integrated over time. Dark parts of the 
diagram indicate that large portions of the cell are in a certain state. Light parts mean that 
only a small portion of the cell is in that state. The red trace shows the phase plot of the 
average Ca2+ concentration in the two compartments of the cell.  
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4.4 EPO affects calcium signaling in astrocytes 
As described in Paper IV the Ca2+ signal in the group of  astrocytes pre-treated with 
erythropoietin (EPO) was significantly weaker than in the control group that did not 
receive pre-treatment. Automatic analysis using spectral analysis showed that 18 % out of  
the 217 pre-treated cells were oscillating while in the control group 31 % out of  the 199 
cells were oscillating. Manual analysis of  Ca2+ peaks showed that 30 % of  the cells in the 
pre-treated group and 40 % of  the cells in the control group had at least three peaks. The 
mean numbers of  peaks were 6 in the pretreated group and 8 in the control group. The 
results also show that 10 % of  the pre-treated cells did not respond to DHPG while only 
2 % of  the control group did not respond. The distribution in number of  peaks is shown 
in Figure 4.6. 

4.5 Spatial simulations of K+ and water in astrocytes and 
kidney principal cells 

Paper V presents a computation model for K+ regulation and water in kidney principal 
cells. As mentioned in the discussion of  the paper, this can be extended to other 
asymmetric cells. One such cell type is the astrocyte which has a high non uniform 
distribution of  AQP4 with higher expression in the endfoot region.  

 

Figure 4.6 The distribution in number of peaks in the Ca2+ signal induced by DHPG with and without 
EPO pre-treatment treatment. The traces show single exponential curve fits to the two 
distributions excluding the initial bar that shows non-responding cells. The distributions 
indicate that the pre-treated group has a higher number of non-responding cells and fewer cells 
having Ca2+ signals with many peaks.  
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Paper V shows that a diffusion limited space (DLS) through its water permeability 
and small volume can maintain an outward directed driving force for K+ in a situation 
where the bulk extracellular space (ECS) has a K+ concentration which would not allow 
for this. The dilution of  ECS by water maintains a low K+ concentration in this region 
and can through the repolarization of  the membrane by the outward current drive K+ in 
the opposite direction at the part of  the basal membrane facing bulk extracellular space. 
This study also shows that the inclusion of  anions such as Cl-, in the model, has only a 
weak effect on the dynamics of  K+ and water.  

4.6 Trapping of dopamine 1 receptors in neuronal spines 

4.6.1 The effective diffusion coefficient of D1R in dendrites 
Comparing the analytical solution of  the diffusion equation for a dendritic spine with the 
bleached region given by 2l in Equation (3.31) to experimental data shows a strong 
similarity. Recovery curves from a number of  experiments were fitted to the equation 
using a non-linear least-square regression method by applying the MATLAB® optimization 
toolbox function lsqcurvefit, which uses the Levenberg-Marquardt algorithm to fit a 
curve to the recovery data. The parameters that are calculated by the curve fitting are the 
diffusion coefficient, the mobile fraction of  diffusing receptors and the intensity directly 
after photobleaching. Because a large fraction of  the recovery data curves contained 
focus drift, which influences the fluorescent intensity in a way completely independent 
of  the diffusion properties of  the sample, another method based on the half  time of  
recovery and Equation (3.32) was selected instead. The diffusion coefficient calculated in 
this way from a large set of  recovery data was shown to be 0.80±0.13 µm2/s [19]. Figure 
4.7 shows a typical FRAP experiment on a dendrite, with a theoretical recovery curve 
fitted to the data.  

In Paper VI the fluorescence recovery in a dendrite is compared to that of  a spine 
according to the model presented in Section 3.6.2. The recovery of  fluorescence in a 
spine is more rapid than in a dendrite, especially by the end of  the recovery curve. Figure 
4.8 shows a similar comparison, and also includes the simulated recovery from COMSOL 
Multiphysics. As can be seen when comparing Equations (3.32), (3.36) and (3.37) the half  
time of  recovery is shortest for the analytical model of  the spine, longer for the dendrite, 
and longest in case of  the numerically simulated 2D model of  the spine. By the end of  
the recovery, the 2D model of  the spine gains speed compared to the dendrite. This can 
be understood in terms of  fluorescent material being recruited from both directions into 
the bleached region. In the spine, fluorescent material only enters the region from one 
direction, but it is not depleted outside of  the bleached region to the same extent as in 
the case of  the dendrite. The reason for this is the difference in size between the 
comparatively large dendrite and the small spine.  

4.6.2 Diffusion transports D1R to active spines 
The system of  combined diffusion and a reaction trapping fluorescent material as given 
by Equations (3.39) and (3.40) was simulated using COMSOL Multiphysics. Figure 4.9 
shows a simulated FRAP experiment on a dendritic spine. The recovery curve is 
compared to an increase of  fluorescent concentration given by the trapping reaction 
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where the initial condition is homogeneous concentration. By varying the diffusion 
coefficients, D1 and D2, the simulations show that when the bound receptor diffuses 
more slowly than the unbound, the D1R gets trapped in the spine. If  D1 and D2 instead 
are equal, then there is no trapping in the spine; the D1R concentration is thus 
homogeneous.  

 
 

  

Pre-bleach Time = 0 s 

Time = 112 s Time = 276 s 

a 

b 
 

Figure 4.7 (a) Parts of a series of images taken during a FRAP experiment on a dendrite. 0 s is the time 
directly after bleach and 112 s is the half time of recovery. The scale bar is 10 µm long. 
(b) The measured FRAP data corresponding to (a) is compared to a fitted, theoretical curve 
given by Equation (3.31). For this data set, Equation (3.32) and the half time of recovery give 
a diffusion coefficient of 0.197 µm2/s, while curve fitting results in a diffusion coefficient of 
0.277 µm2/s.  
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Figure 4.8 (a) Fluorescence recovery in a simulated spine using Comsol Multiphysics. The color scale 

indicates concentration of fluorophores in mM. (b) The recovery curves of the two models 
of diffusion in spines. The thick line shows a recovery curve in a simulated FRAP 
experiment calculated by numerically integrating a FEM solution to the problem. The thin 
line shows an analytic solution to the one dimensional spine model. The dashed line is the 
analytical model of a dendrite with a bleached region with the same length as the spine. 
The parameters are set as D = 0.2 µm2/s and l = 0.375 µm.  
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Post-bleach Time = 5 s

Time = 18 s Time = 90 s 

 

Figure 4.9 A simulated reaction traps diffusing D1R in a spine. The images show a sequence of 
time frames following initial bleach. After 18 s, fluorescence has recovered fully. The 
trapping reaction increases the intensity further. The thick curve shows recovery after 
bleaching while the thin curve shows increase of fluorescence by the trapping reaction 
alone. The diffusion coefficients are 0.2 µm2/s for the non-trapped substance and five 
times (0.04 µm2/s ) smaller for the trapped substance. 
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4.7 PAK4 modulation of integrin turnover 
The results of  the calculations described in Section 3.8 show that the rate of  recovery 
with p21-activated kinase 4 (PAK4) is 0.000832 (±0.00010, N = 27) s-1 and 0.000511 
(±0.000139, N = 25) s-1 without PAK4, where the uncertainty is the standard error and 
N the number of  recovery curves. This indicates that the rate of  recovery is faster with 
PAK4 expression than without. The results also show that the amount of  recovery 
through a first order reaction, given by the quantity end ( )c c t-  in Equation (3.43), is 
higher with PAK4 expression than without (44.9±2.8 % compared to 30.7±1.7 % of  pre-
bleach values).  

Figure 4.10 shows the fluorescence recovery of  integrins in focal adhesions with and 
without PAK4 expression. Fitted to the data are curves showing exponential recovery as 
through first order reactions starting 2 minutes after bleaching as well as curves based on 
the numbers above. The difference between the two methods is mainly due to the 
exclusion of  recovery curves with data above the final value of  recovery. However, the 
difference is still very clear.  

 

Figure 4.10 FRAP data from bleaching of GFP labeled b5 integrins in focal adhesions with and without 
PAK4 expression as also presented in Paper VII, Figure 6D. Circles and diamonds indicate 
average values for each data set and error bars corresponding to standard error. Solid traces 
show exponential curves fitted to the shown average data starting 2 minutes after bleaching with 
optimized recovery rates and full recovery values. Dashed lines show the average calculated 
recovery rates using single exponential functions and curve fitting using a linear algorithm with 
the same full recovery values as for the solid traces in each case.  
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4.8 Transient confinement in NK cell trajectories  
In Paper VIII we identify trajectories in the migration pattern of  fluorescently labelled 
NK cells transferred to mice whose lymph nodes were imaged by two-photon 
microscopy. These are referred to as in vivo experiments, while in vitro experiments were 
done by studying 50-100 NK cells in small wells. These cells were studied by recording 
images once every two minutes for twelve hours. In the in vitro setup NK cells could 
interact with target cells that were fluorescently labelled. This allows for identification of  
NK cells forming contact with target cells.  

4.8.1 Trajectory characteristics 
Trajectories of  NK cells were characterized by speed of  cell migration, characteristics of  
migration and diffusion (migration) coefficient. MSD curves were calculated as described 
by Equation (3.45). The exponent of  growth for the MSD curves is commonly slightly 
larger than 1. In the in vivo case this was well above 1. This can be interpreted so that 
there is a certain correlation in direction of  migration over time. However, this can also 
be an effect of  short recording times, especially in the in vivo case and that the directed 
movement disappears over a longer time scale.  

4.8.2 Transient confinement and conjugate formation 
Equations.(3.46)-(3.47) describe a method to identify transient confinement in the 
trajectory of  a random walking particle. For migrating cells these events are commonly 
referred to as temporary migration arrest periods (TMAP). To identify these periods the 
probability index was calculated for a time window mS . The length of  this time window 
as well as the critical probability index ( cL ) were varied. As the recording conditions 
differed for in vivo and in vitro specimens we could not use the same mS  in both cases. 
The effect of  varying these parameters is summarized in Figure 3 A and D in Paper VIII. 
For continued analysis 3.16cL =  was used, 400mS =  s was used for in vivo and 

40mS =  min (2400 s) was used for in vitro measurements.  
Consecutive time points with a probability index above cL  are considered as 

belonging to a single TMAP. The time spans and sizes of  these TMAPs were calculated 
by measuring the time between entrance and exit from a TMAP and the radius by 
calculating the maximal distance from its centre. The radius of  a TMAP is typically in the 
order of  2-5 µm, notably similar to the size of  a cell.  

The study shows that during a twelve hour recording of  NK cells in vitro they stop 
and continue to move several times. The cells normaly had up to four TMAPs during the 
recording. The in vivo recordings are done for a shorter period of  time and in that case we 
almost never see more than two TMAPs for a single trajectory.  
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5 Discussion 
This thesis presents a number of  projects where mathematical modeling has been used 
on cellular systems. The results presented are analytical or numerical solutions to 
equations that can describe these systems according to physical laws of  diffusion and 
reaction rates.  

5.1 Methodological limitations 
Biological cells display a complexity which is unparalleled by any other system studied in 
physics. The large number of  interactions in the system requires that any qualitative or 
quantitative description is greatly simplified. One problem in making quantitative models 
of  biological systems is the lack of  good parameter values. In the projects presented in 
this thesis, parameters have in many occasions been estimated so that steady state occurs 
in resting systems and that time scales are compatible with experimental results. The 
complexity in terms of  the number of  interactions in a system does not necessarily make 
it unpredictable as the systems are often robust and cooperative [3]. In many cases there 
exist some key elements which are crucial for the function of  a biological system. 
Identifying these elements may involve both modeling and experiments, calling for an 
ongoing dialogue between investigators in both these fields.  

5.2 Modeling in cellular biophysics 
A model always has a limited validity. In the case of  biological systems this is perhaps 
more true than anywhere else, as it is unavoidable to exclude some components (often 
unknown) from the description. The strategy of  simplification has to be done carefully 
not to exclude important components. In the model of  stress build-up for primary 
cilium, previously overlooked factors were the mechanical properties of  the membrane as 
well as the effect of  flow only being present above the surface of  the cell. Previous 
studies had calculated the location of  high stress in the cilium [146] in a way that 
corresponds well with our description. Including the membrane in the model adds the 
perspective of  the actual location of  stress sensitive proteins as well as the time scale of  
the response.  

5.2.1 Geometrical influence 
The models presented in this thesis work with simplified geometrical descriptions of  
biological cells and detailed analytical and numerical solutions to reaction-diffusion 
equations. I believe that this approach is sufficient for drawing conclusions about the 
importance of  some geometrical features present in living cells.  

In the Ca2+ signaling network model the geometrical description showed qualitatively 
similar results as the compartmental model, however limited diffusion time results in 
large spatial variations. It has been suggested that thermal fluctuations, as well as 
fluctuations in concentration caused simply by a low number of  particles taking part in 



5 Discussion 

 51

reactions can be exploited by cells as a way to switch between different states [147]. As 
the spatial simulations of  Ca2+ signaling presented in this thesis show, also a deterministic 
model can have large variations in concentration if  the geometry limits diffusion in 
certain areas. The results also show that the current system is robust enough to maintain 
its properties, in terms of  frequency and shape of  the Ca2+ peaks, even when there are 
diffusion limited areas.  

One of  the studies focuses on dendrites and dendritic spines, where the former case 
represents an almost ideal system for FRAP studies when the diffusion can be assumed 
to occur only along one axis. In the later case we have shown that the geometry can have 
a large influence on the recovery profile as seen in a FRAP experiment. An often 
overlooked fact when measuring diffusion properties of  biological systems is the straight 
forward scaling law of  diffusion, which simply states that the time of  diffusion across a 
volume is proportional to the square of  the volume’s length scale. I believe this to be an 
important example where basic ideas of  physics and biology can merge. 

5.3 Experimental data handling 
The large amount of  quantitative data produced by today’s biological experiments often 
requires new perspectives when it comes to interpretation and analysis. One of  the goals 
in this thesis is to combine mathematical descriptions and data analysis. The reason for 
this is that a mathematical model can relate experimental data to a physical phenomenon. 
In this thesis the trajectories of  migrating NK cells are characterized in this manner for 
us to be able to identify the type of  migration that is present.  

Large amounts of  data need to be analyzed in a more or less automatic way. Except 
for the obvious reason of  time consumption in doing manual data analysis, an automated 
analysis can be more reliable as it can include strict and controlled criteria rather than 
risking fuzziness caused by a human observer. This thesis includes methods to 
automatically characterize Ca2+ signals both in MDCK cells where the question is if  a 
response is stronger than the spontaneous background and in astrocytes where we want 
to know whether a signal is oscillatory or not.   

5.4 Conclusions and future perspectives 
Mathematical modeling and data analysis are in this thesis applied to different areas in 
cellular biophysics. The eight studies presented in this thesis all represent various 
biological questions where a quantitative handling has helped us to identify key 
parameters and interpret experimental results in more detail than was previously possible.  

The flow setup and model of  primary cilia in MDCK cells allow us to understand the 
relevance of  mechanical properties of  cells and how it affects their biomechanical 
response to flow at different time scales.  

Ca2+ signaling and oscillations can be described as a system of  contributing channels 
and pumps leading to slow oscillations in intracellular Ca2+, similar to those observed in 
experiments. A contributing factor in the oscillating patterns is store-operated Ca2+ entry, 
which affects both qualitative occurrence of  oscillations and their characteristics in terms 
of  frequency and amplitude. The system behaves qualitatively similar both when 
described as a well-stirred compartmental model and as a spatial reaction-diffusion 
model.  
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K+ shunting in the kidney has certain similarities with K+ spatial buffering by 
astrocytes. Water following K+ in this process is considered to cause extracellular 
shrinkage [16]. As AQP4 is not uniformly distributed in astrocytes [97] there is a 
possibility for effects similar to those presented in kidney principal cells to also be 
present in brain 

 The numerical simulations described in this thesis show how different geometries 
can affect the fluorescence recovery and that geometrically constrained reactions can trap 
diffusing receptors in dendritic spines. When separate time scales are present in a FRAP 
experiment the reaction and diffusion components can be studied separately as presented 
in Paper VII.  

Applying SPT methods to the migration trajectories of  NK cells shows that there is a 
correlation between the formation of  conjugates and TCZs in these trajectories in vitro. 
TCZs are also present in the in vivo data where they show strong similarities with the in 
vitro situation. This approach represents a novel concept in experimental as well as data 
analysis methods for tracking immune cells. It is too early to say whether this represents 
actual cell conjugates in vivo as further studies are needed.  

Quantum dots are semiconductor particles with a nm scale radius that have a large 
shift between their conduction and highest valance bands. This property makes them 
emit light in a new kind of  fluorescence that is more stable and has a higher yield than 
that of  organic dyes [148-150]. Previously published [151, 152] as well as ongoing 
projects in our lab use quantum dots to study single protein molecules and their 
dynamics in cell membrane and other systems, using SPT. One possible application of  
this is to use quantum dots to track AQP4 and compare its two different isoforms in 
terms of  single molecule mobility.  

The modeling and data analysis tools developed during the work on this thesis partly 
focus on the spatial and geometrical aspects of  cellular biophysics. The characteristics of  
mathematical modeling are detailed descriptions of  dynamic processes. As data from 
biological experiments increase in resolution and detail, the hypotheses driving the 
research will have to shift into a more mathematical description.  

As a final conclusion I would like to point out that turning biology into physics may 
risk to change the focus in an unwanted way; an important lesson for someone with a 
physics or engineering background is that even as methodology is crucial to biology we 
should not only focus on the methods, as biological questions are not about the methods 
themselves but about how life functions and about finding its functional key 
components.  
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Appendix A: Object Oriented Reaction toolbox 
documentation 

Object Oriented Reaction toolbox (OOR toolbox) is a MATLAB® toolbox for creating and 
simulating chemical reactions involving one or more compartments.  Models are built up 
by species localized in compartments.  Reactions connect the species by describing them 
as reactants, product or catalysts.  OOR toolbox is fully integrated, and created in 
MATLAB®, making it possible to automate changing of  model properties such as reaction 
pathways and parameter values from a MATLAB® script or the command line interface.  
The structure of  models built in OOR toolbox is similar to the structure of  The Systems 
Biology Markup Language (SBML) [1, 2].  OOR toolbox uses MATLAB® m-functions, as well 
as anonymous and inline functions, to define rules.  This makes it possible to construct 
more general models than are easily created using SBML.  At this time OOR toolbox is not 
compatible with SBML.  The interested reader may see the SBML toolbox for MATLAB® 

[3] which can import, manipulate and simulate SBML models in MATLAB®.   
A model is created in OOR toolbox using the object oriented command line interface 

in MATLAB®.  A model is an object containing several other objects such as 
compartments, species, and reactions.  These objects are created and combined using 
special m-functions called methods.  A method is a function working on an object.  
Methods are defined for a certain class, a type definition and description of  that type  of  
objects [4].   

A.1 Object structure 
The classes in OOR toolbox are model, comp (compartment), species, reaction, 
transport (a subtype of  reaction), and speciesref (reference to a species object). The 
transport object works similarly to flux reactions in Virtual Cell [5].  Each class has 
methods which can be called from within MATLAB® as long as the OOR directory is in 
the search path.  Observe:  The class directories do not have to be added to the search 
path.  A special method is the constructor which has the same name as the class; it is 
used to define a new object of  that class.   

The most fundamental object in OOR toolbox is a model.  In most cases modeling in 
OOR toolbox begins with a call to the model constructor.  Other objects such as 
compartments, species and reactions are added to a model using the add method, see 
below.  The model object contains all other objects used in the calculation.  Species and 
reactions added to a model are automatically numbered and can be referred to by 
number.  Compartments are not number, and are only possible to refer to by name.  
Species can be referred to either by number or hierarchically in the form 
model.compartment.species.  Reactions describe dynamical properties of  the model 
and connect species by containing references to them either as reactants, products or 
catalysts.  Reactions contain function handles or inline objects that express the rate of  
conversion from reactants to products as a function of  the concentration of  each species 
referred to by the reaction object.  Reaction rates can also depend on a number of  
parameters contained in the model.  The structure of  an OOR toolbox model follows 
similar principles as those described by the SBML definition [2].   
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A.1.1 Simulations 
A model can in principle describe different kinds of  dynamics, not necessarily by 
compartmental models and ordinary differential equations (ODEs). OOR toolbox takes 
advantage of  the flexible type definitions in MATLAB® so that a species concentration can 
be either a scalar, to express its initial amount, a vector, to express a time series, or an 
array of  any number of  dimensions to express e.g. a spatial dependence. Presently the 
only implemented kind of  simulation is an interface to MATLAB®’s ODE solvers. This 
interface is the odesim method in the model class. It simulates the dynamics of  a model 
expressing it as a system of  ODEs, see below.  The output of  odesim is a new model 
object containing the same species and reaction objects as before but with species 
concentrations replaced by the times series corresponding to the numerical solution to 
the system of  ODEs.   

A.2 Class definitions 

A.1.2 Model class 

Constructor 

model(mod)  

constructs a new empty model object or uses the persistent one if it exists. If the 
argument mod is specified, the new model is a copy. 

Methods 

add(mod,comp)  

adds a compartment to a model mod. 

add(mod,spec)  

adds a species spec to a model mod. The species spec is added to its compartment. If 
it has not yet been assigned a number, this function does that. An already numbered 
spec replaces an old species with that number. A species with a name and 
compartment already present in mod replaces the old species with the same name and 
compartment.  

add(mod,reaction)  

adds a reaction to a model. 

add(mod,params) 

adds parameters to mod contained in the structure params. 

str = char(mod)  

converts mod to string str containg detailed information about the model. 

N = getcouplings(mod)  

returns the couplings matrix of the model mod. It differs from the stoichiometry 
matrix in the way that it includes information on compartment sizes in transport 
reactions. 
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spec = getspecies(mod,n)  

gets species from a model. Returns species n (1 or more if  n is non-scalar) from the 
model. If  n is not assigned, all species are returned. 

N = getstoich(mod) 

returns the stoichiometry matrix of the model mod. The size of N is (the number of 
species) × (the number of reactions) in mod. 

odesim(mod,time,odesolver) 

simulates a model during the time span time, using odesolver. If time is scalar and 
time is within the time span of mod.time, a model which is equal to mod at a time 
close to time will be returned. If odesolver is not specified ode15s is selected. 

h = plot(mod,x,varargin) 

plots species concentrations or flux rates in a model. x is either a species, a flux or the 
string 'time'. The following arguments can be species, species references, or 
reactions.  The returned value h is a handle to graphics objects as in the built in plot 
function. If x is not specified, all concentrations will be plotted as functions of time.  

x = subsref(A,s) 

returns a species object when called as A.<compartmentname>.<speciesname>. 
Called as A.<compartmentname> this method returns a compartment object. In 
other cases this method returns any field from a model A.  E.g. A.params returns a 
structure of parameters and A.time returns the time vector of A.   

A.1.3 Compartment class 

Constructor 

comp(name,size,outside,dim,varargin) 

defines a new comp object.  name is a string, size is a number, and dim is an integer 
describing the number of dimension of the new compartment.  

Methods 

addspec(c,spec)  

adds a species to a compartment. The species spec is added to c. This method is 
mainly used by the add(species) method in the model class.   

str = char(c)  

returns the name of c. 

setspecies(c,spec)  

sets the species reference  vector of a compartment to spec. 

A.1.4 Species class 

Constructor 

species(name,comp,conc,charge,unit,varargin)  

defines a species object. A species has a name, a compartment, a concentration, a 
charge and a concentration unit. To have the same species in several compartments, a 
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list of compartments can be given with corresponding concentrations. The name is 
compulsory, the rest can be set to default values.  

Methods 

str = char(s,format) 

converts the species s to a charater string str. If the concentration is an array it will 
be displayed as the size and type of data. format can be one of 'long', 'short' 
'context' and 'conc'. 'long' is the default. 

display(s) 

 prints char(s) in the command window. 

n = getnumber(spec) 

 returns the numbers of spec as a vector. 

[mtimes] specref = n*species 

returns a speciesref  specref where the stoichiometry is multiplied by n. 

[plus] specref = s1 +s2  

creates a speciesref merged from spec1 and spec2. Equal references are summed. 
This is a kind of algebraic sum intended for stoichiometry modeling. 

setconc(s,c) 

sets the concentration of a species s to c. 

setnumber(s,n) 

sets the number of a species s to n. 

A.1.5 Species reference class 

Constructor 

speciesref(s,n)  

constructs a speciesref object. s can be a species vector, speciesref or a N×2 
matrix containing species numbers in the first and stoichiometries in the second 
column. The stoichiometry vector n is set to 1 by default and may be excluded.  

Methods 

str = char(s,format,mod)  

converts s to string str using format.  See also species/char. 

[mtimes] specref = n*spesref  

creates a species reference where the stoichiometry is multiplied by n.  

[plus] specref = specref1 + specref2  

creates specref merged from specref1 and specref2. Equal references are 
summed. This is a kind of algebraic sum intended for stoichiometry modeling.  
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A.1.6 Reaction class 

Constructor 

reaction(rule,reactants,products,catalysts,varargin) 

constructs a reaction object that can be added to a model.  rule is a function handle,  
reactants, products and catalysts are species or species references. Additional 
arguments should be strings containing names of the parameters for the reaction 
object. 

Methods 

str = char(r)  

returns the name of r. 

str = char(r,mod)  

converts r to a longer string containing information about the references from r to 
the model mod. 

display(r)  

prints char(r) in the command window.  

setnumber(r,n) 

sets the number of a reaction r to n. 

setrule(r,rule) 

sets the rule of a reaction r to rule. 

subsref(r,x) 

returns a vector rate containing the flux by r at every time in x.time when called as 
rate = r(x), where x is a model. Otherwise this is a general subsref method 
which returns any field name x from the reaction r. 

A.1.7 Transport class 

Constructor: transport(rule,comp1,comp2,specs,varargin) 
creates a transport  reaction involving species specs going from compartment comp1 
to comp2. transport is a subclass of reaction. Additional arguments are strings 
containing names of the parameters for the transport object.  

Method: setcomps(t,comp1,comp2)  
sets the compartments of t to comp1 and comp2.  
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A.3 Example: Ca2+ signaling model 
Below follows a MATLAB® script and some functions that together use the OOR toolbox to 
create the Ca2+ signaling model presented in Paper II.  

A.1.8 Script 
% CA_SIGNALING script defines the model object.  
% Creates a model and runs a Matlab simulation of intracellular 
% Ca-signaling. 
% 
% Jacob Kowalewski 2006 
 
clear setmodel params SOCt Cell 
Cell_ID = length(dir('Cell*.mat'))+1 
 
OORpath = pwd; 
OORpath = [OORpath(1:length(OORpath)-6) 'OOR']  
addpath(OORpath); 
 
tic 
params.X=0.4; 
params.Y=0.6; 
params.r1=0.185; 
 
params.v2=0.002; 
params.V_IP3R=0.7*0.1; 
params.K_inf=52; 
params.IP3R_actCa=210E-3; 
params.K_IP3=50E-3; 
 
params.d1=0.13; 
params.d2=0.5; 
params.d3=9.4E-3; 
params.d5=82.34E-3; 
params.v1=10; 
 
params.VmaxPMCA=0.245*0.6;  
params.VmaxSERCA=0.95*2;  
params.K05=0.2;  
params.K05_SERCA=0.5;  
params.V_SOC=5E-3; 
params.leak_PM=1.2E-5; 
 
params.I_deg=0.01; 
params.I_R=0.01; 
params.period_IP3=5000; 
params.T_IP3prod=3000; 
params.IP3max= 40E-3 
 
params.k_G=0.2; 
params.G_max=1; 
params.G_deg=0.5; 
 
params.kZ=2e-4; 
params.Zmax=0.1; 
params.kSOC=1.7; 
params.I_SOC=0.002; 
params.Ca_ER_min=10; 
params.vZ=1 
 
Cell = model; 
Cell = add(Cell,params); 
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Cell = add(Cell,comp('EC',inf)); 
Cell = add(Cell,comp('PM',1/params.r1,'EC')); 
Cell = add(Cell,comp('cyt',1/params.r1,'PM')); 
Cell = add(Cell,comp('ER',1,'cyt')); 
 
% Initial conditions 
 
Cell = add(Cell,species('Ca',{'cyt','ER','EC'},{0.095,100,10000*0.095},2)); 
Cell = add(Cell,species('IP_3',Cell.cyt,1E-9,0)); 
Cell = add(Cell,species('G',Cell.cyt,0)); 
Cell = add(Cell,species('Z',{'cyt','ER'},{0,0.1})); 
Cell = add(Cell,species('SOC','PM',0)); 
 
% Reactions 
r_SERCA = 
transport(@SERCA,Cell.cyt.Ca,Cell.ER.Ca,[],'VmaxSERCA','K05_SERCA','Y'); 
 
r_PMCA = transport(@PMCA,Cell.EC.Ca,Cell.cyt.Ca,[],'VmaxPMCA','X','K05'); 
 
r_IP3RMak = transport(@IP3RMak,Cell.cyt.Ca,Cell.ER.Ca,Cell.cyt.IP_3,'v2', 
... 
     'V_IP3R','K_inf','IP3R_actCa','K_IP3'); 
r_IP3R = transport(@IP3R,Cell.cyt.Ca,Cell.ER.Ca,Cell.cyt.IP_3, ... 
     'v2','d1','d2','d3','d5','v1'); 
r_SOC = transport(@SOC,Cell.EC,Cell.cyt,'Ca',Cell.PM.SOC, ... 
     'V_SOC','leak_PM'); 
r_RyR = transport(@RyR,Cell.ER.Ca,Cell.cyt.Ca,[],'vRyR','Ka','Kb', ... 
    'Kc'); 
 
Grule = inline('k_G*Ca - G_deg*G','G','Ca','k_G','G_deg','t') 
IP3rule = inline('G_signal_loop(t,G,G_max).*IP3max*I_deg -
I_deg*IP3','IP3','G','IP3max','I_deg','G_max','t') 
 
Cell = add(Cell,r_PMCA); 
Cell = add(Cell,r_SERCA); 
Cell = add(Cell,r_IP3R); 
%Cell = add(Cell,r_IP3RMak); 
Cell = add(Cell,r_SOC); 
 
Cell = add(Cell,reaction(Grule,[],Cell.cyt.G,Cell.cyt.Ca,'k_G','G_deg')); 
Cell = 
add(Cell,reaction(IP3rule,[],Cell.cyt.IP_3,Cell.cyt.G,'IP3max','I_deg','G_ma
x')); 
 
Cell = add(Cell,reaction(@Zprod,[],Cell.ER.Z,[],'kZ','Zmax')); 
Cell = add(Cell,transport(@SOCbind,Cell.cyt.Z,Cell.PM.SOC,[],'kSOC')); 
Cell = add(Cell,reaction(@SOCdegrad,Cell.PM.SOC,[],[],'I_SOC')); 
Cell = add(Cell,transport(@Ztransp,Cell.ER,Cell.cyt,'Z', ... 
     Cell.ER.Ca,'Ca_ER_min','vZ')); 
 
% Simulate the whole thing 
Cell = setmodel(Cell); 
spec=getSpecies(model) 
 
Cell=odesim(Cell,[0 7000],@ode15s) 
filename = ['Cell_' num2str(Cell_ID)] 
figure(1) 
plot(Cell,'t',Cell.cyt.Ca,Cell.cyt.IP_3) 
save(filename,'Cell'); 
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A.1.9 Functions describing the transporters 
function signal=G_signal_loop(t,G,G_max) 
n=1; 
signal=(t>500)*G_max*(1-Hill(G,n,G_max/2)); 
 
function flux=Hill(c,n,c_05) 
% Hill-type flux equation  
 
flux=c.^n./(c.^n + c_05^n); 
function J=IP3R(CaCyt,CaER,IP3,v2,d1,d2,d3,d5,v1,t) 
%global v2 V_IP3R K_inf IP3R_actCa K_IP3 d1 d2 d3 d5 v1; 
%J=-(CaER-CaCyt)*(v2+v1*(d2*IP3*exp(-((CaCyt-0.6)/0.2)^2))); 
 
%H_inh=4; 
%H_act=2; 
%H_IP3=4; 
%IP3R_inhCa=K_inf./(1 + (K_IP3./IP3).^H_IP3); 
%J=-(CaER-CaCyt).*(v2 + V_IP3R./((1 + (IP3R_actCa./CaCyt).^H_act) .* ... 
%     (1 + (CaCyt./IP3R_inhCa).^H_inh))); 
J=-(CaER-CaCyt).*(v1*(CaCyt.*IP3*d2./((CaCyt.*IP3 + IP3*d2+d1*d2 + 
CaCyt*d3).*(CaCyt+d5))).^3+v2); 
 
function J=PMCA(CaEC,CaCyt,VmaxPMCA,X,K05,t) 
n=2; 
J=-X*VmaxPMCA.*CaCyt.^n./(CaCyt.^n+K05^n); 
 
function J=SERCA(CaCyt,CaER,VmaxSERCA,K05_SERCA,Y,t) 
n=1; 
blocked_range = (t<100000|t>200000); 
J=Y*VmaxSERCA*(0+1*blocked_range).*CaCyt.^n./(CaCyt.^n+K05_SERCA^n); 
 
function J=SOC(CaEC,CaCyt,SOC,V_SOC,leak_PM,t) 
 
J = (V_SOC*SOC + leak_PM) .* (CaEC-CaCyt); 
%SOC_flag=~isempty(indexOn); 
%tSOC=[tSOC;t]; 
%JSOC=[JSOC;J]; 
 
 
function J = SOCbind(Z_cyt,SOC_PM,kSOC,t) 
J= kSOC*Z_cyt; 
 
function J = SOCdegrad(SOC_PM,I_SOC,t) 
J= I_SOC*SOC_PM; 
 
function J = Zprod(Z_ER,kZ,Zmax,t) 
J= kZ*(Zmax-Z_ER); 
 
function J = Ztransp(Z_ER,Z_cyt,Ca_ER,Ca_ER_min,vZ,t) 
J= (Ca_ER<Ca_ER_min)*vZ.*(Z_ER - Z_cyt); 
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Time = 0                                                                                            
 Species:                                                                                      
   [Ca2+]

cyt
 = 0.095μM (1)                                                                  

   [Ca2+]
ER

 = 100μM (2)                                                                     
   [Ca2+]

EC
 = 950μM (3)                                                                     

   [IP
3
]
cyt

 = 1e−09μM (4)                                                                     
   [G]

cyt
 = 0μM (5)                                                                            

   [Z]
cyt

 = 0μM (6)                                                                            
   [Z]

ER
 = 0.1μM (7)                                                                           

   [SOC]
PM

 = 0μM (8)                                                                           

                                                                                                    
 Reactions:                                                                                    
   Ca2+

EC
 → Ca2+

cyt
 (VmaxPMCA,X,K05): PMCA (1)                                

   Ca2+
cyt

 → Ca2+
ER

 (VmaxSERCA,K05
S
ERCA,Y): SERCA (2)                        

   Ca2+
cyt

 → Ca2+
ER

 (IP
3cyt

,v2,V
I
P3R,K

i
nf,IP3R

a
ctCa,K

I
P3): IP3RMak (3)

   Ca2+
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 → Ca2+
cyt

 (SOC
PM

,V
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OC,leak
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M): SOC (4)                         

    → G
cyt

 (Ca2+
cyt

,k
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eg): Grule (5)                                        

    → IP
3cyt

 (G
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,IP3max,I
d
eg,G

m
ax): IP3rule (6)                                

    → Z
ER

 (kZ,Zmax): Zprod (7)                                                         
   Z

cyt
 → SOC

PM
 (kSOC): SOCbind (8)                                                 

   SOC
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 →  (I
S
OC): SOCdegrad (9)                                                     

   Z
ER

 → Z
cyt
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E
R

m
in,vZ): Ztransp (10)                             

                                                                                                    
X          =     0.4                                                                                
Y          =     0.6                                                                                
r1         =   0.185                                                                                
v2         =   0.002                                                                                
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I
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d3         =  0.0094                                                                                
d5         = 0.08234                                                                                
v1         =      10                                                                                
VmaxPMCA   =   0.147                                                                                
VmaxSERCA  =     1.9                                                                                
K05        =     0.2                                                                                
K05

S
ERCA  =     0.5                                                                                
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OC      =   0.005                                                                                
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I
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        =    0.01                                                                                
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T
I
P3prod  =    3000                                                                                

IP3max     =   4e−05                                                                                
k

G
        =     0.2                                                                                

G
m

ax      =       1                                                                                
G

d
eg      =     0.5                                                                                

kZ         =  0.0002                                                                                
Zmax       =     0.1                                                                                
kSOC       =     1.7                                                                                
I
S
OC      =   0.002                                                                                

Ca
E
R

m
in  =      10                                                                                

vZ         =       1                                                                                

 
Figure A.1  Example of output from char(Cell) in a Matlab® figure. This shows a summary of the 

model made by the MATLAB® script.  
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Figure A.2  The figure created by the script is presented here.  
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