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Abstract

Sound maintenance strategies and planning are of crucial importance for
wind power systems, and especially for offshore locations. In the last
decades, an increased awareness of the impact of human living on the envi-
ronment has emerged in the world. The importance of developing renewable
energy is today highly recognized and energy policies have been adopted
towards this development. Wind energy has been the strongest growing
renewable source of energy this last decade. Wind power is now developing
offshore where sites are available and benefits from strong and steady wind.
However, the initial investments are larger than onshore, and operation and
maintenance costs may be substantially higher due to transportation costs
for maintenance and accessibility constrained by the weather.

Operational costs can be significantly reduced by optimizing decisions
for maintenance strategies and maintenance planning. This is especially
important for offshore wind power systems to reduce the high economic
risks related to the uncertainties on the accessibility and reliability of wind
turbines.

This thesis proposes decision models for cost efficient maintenance
planning and maintenance strategies for wind power systems. One model
is proposed on the maintenance planning of service maintenance activities.
Two models investigate the benefits of condition based maintenance strate-
gies for the drive train and for the blades of wind turbines, respectively.
Moreover, a model is proposed to optimize the inspection interval for the
blade. Maintenance strategies for small components are also presented with
simple models for component redundancy and age replacement.

The models are tested in case studies and sensitivity analyses are per-
formed for parameters of interests. The results show that maintenance costs
can be significantly reduced through optimizing the maintenance strategies
and the maintenance planning.
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Chapter 1

Introduction

1.1 Background

In the last decades, an increased awareness of the impact of human living
on the environment has emerged in the world. In December 1997, the
Kyoto protocol to the United Nation Convention on Climate Change was
adopted in use to combat global warming. As of January 2009, 183 states
had signed and ratified the protocol. The protocol is legally binding each
signatory country to a national commitment to limit or reduce their green
gas emission levels. In January 2007, the European Commission presented
an independent commitment in a report titled “Energy Policy for Europe”
[1]. The proposal aims at reducing the gas emission by 20% relative to the
1990 levels (previously 8% in the Kyoto protocol), with an obligatory target
for at least 10% biofuel and 20% of renewable energy. A resource is said to
be renewable if it is replaced by natural processes at a rate comparable or
faster than its rate of consumption by humans. Sources of renewable energy
are e.g. biomass, hydroelectric, wind, photovoltaic, concentrated solar or
geothermal energy. Wind energy has been the strongest growing renewable
source of energy in the world this last decade, particularly in Europe where
wind energy accounted for 36% of the new electricity generating capacity
installed in 2008 [2].

At the end of 2008, 65 GW of wind power was installed in the European
Union. The target of the European Wind Energy Association (EWEA) is
to reach 180 GW in Europe by 2020 [3]. Wind energy at onshore coastal
sites is already close to competitiveness compared to conventional power
plants [4]. Wind energy may become more competitive in the future, due to
the increase trend for fuel costs and implementation of real prices on carbon
pollution in Europe. Each European country uses a mix of incentives (e.g.
investment support, production support or demand creation) to make wind
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energy more attractive [5]. In order to reach the EWEA target, the share of
offshore wind power in Europe is expected to increase, from 1.3% nowadays
to 20% in 2020. Offshore wind power has the advantage of stronger and
steadier wind, and lower visual and noise impact. However, investment
costs are around 50% higher than onshore, and operation and maintenance
costs may be substantially higher.

One of the sources of high maintenance costs is harsh weather condi-
tions at good offshore locations. For safety reasons, the operation of trans-
portation vessels is subject to wave and wind restrictions. Consequently, a
small failure may result in a long downtime during bad weather conditions,
resulting in a high cost from production loss. Another source of high main-
tenance costs is transportation and maintenance equipment expenses. A
vessel is needed for daily maintenance, and in case of harsh weather condi-
tions a helicopter may be necessary to access the WTs. Moreover, specific
boats (e.g. a Jack-up boat) are required to perform major maintenance (i.e.
the replacement of a component of the rotor or drive-train). The availabil-
ity of these boats has an important influence on the maintenance planning
and production loss after failure.

The costs of wind power have been reduced by increasing the size and
complexity of wind turbines. These improvements have in general resulted
in a higher failure rate [6,7], probably due to the integration of more power
electronic and control systems [8], and a short time for fatigue testing of
the new WT designs.

The uncertainties on the reliability and accessibility result in risks re-
garding the operation and maintenance costs, especially concerning offshore
wind power systems. In order to mitigate this risk, it is of interest to:

• optimize the design and reliability of WTs with respect to their ap-
plication (onshore, offshore, cold climate), e.g. by investigating com-
ponent redundancies and maintainability; and to

• optimize maintenance strategies and maintenance planning based on
objective criteria.

Maintenance activities can be divided into Corrective Maintenance
(CM) and Preventive Maintenance (PM). PM includes Time-Based Main-
tenance (TBM), i.e. maintenance performed at fixed intervals, and Con-
dition Based Maintenance (CBM), maintenance performed based on the
condition of the components assessed either by inspection or continuous
monitoring. An approach called Reliability Centered Maintenance (RCM)
was developed in the 1960th for the aircraft industry in order to identify
cost-efficient maintenance strategies [9, 10]. RCM is implemented by some
electrical power facilities, e.g. for hydropower in Norway [11]. RCM was
further developed in [12] into a quantitative method called Reliability Cen-
tered Asset Management (RCAM). The objective of RCAM is to quantify
the impact of maintenance strategies on the reliability and costs, in order
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to assist the decision making based on objective criteria. Two main steps in
the RCAM approach are life time modeling and maintenance optimization.

Operational costs can generally be significantly reduced by optimiz-
ing the choice and implementation of maintenance strategies, by selecting
suitable capital investments (e.g. transportation for the maintenance crew),
and by optimizing maintenance planning. An overview of the existing lit-
erature resulted in the following conclusions. The choice for transportation
vessels and benefits of an internal crane for offshore wind power systems
were investigated in [13]. The benefits of using Condition Monitoring Sys-
tems (CMS) were investigated in [14,15]. The RCM methodology was used
in [16] in order to identify suitable maintenance strategies. Only one model
was found to optimize the implementation of maintenance strategies [17].
Reasons for this may be the rareness of using optimization models, and the
lack of needed failure and maintenance data. However, computer mainte-
nance management systems started to be implemented recently [18], and
reliable failure and maintenance data are expected to be available in the
coming years.

This PhD work aims at taking a step towards maintenance optimiza-
tion for wind power systems.

1.2 Related research within the RCAM group

Following the development of the RCAM method, a research group named
RCAM was created at KTH [19]. The RCAM group focuses on three main
research areas; (i) Maintenance planning and optimization, (ii) Reliability
assessment for complex systems, and (iii) Life-time modeling for electrical
components. Dr. Patrik Hilber presented his PhD thesis on maintenance
optimization applied to power distribution systems in [20]. Dr. Tommie
Lindquist presented his PhD thesis on life-time and maintenance modeling
in [21]. Johan Setréus presented his licentiate thesis on reliability methods
quantifying risks to transfer capability in electric power transmission sys-
tems in [22]. Carl Johan Wallnerström presented his licentiate thesis on
risk management of electrical distribution systems and the impact of regu-
lations in [23]. Julia Nilsson presented her licentiate thesis on maintenance
management for wind and nuclear power systems in [24]. Recent publica-
tions of other PhD work within the RCAM group are found in [25–30].

The originator of the RCAM research group, Prof. Lina Bertling, was
appointed as Professor in Sustainable Electric Systems at Chalmers Uni-
versity of Technology in January 2009. This PhD project will be continued
at Chalmers University of Technology at the Division of Electrical Power
Engineering and the research group on wind power.
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1.3 Project objective

The main objective of this PhD project is to develop maintenance opti-
mization models for wind power systems, with respect to reliability and
cost. An application of interest is offshore wind power systems, where high
maintenance costs are expected.

1.4 Main results

The main scientific contributions in this thesis are summarized below.

• Development of a model for optimizing the maintenance planning of
scheduled service maintenance for wind power systems, presented in
Paper I.

• Development of a stochastic life cycle costs model for evaluating the
benefits of vibration condition monitoring systems, presented in Pa-
per II.

• Development of a method for estimating maintenance costs for com-
ponents with classifiable deterioration, presented in Paper III. The
method is used to optimize periodic inspection of the blades with
condition monitoring techniques, and to evaluate the benefits of this
maintenance strategy compared to visual inspection.

1.4.1 Author´s contributions

The author has written and contributed to the major parts of appended
Papers I, II and III. Prof. Lina Bertling has contributed as the main su-
pervisor for all papers with input of ideas and reviewing of draft versions.
Prof. Michael Patriksson, Dr. Ann-Brith Strömberg and PhD student
Adam Wojciechowski at Chalmers have contributed with input ideas and
reviewing for Paper I. PhD student Julia Nilsson at KTH has contributed
with the writing in Paper II.

1.5 Thesis outline

In Chapter 2 wind energy and wind power technology is introduced. Chap-
ter 3 presents the underlying reliability theories in Paper II and Paper III.
Chapter 4 provides an introduction to maintenance and to the underlying
optimization theory in Paper III. Chapter 5 is the core of the thesis, and
summarizes the main own contributions. The chapter presents the state-of-
the-art in maintenance management for wind power systems, and highlights
ideas for maintenance optimization. It includes the proposed models and
results which are also presented in Paper I-III. Chapter 6 summarizes the
results and presents ideas for future works.



Chapter 2

Introduction to wind

power

This chapter provides an introduction to wind energy and technology.

2.1 Basics of wind energy

Energy in the wind. The power of an air mass flowing through an area
A is [31]:

Pair =
1

2
ρv3 ·A [W], (2.1)

where ρ is the air density [kg/m3] and v the wind speed [m/s].
When flowing into the area of a WT rotor, a part of the wind power is

converted into mechanical power. According to Betz´s law, a maximum of
59% of the wind power can be theoretically extracted in order to prevent
the air mass to stop [31].

Wind power extraction. There are two main approaches for extracting
wind power:

• Drag devices use the force perpendicular to the wind direction.
• Lift devices use the force resulting from the difference of air pressure

on the two sides of a blade.

Lift devices are more efficient than drag devices [32]. Horizontal axis WTs,
that are commonly used today, are lift devices.

The power coefficient. Cp is defined as the ratio between the extracted
power and the power flowing in the blade area. Cp depends on the angle of
attack (the angle between the blade and the wind direction) and tip speed
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ratio (the ratio between the blade tip speed and wind speed). The blade
airfoil and possible control strategy (for the angle of attack and tip speed
ratio) are designed in order to optimize the power coefficient efficiency at
any wind speed. For a good wind turbine design, Cp is around 0.35.

Power curve. The theoretical output power curve of a WT as a function
of the wind speed can be expressed as:

P (v) = Cp(v) · νt(v) ·
1

2
ρv3 ·A [W], (2.2)

with νt the efficiency coefficient of the components in the wind turbine (up
to 0.8).

Fig. 2.1 shows an example of a power curve. There are three important
characteristics of a power curve:

• The cut-in wind speed (point A in Fig. 2.1), the wind speed at
which a WT starts to generate power. (Below the cut-in wind, the
inertia of the rotor prevents the WT to turn.)

• The rated wind speed (point B in Fig. 2.1), the wind speed at
which a WT generates its nominal power.

• The cut-out wind speed (point C in Fig. 2.1), the wind speed at
which a WT is shut down for safety reasons.

0 4 8 12 16 20 24 28
0

20

40

60

80

100

Power Output

[% rated capacity]

Wind Speed [m/s]A

B C

Figure 2.1: Example of power curve for a WT. Points A, B and C repre-
sent the cut-in, rated and cut-out wind speed, respectively.
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Vertical wind profile. The power curve can be used to estimate the en-
ergy production of a WT at given wind resources, i.e. expected wind speed
distribution. The wind speed varies with the height above the ground. If
the wind speed distribution is known at height zr, it can be estimated at
height z using the vertical profile of wind speed. A simple model is the
logarithmic wind profile:

v(z)

v(zr)
= ln(

z

z0
)/ ln(

zr
z0

), (2.3)

where ln is the standard logarithmic function and z0 is a surface roughness
that depends on the type of landscape. The smoother the surface, the lower
z0 is and the higher v(z) is. For example, z0 can be 0.2 for a calm open
sea, 8 for lawn grass or 500 for forests [31]. For offshore environments, z0
is low, which results in high power at low height as well as low turbulences.

Capacity factor. The capacity factor Cf for one WT is defined as the
ratio between the average power production of the WT over a selected
period and the nominal power of the wind turbine. For onshore wind
turbine, Cf is typically in the range 0.25-0.4, while for offshore it can be in
the range 0.4-0.6, due to higher and steadier wind.

Wind forecasting. Wind forecasting has received a great interest in last
years, both for the control of the wind turbine (very short-term forecasting,
up to a few minutes) and energy trading (short-term planning, 48h - 72h).
For maintenance applications, longer time horizons are of interest. It was
shown in [33] that the limit of weather predictability is around two weeks.
Beyond this limit, an alternative is to use seasonal forecasts, e.g. based on
wind historical data. A short introduction to wind forecasting is provided
below; for more information see [34].

There are two complementary approaches for forecasting wind: Statis-
tical methods suitable for short horizons (hours) and physical models suit-
able for long horizons (days). Statistical methods are, for example, time
series or neural networks. These methods use historical data to predict the
future wind. Physical models refine meteorological forecasts provided by
a Numerical Weather Prediction (NWP) to adapt to the required spatial
and time resolution. The atmosphere is a fluid. Based on the current state
of the atmosphere, a NWP predicts its future state using mathematical
models of fluid and thermo-dynamic. The input data for NWP are mea-
surements of e.g. temperature, humidity, velocity and pressure, made at
grid points. In Europe, the European Centre for Medium-Range Weather
Forecasts provides probabilistic weather forecasts for up to 10 days [35].
The spatial resolution of NWP needs to be interpolated to provide predic-
tion at the level of the wind farm.
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2.2 Wind turbine technology

This section provides an overview of systems in WTs and their functions;
for more details the reader is referred to [31,32].

The structure of a WT is constituted of the tower, the foundation, the
nacelle and the rotor. Fig. 2.2 depicts the structure of a modern horizontal
axis WT. Table 2.1 shows the development of the capacity through time
and examples of rotor size and turbine height (the optimal size for the blade
and tower height depends on the wind resource).

Table 2.1: Development of wind turbine capacity and size, partly adapted
from [31,36].

Year 1985 1989 1994 1998 2000 2003 2007

Capacity [kW] 50 300 600 1500 2000 3000 5000

Rotor diameter [m] 15 30 50 70 90 100 125

Tower height [m] 25 40 50 70 80 90 100

The nacelle supports and protects the drive train (i.e. the rotating
components in the nacelle), control systems, auxiliary systems and brake
systems. Fig. 2.3 shows an example of drive train inside the nacelle.

2.2.1 Tower

The tower carries the nacelle and the rotor. Most of large WTs have tubular
steel towers made of 20–30 meters sections bolted together. For offshore
applications, the lower part of the tower has to be protected from a sea
corrosion and waves with a special paint. The tower and the nacelle are
connected by a large bearing and their relative motion is controlled by the
yaw system. The tower includes a ladder or an elevator for reaching the
nacelle.

Yaw system. The rotation of the nacelle is controlled in order to align
the blades with the wind. This function is performed by the yaw system
using a large gear. The actuators for the yaw system can be hydraulic
motors, hydraulic cylinders or electrical machines. Wind measurements
(speed and direction) are provided by an anemometer with a wind vane
located at the top of the nacelle.

2.2.2 Foundation

The foundation supports the tower and transmits loads on the tower to the
soil. The foundation of an onshore WT is, in general, a pad foundation.
For offshore environment, different types of foundation are possible, e.g.
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Tower


Blade


Electrical

System


Cable


Nacelle
Hub


Foundation


Figure 2.2: Structure of a wind turbine.

concrete gravity, concrete monopile, concrete tripod or steel monopile foun-
dations [37]. Floating platform concepts have recently been proposed [38].
The suitable design depends on the sea soil and the water depth.

2.2.3 Rotor

The rotor is composed of the blades and the hub. It also includes the
actuator for the pitch control of the blades.

Blades. The function of the blades is to capture the wind power. The
number of blades depends on the application of the WT. The fewer the
number of blades, the higher the aerodynamic efficiency is, and the lower
the rotational speed can be. Modern WTs have two or three blades. Three
blades WTs are the most common; they are dynamically smoother and
have a higher visual acceptance from the public [32]. Blades are generally
made from fiberglass reinforced with plastic, carbon fiber or laminated
wood. Blades can include lightning sensors and heating systems if the WT
operates in cold climates. Common failures for blades are discussed in [39].

Stall/Pitch system. There are two main approaches to control the angle
of attack of the blades: stall control and pitch control. A stall control
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Generator
Gearbox
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Shaft


Main

Shaft


Main

Bearing


Yaw System


Cable


Figure 2.3: An example of a view inside the nacelle.

consists of blades designed with an aero dynamical profile that limits the
output power. A pitch control system directly pitches the blades to the
desired angle. Pitch control enables a better control of the output power,
and it is commonly used for large WTs.

Hub. The hub transmits the rotational power from the blade to the main
shaft of the drive train. There are three types of hubs: rigid, teetering and
hubs for hinged blades. Rigid hubs are the most common for three blades
WTs.

2.2.4 Drive train

The function of the drive train is to convert the rotational mechanical
power, provided by the rotating hub, into electrical power. Different designs
have been used for the drive train; for details see chapter 4 in [36]. The
main differences between the different designs are the type of the control,
i.e. fixed or variable speed, and the possible presence of a gearbox. The
components included in the drive train depend on the approach and can
consist of shafts, a main bearing, a gearbox and an electrical machine.

Shaft. A shaft transmits the rotational power between other converters
(e.g. hub, gearbox and generator). Shafts are connected by a mechanical
coupling and are supported by bearings. The main shaft of a WT (low
speed shaft) is connected to the hub. It supports the rotor and transmits
its weight to the bearing. The high speed shaft connects the gearbox to
the electrical machine.
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Main bearing. The main bearing supports the main shaft and transmits
the weight of the rotor to the nacelle. It is designed to limit frictional
losses during rotation by use of lubricants. Common failures for bearings
are discussed in [40,41].

Gearbox. A gearbox converts the high torque/low speed rotational me-
chanical power to a low torque/high speed rotational speed suitable for
the electrical machine. The two basic designs of a gearbox for the drive
train are parallel shaft and planetary gearboxes. Any gearbox consists of a
case, shafts, gears, bearings and seals. Oil is used in the gearbox to reduce
friction and mechanical losses on the gears and in the bearings. Common
failures for gearboxes are discussed in [41].

Electrical machine. An electrical machine converts the rotational en-
ergy into electrical energy. The two basic types of electrical machines used
for large WTs are induction machines and synchronous machines. Induc-
tion machines require reactive power that can be provided by capacitors or
power electronic (doubly fed induction machines). Synchronous electrical
machines can support low rotational speed and high torque, and are more
suitable for gearless application. Common failures for electrical machines
are discussed in [42].

2.2.5 Electrical systems

The electrical power provided by the electrical machine is transformed and
transmitted to the grid by electrical systems, including cables, transformers
and power electronics. Other electrical systems may be required for the
control systems and electrical machines.

Cables. Cables transmit the electrical power between the electrical sys-
tems in the WT, the WTs, power transformers and power substations.
There are generally two technologies for high voltage cables: High-Voltage
Alternative Current (HVAC) and High-Voltage Direct Current (HVDC).
HVDC technology may be used to reduce electrical losses if the wind power
system is far from a grid connection point (see Chapter 22 in [36]).

Transformers. Transformers change the voltage level of the electrical
power. They are used in WTs to increase the voltage in order to lower
transmission losses. Transformers are generally located at the bottom of
the tower. For large wind power systems, a transformer substation collects
the electrical power from the WTs and transmit it to the grid. Common
failures for transformers are discussed in [43].
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Power electronics. Power electronics devices are used to convert and
control the current, e.g. from AC current to DC current (or vice-versa) or to
adapt to a specific voltage level or frequency. Power electronics converters
provide the power supply to the control system units, possible electrical
machine actuators and adapt the electrical power frequency of variable
speed WTs to the frequency of the grid.

Capacitors. Capacitor banks are used to supply induction electrical ma-
chines with reactive power.

2.2.6 Control systems

The operation and control of a WT is performed automatically by a super-
visory controller that can be controlled by the operator through a Super-
visory Control And Data Acquisition (SCADA) system. Sensors provide
input data to the control system.

SCADA system. A SCADA system helps to monitor and control wind
power systems. It provides online access to operational and safety data
(e.g. wind speed and direction, pitch angle, nacelle position, temperature
in different part of a WT, current and voltage levels) for individual WTs,
triggers automatic alarms if signals are beyond acceptable limits and en-
ables remote control of each WT (e.g. switch on/off, limit the output level,
operation of the turbine for tests and measurements). In case an alarm
is triggered, an operator can check the alarm code and decide whether to
restart the WT or if an inspection is necessary.

A description of a generic SCADA system for wind energy converter
and communication requirements can be found in [44]; it mainly consists
of a communication system infrastructure and a human-machine interface,
e.g. a web-based interface. Common safety signals for WT are presented
in Section 3.2 of [41].

Supervisory controller. The control of the WT is automatically per-
formed by controllers integrated into the nacelle. Each WT includes a
supervisory controller that communicates with the SCADA system of the
wind power system. One function of the supervisory controller is to provide
the control input for the dynamic controllers of various components in the
WTs, e.g. in the pitching and yaw systems. Another function is to continu-
ously check the operating conditions of the WT, and to trigger an alarm or
to actuate emergency systems if signals are beyond acceptable limits. The
input data are provided to the controllers by sensors. For maintenance
activities, the supervisory controller can be controlled from inside the WT
with a plug-in controller.
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Sensors. WTs have many sensors to provide information, e.g. tempera-
tures in different parts of the nacelle or components, position of the na-
celle, current and voltage levels, wind speed and direction, cable twist or
condition monitoring data, etc. The sensors are connected to the control
systems.

2.2.7 Safety systems

Brakes and safety systems are used to stop or disconnect a WT, e.g. if the
cut-out wind speed is reached or if an abnormal condition is detected.

Brakes. Aerodynamic brakes is the main braking mechanism for WTs.
The principle is to turn the blades 90 degrees to the wind direction. The
system is generally based on a spring to work in case of grid disconnection
or hydraulic losses (see hydraulic system). Aerodynamic brakes can stop
the WT after a few rotations.

Mechanical brakes are installed on the drive train as a complementary
emergency system. Mechanical brakes can be of two kinds, disc brakes
(requiring hydraulic pressure) and clutch brakes (using a spring released to
brake).

Circuit breakers. A circuit breaker is installed between the generator
and the grid connection. If the current increases too much (due to a fault or
a short circuit), the WT is disconnected from the grid. The circuit breaker
can be reset once the fault is cleared.

2.2.8 Other systems

Hydraulic systems. The pitch, yaw and breaking systems are com-
monly actuated by hydraulic cylinders. The hydraulic power is supplied
to the cylinders by hydraulic accumulators and is controlled by an hy-
draulic control unit that may be located in the hub or nacelle. If located
in the nacelle, the power to the pitch system is supplied through the main
shaft of the WT. A pressure spring assures that the blades are stopped if
no pressure is provided by the hydraulic system.

Cooling system. A cooling system (i.e. an electrical fan with a cooling
distribution circuit) is used for cooling the electrical machine and the oil
system of the gearbox.

Oil system. The lubrication of the gearbox is important to minimize the
wear of the gear teeth and bearings. An injection system supplies the oil
to the gearbox at high pressure. The oil is common to the bearing and
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gears of the gearbox. Filters are commonly used to avoid possible debris
to damage the gearbox. Problems with oil can occur due to intermittent
operations (if the oil is not running) or in cold or warm weather conditions.
Sometimes, an oil heater or cooling system are necessary. Oil filters must
be changed regularly. An oil analysis can be performed in order to check
the quality of the lubricant and detect possible damages inside the gearbox.

Lubrication systems. Most of the electrical machines in the WT (from
the yaw system to the main generator) are lubricated by automatic lubri-
cant injectors that can be mechanical (spring) or electronically controlled.
The lubrication systems have a finite autonomy, and must be changed reg-
ularly based on the lubricant consumption of the machines.



Chapter 3

Reliability theory

This chapter provides the theoretical background to the reliability models

and simulation method used in Paper II and Paper III. It begins with some

basic definitions, followed by an introduction to different types of reliability

models. The types of models used in Paper II and Paper III are then de-

scribed, and the last section provides an introduction to the simulation of

stochastic variables used in the same papers.

3.1 Reliability definitions

Some definitions on reliability analysis used in this thesis, adopted from
[45]:

• Reliability: The ability of a component or system to perform required
functions under stated conditions for a stated period of time.

• Failure: The termination of the ability of a component or system to
perform a required function.

• System: A group of components connected or associated in a fixed
configuration to perform a specified function.

• Component: A piece of electrical or mechanical equipment viewed as
an entity for the purpose of reliability evaluation.

3.2 Models for failures

Reliability models aim at predicting the future failure behavior of a system
or component. There are generally three types of approaches for reliability
modeling, referred in this thesis as black box, grey box and white box
models. Grey and white approaches model the degradation process behind
the failure.
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Figure 3.1: Connection between the condition variableXt, times to failure
T if and times to repair T im.

Black box models assume that the condition of a component can only
be in two states: functioning and non-functioning. A black box model is
a probability distribution of the time to failure, or, if the component is
repairable, a stochastic process, i.e. a sequence of probability distributions
for successive times to failure.

Let Xt denote the random variable associated with the state of a com-
ponent:

Xt =

{

1 if the component is functioning at time t

0 otherwise.

Xt = 0 means that the component is in a maintenance state. Fig.
3.2 shows an example of a realization of Xt for a sequence of failures and
repairs. T if and T im denote the transition time for the ith failure and repair
event, respectively.

In some cases, the underlying process and evolution of a failure, re-
ferred to as deterioration or degradation process, may be observable or
simulated by a physical model. Fig. 3.2 shows a general representation of
a degradation process, known as P-F curve (where P is the abbreviation
for Potential failure, and F for Failure). T p represents the time until the
failure is initiated and Td the degradation time to failure, i.e. time between
the initiation of a failure to the fault.

When the degradation of the component can be observed, the obser-
vations can be used to construct a mathematical model of the deterioration
process. This type of model is referred to as a grey box model, and often
involves stochastic processes.

When a physical model for the deterioration exists, it can be used to
estimate the evolution of the deterioration, e.g. as a function of the loads
and environmental conditions. This type of model is referred to as a white
box model.

In this thesis, black box models are used in Paper II and a grey box
model is used in Paper III.
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3.3 Failure probability distribution

Failure probability distribution functions are black box models that rep-
resent the time to failure of a population of identical components. This
section provides definitions of reliability measures for failure probability
distribution functions, and presents two useful failure probability functions,
the exponential and Weibull distribution functions.

3.3.1 Definition of reliability measures

In this section, T represents a stochastic variable for a time to failure.
The probability distribution function F (t), is the probability that a

component fails within the time interval (0, t], i.e. F (t) = P (T < t). The
derivative of F (t) is the probability density function and is denoted f(t).

f(t) =
dF (t)

dt
. (3.1)

The reliability function R(t) is the probability that the component will
not fail during the interval (0, t], i.e. R(t) = 1− F (t).

The failure rate function z(t) is defined as follows:

z(t) =
f(t)

R(t)
. (3.2)

The Mean Time To Failure (MTTF) is a useful characteristic of failure
probability distributions. It is defined as the expected value of the time to
failure:

MTTF = E[T ] =

∫ +∞

0

t · f(t)dt. (3.3)
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Figure 3.3: Failure rate of a Weibull distribution with α = 3, β = 0.5, 1, 3.

3.3.2 Life time distributions

Exponential distribution

The exponential distribution is a parametric probability distribution with
a constant failure rate denoted λ > 0 [46]:

f(t) = λe−λt, (3.4)

F (t) = 1− e−λt, (3.5)

R(t) = e−λt, (3.6)

z(t) = λ, (3.7)

MTTF =
1

λ
. (3.8)

The probability of failure does not depend on the age of the component.
This property is often referred to as loss of memory.

Weibull distribution

The Weibull distribution is a parametric probability distribution with two
parameters: the scale parameter α > 0 and the shape parameter β > 0 [46]:

f(t) =
β

α

(
t

α

)β−1

e−( t
α

)β , (3.9)

F (t) = 1− e−( t
α

)β , (3.10)

R(t) = e−( t
α

)β , (3.11)

z(t) =
β

α

(
t

α

)β−1

. (3.12)

The Weibull distribution has an increasing failure rate if β > 1, a constant
failure rate if β = 1 (i.e. exponential distribution), or decreasing failure rate
if β < 1, as illustrated in Fig. 3.3. The parameter α scales the distribution
in time; increasing α stretches out the probability distribution function.
Note that R(α) = 1

e
≈ 0.3679 .
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3.4 Stochastic processes

Stochastic Processes are useful to model the deterioration process of a com-
ponent or to model a sequence of failures (also referred to as counting pro-
cesses). This section presents continuous time Markov chains used to model
the deterioration process in Paper III and is illustrated with an example
on component redundancy, and the counting process used in Paper II.

3.4.1 Continuous time Markov chains

A continuous time Markov chain is a stochastic processX(t) defined by [47]:

• A finite or infinite discrete state space S;
• a sojourn time in state i ∈ S that follows an exponential distribution

with parameter λi;
• a transition probability pij , i.e. the probability that when leaving

state i, X(t) will enter state j.
∑

j∈S pij = 1. λij = pij · λi is called
the transition rate from state i to state j.

Markov chains have the Markov property (i.e. loss of memory), i.e. the
evolution of the process depends only on the present state and not on the
states visited in the past:

∀x(u), 0 ≤ u < t, P (X(s+ t) = j|X(s) = i,X(u) = x(u))
= P (X(s+ t) = j|X(s) = i).

Assume that the model has N states. Q denotes the transition matrix
and P (t) the vector probability for the states, with

∑

i Pi(t) = 1,

Q =









−λ1 λ12 λ13 ... λ1N

λ21 −λ2 λ23 ... λ2N

λ31 λ32 −λ3 ... λ3N

... ... ... ... ...
λN1 λN2 λN3 ... −λN









, P (t) =









P1(t)
P2(t)
P3(t)
...
PN (t)









.

The Kolmogorov equation is useful to estimate P (t) when P (0) is
known [46]:

P (t) ·Q =
d

dt
P (t), t ∈ [0,+∞). (3.13)

A Markov chain is said to be irreducible if every state can be reached from
any other state. In this condition, an asymptotic solution to Eq. ( 3.13)
always exists and represents the behavior of the Markov chain over an
infinite time horizon. The asymptotic solution is denoted π = (π1, ..., πN ).
It is the solution of the system of equations:

{

π ·Q = 0
∑

i πi = 1
(3.14)
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In Paper III, the evolution of the Markov chain is evaluated on a finite time
horizon by simulating state transitions using Monte Carlo simulation.

Other interesting characteristics of the asymptotic solution are the visit
frequencies νi. They can be calculated with the following formula [46]:

νi = Piλi, i ∈ {1, ..., N}. (3.15)

In Paper III, the deterioration of the blade in WT is assumed to be
classifiable. Discrete state stochastic processes, such as Markov chains, are
useful in this situation [48]. When the deterioration is measurable, con-
tinuous state stochastic processes could be used, e.g. Wiener or Gamma
processes [49]. Markov chains are also often used for reliability calculations
of multi-component repairable systems. This is illustrated in the next sec-
tion for a system with component redundancy.

S1 S2 S3

λ12 = 2λ λ23 = λ

λ32 = µλ21 = µ

Figure 3.4: Three states Markov chain for component redundancy.

Markov model for component redundancy

Fig. 3.4 shows a Markov chain for one system with component redundancy,
i.e. a system with two similar components functioning in parallel. The sys-
tem is maintained by one maintenance team, i.e. one maintenance activity
can be performed at the time. The model has three states: S1 for “Two
components functioning”, S2 for “One component failed” and S3 for “Sys-
tem failed”. The failure rate for one component is λ and the maintenance
repair rate is µ. Using Eq. (3.14) and Eq. (3.15), it can be shown that:

π1 =
µ2

µ2 + 2λµ+ 2λ2
,

π2 =
2λµ

µ2 + 2λµ+ 2λ2
,

π3 =
2λ2

µ2 + 2λµ+ 2λ2
,

ν3 =
2λ2µ

µ2 + 2λµ+ 2λ2
,

≈
2λ2

µ
, µ >> λ.
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Example: Redundancy of sensors

Redundancy could be used in WTs, e.g. for sensors. We consider here a
sensor in the nacelle of a three megawatt WT with capacity factor Cf = 0.4.
The average electricity price is 50 C /MWh. It is assumed that the sensor
has a constant failure rate λ = 0.0001 [f/yr]. If the system fails, it results
in a downtime of 5 days (harsh weather condition), i.e. µ = 365

5 = 73[r/yr]
and the production losses are CCM = 7200 C . Note that the cost for
a new sensor is not considered because it will be paid with and without
redundancy.

Without redundancy, the expected maintenance cost for the 25 years
lifetime of a WT is approximately 25 · λ · CCM = 18C . With redundancy,
the expected maintenance cost is 25 · ν3 · CCM ≈ 0.00005C . Redundancy
could hence save 18 C of maintenance cost per sensor. If we assume that
there are 600 sensors in a WT (the average failure rate of all sensors in a
WT is 0.06, see Section 5.1.3), it would result in 10800 C of maintenance
cost savings per WT.

3.4.2 Renewal process

A counting process is noted N(t), t ≥ 0. It represents the number of events
occurrences during the time interval (0, t]. The mean number of events in
the same interval isW (t) = E[N(t)]. The rate of the process (known as rate
of occurrence of failures in reliability theory) is defined as the derivative of
W (t):

w(t) =W ′(t) =
dE[N(t)]

dt
. (3.16)

Examples of counting processes are the homogeneous Poisson process,
the non-homogeneous Poisson process and the Renewal Process [46]. A re-
newal process is a counting process whose interoccurrence times are identi-
cally distributed and are defined by a distribution function F (t) and prob-
ability density function f(t).

A renewal process is used in Paper II for estimating the number of
failures of components over the life time of a WT. The number of failures
is estimated both by Monte Carlo simulation and directly with the following
approximation.

Discrete approximation of W (t)

Assume that the time is divided into steps indexed by k = 1, 2, ... and at
most one failure can occur during one time step. We would like to estimate
the expected number of renewals during time step T . We assume that for
all k = 1, ..., T − 1, W (k) is known and we use the following approach to
calculate W (T ).
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Let´s assume that the first renewal happened during the interval [k; k+
1]. The probability of this event is R(k)−R(k+ 1). If the renewal occurs,
the average number of failures will be one plus the average number of failure
during the T − (k + 1) remaining weeks, i.e. W (T − k − 1).

By summing over all the possible first failure events their probability
multiplied by the expected number of failure occurrences, we obtain [50]:

W (T ) =
T−1∑

k=0

[R(k)−R(k + 1)] · [1 +W (T − k − 1)]. (3.17)

Eq. (3.17) can be used recursively to approximate W (t). The initial
condition for the recursion is W (1) = 1−R(1). The smaller the time step
interval is, the better the discrete approximation for W (t) is. Once W (k)
is calculated, the discrete rate of the process is w(k) =W (k)−W (k − 1).

3.5 Introduction to Monte Carlo simulation

Monte Carlo simulations are used for studying complex systems when an-
alytical tools can not be used to calculate information of interest. The
principle is to generate scenarios according to the stochastic variables of
the model, and to calculate for each scenario the quantities of interest. The
method is used in paper II to simulate sequences of failures and in paper
III to simulate the Markov chain deterioration model.

The elementary task in the Monte Carlo simulation is to generate ran-
dom numbers for stochastic variables (also called realizations of the stochas-
tic variable). A stochastic variable can e.g. be associated with events such
as time to failures, time to perform maintenance, or deterioration transi-
tion. The inverse sampling method, a procedure to generate realizations
of random variables, is described below. For more information on Monte
Carlo simulation, the reader is referred to [51].

Assume that F (t) is the probability distribution of a stochastic variable
T of interest and X ≈ U(0, 1), where U is the uniform distribution. If x is
a realization of X then y = F−1(x) is uniquely determined (F (t) is strictly
increasing and limt→+∞ F (t) = 1). If we denote Y the stochastic variable
associated with y and G(y) its probability distribution; then

G(y) = P (Y ≤ y) = P (F−1(x) ≤ y) = P (x < F (y)) = F (y).

The last equality results from x being uniformly distributed. Y has the
same probability distribution as F .

In conclusion, to simulate a realization of F , one can first generate x
according to a uniform distribution (using a pseudo-random number gen-
erator) and calculate t = F−1(x). The value of t is then a realization of a
stochastic variable with probability distribution F (t).



Chapter 4

Maintenance and

optimization theory

This chapter provides an introduction to the topics of maintenance and opti-

mization. The chapter begins by presenting maintenance concepts, followed

by an introduction to qualitative and quantitative maintenance optimiza-

tion models. The last section provides an introduction to the mathematical

optimization theory used in Paper I.

4.1 Maintenance concepts

Maintenance is defined as the combination of all technical and correspond-
ing administrative actions intended to retain an item in, or restore it to, a
state in which it can perform its required function [45]. Fig. 4.1 shows a
common representation of types of maintenance strategies.

Corrective Maintenance (CM) is carried out after a failure has occurred
and is intended to restore an item to a state in which it can perform its
required function [45]. It is typically performed when there are no effective
means to detect or prevent a failure.

Preventive Maintenance (PM) is carried out at predetermined intervals
or corresponding to prescribed criteria, and intended to reduce the proba-
bility of failure or the performance degradation of an item [45]. There are
two main approaches for preventive maintenance strategies:

• Time Based Maintenance (TBM) is preventive maintenance carried
out in accordance with established intervals of time or number of
units of use but without previous condition investigation [52]. TBM is
suitable for failures that are age-related and for which the probability
distribution of failure can be established.
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Time-Based Maintenance

Figure 4.1: Types of maintenance strategies. Inspection and condition
monitoring systems are two approaches for a condition based maintenance
strategy.

• Condition Based Maintenance (CBM) is preventive maintenance based
on performance and/or parameter monitoring and the subsequent
actions [52]. CBM consists of all maintenance strategies involving
inspections or Condition Monitoring Systems (CMS) to decide the
maintenance actions. Inspection can involve the use of human senses
(noise, visual, etc.), monitoring techniques, or tests. CMS are in-
stalled to continuously monitor a component. CBM can be used for
non-age related failures.

4.2 Reliability centered maintenance

When deciding upon the choice of a maintenance strategy, one should con-
sider the cost and effectiveness of the possible strategies, with respect to the
failure behavior, probability and consequence. Reliability Centered Main-
tenance (RCM) is a systematic method used to investigate failures, and
their causes and effect, in order to determine possible maintenance strate-
gies to prevent failures. The method involves a tool known as Failure Mode
and Effect Analysis. RCM can be summarized in 7 steps once the systems
of interest have been identified [10]:

1. What are the functions and performances required of the system?
2. In what ways can each function fail?
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3. What are the causes for each functional failure?
4. What are the effects of a failure?
5. What are the consequences of a failure effect?
6. How can each failure cause be prevented?
7. How does one proceed if no preventive activity is possible?

Reliability Centered Asset Maintenance (RCAM) is an approach that
brings together RCM with quantitative methods for reliability and main-
tenance modeling and maintenance optimization. RCAM was presented
in [12] and it has been recently applied to distribution power systems
in [24], [21] and [20].

4.3 Quantitative maintenance optimization

Quantitative maintenance optimization refers to the utilization of mathe-
matical models with the objective to determine the best decision from a
set of alternatives for a maintenance problem.

There are several types of interrelated maintenance decision issues:

• Comparison of maintenance strategies with respect to reliability, cost
and risk criteria.

• Analysis of the value of capital investment (e.g. transportation, main-
tenance equipment, condition monitoring systems).

• Optimization of a maintenance strategy (e.g. replacement age, in-
spection intervals and decisions, or on-line condition monitoring de-
cisions).

• Maintenance planning, e.g. prioritization and planning of mainte-
nance tasks with respect to available maintenance crew, spare part
and maintenance equipment.

• Manpower optimization, i.e. to determine the optimal size of a main-
tenance or service crew.

• Spare part management optimization, i.e. the optimization of the size
of spare part stocks.

The alternative decisions are evaluated according to an optimization crite-
rion (e.g. availability, cost, safety, or environmental risks) with respect to
possible constraints (e.g. costs, manpower, and time to perform an activ-
ity).

Maintenance optimization is a wide and active field of operation re-
search. Introductions to the subject can be found in [46,50,53,54]. Models
can generally be classified according to the type of issue investigated, the
system (single/multi-components) and the horizon framework (finite/infinite,
fixed/rolling). The reader is referred to [55–57] for general reviews and
to [58–61] for reviews on multi-components models.
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An interesting concept is the one of opportunistic maintenance. It is
defined as preventive maintenance that can be performed at opportuni-
ties that arise randomly, independent or dependent of the components in
the system [55]. The idea and models for two components are discussed
in [54] and multi-component opportunistic models have been proposed, e.g.
in [55,62]. In practice, opportunistic maintenance implies that the mainte-
nance planning is flexible, i.e. the maintenance manager updates the plan-
ning when opportunities arise to perform the PM activity. Opportunistic
maintenance for wind power system is investigated in paper I.

TBM replacement and CBM inspection for the drive train of the wind
turbines were investigated in [16, 17] by use of an age and block replace-
ment model and a delay time inspection model. The author of the present
thesis believes that the TBM age replacement is suitable for ageing small
components in wind turbines, i.e. components whose probability of failure
is increasing with age. The age replacement model will be described below
and illustrated for the hydraulic accumulator in a wind turbine. The TBM
inspection strategy discussed in [17] is suitable for the drive train of small
wind turbines (e.g. below 1 MW). For large wind turbines, condition mon-
itoring systems are expected to be more beneficial, see Section 5.3. The
delay time model is useful for optimizing inspections of components whose
deterioration condition is not classifiable or measurable; for an introduction
to the model and review of its application, see [63]. When the deterioration
of the component is classifiable, models based on Markov chains are often
used [48, 64–66]. When the deterioration of the component is measurable,
models are often based on the Wiener or Gamma process; see [49] for a
review of their application.

4.3.1 Age replacement problem

Notation

C(tr) Average cycle cost
CCM Cost for performing corrective replacement
CPM Cost for performing preventive replacement
tr Replacement age
t∗r Optimal replacement age

Model

The age replacement model was proposed in [67]. The model is simple and
can be used to optimize the replacement of non-repairable components (or
repairable components with perfect repair). The assumption of the model
is that the failure rate increases with time and the cost for PM is lower than
for CM. (Similar models for repairable components are discussed in [54].)
Under an age replacement policy, a component is replaced at failure or
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when it reaches a certain age tr.
In this application, the optimization criterion is to minimize the ex-

pected maintenance cost per time unit, and the decision variable is the
replacement age, noted tr. The main assumption is that the system will be
used for an infinite horizon, which can be a good approximation for a long
horizon. (An alternative optimization criterion is the cycle cost criteria
proposed in [68].) It is also assumed that the probability distribution of
failure f(t) and reliability function R(t) are known.

The expected maintenance cost per time unit is denoted by C(tr). It is
the ratio between the expected cost per replacement cycle and the average
replacement cycle length. It can be shown that (Section 2.5 in [50]):

C(tr) =
[1−R(tr)] · CCM +R(tr) · CPM

∫ tr
−∞
t · f(t)dt+ tr

. (4.1)

The optimal replacement age t∗r minimizes C(tr). It can be determined
by use of numerical methods.

Example: Replacement of hydraulic accumulators

The age replacement strategy can be applied to hydraulic accumulators
in wind turbines. A hydraulic accumulator is a component that provides
the hydraulic pressure to hydraulic systems in the wind turbine, see Sec-
tion 2.2. Failures of hydraulic components are often due to wear, so these
components are ageing.

This numerical example assumes a 3MW wind turbine with average
capacity factor Cf = 0.4 (see Section 2.1 for a definition of Cf ). The
failure probability functions are adapted from Section 5 in [69]. The failure
rate follows a Weibull distribution with shape parameter β = 3 and scale
parameter α = 5.6.

It is assumed that a failure of the component results in a downtime
of one day (including time to identify the failure, access the turbine, and
replace the component). The cost for a corrective replacement corresponds
to the average electricity losses (sold at 50 C /MWh) and component cost,
1000 Euros [69]; CCM = 24 · 3 · 0.4 · 50 + 1000 = 2440. The preventive
maintenance cost is the cost for the component; CPM = 1000.

Fig. 4.2 shows the maintenance cost per time unit as a function of tr.
The optimal age replacement is 4 years and 5 months and the expected
maintenance cost is 415 C per year. If no preventive maintenance is done,
it would result in a cost of 555 C per year. On the 25 years life time of a
wind turbine, this policy reduces the maintenance costs by 3500 C per wind
turbine. Note that if the duration of the downtime is longer (e.g. due to
harsh weather conditions), the benefit of using an optimal age replacement
policy is larger.
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Figure 4.2: Expected yearly maintenance costs as a function of replace-
ment age for an hydraulic accumulator.

4.4 Optimization theory

4.4.1 Optimization

The classic objective of mathematical optimization is to solve problems of
the form:

minx∈X f(x),

where x ∈ <n represents the vector of decision variables, f(x) an objective
function and X is the set of feasible solutions. The feasible set can often
be defined with equality and inequality constraints on the form:

gi(x) = 0, i ∈M,
gi(x) ≤ 0, i ∈ N,

where M and N are indexed sets. An optimal solution x∗ is a feasible
solution that satisfies

f(x∗) ≤ f(x), ∀x ∈ X.

Which method that are the most appropriate to determine the optimal
solution depend on the form of the objective function and the feasible set.
The next section provides an introduction to methods for solving linear
and integer optimization problems, i.e. models in which the objective and
constraints functions are affine and decision variables can be continuous
and/or integer valued.



4.4 Optimization theory 29

0 1 2 3 4
0

1

2

3

x1

x2

a

b

c

d

(a) Graphical representation of the
problem min−x1 − 2x2 s.t. x1 + 2x2 ≤

6. 3x1 + 2x2 ≤ 12, x1, x2 ≤ 0. The ex-
treme point c is the optimal solution.
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(b) Graphical representation of the
problem min−x1−x2 s.t. −x1 +4x2 ≤

12, x1, x2 ≤ 0. There is no optimal so-
lution in this case.

Figure 4.3: Examples of two optimization problems, with and without
optimal solution. The feasible set is shown in grey. Dashed lines depicts
equicosts and an arrow the gradient direction for the minimization.

4.4.2 Mixed integer linear optimization

Every linear optimization problem can be given in, or transformed into
standard form;

minimize c′x,
subject to Ax = b,

x ≥ 0,

where c ∈ <nis called cost vector and A ∈ <m∗n and b ∈ <m are data
describing the linear constraints of the problem.

In this form, if the feasible set {x ∈ <n|Ax = b,x ≥ 0} is nonempty,
it can be shown that if there is an optimal solution, there is an optimal
solution that is an extreme point of the feasible set [70]. Another possibility
is that the optimal solution is −∞. Fig. 4.3(a) and Fig. 4.3(b) illustrate the
two possibilities on simple problems formulated in general form. Efficient
methods have been developed to search for an optimal extreme point, e.g.
the simplex method.

The simplex method exploits the geometry of the feasible set to move
from one extreme point to another with a lower cost. Once a feasible
extreme point has been identified, the algorithm searches for a feasible
direction along a facet of the feasible set that reduces the cost function.
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The algorithm goes from one extreme point to a neighboring one, and
continues until either there is no other feasible direction that can reduce
the cost function (the current extreme point is then an optimal solution) or
an unbounded feasible direction can be identified (in this case the optimal
solution is −∞). In the example in Fig. 4.3(a), if the algorithm starts at
corner a, it can follow the path a, b, c or a, d, c, depending on the search
criteria for the direction. The reader is referred to [70] for details on the
implementation of the simplex method and an introduction to the class of
interior point methods, useful for very large problems.

A Mixed Integer Linear Programming problem (MILP problem) is a
problem with both integer and continuous variables. For example, xi ∈
{0, ..., k} is a bounded, non-negative integer variable and xi ∈ {0, 1)} is
a special type of integer variable known as a binary variable. The model
presented in Paper I is a MILP.

The standard form of a MILP optimization problem is:

minimize c′x+ d′y,
subject to Ax+Bx = b,

x,y ≥ 0
x integer,

where the vectors c and d define the cost function, and the matrices A and
B, and vector b define the linear constraints.

MILP problems are in general very difficult to solve. Except from dy-
namic programming, the most popular methods to solve MILP are based
on linear optimization and require to solve a sequence of linear optimiza-
tion problems. Exact methods can be cutting plane and branch and bound.
The main idea of these methods is to relax the integrality constraints and
solve the relaxed problem with linear optimization. If the solution does
not satisfy the integer constraints, new constraints are added and a new
linear optimization problem is obtained or the problem is decomposed into
subproblems. These algorithms may involve an exponential number of it-
erations. Other methods can provide suboptimal solutions without infor-
mation on the quality of the solution. Such methods are e.g. local search
or evolutionary algorithms. Methods and algorithm for solving MILP are
presented in [70,71].



Chapter 5

Optimal maintenance

management

This chapter presents the status of maintenance in the wind industry, and

ideas to optimize maintenance decisions. The first section provides a state-

of-the-art and framework for maintenance management optimization. The

following three sections summarize the proposed models and results, which

are presented in Papers I–III.

5.1 State-of-the-art and opportunities

The section summarizes general maintenance management at wind power
systems. It is based on a literature study and visits at Smøla wind power
system in Norway, and two offshore wind power systems: Utgrunden/Yttre
Stengrund located on the east coast of Sweden, and Lillgrund in the south
of Sweden.

5.1.1 Status of maintenance in the wind industry

Maintenance management

A maintenance team is in general composed of one maintenance manager,
and two maintenance technicians for ten WTs. For safety reasons, the
nacelle of a WT should not be accessed individually and maintenance tech-
nicians therefore often work in pairs. At a service maintenance, the main-
tenance team may be augmented in order to perform the activities in the
given time period. Maintenance activities on large components (e.g. on the
drive train or blades) require a large crane and specific vessel for offshore
WTs (e.g. jack up boats). Consequently, maintenance experts are neces-
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Table 5.1: Example of wind constraints for maintenance activities [72].

Wind speed [m/s] Restrictions

≥30 No access site

≥20 No climbing turbines

≥18 No opening of the roof doors

≥15 No working on the roof of the nacelle

≥12 No work in the hub

≥10 No lifting roof of nacelle

≥7 No blade removal

≥5 No climbing on the met masts

sary, and, in general, the activity is observed by a third party in order to
validate the procedure. The crane capacity and cost depend mainly on the
height of the wind turbine [69].

At the acquisition of a WT, the manufacturer provides a warranty
period, in general between two and five years. During this period, the
manufacturer is responsible for the maintenance of the WT. Depending
on the warranty contract, this period may be used by the operator mainte-
nance team to learn from the maintenance technicians of the manufacturer.
At the end of the warranty contract, a third party evaluates the condition
of the systems in the WTs in order to confirm that the clauses in the war-
ranty contract have been respected. Maintenance activities are subject to
wind constraints fixed by the operator of the wind power system. Table
5.1 gives an example of such constraints for an onshore WT. Major mainte-
nance activities, such as the replacement of a component of the drive train,
require a “good” weather window. For offshore wind power systems, the
maintenance team is transported by boats, or helicopters in case of harsh
weather condition. The suitable type of boat varies with wind and wave
conditions. The height and length of waves depends on the wind direction
and undersea landscape. Depending on the type of vessel and access plat-
form, the vessel may operate with waves up to 1.3m–2.5m [73]. The choices
for transportation vessel and benefits of an internal crane for offshore wind
power systems were investigated in [13]. Transportation is in general an
outsourced activity. With the recent development of offshore wind power
systems, the vessels used for the maintenance of large components are ex-
pected to be highly solicited.

Maintenance strategies

Today, maintenance activities at wind power systems consist typically of
CM activities and PM including scheduled service maintenance activities
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such as: bolt re-tightening; changes of oil filters, lubrication systems and
bearing lubricant collectors; oil analysis for the gearbox; visual inspection
of the blades, brushes of the main electrical machine, and gears of the
gearbox; endoscopy of planetary stages of the gearbox with a borescope;
design modifications.

Condition Monitoring Systems (CMS) with on-line vibration monitor-
ing systems are commonly used for the drive train of large WTs (vibra-
tion analysis is discussed in the next section). In general, the condition
monitoring diagnosis is performed by the manufacturer. Scheduled service
maintenance is based on manufacturer recommendations. It is generally
performed every three months during the first year of the WT, and later
on every six months or year depending on the type of service maintenance
tasks and WT model.

A handbook for condition based maintenance is presented in [74]. The
handbook provides a classification of the deterioration of components and
advises for maintenance activities to be performed for each deterioration
level, e.g. further inspection or repair/replacement of the component. RCM
is a systematic method to identify maintenance strategies. It was applied
to WTs in [16]. RCM is a qualitative method and its results depends
much on subjective judgement. The author of this thesis believes that the
maintenance strategy decisions and their implementation should be driven
by objective criteria, based on expected failure rates, failure consequences,
as well as the efficiency of the PM strategy.

5.1.2 Condition monitoring techniques

Condition Monitoring is defined as observation, measurement, or trending
of condition or functional indicators with respect to some independent pa-
rameter (usually time or cycles) to indicate the current and future ability
to function within acceptance criteria [45].

There are two main approaches for condition monitoring: condition
monitoring inspection and on-line condition monitoring, also known as
CMS. Condition monitoring inspections for WT can be, e.g. visual in-
spections, advanced inspections (e.g. endoscopy of the gearbox), or mea-
surements such as oil sampling and analysis. Common CMSs in WTs are
measurements on temperature, pressure, current and voltage. These are a
part of the SCADA system and are used for safety warning. In general,
limits are defined for these measurements, and an alarm is triggered if one
value is beyond the limit.

Other condition monitoring techniques can be used to detect incipient
failures far before it results in a failure. Common condition monitoring
techniques applied to WTs are vibration and oil monitoring that are de-
scribed below; for more details see [41]. The section also provides a short
description of other condition monitoring techniques applicable to WTs.
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For advanced condition monitoring techniques, signal processing tech-
niques are used to extract features of interest. The analysis of condition
monitoring signals is referred to as diagnosis. It consists in detecting and
identifying incipient failures and their possible causes. If time to failure
can be estimated, it is referred to as a lifetime prognosis. Some diagnosis
tools can provide automatic diagnosis, e.g. for vibration analysis in WTs.
The results of automatic diagnosis must often be confirmed by vibration
experts and component inspection. Automatic diagnosis and prognosis are
recent technologies; a general review is found in [75] and applications to
WTs in [76–78].

Vibration analysis. Vibration analysis is typically used to monitor the
condition of rotating components, i.e. the drive train in WTs. It can be
done at inspection with a portable vibration monitoring device, or with a
CMS. The principle is based on two basic facts:

1. Each component of the drive train has a natural vibration frequency
and its amplitude will remain constant under normal conditions.

2. The vibration spectrum will change if a component is deteriorating
and the changes will depend on the failure mode.

Principles for vibration analysis are presented in [41] with a survey
of some device manufacturers for WTs. Fig. 5.1 depicts the location of
vibration sensors in a WT.

Sensor 1 is an inductive sensor that measures the absolute position
of the rotor. The oscillations of the nacelle are captured by the static
accelerometers 2, 3 and 4. Sensors 5 and 6 are accelerometers measuring
the vibrations of the bearings of the gearbox and generator. Additional
sensors can be installed, for example on the low shaft of the gearbox and
bearing of the main shaft. Each type of sensors is sensitive to a specific
frequency spectrum.

Frequency analysis with Fourier transform is the most popular pro-
cessing technique for vibration analysis. It provides the frequency content
of the vibrations during a selected time period. Filters are used to ana-
lyze frequency bands of interest. Demodulation may be used to remove
modulation induced by other signal sources [80].

The “normal” spectrum signature of machinery varies with factors such
as its environment, mounting and installation. Moreover, a WT may oper-
ate at variable speed, and the frequency distribution (even relative to the
rotational speed) depends on the rotational speed. Consequently, a ini-
tial period is required to define the “normal” condition. Threshold limits
can then be defined on the whole spectrum or on specific sidebands, and
should depend on the rotational speed. An alarm is triggered if the signals
are beyond the defined limits.
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Figure 5.1: Example of sensors locations (1–6) for a condition monitoring
system in a wind turbine, from [79].

Advanced signal processing approaches may also be used to extract
more information, e.g. the bi- or tri-spectrum, or time-frequency analysis,
such as wavelet transform, that enable to detect defects whose vibration
signature is not cyclic [81]. However, the interpretation of the results can
be more complicated for direct analysis. These techniques can be used for
automatic diagnosis. Prognosis was recently discussed in [77,82].

Oil analysis. Oil analysis is used to determine the chemical properties
and content of oil lubricant. Monitoring the gearbox and bearings lubri-
cant can provide relevant information about the deterioration of oil-wetted
components and the quality of lubricant [41, 76]. Gear wheels and bear-
ings deterioration depends mainly on the lubricant quality, i.e. particle
contamination and properties of the oil and additives used to improve the
performance of the oil. Oil analysis is discussed in [41] with a survey of
device manufacturers for WTs.

The most basic particle contamination analysis is particle counting
(typically with laser or eddy current sensors). If an abnormal level of
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particle contamination is detected, wear debris can be analyzed with ferrous
density tests or spectroscopy.

The condition of the oil is determined by analyzing its viscosity, mois-
ture contamination and additives content. The viscosity is measured with
a calibrated tube called a viscometer. Spectrometric techniques, such as
classical spectroscopy and infrared spectroscopy, can be used to determine
the lubricant chemical content (e.g. moisture, oil additives).

Oil analysis can be performed by taking oil samples, periodically or at
request if an abnormal situation has been detected. CMSs are also available
for on-line particle counting and moisture analysis [41].

Ultrasonic inspection. Ultrasonic testing is typically used to charac-
terize material properties. Short ultrasonic pulse waves are launched on
the material and their reflections and attenuations are analyzed to deter-
mine the properties of the material. The technique can be very useful for
detecting incipient cracks in blades, far before being visible [83,84]. Today,
it is often used if a defect is suspected.

Strain measurements for blades. Different types of optical fibre sen-
sors can be embedded in the structure of the blades in order to measure
load, vibration, temperature and strain [85, 86]. The transmission prop-
erties (e.g. intensity, phase, wavelength or transmission time of light) of
a fibre are modified by the measured quantity, either due to the intrinsic
properties of the fibre or due to sensors connected to the fibre. The technol-
ogy is still in development. Cost effective optic fibre sensors are expected
in the future [76].

Thermography monitoring. Infrared thermography is a technique used
to capture thermal images of components. Every object emits infrared ra-
diation according to its temperature and its emissivity. The radiation is
captured by a thermographic camera. Hot spots can be identified (bad
contacts or deteriorated parts) and other failures may be detected by ana-
lyzing the thermal trend. Infrared thermography is applicable to electrical
machines and electronic components (e.g., power electronics, circuit break-
ers, transformers) [76]. Infrared thermography is also used to investigate
the structure of the blades [83].

Performance monitoring. The trend of the response (or some response
parameter) to an input (power, signal) may provide information on the
condition of a component [76] . This technique can, for example, be used
to detect blade imbalances and surface roughness, or to detect failure of
the yaw system and gearbox [87].
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5.1.3 Reliability of wind turbines

It has been observed that the main contributors to the failure rates are elec-
trical, hydraulic and control systems, and the sensors [30,88,89]. Moreover,
that large mechanical components are responsible for the longest downtime
per failure. This may result from the acquisition time for the spare part (i.e.
supply chain) and the acquisition time for the required maintenance equip-
ment. The downtime from control system failures may also be important,
probably due to the complexity of the system and the difficulty to identify
failure modes. Fig. 5.2 summarizes failure frequencies and downtimes per
system in Sweden in the period 2000–2004.

Large WTs experience higher failure frequencies than small WTs, prob-
ably due to the use of more advanced and complex technologies [89]. The
reliability of different WT concepts was compared in [6,7,18]. The studies
highlight an upward trend of the failure rate for electrical systems with new
design concepts. Direct-drive concepts have a higher availability for large
WT than geared concepts, but in general experience higher failure frequen-
cies [6, 7]. It should be borne in mind that new concepts may have large
possibilities for reliability improvement [88]. Moreover, new standards have
been recently introduced for the design of the gearbox in WT [90], and the
reliability of geared-wind turbine is expected to improve in the future.

Downtime [h]Failure frequency [f/yr]

Electrical system

Sensors
Blades/Pitch system

¨

Hydraulic systems

Control system

Gearbox
Yaw system

Generator

Entire unit

Structure

Mechanical brakes
Main shaft and bearing

Hub

0 40 80 120 160 200 240 28000.020.040.06

Figure 5.2: Average failure frequency and downtime per system in Sweden
in the period 2000–2004, as adapted from [30].
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5.1.4 Framework for maintenance optimization of wind

power systems

There are generally three main areas where optimization is applied in the
maintenance of wind power systems: choice and implementation of mainte-
nance strategies, maintenance planning, and capital investments for main-
tenance equipment. Capital investments will not be discussed here, except
CMS which is also related to the maintenance strategy. Components in
WTs can be separated into two main categories, referred to here as large
and small components. Maintenance strategies and maintenance planning
for these two categories are analyzed separately.

Large components are the components of the drive train and rotor.
These components are expensive, large and heavy, and possible long acqui-
sition time for spare part and maintenance equipment may result in high
costs for production losses. Small components include, for example, the
electrical system, hydraulic systems, pitch system, control system, lubrica-
tion systems and sensors. Due to their relatively high failure frequencies,
the maintenance of small parts is an important issue, especially for offshore
wind power systems where a minor failure may result in a long downtime.

Maintenance strategies

For large WTs with a gearbox, high failure rates for the drive train have
been experienced in the past. CMS can be used to prevent expensive fail-
ures and plan maintenance activities. The value of CMS was investigated
in [14, 15], and it is further discussed in Paper III. With the emergence
of lifetime prognosis for components in WT (see [77, 82]), condition based
maintenance decisions may be optimized as proposed for the aircraft in-
dustry in [55] or for bearings with vibration monitoring in [91].

Blades are large and expensive components of WTs. Blades are in-
spected visually at scheduled maintenance occasions or on-condition if
lightning sensors are installed. Condition monitoring techniques, such as
ultrasonic or thermography, are used if a defect is suspected. Paper II
investigates the benefits of periodic inspection using condition monitoring
techniques. Fibre optic strain measurement is a promising technique for
blades, but the technology is expensive and needs improvements [76].

Studies have shown that the electrical, hydraulic and control systems,
ane the sensors have high failure rates in WT [30, 88]. For ageing compo-
nents, such as hydraulic systems, it could be beneficial to use preventive
repair or replacement, as discussed in Section 4.3. For electrical systems,
thermography could be used periodically in order to access the condition
of the components. If no cost-efficient PM strategy is available, an alter-
native may be to increase the reliability of these components by improving
the design and manufacturing of the component or by using redundancy,
e.g. for the sensors as discussed in Section 3.4.1.
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Maintenance planning

The planning of maintenance activities is an important part of maintenance
management. It includes the decision on the time to perform the mainte-
nance activities, as well as organization of the staff, logistics and spare part
requirements to perform the activities. Today, scheduled service mainte-
nance is often performed at fixed time periods. Paper I investigates an
alternative planning approach, based on opportunistic maintenance. Other
possibilities to optimize maintenance planning, including spare parts man-
agement and maintenance planning for large components, are discussed in
the future work in Section 6.2 of this thesis.

5.2 Optimal maintenance planning

Generally, scheduled service maintenance is performed during a fixed time
period without consideration of the power production. When maintenance
is performed, the WT is stopped, which results in costs for production
losses. If these maintenance activities were performed at low wind produc-
tion, it would result in cost savings. Moreover, WTs are subject to failure,
and each failure is an occasion to perform part of the scheduled service
maintenance. By doing so, it would avoid the need to access the WT later
on, and may reduce transportation and work costs as well.

Paper I proposes a model to optimize the maintenance planning of
scheduled maintenance activities by taking advantage of opportunistic oc-
casions that are low wind forecasts and corrective maintenance at failures.
Opportunistic maintenance implies that the planning of maintenance is
flexible. The model is inspired by an opportunistic maintenance optimiza-
tion model that was developed for the aircraft industry in [55]. This section
summarizes the model and results which are presented in Paper I.

5.2.1 Model

The proposed model considers a rolling time horizon, i.e. the maintenance
planning is optimized every working day. The time horizon is separated
into a short horizon interval followed by a long horizon interval. The short
horizon is discretized in days for which electricity production forecasting
is available. The long horizon interval is discretized in weeks for which a
discretized power production distribution is available, based on statistics.

The set of time steps for the short horizon is Tshort and the set of
time steps for the long horizon is Tlong. The time steps are indexed by
t ∈ Tshort ∪ Tlong. The expected hourly power production during the short
horizon is Pt, t ∈ Tshort. The power production distribution for the long
horizon is defined by a number of hours hmaxkt , t ∈ Tlong at production level
PLHk , k ∈ {1, ..., L}, where k is the index for the production levels and L is
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the number of possible production levels. Fig. 5.3 depicts an example of a
power production distribution for the long horizon.

The system consists of a set WT of wind turbines indexed by i ∈WT .
A set PM indexed by j ∈ CM defines the preventive maintenance tasks
that have to be performed within the total time horizon. Parameters τPMj
represents the duration in hours of the preventive maintenance task j ∈
PM , and wij0 defines the remaining number of time steps for the PM task
j ∈ PM to be performed in the wind turbine i ∈WT .

A subset CM ⊂ WT defines the wind turbines requiring corrective
maintenance, and τCMi [h], i ∈ CM is the expected time to perform the
activity. Corrective maintenance activities are forced to be performed dur-
ing the short horizon interval. The energy production losses, if corrective
maintenance is done at time step t, is PCMt [kWh].

The electricity cost is Cel [C /kWh]. Transportation costs consist of a
fixed cost Ctr [C ] for each day when transportation is required.

Normally, the maintenance team works h hours per day during the
short horizon. A penalty cost Cpen [C ] is to be paid for each supplemen-
tary working hour. The time for accessing the nacelle of one WT is τw
[h]. During the long horizon, the available number of working hours is
defined for every time step t and production level k by hmaxkt [h] and no
supplementary hours are considered.

Mathematical formulation

The problem is formulated as a MILP as follows. (Section 4.4.2 provides
an introduction to MILP and methods to solve the problems.)

Decision variables

xijt =







1, if preventive maintenance task j in wind

turbine i is performed at step t

0, otherwise,

(5.1)

t ∈ Tshort, j ∈ PM , i ∈ CM,

yit =







1, if corrective maintenance task in wind

turbine i is performed at step t

0, otherwise,

(5.2)

t ∈ Tshort, i ∈ CM.
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Figure 5.3: For a given production level k ∈ {1, ..., L} and a time step for
the long horizon t ∈ Tlong corresponds a number of available maintenance
hours hmaxkt at production level PLHk [kW]. In this example, 8 maintenance
hours are available at production level 1400 kW.

Auxiliary binary variables

zt =

{

1, if the wind park is visited at step t,

0, otherwise,
(5.3)

t ∈ Tshort,

vit =

{

1, if the WT i is visited at step t

0, otherwise,
(5.4)

t ∈ Tshort, i ∈WT.

Auxiliary non-negative variables

htk : Maintenance hours used at power loss level k at step t, (5.5)

t ∈ Tlong, k ∈ {1, ..., L},

et : Supplementary maintenance hours, t ∈ Tshort, (5.6)

t ∈ Tshort.

The objective function is composed of the costs of the production
losses, as well as transportation costs for the short horizon and expected
transportation costs for the long horizon (assuming an average of h− 2 · τw
work hours each time the wind park is visited):
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Objective function

min
∑

t∈Tshort

[
[ ∑

i∈CM

CM costs
︷ ︸︸ ︷

yit · P
CM
t +

∑

i

PM loss costs
︷ ︸︸ ︷
∑

j

xijt · τ
PM
j · Pt

]

· Cel

+

Transport cost
︷ ︸︸ ︷

zt · Ctr +

Penalty working hours
︷ ︸︸ ︷

et · Cpen

]

(5.7)

+

Long horizon PM loss and transport costs
︷ ︸︸ ︷
∑

t∈Tlong

[
∑

k

htk · [Pkt · Cel +
Ctr

h− 2 · τw
]

]

.

Constraints are defined to force zt and vit to have values in accordance
with their definitions, and to force the CM and PM tasks to be performed
in the defined time periods; see Paper I for detail.

5.2.2 Results

The proposed model was tested in an example with five 3MW wind tur-
bines, with two PM tasks to be performed (3 and 4 hours long). The
optimization scenario had 60 days. Task 1 should be performed within the
first 20 days of the horizon and Task 2 during the first 50 days. Failures
were generated randomly. The wind scenario was inspired by wind data
during the summer time in the south of Sweden. Wind forecasts were as-
sumed to be available for the first 10 days (with uncertainty, see paper I for
details) and expected production distribution for the following 6 months.
These assumptions were based on wind forecasting capability, see Section
2.1. The costs and other parameters are described in Paper I.

Fig. 5.4 depicts the failure and power production scenario, as well as
a solution for the maintenance optimization.

It can be observed that preventive maintenance is only performed at
low power production and if corrective maintenance is required. For ex-
ample, at time step 16 the wind power production is low and it is advised
to perform preventive maintenance task 1 in wind turbine 1 and task 2 in
wind turbine 3. At time step 7, a failure occurs in wind turbine 2 and the
solution indicates to perform preventive maintenance task 1 in both wind
turbines 2 and 3.

It was shown in this example that 43% of the cost for performing
PM tasks could be saved with opportunistic maintenance, compared to
performing the tasks during the first days of the scenario.
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Figure 5.4: Failure and power production scenarios and one optimization
result for one simulation of the example. The dashed lines show the advised
maintenance schedules for the days 7 and 16.
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5.2.3 Conclusions

An optimization model was presented to take advantage of low wind power
production and unexpected failures in order to perform preventive mainte-
nance tasks at low costs. The properties of the model was validated with
an example, and the cost of the preventive maintenance tasks could be
reduced by 43%.

The case study demonstrates that it is possible to save maintenance
costs by taking advantage of the production forecasts and corrective mainte-
nance opportunities. However, the implementation of opportunistic main-
tenance implies that the maintenance schedule is flexible.

5.3 Benefits of condition monitoring systems

Major failures of components of the drive train are expensive. This is
due to the cost of the component, the cost of the maintenance equipment
required to perform the maintenance, and the costs of energy production
losses resulting from the spare part and maintenance equipment acquisition
time as well as weather constraints.

Vibration CMS are available for the components of the drive train in
WTs (see Section 5.1.2). The CMS may identify incipient failures far before
major maintenance is required. If a failure is suspected, an inspection
is performed, and either minor maintenance is performed to prevent the
failure, or the replacement of the component is planned. In this condition,
both the cost of the maintenance activity itself and the costs for production
losses may be reduced.

The economic benefit of CMS depends on the probability of failure of
the component in the drive train, the efficiency of CMS, and damage and
logistic time advantages provided by the use of CMS. An economic analysis
of CMS is presented in Paper II. This section summarizes the model and
results.

5.3.1 Model

The proposed cost model is a stochastic Life Cycle Cost (LCC) with random
variables for the occurrence of failure of the components of the drive train.
The LCC is divided into the investment cost Cinv, preventive and corrective
maintenance costs CPM and CCM , costs for the production losses CPL and
service costs Cser, that are estimated each year t. The total LCC is the
discounted sum of the yearly costs over the life time of the system (N
years):

LCC =
N∑

t=1

δ−t · [Cinv(t) + CPM (t) + CCM (t) + CPL(t) + Cser(t)], (5.8)
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where δ = 1
1+r and r is the interest rate. The discount rate is used to

calculate the present value of the future costs.
The investment cost Cinv is in this application the cost of the CMS

and it has to be paid only the first year. The service Cser is the yearly cost
of the CMS service; it is assumed constant during the life time of the WT.
CPM (t), CCM (t) and CPL(t) are functions of the number of failures in

year t, the efficiency of the CMS, and benefits from identifying an incipient
failure (both for maintenance cost reduction and logistic time):

CCM (t) =
∑

i∈C

ωit · (1− εi), t ∈ {1, ..., N}, (5.9)

CPM (t) =
∑

i∈C

ωit · εi · γi ·Ki, t ∈ {1, ..., N}, (5.10)

CPL(t) =
∑

i∈C

ωit · (Ti + (1− εi)τi) · P · Cel, t ∈ {1, ..., N}. (5.11)

C is the set of components of the drive train, indexed by i. The efficiency of
the CMS is the probability εi to detect an incipient failure for component
i. If a failure is not identified, a corrective maintenance cost Ki must be
paid. The logistic time is τi and the repair time Ti. If a failure is detected,
PM is performed, at a cost γi · Ki, and there is no logistic time. After
maintenance is performed, the component is assumed to be as good as
new. The electricity price is Cel and the average power production is P .
ωit is the number of failures for component i is for year t. Failures

of the components follow a Weibull probability distribution with scale pa-
rameter αi and shape parameter βi (see Section 3.3.2 for the definition of
the Weibull distribution). Two approaches were used for generating ωit:
scenarios generated with Monte Carlo simulation, and the average rate of
component renewals (estimated with a renewal process) for the successive
failure, estimated as in Section 3.4.2. An introduction to Monte Carlo
simulation and renewal processes is provided in Section 3.5.

Table 5.2: Components data for the case study (3MW wind turbine).

Component Gearbox Generator Main Bearing

α 8 [3–25] 17 17

β 3.5 3.5 3.5

ε 90% 90% 90%

γ 54.3% 53.6% 52.1%

C (C ) 390000 105000 57000

τ (days) 21 21 21

T (days) 2 1 3
∗ range for the sensitivity analysis.
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The benefit of CMS is the difference between LCC with and without
CMS. A similar cost model was used for the LCC without CMS. The model
was implemented with cost data based on [4, 14]. Wind turbines of the
size above 2 MW constitute new technologies and have experienced early
failures with components of the drive train, i.e. the gearbox. Moreover,
new standards have been proposed to improve the reliability, e.g. for the
gearbox [90]. Consequently it is difficult to estimate the failure rates of
component in wind turbines. The sensitivity analysis provides an inside
on the influence of the failure probability parameter for the gearbox, the
most expensive component of the drive train whose reliability is subject to
uncertainty. Table 5.2 summarizes the components data.

5.3.2 Results

In the basic case, the average LCC is 710,000 C without CMS and 520,000
C with a CMS, and the cost benefit of using CMS is 190,000 C . Fig. 5.5
shows the result of the sensitivity analysis for the scale parameter α for the
failure distribution of the gearbox.

The scale parameter affects the LCC in two ways. Firstly, it influences
the expected number of failures during the lifetime of the WT. Secondly,
it shifts the occurrence of the failures. The higher the value of the scale
parameter, the lower number of failure events occur and the later they are
expected to occur. This results in a lower value of the CMS, due to the
effect of the discount rate on late maintenance activities. It can be observed
that the CMS is beneficial if the scale parameter is lower than 21.

In order to observe the influence of CMS on the economic risk, it is
assumed that the average economic benefit is zero, i.e. the scale parame-
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Figure 5.5: Sensitivity analysis of the economic benefit of a CMS for Scale
parameter α for the gearbox.
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Figure 5.6: LCC probability distributions.

ter for the gearbox is 21. Fig. 5.6 shows the LCC probability distribution
with and without CMS. It can be observed that the risk of high mainte-
nance costs is limited with the use of CMS. However, the lower bound for
maintenance costs is also higher due to the CMS installation and service
costs.

5.3.3 Conclusions

It was shown in the basic case that the economic benefit of using CMS was
190,000 C . Sensitivity analysis was performed to observe the influence of
the scale parameter of the gearbox on the economic benefit of the CMS.
The CMS is beneficial if the scale parameter for the gearbox is lower than
21. Moreover, even if there is no economic benefit, the stochastic analysis
of the LCC showed that the risk of high cost was lowered by the use of a
CMS.

The costs of component failure increase with the capacity of the WT,
due to the higher cost of the components and higher costs for production
losses. Moreover, for large WT, there is much uncertainty concerning the
reliability of the components of the drive train. Under these conditions,
a CMS has an important benefit on the economic risk. For WTs under
one megawatt, CMSs may not be cost efficient due to a low probability of
failure. The drive train could instead be periodically inspected, e.g. with
portable vibration monitoring devices.
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5.4 Optimal condition monitoring inspection

for blades

The size of blades increases with the capacity of the WTs. Blades are sub-
ject to high stresses and unexpected events such as storms, bird collisions
or lightning that can initiate cracks.

In general, visual inspection of the blades is part of the scheduled ser-
vice maintenance and may be performed at lightning events if lightning
sensors are installed in the blades. If a defect is identified, condition moni-
toring techniques, e.g., ultrasonic techniques or infrared thermography, may
be used to evaluate the internal damage. Most of the damages are hidden
in the composite structure and it may be beneficial to use the condition
monitoring regularly in order to identify the damages as soon as possible.
The sooner the crack is identified, the lower the cost for repair will be [92].

Paper III investigates the benefit of using condition monitoring tech-
niques at regular time interval. The inspection interval is first optimized
with respect to a cost criteria. The optimal condition monitoring inspec-
tion is then compared to periodic visual inspection. The proposed model
was inspired by a model proposed in [64] for maintenance inspection in
hydropower plants. This section summarizes the model and results which
are presented in Paper III.

5.4.1 Model

The deterioration of the blade has been modeled with a continuous time
Markov chain. Section 3.4.1 provides an introduction to Markov chain.
Fig. 5.7 shows the deterioration model. S1 represents the state “Good”, S2
“Minor degradation”, S3 “Advanced degradation”, S4 “Major degradation”
and S5 “Failure”.

X1 X2 X3 X4 X5

λinit λdet 2λdet 4λdet

Figure 5.7: Markov chain for the deterioration model of the blades

Maintenance inspections occur at fixed time interval in the model.
The deterioration follows the Markov chain between two inspections or
until failure. At inspection, the state and next time for inspection are
updated based on the maintenance decision for the current state. Preven-
tive repair is performed immediately if a defect is identify using condition
monitoring technique (i.e. the condition of the component is S2, S3 or S4
at inspection), and the system is in an “as good as new” condition after
maintenance. At failure, the component is replaced. Inspection with con-
dition monitoring technique is compared with visual inspection. If visual
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inspection is used instead of condition monitoring inspection, defects are
detected only in deterioration states S3 and S4. Visual inspections are
assumed to be perfect and performed once a year, as part of the yearly
service maintenance.

Monte Carlo simulation is used to generate scenarios and costs for a
fixed set of maintenance decisions, i.e. inspection interval. The simulation
method is described in detail in Paper III, and Section 3.5 in this thesis
provides an introduction to Monte Carlo simulation. The length of the
simulation horizon is 25 years (the assumed lifetime for a WT). A large
number of scenarios is used to estimate the expected maintenance costs
and the costs probability distribution.

The costs for inspection and CM are CI and CCM , respectively. The
PM cost depends on the degradation level i ∈ {2, ..., N − 1}. It is noted
CPM,i. The maintenance cost for one scenario and average maintenance
cost with inspection interval tins are defined as follows:

Cs(tins) = NsinsCI +

4∑

i=2

NsPM,iCPM,i +NsCMCCM , (5.12)

C(tins) =
1

Nsim

∑

s∈S

Cs(tins), (5.13)

where Nsins, N
s
PM,i and NsCM are the number of inspection, PM activities

at deterioration state i and CM activities during scenario s.
The crack initiation rate is λ1 = λinit. Once a crack is initiated, the

mean crack time to failure is assumed to be Tcrack. The expected length

Table 5.3: Summary of the model parameters.

Parameter Value

tins[yr] [0.1-5]

λinit[/yr] 0.03 [0.01–0.05]a

Tcrack[yr] 1 [0.2–2]a

λdet [/yr] 4/(7 · Tcrack)

CI [C ] 4000b/1000c

CCM [C ] 440000

CPM,2[C ] 3500

CPM,3[C ] 35000

CPM,4[C ] 390000
a range for the sensitivity analysis.
b condition monitoring inspection.
c visual inspection.
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of the crack as a function of time is in general concave. To obtain this
property, it is assumed that the transition rate for S3 is twice the one for
S2 and a similar relation is assumed between S4 and S3, as shown in Fig.
5.7. Consequently, if λdet is the crack deterioration rate in state S2, it is
required that λdet = 4

7·Tcrack
for the mean crack time to failure to beTcrack.

The parameters used in the case study are described in Table 5.3, with
the range of sensitivity analysis for the λinit and Tcrack. See Paper III for
details on the input data.

5.4.2 Results

Fig. 5.8 shows the expected maintenance costs as a function of the inspec-
tion interval for visual inspection and inspection with condition monitoring
technique. The optimal inspection interval is 4 months for visual inspec-
tion with an expected maintenance cost of 212,000 C per blade during the
life time of the wind turbine. The optimal inspection interval is a year for
inspection with condition monitoring technique, with an expected mainte-
nance cost of 206,000 C per blade. The benefit of using condition monitor-
ing inspection is 6,000 C per blade and 18,000 C for one wind turbine.

Nowadays visual inspection is often carried out once a year, which
corresponds to an expected maintenance cost of 250,000 C per blade. If the
yearly inspection was performed with condition monitoring technique, the
cost benefit would be 44,000 C per blade and 132,000 C per wind turbine.

Fig. 5.9 presents the results of the sensitivity analysis. If the crack
initiation rate is lower than 0.026, the probability of failure is too low to
advise the use of periodic condition monitoring inspection.

If Tcrack is lower than 3 months (0.25 years), a short inspection interval
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(a) Visual inspection.
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(b) Inspection with condition monitoring
technique.

Figure 5.8: Maintenance costs as a function of the inspection interval
t1 for the case study, for visual inspection and inspection with condition
monitoring technique.
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(b) Crack of Tcrack.

Figure 5.9: Sensitivity analysis for the cost benefits of condition moni-
toring inspection (one blade).

has to be used to identify initiated cracks before failure, and inspection
costs are high. Consequently, neither visual inspection nor inspection with
condition monitoring is advised. If Tcrack is higher than 3 months but
lower than 10 months (0.85 years), visual inspection is advised. If Tcrack
is higher than 10 months, inspection with condition monitoring is more
beneficial than visual inspection.

5.4.3 Conclusions

In the basic case study, the optimal inspection interval was 1 year for
inspection with condition monitoring technique and 4 months for visual
inspection. The cost benefit of using condition monitoring inspection was
18,000 C per wind turbine when compared to visual inspection.

Sensitivity analysis was used to determine the minimum crack initia-
tion rate and the minimum expected crack time to failure, for visual and
condition monitoring inspection to be beneficial. Condition monitoring
inspection was economically justified if the crack initiation rate is higher
than 0.026. Visual inspection is beneficial if the crack time to failure is
higher than 3 months and inspection with condition monitoring technique
is advised if the crack time to failure is higher than 10 months.





Chapter 6

Closure

This chapter concludes the thesis. It summarizes the results and presents

ideas for future work.

6.1 Conclusions

This thesis presents models to optimize the maintenance management of
wind power systems. The main results are recommendations for main-
tenance strategies, including an optimal implementation for some of the
strategies, and a demonstration of the benefits of opportunistic mainte-
nance for maintenance planning.

This thesis proposes a model to optimize the planning of service main-
tenance for wind power systems. The main idea of the model is to reduce
transportation and production losses by taking advantage of opportunities
that arises at failure or low production forecasts. The results show that
opportunistic maintenance can significantly reduce maintenance costs.

A stochastic Life Cycle Cost approach has been proposed to investigate
the economic benefit of vibration condition monitoring systems for the drive
train of wind turbines. The benefit is mainly influenced by the size of the
wind turbine and its reliability. Moreover, the risk of high maintenance
costs is lowered by the use of condition monitoring systems.

This thesis investigates the benefits of using periodic condition mon-
itoring techniques for blades, with e.g. infrared or ultrasound techniques.
The inspection interval is first optimized with respect to a cost criterion.
The optimal condition monitoring inspection is then compared to periodic
visual inspection. The proposed maintenance strategy is justified if the
crack initiation rate and crack time to failure are sufficiently high.

Maintenance strategies for small components are also investigated.
The benefits of component redundancy for sensors and age replacement
for hydraulic systems were demonstrated with simple models.
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6.2 Future work

The following sections summarize ideas for future works for the continua-
tion of this PhD project.

6.2.1 Stochastic maintenance planning optimization

The maintenance planning model proposed in Paper I could be improved
by taking advantage of probabilistic production forecasts. The proposed
approach could be demonstrated with a real case study, e.g. at Lillgrund
wind farm that benefits from good weather conditions. The model could
also be extended by including accessibility and electricity price forecasts.

6.2.2 Maintenance planning optimization for large com-

ponents and large offshore wind power systems

The replacement of large components in wind turbines requires specific
boats (e.g. Jack-up boats) that are expected to be highly solicited in the
future. It will be advantageous to prioritize and group the large mainte-
nance activities in order to reduce transportation costs (e.g. mobilization
costs). This is an opportunistic maintenance problem that could benefit
from weather forecasts and available life time prognosis.

6.2.3 Life time prognosis with condition monitoring

systems

Vibration and oil monitoring systems provide continuous information on
the condition of the components in the wind turbine drive train. By ex-
tracting relevant features from the monitoring signals, it is possible to iden-
tify incipient failures and maybe their cause, long before the failure leads to
a fault. Moreover, it is of interest for maintenance planning to determine
the remaining life of the monitored components. This evaluation should be
possible by modeling the degradation of the components.

6.2.4 Spare part optimization

In the past years, spare part management was often a service subject to
charges provided by wind turbine manufacturers. Nowadays, large power
companies that are investing in large wind power systems may decide to
manage spare parts on their own. Optimizing spare parts stocks and loca-
tions will be important to minimize downtime costs.
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