New Square-Root Factorization of Inverse Toeplitz Matrices

Bo Wahlberg, Fellow, IEEE and Petre Stoica, Fellow, IEEE

Abstract—Square-root (in particular, Cholesky) factorization of Toeplitz matrices and of their inverses is a classical area of research. The Schur algorithm yields directly the Cholesky factorization of a symmetric Toeplitz matrix, whereas the Levinson algorithm does the same for the inverse matrix. The objective of this letter is to use results from the theory of rational orthonormal functions to derive square-root factorizations of the inverse of an $n \times n$ positive definite Toeplitz matrix. The main result is a new factorization based on the Takenaka-Malmquist functions, that is parameterized by the roots of the corresponding auto-regressive polynomial of order n. We will also discuss briefly the connection between our analysis and some classical results such as Schur polynomials and the Golberg-Semencul inversion formula.

Index Terms—Toeplitz matrix, Square-root and Cholesky factorization, AR processes, Rational orthonormal functions.

I. INTRODUCTION

Consider the symmetric positive-definite Toeplitz matrices (for given covariances $\{r_k \in \mathbb{R} \}$ and for $j = 1, \ldots, (n + 1)$)

$$R_j = \begin{bmatrix}
 r_0 & r_1 & \cdots & r_{j-1} \\
 r_1 & r_0 & \cdots & r_{j-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{j-1} & \cdots & & r_0
\end{bmatrix} > 0. \quad (1)$$

Let $[a_{j,1}, \ldots, a_{j,j}]$ and σ_j^2 be the solution to

$$R_{j+1} = \begin{bmatrix}
 1 \\
 a_{j,1} \\
 \vdots \\
 a_{j,j}
\end{bmatrix} \begin{bmatrix}
 \sigma_j^2 \\
 0 \\
 \vdots \\
 0
\end{bmatrix}, \quad j = 0 \ldots n. \quad (2)$$

This implies that $\{a_{j,k}, k = 1 \ldots j\}$ are the coefficients of the auto-regressive (AR) process of order j, with innovation variance σ_j^2, whose covariances at lags 0 to j exactly match r_0 to r_j. Define

$$L_{j+1} = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 a_{j,1} & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{j,j} & a_{j-1,j} & \cdots & a_{1,1}
\end{bmatrix}. \quad (3)$$

Then

$$R_{j+1}^{-1} = L_{j+1} D_{j+1}^{-1} L_{j+1}^T, \quad (4)$$

where

$$D_{j+1} = \text{diag}(\sigma_j^2, \sigma_{j-1}^2, \ldots, \sigma_0^2)$$

is a diagonal matrix, see e.g. [1]-[2], and the many references therein. This well-known result, which forms the foundation of the Levinson algorithm, shows that $L_n D_n^{-1/2}$ is a lower triangular Cholesky factor of the inverse Toeplitz matrix R_n^{-1}. The factorization in (4) is a function of the coefficients of all AR models of orders 0 to $n-1$. In contrast to (4), the Golberg-Semencul (G-S) formula for R_n^{-1}, see, e.g., [3],[2], and [4], (which is not of the Cholesky or, more generally, square-root factorization type) is a function only of the coefficients of the AR model of order n, i.e. $\{a_{n,1}, \ldots, a_{n,n}, \sigma_n^2\}$. There is also a similar formula for R_n^{-1}, see e.g. [2], which again is an explicit function of the coefficients of the AR model of order n.

The objective of this letter is to show how the theory of rational orthonormal functions can be used for finding a class of square-root factorizations of R_n^{-1} or, if desired, of R_{n+1}^{-1}. In particular, using the Takenaka-Malmquist functions, [5, page 18], we obtain an apparently new square-root factorization of R_n^{-1} that is an explicit function of the roots of the nth order AR polynomial. We should stress that, similarly to the G-S theory, our main contribution consists of a theoretical inversion formula, rather than a computational inversion algorithm.

II. PRELIMINARIES ON RATIONAL ORTHONORMAL FUNCTIONS

Define the normalized nth order AR polynomial associated with the given covariances $\{r_k\}_{k=0}^{\infty}$:

$$A_n(z) = \frac{1}{\sigma_n} (z^n + a_{n,1}z^{n-1} + \ldots + a_{n,n}), \quad (5)$$

and let

$$v(z) = [z^{n-1} z^{n-2} \ldots 1]^T, \quad V(z) = \frac{v(z)}{A_n(z)}. \quad (6)$$

Since the covariances are given by

$$r_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} A_n(e^{i\omega}) |A_n(e^{i\omega})|^2 d\omega, \quad k = 0, 1, 2 \ldots,$$

we have

$$R_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} V(e^{i\omega}) V^*(e^{i\omega}) d\omega,$$
where the superscript * denotes the conjugate transpose. The following function, where \(z_1, z_2 \in \mathbb{C} \), will play an important role in the analysis of this letter:

\[
\Delta(z_1, z_2) = \frac{v^T(1/z_1)R_n^{-1}v(z_2)}{A_n(1/z_1)A_n(z_2)} = V^T(1/z_1) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} V(e^{i\omega})V^*(e^{i\omega})d\omega \right]^{-1} V(z_2).
\]

The function \(\Delta(z_1, z_2) \) is called the reproducing kernel for the space spanned by the elements of \(V(z) \). A key observation is that \(\Delta(z_1, z_2) \) is invariant under a change of coordinates \(\tilde{V}(z) = TV(z), V(z) = T^{-1}\tilde{V}(z) \), where \(T \) is an \(n \times n \) invertible matrix. Indeed

\[
\Delta(z_1, z_2) = \tilde{V}^T(1/z_1)T^{-T} \times \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} T^{-1}\tilde{V}(e^{i\omega})\tilde{V}^*(e^{i\omega})T^{-T}d\omega \right]^{-1} T^{-1}\tilde{V}(z_2).
\]

A natural idea is then to use an orthonormal basis for the space spanned by \(\{z^k/A_n(z), k = 0, \ldots, (n-1)\} \), for which

\[
\tilde{V}^T(1/z_1) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{V}(e^{i\omega})\tilde{V}^*(e^{i\omega})d\omega \right] = I
\]

(\(I \) denotes the identity matrix) and, therefore,

\[
\Delta(z_1, z_2) = \tilde{V}^T(1/z_1)\tilde{V}(z_2).
\]

The theory of rational ortho-normal (ON) functions is well developed. Two books on this subject are [6] and [5], which both contain extensive reference lists. Let \(\{\xi_j\}_{j=1}^n \) be the roots of \(A_n(z) = 0 \), i.e.

\[
A_n(z) = \frac{1}{\sigma_n} \prod_{j=1}^n (z - \xi_j).
\]

Furthermore, assume that the roots satisfy \(|\xi_j| < 1 \), which is always the case under (1), see e.g. [1]. Applying the Gram-Schmidt procedure to the functions \(\{1/(z-\xi_j)^k\}, k = 1, \ldots, n_j \) (where \(n_j \) is the multiplicity of root \(j \) over all roots (these functions span the same space as the elements of \(V(z) \), (6)) leads to the Takenaka-Malmquist (T-M) ON functions, [5],

\[
B_k(z) = \frac{\sqrt{1 - |\xi_k|^2}}{z - \xi_k} \prod_{i=1}^{k-1} \left[\frac{1 - \xi_i^*z}{z - \xi_i} \right], \quad k = 1, 2, \ldots, n.
\]

The T-M construction is valid for arbitrary root configurations with \(|\xi_j| < 1 \). The special case of \(A(z) = (z - a)^n \), i.e. repeated roots in \(\xi_j = a, -1 < a < 1 \), leads to the well-known Laguerre functions, which further simplify to the delay functions \(B_k(z) = z^{-k} \) for \(\xi_j = 0 \). In the case of complex conjugate roots, say \(\xi_j \) and \(\xi_{j+1} = \xi_j^* \), define

\[
(z - \xi_j)(z - \xi_{j+1}) = z^2 + b_j(c_j - 1)z - c_j \quad \text{with} \quad -1 < b_j < 1 \quad \text{and} \quad -1 < c_j < 0.
\]

Then take

\[
B_j(z) = \frac{\sqrt{1 - c_j^2(z - b_j)}}{z^2 + b_j(c_j - 1)z - c_j} \prod_{i=1}^{j-1} \left[\frac{1 - \xi_i^*z}{z - \xi_i} \right]
\]

\[
B_{j+1}(z) = \frac{\sqrt{1 - c_j^2}}{z^2 + b_j(c_j - 1)z - c_j} \prod_{i=1}^{j-1} \left[\frac{1 - \xi_i^*z}{z - \xi_i} \right]
\]

to obtain ON functions with real coefficients, [5]. For repeated complex roots, the functions obtained by this construction are often referred to as Kautz functions. The vector function made from \(\{B_k(z)\} \) is \(\tilde{V}(z) = [B_1(z), \ldots, B_n(z)]^T \) and thus

\[
\Delta(z_1, z_2) = \sum_{k=1}^{n} B_k(1/z_1)B_k(z_2)
\]

Another set of ON functions can be constructed from the so-called Schur polynomials \(A_k(z) \),

\[
A_k(z) = \frac{1}{\sigma_k} \left(z^k + a_{k,1}z^{k-1} + \ldots + a_{k,k} \right), \quad k = 0, \ldots, n,
\]

as follows, [5, Section 2.6.2],

\[
B_k(z) = \frac{A_{k-1}(z)}{A_n(z)}, \quad k = 1, \ldots, n,
\]

where \(\{a_{j,1}, \ldots, a_{j,j}, \sigma_j\} \) are the solutions to (2) for \(j = 0 \) to \(n \). There are simple algorithms to find \(A_k(z) \) directly from \(A_n(z) \) using Schur iterations.

In a somewhat different context, we remark on the fact that an important result in the theory of rational ON functions is the so-called Christoffel-Darboux formula, see [5],

\[
\tilde{V}^T(1/z_1)\tilde{V}(z_2) = \frac{H(1/z_1)H(z_2) - 1}{1 - z_2/z_1}, \quad H(z) = \sigma_n A_n(z)/A_n(1/z).
\]

We will make use of (10) to briefly show how to connect the square-root factorization approach of this letter to the G-S formula for \(R_n^{-1} \).

III. NEW SQUARE-ROOT FACTORIZATION

Using expression (8), we have that

\[
v^T(1/z_1)R_n^{-1}v(z_2) = A_n(1/z_1)A_n(z_2)\Delta(z_1, z_2) = \sum_{k=1}^{n} C_k(1/z_1)C_k(z_2),
\]

\[
C_k(z) = A_n(z)B_k(z)
\]

It is possible to recover the matrix \(R_n^{-1} \) from (11) by noting that the vectors \(v(e^{i\omega}k), \omega_n = 2\pi/n, \) for \(k = 0, \ldots, (n-1) \) are orthogonal (a well known result from the Discrete Fourier Transform (DFT) theory). Define the \(n \times n \) DFT matrix

\[
W_n = \frac{1}{\sqrt{n}} \left[v(e^{i\omega_0}) \ldots v(e^{i\omega_{n-1}}) \right],
\]

for which \(W_n^*W_n = I \). We also define the row vectors

\[
\gamma_k = \frac{1}{\sqrt{n}} \left[C_k(e^{i\omega_0}) \ldots C_k(e^{i\omega_{n-1}}) \right].
\]
Using this notation we can write from (12):

\[W_n^* R_n^{-1} W_n = \sum_{k=1}^{n} \gamma_k \gamma_k \Rightarrow \]

\[R_n^{-1} = \sum_{k=1}^{n} [\gamma_k W_n^*] \gamma_k W_n^* = [\Gamma_n W_n^*] \Gamma_n W^*, \]

\[\Gamma_n = \begin{bmatrix} \gamma_n & \gamma_{n-1} & \cdots & \gamma_1 \\ \gamma_n & \gamma_{n-1} & \cdots & \gamma_1 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_n & \gamma_{n-1} & \cdots & \gamma_1 \end{bmatrix}. \] (13)

We have thus derived a square-root factorization \(^1\) of \(R_n^{-1} \). Note that the functions \(C_k(z) = A_n(z) B_k(z) \) are polynomials of degree \(n - 1 \),

\[C_k(z) = c_{k,1} z^{n-1} + c_{k,2} z^{n-2} + \cdots + c_{k,n}, \]

for all choices of minimal (of dimension \(n \)) ON bases that span the same space as \(\{ z^k / A_n(z) \}_{k=1}^{n-1} \). This means that we can write \(\Gamma_n = U_n^T W_n \) with

\[U_n = \begin{bmatrix} c_{n,1} & \cdots & c_{1,1} \\ \vdots & & \vdots \\ c_{n,n} & \cdots & c_{1,n} \end{bmatrix}. \] (14)

and therefore the factorization (13) can be re-written

\[R_n^{-1} = U_n U_n^T. \] (15)

The simplest case is that of Schur ON polynomials, see (9), for which \(C_k(z) = A_k(z) \). For the Takenaka-Malmquist functions we have

\[C_k(z) = \sqrt{1 - |z_k|^2} \frac{1}{\sigma_n} \prod_{i=1}^{k-1} [1 - \xi_i^* z] \prod_{i=k+1}^{n} [z - \xi_i], \]

\[k = 1, \ldots, n, \] (16)

with the modification described in the previous section to handle complex-valued roots.

To summarize, let \(\{ B_k(z) \} \) be a rational ON basis for the space spanned by \(\{ z^k / A_n(z) \}_{k=0}^{n-1} \), and define \(C_k(z) = A_n(z) B_k(z) \), \(k = 1 \ldots n \) and \(U_n \) as in (14). The key result of this letter is the general square-root factorization formula (15).

In the Schur polynomials case (15) reduces to the well-known formula (3) with \(L_n D_n^{-1/2} = U_n \). On the other hand for the Takenaka-Malmquist functions we obtain a novel factorization of \(R_n^{-1} \) that depends only on the zeros of \(A_n(z) \) and on \(\sigma_n \), c.f. (16).

Note that it is easy to modify the result (15) to factorize \(R_n^{-1} \), instead of \(R_n \), still using only \(A_n(z) \). Let

\[v_{n+1}(z) = [z^n z^{n-1} z^{n-2} \ldots 1]^T, \quad S(z) = \frac{v_{n+1}(z)}{A_n(z)}, \]

for which

\[R_{n+1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(e^{i\omega}) S^*(e^{i\omega}) d\omega. \]

By extending \(\{ B_1(z) \ldots B_n(z) \} \) with \(B_{n+1}(z) = 1 \), we obtain an ON basis for the \(n + 1 \) dimensional space spanned by \(\{ z^k / A_n(z) \}_{k=0}^{n} \). This is so because \(B_{n+1}(z) = 1 \) is orthogonal to all \(B_k(z) \) (which all have relative degree one). Define as before \(C_k(z) = A_n(z) B_k(z) \), \(k = 1 \ldots n \), and in addition \(C_{n+1}(z) = A_n(z) \), and let:

\[C_{n+1}(z) = c_{n+1,1} z^n + c_{n+1,2} z^{n-2} + \ldots + c_{n+1,n+1}. \]

Define

\[\bar{U}_n = \begin{bmatrix} c_{n+1,1} & 0 & \ldots & 0 \\ c_{n+1,2} & c_{n,1} & \ldots & c_{1,1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n+1,n+1} & c_{n,n} & \ldots & c_{1,n} \end{bmatrix}. \] (17)

Using the same arguments as for the case of \(R_n \) now gives

\[R_{n+1}^{-1} = \bar{U}_n \bar{U}_n^T. \]

This result can be viewed as a consequence of applying the Levinson algorithm to go from dimension \(n \) to \(n + 1 \).

Finally, we note that the use of the Christoffel-Darboux formula leads to:

\[v^T (1/z_1) R_n^{-1} v(z_2) = A_n(1/z_1) A_n(z_2) \Delta(z_1, z_2) \]

\[= (z_2/z_1)^n A_n(z_1) A_n(1/z_2) - A_n(1/z_1) A_n(z_2), \]

(18)

Using the DFT technique of this letter to recover \(R_n^{-1} \) from (18) will result in the Gohberg-Semencul formula. The connection between the Christoffel-Darboux and Gohberg-Semencul formulas is discussed in, e.g. [4].

IV. APPLICATION OF THE NEW FACTORIZATION FORMULA

Let \(\{ y(t) \}_{t=1}^{n} \) be a sequence of a stochastic signal whose power spectral density is \(\Phi(e^{i\omega}) \), \(\omega \in [-\pi, \pi) \). Also let \(R_n \) denote a generic Toeplitz (covariance) matrix associated with an arbitrary \(m \)th order AR process with poles strictly inside the unit circle and with \(m < n \) (\(m \) being a fixed integer that does not depend on \(n \)). Under the Gaussian assumption, the dominant term of the negative log-likelihood function that can be used to fit an \(m \)th order AR model to \(\{ y(t) \}_{t=1}^{n} \) is given by, see e.g. [1]:

\[Y^T R_n^{-1} Y, \quad Y = [y(1) y(2) \ldots y(n)]^T. \] (19)

Because (19) is a complicated function of the AR parameters, the minimization of (19) is often replaced by that of

\[\sum_{t=m+1}^{n} [\tilde{A}_m(q) y(t-m)]^2, \]

(20)

where \(q \) is the forward shift operator. Notice that \(\tilde{A}(z) = \sigma_n A_m(z) \), due to the normalization of the coefficient of \(z^m \). Minimizing (20) is a quadratic least-squares optimization problem in the coefficients of \(\tilde{A}_m \) with a closed form

\(^1\) By a matrix square-root factorization of \(M \) we mean \(M = NN^* \). This includes the Cholesky factorization of \(M \), for which \(N \) has a lower or upper triangular structure. It also includes the symmetric (Hermitian) matrix square root \(R \) of \(M \), for which \(R = RR \).
solution. In what follows, we make use of the new square-root factorization of R_n^{-1} introduced in this letter, see (15), to prove that:

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}\{Y^T R_n^{-1} Y\} = \frac{1}{\sigma_m^2} \mathbb{E}[\tilde{A}_m(q) y(t)]^2,$$

(21)

which provides support to the fact that (20) is a good approximation of (19) asymptotically (as n increases). Using (15) and (16) yields:

$$\mathbb{E}\{Y^T R_n^{-1} Y\} = \mathbb{E}\{\sum_{k=1}^{n} |C_k(q)y(t - n)|^2\}$$

$$= \sum_{k=1}^{n} \frac{1}{2\pi} \int_{-\pi}^{\pi} |C_k(e^{i\omega})|^2 \Phi(e^{i\omega}) d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |A_n(e^{i\omega})|^2 \Phi(e^{i\omega}) \sum_{k=1}^{m} |B_k(e^{i\omega})|^2 d\omega,$$

(22)

where, because we assume the process to be of order m, $A_n(z) = A_m(z)z^{-n-m}$, and thus $A_n(z)$ has $n - m$ roots at $z = 0$. This implies that $B_k = z^{-k}$, $k = m + 1, \ldots, n$ both for the Takenaka-Malmquist functions and for the Schur basis. Hence,

$$\sum_{k=1}^{m} |B_k(e^{i\omega})|^2 = \sum_{k=1}^{m} |B_k(e^{i\omega})|^2 + n - m,$$

(23)

where an expression for the first term on the right hand side is most easily obtained using the Takenaka-Malmquist functions,

$$|B_k(e^{i\omega})|^2 = \frac{1 - |\xi_k|^2}{|e^{i\omega} - \xi_k|^2}.$$

Hence, we have

$$\frac{1}{n} \mathbb{E}\{Y^T R_n^{-1} Y\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |A_m(e^{i\omega})|^2 \Phi(e^{i\omega})$$

$$\times \left(\frac{1}{n} \sum_{k=1}^{m} |B_k(e^{i\omega})|^2 + \frac{n - m}{n} \right) d\omega$$

$$\rightarrow \frac{1}{\sigma_m^2} \mathbb{E}[\tilde{A}_m(q) y(t)]^2, \quad n \to \infty,$$

(24)

which proves (21). Note that the function (23) is actually a fundamental scale factor for the asymptotic variance of the corresponding autoregressive spectral density estimate as shown in [7]. The papers [8] and [9] contain further results in this direction. In fact, these results inspired our derivation of the square-root factorization (15). The Schur version of this formula was used in [10] to establish convergence rates for quadratic forms associated with inverse Toeplitz matrices as n tends to infinity.

Another possible application of the new square root factorization formula for R_n^{-1}, which is left for future research, is to establishing a novel relationship between the Capon and the AR method in the spectral analysis of stationary signals. See e.g. [11] for an introduction to this subject and some known relationships.

V. CONCLUSIONS

Toeplitz matrices and their inverses play a fundamental role both in the implementation and in the analysis of parametric estimation methods, and elsewhere. The Levinson algorithm and the Schur algorithm (as well as the Gohberg- Semencul formula) are classical results on how to find factorizations of such matrices. In this letter we have derived a class of square-root factorizations of inverse Toeplitz matrices, using rational ON functions. In particular, we have shown that the use of Takenaka-Malmquist functions in our framework leads to an apparently new square-root factorization formula. Interestingly, the magnitude of the roots of the autoregressive polynomial appear to play a role for the existence of this factorization, similar to that played by the magnitude of the reflection coefficients in the Levinson case.

REFERENCES