
Impact of Spatial Correlation and
Precoding Design in OSTBC

MIMO Systems

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 9, Issue 11, Pages 3578-3589, November 2010.

Copyright c© 2010 IEEE. Reprinted from Trans. on Wireless Communications.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the KTH Royal
Institute of Technology’s products or services. Internal or personal use of this

material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale

or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document,
you agree to all provisions of the copyright laws protecting it.
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Impact of Spatial Correlation and
Precoding Design in OSTBC MIMO Systems

Emil Björnson, Student Member, IEEE, Eduard Jorswieck, Senior Member, IEEE,
and Björn Ottersten, Fellow, IEEE

Abstract—The impact of transmission design and spatial
correlation on the symbol error rate (SER) is analyzed for
multi-antenna communication links. The receiver has perfect
channel state information (CSI), while the transmitter has either
statistical or no CSI. The transmission is based on orthogonal
space-time block codes (OSTBCs) and linear precoding. The
precoding strategy that minimizes the worst-case SER is derived
for the case when the transmitter has no CSI. Based on this
strategy, the intuitive result that spatial correlation degrades the
SER performance is proved mathematically.

In the case when the transmitter knows the channel statistics,
the correlation matrix is assumed to be jointly-correlated (a
generalization of the Kronecker model). The eigenvectors of the
SER-optimal precoding matrix are shown to originate from the
correlation matrix and the remaining power allocation is a convex
problem. Equal power allocation is SER-optimal at high SNR.
Beamforming is SER-optimal at low SNR, or for increasing
constellation sizes, and its optimality range is characterized.
A heuristic low-complexity power allocation is proposed and
evaluated numerically. Finally, it is proved analytically that
receive-side correlation always degrades the SER. Transmit-side
correlation will however improve the SER at low to medium
SNR, while its impact is negligible at high SNR.

Index Terms—Beamforming, channel state information,
MIMO systems, orthogonal space-time block codes, power al-
location, spatial correlation, symbol error rate.

I. INTRODUCTION

IN wireless communication, the use of antenna arrays at the
transmitter and receiver can greatly improve the spectral

efficiency and system performance. Under the ideal conditions
of uncorrelated antennas and perfect channel state information
(CSI), it was shown in [1] and [2] that the ergodic capacity
improves linearly as the number of antennas increases at both
sides. In practice, this fundamental gain is difficult to obtain.
Firstly, the channel fading makes it costly for the transmitter to
keep track on the current CSI. Secondly, the scattering is often
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spatially limited which leads to a correlated channel [3]–[5],
also known as spatial correlation.

The impact of CSI and spatial correlation on the ergodic ca-
pacity has received much attention. For simplicity, the receiver
is usually assumed to have perfect CSI [6], while various types
of CSI has been considered at the transmitter [7]–[11]. The
impact of spatial correlation on the capacity was evaluated
numerically in [9] (among others), but the relationship was
first derived analytically in [10]. It was shown that spatial
correlation decreases the capacity when the transmitter has
no CSI or perfect CSI, which is intuitive since correlated
channels have fewer degrees of freedom and thus less suitable
for spatial multiplexing. When the transmitter has statistical
CSI, this negative effect is however countered by the advantage
of having smaller channel variations; in highly correlated
channels, the channel direction is in fact given by the statistics.
Interestingly, it was proved in [10] that correlation among the
transmit antennas improves the capacity in this case.

While most previous work considered the ergodic capacity
requiring Gaussian constellations, this paper considers the
symbol error rate (SER) with practical symbol constellations.
Prior work includes [12] and [13] that made numerical obser-
vations on the impact of spatial correlation on error rates.
Herein, we derive an analytical solution to the impact of
correlation by analyzing a general class of SER-like functions.
This class includes the exact SER for Rayleigh fading channels
with orthogonal space-time block codes (OSTBCs), linear
precoding [14]–[18], and uncoded PAM, PSK, or QAM. We
use the jointly-correlated model, proposed in [19] and [20],
to analyze transmission design and the impact of spatial
correlation under more general conditions than the commonly
used Kronecker model [12], [13], [21]. Our main contributions
are:

∙ Optimal transmission strategies: When the transmitter
has no CSI, it can protect itself against the unknown
Rayleigh fading channel by using OSTBCs and equal
power allocation in all spatial directions. This precoding
strategy minimizes the worst-case SER (Theorem 1).
When the transmitter has statistical CSI, the eigenvec-
tor structure of the SER minimizing precoder is de-
rived for jointly-correlated systems (Theorem 2). This
structure reduces the transmission design to a convex
power allocation problem that can be solved numerically
or heuristically with low complexity (Strategy 1). At
high SNR, the power is allocated equally among the
available eigendirections. Single-stream beamforming in

1536-1276/10$25.00 c⃝ 2010 IEEE
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the dominant eigendirection is SER-optimal at low and
medium SNR and this is also the case asymptotically as
the constellation size grows (Section V). The SNR range
where beamforming is SER-optimal is characterized as a
function of the constellation size (Theorem 5).

∙ Impact of spatial correlation: When the transmitter
has no CSI, it is proven that spatial correlation always
degrades the SER in jointly-correlated Rayleigh fading
systems with OSTBCs (Theorem 3). In the case with
statistical CSI at the transmitter, correlation between
eigendirections at the receiver also degrades the perfor-
mance. Transmit-side correlation will however improve
the performance at low and medium SNR (Theorem 4),
while the impact at high SNR is negligible (Section V).

The conclusion is that CSI and spatial correlation impacts
the SER in a jointly-correlated system with OSTBCs in a
similar (but non-identical) manner as the ergodic capacity in
Kronecker-structured Rayleigh fading systems [10]; statistical
CSI at the transmitter can improve the performance by proper
transmission design that adapts to the correlation and turns
transmit-side correlation into an advantage.

Notations: We use boldface (lower case) for column vec-
tors, x, and (upper case) for matrices, X. With X𝑇 , X𝐻 ,
and X∗ we denote the transpose, the conjugate transpose,
and the conjugate of X, respectively. The Kronecker and
Hadamard products of two matrices X and Y are denoted
X⊗Y and X⊙Y, respectively. The column vector obtained
by stacking the columns of X is denoted vec(X) and the
matrix trace is tr(X). The diagonal matrix diag(x) has the
elements of the vector x at the main diagonal. 𝒞𝒩 (x̄,Q) is
used to denote circularly symmetric complex Gaussian random
vectors, where x̄ is the mean and Q the covariance matrix.
The operator ≜ is used for definitions. The squared Frobenius
norm of X is denoted ∥X∥2 and is defined as the sum of the
squared absolute values of all the elements.

II. SYSTEM MODEL

We consider an arbitrarily correlated Rayleigh flat-fading
channel with 𝑛𝑇 transmit antennas and 𝑛𝑅 receive antennas,
represented by the channel matrix H ∈ ℂ𝑛𝑅×𝑛𝑇 . The trans-
mission is based on OSTBCs with linear precoding, where
the OSTBC is used for diversity gains and the transmitter
achieves antenna gains by CSI-aware precoding. This is a
standard form1 of space-time codes for informed transmitters
[24, Chapter 10], for which single-stream beamforming (as
assumed in [12] and [13]) appears as a special case when the
spatial coding block length 𝐵 is one.

The OSTBC transmits 𝐾 symbols over 𝑇 symbols slots
(i.e., the coding rate is 𝐾/𝑇 ). Let s = [𝑠1, . . . , 𝑠𝐾 ]𝑇 ∈ ℂ𝐾

represent these 𝐾 data symbols, where each symbol 𝑠𝑖 ∈ 𝒜
has average power 𝔼{∣𝑠𝑖∣2} = 𝛾 and are uniformly dis-
tributed in the constellation set 𝒜 (different constellations

1In general, non-orthogonal space-time block codes have better perfor-
mance at the cost of increased decoding complexity, but we limit ourselves
to OSTBCs to achieve analytical tractability. In practice, the orthogonality
is often a minor restriction as the simple encoding/decoding of OSTBCs has
made them popular in standards (i.e., LTE [22] and WLAN [23]). In addition,
OSTBCs are rate optimal if 𝐵 ≤ 2 and the channel H is rank one [24,
Theorem 7.4], and we show in Section IV that the SER minimizing spatial
block length is often that small.
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(a) Linear precoded OSTBC MIMO system.
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(b) Equivalent parallel single-input single-output (SISO) systems, for 𝑘 =
1, . . . ,𝐾 .

Fig. 1. Block model of the original MIMO communication system and its
equivalent parallel structure after receive processing.

will be considered). These symbols are coded in an OSTBC
matrix C(s) ∈ ℂ𝐵×𝑇 that fulfills the orthogonality property
C(s)C(s)𝐻 = ∥s∥2I and has the spatial coding block length
𝐵. The linear precoder W ∈ ℂ𝑛𝑇×𝐵 is used to project
the signal into advantageous spatial directions by using the
available transmit-side CSI [16]. Its maximal rank is denoted
by 𝑚 ≜ min(𝑛𝑇 , 𝐵) and the design of W will be considered
in Section III for different CSI. By introducing the power
constraint ∥W∥2 = 1, we make sure that the average transmit
power allocated per symbol is 𝔼{∥WC(s)∥2}/𝐾 = 𝛾.

Observe that OSTBCs only exist for certain combinations
of 𝐾 , 𝑇 , and 𝐵. In the simplest case, 𝐾 = 𝑇 = 𝐵 = 1, it
corresponds to single-stream beamforming with C(s) = 𝑠1.
Another important case is the Alamouti code, with 𝐾 =

𝑇 = 𝐵 = 2 and C(s) =
[

𝑠1 −𝑠∗2
𝑠∗2 𝑠∗1

]
, as it also provides full

coding rate [14]. In general, the maximum possible coding
rate approaches 1/2 from above as the spatial dimension
𝐵 increases [17]. For explicit codes and systematic code
generation, see for example [15] and [18].

Under these assumptions, we achieve the system in
Fig. 1(a). The received signal Y ∈ ℂ𝑛𝑅×𝑇 is

Y = HWC(s) +N (1)

where the total power has been normalized such that the
elements of the additive noise N ∈ ℂ𝑛𝑅×𝑇 are independent
and identically distributed (i.i.d.) as 𝒞𝒩 (0, 1).

The precoding matrix W is a not part of the OSTBC, but
a way of creating an effective channel, HW, with better
properties. The receiver is assumed to know the effective
channel perfectly, while separate knowledge of H and W is
unrequired (this simplifies the channel estimation [6]). Then,
the receiver can perform block-wise maximum likelihood
detection of the symbols s = [𝑠1, . . . , 𝑠𝐾 ]𝑇 to find an estimate
ŝ = [𝑠1, . . . , 𝑠𝐾 ]𝑇 . As shown in [25], [26], an important
property of OSTBCs is that the original system in (1) can
be transformed into 𝐾 independent and virtual single-antenna
systems as

𝑦′𝑘 = ∥HW∥𝑠𝑘 + 𝑛′
𝑘, 𝑘 = 1, . . . ,𝐾, (2)

where 𝑛′
𝑘 ∈ 𝒞𝒩 (0, 1). Thus, a low-complexity receiver

structure is achieved where each symbol can be detected
separately, as illustrated in Fig. 1(b). This result is due to the
structure of the OSTBCs and the assumption of perfect CSI
at the receiver side. We have made no assumptions on the



3580 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 11, NOVEMBER 2010

information available at the transmitter side. In principle, the
transmitter can be completely uninformed of the CSI. We will
however show that having statistical CSI can greatly improve
the performance in certain environments.

A. Preliminaries on Spatial Correlation and Majorization

Herein, we will analyze the average performance of the
system in (1) and (2) in terms of the SER. Thus, we need to
specify the statistical properties of the channel matrix H. In
general, we have that vec(H) ∈ 𝒞𝒩 (0,R) for some arbitrary
correlation matrix R, defined on the column stacking of H.
To achieve an analytic structure on the statistics, we consider
two popular MIMO channel models that have been verified
by field measurements in realistic environments: the state-of-
the-art Jointly-correlated model [19], [20] and the simplified
Kronecker model [3]–[5]. These can be defined as follows.

Definition 1. The channel matrix H is jointly-correlated
Rayleigh fading if

H = U𝑅(Ω̃⊙G)U𝐻
𝑇 (3)

where U𝑅 ∈ ℂ𝑛𝑅×𝑛𝑅 and U𝑇 ∈ ℂ𝑛𝑇×𝑛𝑇 are unitary
matrices that describe transmit and receive eigendirections,
respectively. The elements of G ∈ ℂ𝑛𝑅×𝑛𝑇 are i.i.d. as
𝒞𝒩 (0, 1) and Ω̃ ∈ ℂ𝑛𝑅×𝑛𝑇 is the element-wise square root
of the so-called coupling matrix Ω (with positive entries) that
determines the variance of each element in Ω̃ ⊙G. Without
loss of generality, let the columns of Ω be ordered with
decreasing element sums. In terms of the correlation matrix
R, this model corresponds to the eigenvalue decomposition
R = (U∗

𝑇 ⊗U𝑅)diag(vec(Ω))(U∗
𝑇 ⊗U𝑅)

𝐻 with separable
eigenvector matrices.

Definition 2. The channel matrix H follows the Kronecker
model if Definition 1 is fulfilled with a rank-one coupling
matrix Ω = 𝝀𝑅𝝀

𝑇
𝑇 , where 𝝀𝑅 ∈ ℂ𝑛𝑅 and 𝝀𝑇 ∈ ℂ𝑛𝑇 are

vectors with positive entries.2

To summarize, the Kronecker model represents the assump-
tion that the transmit-side and the receive-side correlation can
be completely separated, while the jointly-correlated model
only assumes that the eigenvectors can be separated in this
manner.

The spatial channel correlation can be measured in the
eigenvalue distribution of the correlation matrix; weak cor-
relation is represented by almost identical eigenvalues, while
strong correlation means that a few eigenvalues dominate.
Thus, in a highly correlated system, the channel is approx-
imately confined to a small eigensubspace, while all eigen-
vectors are equally important in an uncorrelated system. In
urban cellular systems, base stations are typically elevated
and exposed to little near-field scattering. Thus, their antennas
are strongly spatially correlated and the spread in 𝝀𝑇 is
large. The receiving users will on the other hand be exposed
to rich scattering and have weak spatial correlation if the

2This is equivalent to the more common definition: H = R
1/2
𝑅 ḠR

1/2
𝑇 ,

where the elements of Ḡ are i.i.d. as 𝒞𝒩 (0, 1). In this formulation, R𝑅 =
U𝑅diag(𝝀𝑅)U𝐻

𝑅 and R𝑇 = U𝑇 diag(𝝀𝑇 )U𝐻
𝑇 are positive semi-definite

matrices that represent the receive-side and transmit-side correlation, respec-
tively. In terms of the general correlation matrix, we have R = R𝑇

𝑇 ⊗R𝑅.

antenna spacing is sufficiently large [27], which means that
the elements of 𝝀𝑅 are of similar magnitude.

The notion of majorization [28] provides a useful measure
of the spatial correlation [29] and will be used herein for var-
ious purposes. Let x = [𝑥1, . . . , 𝑥𝑁 ]𝑇 and y = [𝑦1, . . . , 𝑦𝑁 ]𝑇

be two non-negative real-valued vectors of arbitrary length 𝑁 .
We say that x majorizes y if

𝑙∑
𝑘=1

𝑥[𝑘]≥
𝑙∑

𝑘=1

𝑦[𝑘], for 𝑙=1, . . . , 𝑁 − 1,

and
𝑁∑

𝑘=1

𝑥𝑘=

𝑁∑
𝑘=1

𝑦𝑘,

(4)

where 𝑥[𝑘] and 𝑦[𝑘] are the 𝑘th largest ordered elements of
x and y, respectively. This majorization property is denoted
x ર y. If x and y contain eigenvalues of channel correlation
matrices, then x ર y corresponds to that x is more spatially
correlated than y. Majorization only provides a partial order
of vectors, but is still very powerful due to its connection to
certain order-preserving functions:

A function 𝑓(⋅) : ℝ𝑁 → ℝ is said to be Schur-convex if
𝑓(x) ≥ 𝑓(y) for all x and y, such that x ર y. Similarly, 𝑓(⋅)
is said to be Schur-concave if x ર y implies that 𝑓(x) ≤ 𝑓(y).

B. Expressions for the Symbol Error Rate

Throughout the paper, the performance measure will be the
SER; that is, the probability that the receiver makes an error in
the detection of source symbols. Since the equivalent channels
in (2) are identical for all symbols in the OSTBC, it is clear
that the SER only depends on the distribution of the SNR,
∥HW∥2, and on the type on the symbol constellation set, 𝒜.
Next, we will present SER expressions for three commonly
considered symbol constellations, but first we introduce a
general class of functions.

Definition 3. We define the function

𝐹a,b,c(Φ, 𝑥) ≜
𝑛∑

𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)
Φ
) (5)

where Φ is a positive semi-definite matrix and 𝑥 ≥ 0.
The vectors a = [𝑎1, . . . , 𝑎𝑛]

𝑇 , b = [𝑏1, . . . , 𝑏𝑛]
𝑇 , and

c = [𝑐1, . . . , 𝑐𝑛]
𝑇 have arbitrary length 𝑛 and fulfill 𝑎𝑘 ≤ 𝑏𝑘

and 𝑐𝑘 ≥ 0 for all 𝑘.

This class of functions is important since the SERs with
Pulse Amplitude Modulation (PAM), Phase-Shift Keying
(PSK), and Quadrature Amplitude Modulation (QAM) belong
to it. The variable 𝑥 is proportional to the SNR, but the
scaling depends on the modulation. Let 𝑔PAM ≜ 3/(𝑀2− 1),
𝑔PSK ≜ sin2(𝜋/𝑀), and 𝑔QAM ≜ 3/(2𝑀−2), then the exact
SER of the system in (2) was derived in [26], [30] as

SERPAM(R,W, 𝛾) = 𝐹
0,𝜋2 , 2(𝑀−1)

𝑀

(Φ, 𝛾𝑔PAM),

SERPSK(R,W, 𝛾) = 𝐹
0,𝜋(𝑀−1)

𝑀 ,1
(Φ, 𝛾𝑔PSK),

SERQAM(R,W, 𝛾)

= 𝐹
[0 𝜋

4 ]𝑇 ,[𝜋4
𝜋
2 ]𝑇 ,[ 4(

√
𝑀−1)
𝑀

4(
√

𝑀−1)√
𝑀

]𝑇
(Φ, 𝛾𝑔QAM),

(6)
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for 𝑀 -PAM, 𝑀 -PSK, and 𝑀 -QAM constellations, respec-
tively. For all three constellations, we have Φ = (W𝑇 ⊗
I)R(W𝑇⊗I)𝐻 , which is the correlation matrix of the effective
channel HW. Note that these SER expressions are valid for
uncoded systems, while the performance with outer coding
behaves differently [31].

Observe that the integrals in Definition 3 are the main build-
ing stones in all the SER expressions in (6). The determinant
in the integrands can equally be expressed as

det
(
I+

𝑥

sin2(𝜃)
Φ
)
=

𝑚𝑛𝑅∏
𝑗=1

(
1 +

𝑥

sin2(𝜃)
𝜆𝑗(Φ)

)
, (7)

where 𝜆𝑗(Φ) denotes the 𝑗th largest eigenvalue of Φ. Thus, we
conclude that the eigenvalues of Φ (and not the eigenvectors)
determine the SER. Since (7) is a Schur-concave function with
respect to the eigenvalues, it is clear that the eigenvalue spread
will affect the performance. This brings us back to the notion
of spatial correlation discussed in the last section. In Section
IV, we will analyze how the SER performance depends on
the spatial correlation and we will focus on comparing systems
with different eigenvalue distributions. All analytic results will
be derived for the class of functions in Definition 3, and the
interpretations for PAM, PSK, and QAM will be given as
corollaries.

III. LINEAR PRECODING WITH DIFFERENT TYPES OF CSI

The purpose of applying linear precoding to OSTBCs is to
adapt it to the channel conditions known at the transmitter
and thereby improve the system performance. Herein, the
performance measure is the SER and thus the precoding matrix
should be selected as

W = argmin
W∈ℂ𝑛𝑇 ×𝐵 ; ∥W∥2=1

SER(R,W, 𝛾). (8)

Depending on the type of symbol constellation, the SER ex-
pression in this optimization problem will be slightly different.
Apart from the constellation, the SER also depends on the
precoder W, the channel correlation matrix R, and the SNR
𝛾. Thus, the quality of the precoding design will depend on
whether the correlation and SNR is known at the transmitter or
not. Next, we will solve (8) assuming that the these statistical
parameters are either unknown or perfectly known to the
transmitter.

A. Without CSI at the Transmitter

When the transmitter is unaware of the channel correlation
matrix, R, and potentially unaware of the SNR, 𝛾, robustness
against channel fading can be achieved by minimizing the
worst-case SER. This worst case scenario corresponds to that
for every precoder we select, the channel conditions always
become the worst possible. Formally, the worst-case SER is
given by the following optimization problem:

max
R∈ℂ

𝑛𝑇 𝑛𝑅×𝑛𝑇 𝑛𝑅 ;
Rર0, tr(R)=𝑛𝑇𝑛𝑅

min
W∈ℂ

𝑛𝑇 ×𝐵 ;
∥W∥2=1

SER(R,W, 𝛾). (9)

Next, we solve this problem for the class of SER-like functions
in Definition 3 and give the structure of the optimal precoding
matrices.

Theorem 1. Consider minimization of the worst-case function
value of 𝐹a,b,c(Φ, 𝑥), with Φ = (W𝑇 ⊗ I)R(W𝑇 ⊗ I)𝐻 , by
selection of W ∈ ℂ𝑛𝑇×𝐵 with ∥W∥2 = 1. For all 𝑥 > 0, we
have

max
R∈ℂ

𝑛𝑇 𝑛𝑅×𝑛𝑇 𝑛𝑅 ;
Rર0, tr(R)=𝑛𝑇𝑛𝑅

min
W∈ℂ

𝑛𝑇 ×𝐵 ;
∥W∥2=1

𝐹a,b,c(Φ, 𝑥)

=

{
𝐹a,b,c (0, 𝑥) , 𝐵 < 𝑛𝑇 ,

𝐹a,b,c (diag([𝑛𝑅, 0, . . . , 0]), 𝑥) , 𝐵 ≥ 𝑛𝑇 .

(10)

If the dimension 𝐵 < 𝑛𝑇 , the minimal value is achieved for
any W, while the optimal precoding matrix for 𝐵 ≥ 𝑛𝑇 is
W =

√
1/𝑛𝑇V1[I 0]V2 for arbitrary unitary matrices V1 ∈

ℂ𝑛𝑇×𝑛𝑇 and V2 ∈ ℂ𝐵×𝐵 .

Proof: The proof is given in Appendix B.
The following corollary interprets the theorem in terms of

the SER.

Corollary 1. Consider the worst-case SER in (9) with either
𝑀 -PAM, 𝑀 -PSK, or 𝑀 -QAM. If 𝐵 < 𝑛𝑇 , then the worst-
case SER is (𝑀 −1)/𝑀 independently of the structure of the
precoding matrix. If 𝐵 ≥ 𝑛𝑇 , the minimal worst-case SER is
strictly smaller than (𝑀−1)/𝑀 and is achieved by precoding
matrices of the type

W =

√
1

𝑛𝑇
V1[I 0] (11)

where V1 is a unitary matrix.

Two important conclusions can be drawn. Firstly, before
data transmission, the probability of falsely predicting the
next symbol is (𝑀 − 1)/𝑀 . This is also the worst-case SER
when 𝐵 < 𝑛𝑇 , and thus we need 𝐵 ≥ 𝑛𝑇 (i.e., exploiting
all spatial directions) to guarantee that useful information
is received. Secondly, an example of the optimal precoding
matrix, for 𝐵 ≥ 𝑛𝑇 , is W =

√
1/𝑛𝑇 [I 0], which is

a scaled 𝑛𝑇 × 𝑛𝑇 identity matrix padded by zeros. It is
obviously not beneficial to have 𝐵 > 𝑛𝑇 , since the 𝐵 − 𝑛𝑇

additional degrees of freedom appear in the null space of the
channel. To summarize, when the transmitter is unaware of
the channel statistics, the optimal spatial coding block length
is 𝐵 = 𝑛𝑇 and power should be allocated isotropically (i.e.,
W =

√
1/𝑛𝑇 I).

B. With Statistical CSI at the Transmitter

When statistical CSI is available at the transmitter, the
precoding matrix W can be adapted to the spatial properties
of the R and to the average SNR of the system. The purpose
of this section is to characterize the solution of the SER
minimization in (8). First, we show the structure of the optimal
precoder under the assumption of jointly-correlated channels.
This structure reduces the precoding design to a convex
power allocation problem. Explicit asymptotic solutions will
be derived at low and high SNRs and for large symbol con-
stellations. In addition, a simple approximate power allocation
will be proposed.

We begin with a theorem that derives the general structure
and the asymptotic properties of precoding matrices W that
minimize the SER-like class of functions in Definition 3.
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Theorem 2. Consider minimization of 𝐹a,b,c(Φ, 𝑥), with Φ =
(W𝑇 ⊗ I)R(W𝑇 ⊗ I)𝐻 , by selection of W ∈ ℂ𝑛𝑇×𝐵 with
∥W∥2 = 1. If R is jointly-correlated and known, the solutions
to

min
W∈ℂ𝑛𝑇 ×𝐵 ; ∥W∥2=1

𝐹a,b,c(Φ, 𝑥), (12)

have the structure W = U𝑇ΠΔV for some 𝑛𝑇 -dimensional
permutation matrix Π and arbitrary unitary matrix V ∈
ℂ𝐵×𝐵 . The rectangular diagonal matrix Δ ∈ ℂ𝑛𝑇×𝐵 has√
𝑝1, . . . ,

√
𝑝𝑚 on the main diagonal, and 𝐹a,b,c(Φ, 𝑥) is

convex in 𝑝𝑗 for all 𝑗. The limiting solution at large 𝑥 is
given by 𝑝1 = . . . = 𝑝𝑚 = 1/𝑚 and a permutation matrix
that selects the 𝑚 eigendirections with the largest element
products in columns of Ω. The limiting solution at small 𝑥
is given by Π = I and all power is allocated to 𝑝1, . . . , 𝑝�̃�,
where �̃� is the multiplicity of the largest column sum of Ω.

Under the Kronecker model, the solution has Π = I. At
small 𝑥, the limiting solution performs equal power allocation
among the strongest directions: 𝑝1 = . . . = 𝑝�̃� = 1/�̃�.

Proof: The proof is given in Appendix B.
The following corollary interprets the theorem in terms of

the SER, and is a generalization and correction of [26] (which
treats the Kronecker model and has disregarded the eigenvalue
ordering).

Corollary 2. The SERs of 𝑀 -PAM, 𝑀 -PSK, and 𝑀 -QAM
are minimized by precoding matrices with the structure

W =

⎧⎨⎩U𝑇Π
[
D
0

]
if 𝐵 < 𝑛𝑇

U𝑇 [D 0] if 𝐵 ≥ 𝑛𝑇

(13)

where D ∈ ℂ𝑚×𝑚 is a diagonal matrix. The limiting solution
at high SNR and fixed constellation size 𝑀 is equal power
allocation in D. At low SNR, beamforming in the direction of
the first column of U𝑇 is the SER minimizing solution. This
is also the asymptotically optimal solution as the constellation
size 𝑀 → ∞.

The first conclusion is that the structure of the SER
minimizing precoding matrix in jointly-correlated channels
is similar as under the Kronecker model [26], [32]. Having
𝐵 > rank(D) will not improve the performance, and thus
there is no reason to have 𝐵 > 𝑛𝑇 . At high SNR, it was ex-
pected that equal power allocation is the limiting solution [26],
but an important result from Theorem 2 is that beamforming is
optimal both at low SNR and for large symbol constellations.

The optimal precoding structure derived in Theorem 2 for
jointly-correlated systems reduces the precoding optimization
to a convex power allocation problem (and selection of the
active eigendirections, if 𝐵 < 𝑛𝑇 ). This power allocation can
be solved numerically in an efficient fashion using gradient
methods [33]. For low-complexity implementations, we pro-
pose the following heuristic power allocation.

Strategy 1. A heuristic solution to the precoding power allo-
cation in Theorem 2 is

𝑝𝑗 = min

(
𝑛𝑅

𝛼
− 𝑛𝑅

𝑥𝜇𝑗
, 0

)
for 𝑗 = 1, . . . ,𝑚, (14)

where 𝜇𝑗 is the element sum of the 𝑗th column of Ω and we
use Π = I as permutation matrix. The parameter 𝛼 is selected
to fulfill the power constraint

∑𝑚
𝑗=1 𝑝𝑗 = 1.

This power allocation behaves similar to the optimal strat-
egy in terms of the waterfilling property that gives beam-
forming at low 𝑥 and equal power allocation at large 𝑥. The
number of active precoding directions increases with 𝑥 and
all directions are used if

𝑥 > 𝑛𝑅

⎛⎝ 𝑚

𝜇𝑚
−

𝑚∑
𝑗=1

1

𝜇𝑗

⎞⎠ . (15)

Otherwise, the number of active directions is �̃� = rank(D) <
𝑚, where �̃� is the positive integer that fulfills

𝑛𝑅

⎛⎝ �̃�

𝜇�̃�
−

�̃�∑
𝑗=1

1

𝜇𝑗

⎞⎠ < 𝑥 ≤ 𝑛𝑅

⎛⎝�̃�+ 1

𝜇�̃�+1
−

�̃�+1∑
𝑗=1

1

𝜇𝑗

⎞⎠ .

(16)
The power allocation in Strategy 1 is derived from the

Chernoff bound

𝐹a,b,c(Φ, 𝑥) ≤
𝑛∑

𝑘=1

𝑐𝑘(𝑏𝑘 − 𝑎𝑘)

𝜋 det (I+ 𝑥Φ)
, (17)

which is minimized by (14) under the condition that the
coupling matrix can be factorized as Ω = [1, . . . , 1]𝝀𝑇

(i.e., Kronecker model with uncorrelated receiver). The per-
formance of this power allocation will be evaluated in Section
V for a general Ω and compared with the optimal strategy.

IV. IMPACT OF SPATIAL CORRELATION WITH

DIFFERENT TYPES OF CSI

The SER depends on the spatial correlation, as pointed out
in Section II-B. Next, we will analyze this dependence in
more detail using the tool of majorization. If we can show that
the SER is a Schur-convex function, then spatial correlation
increases the error rate and thereby degrades the performance.
If the SER, on the other hand, is Schur-concave, then spatial
correlation improves the performance. In this section, we
prove that both properties can apply, depending on the CSI
available at the transmitter.

A. Without CSI at the Transmitter

When the transmitter is unaware of the CSI, Theorem 1
showed that equal power allocation in all spatial directions
minimizes the worst-case SER. Assuming that such precoding
is applied, the following theorem derives the impact of spatial
correlation on the class of SER-like functions in Definition 3.

Theorem 3. Consider 𝐹a,b,c(Φ, 𝑥), with Φ =
(W𝑇 ⊗ I)R(W𝑇 ⊗ I)𝐻 , where 𝐵 ≥ 𝑛𝑇 and
W =

√
1/𝑛𝑇V1[I 0]V2. This function is Schur-convex

with respect to any subset of eigenvalues of R, while the
other eigenvalues are fixed. Under the Kronecker model, this
means that 𝐹a,b,c(Φ, 𝑥) is Schur-convex with respect to 𝝀𝑇

when 𝝀𝑅 is fixed and Schur-convex with respect to 𝝀𝑅 when
𝝀𝑇 is fixed.

Proof: The theorem follows directly from Lemma 1 in
Appendix A since all non-zero eigenvalues of Φ also are
eigenvalues of R.

The following corollary interprets the theorem in terms of
the SER.
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Corollary 3. When the precoder minimizes the worst-case
SER, spatial correlation always degrades the SER perfor-
mance with 𝑀 -PAM, 𝑀 -PSK, and 𝑀 -QAM (even if only
a certain eigenspace is considered). Under the Kronecker
model, both receive and transmit-side correlation degrades the
performance.

The intuitive conclusion is that when the transmitter has no
CSI and therefore makes an isotropic signal power allocation,
the preferred fading environment is isotropic (i.e., all direc-
tions should be equally strong a priori). As spatial correlation
creates a few dominant directions, isotropic transmission will
waste transmission power in other directions which leads to
performance degradation.

B. With Statistical CSI at the Transmitter

Next, we consider the case when the transmitter knows the
channel correlation matrix and the average SNR of the system.
When SER minimizing precoding is applied, according to
Theorem 2, we prove that the impact of spatial correlation
changes with the SNR.

Theorem 4. Consider 𝐹a,b,c(Φ, 𝑥), with Φ = (W𝑇 ⊗
I)R(W𝑇 ⊗ I)𝐻 , where W = U𝑇ΠΔV minimizes the
function as in Theorem 2. If R is jointly-correlated and
known, let the (𝑙,𝑗)th element of the coupling matrix Ω be
parameterized as 𝜇𝑗�̄�𝑙,𝑗 , where 𝜇𝑗 is the sum of the 𝑗th
column and

∑𝑛𝑅

𝑙=1 �̄�𝑙,𝑗 = 1 for all 𝑗. Then, the function is
Schur-convex with respect to �̄�1,𝑗 , . . . , �̄�𝑛𝑅,𝑗 for each 𝑗 (when
all 𝜇𝑗 are fixed). The function is Schur-convex with respect
to 𝜇𝜋(1), . . . , 𝜇𝜋(𝑚) (for fixed �̄�𝑙,𝑗) at large 𝑥 (the bijective
permutation function 𝜋(⋅) represents Π) and Schur-concave
with respect to 𝜇1, . . . , 𝜇𝑛𝑇 at small 𝑥.

Under the Kronecker model, this implies that the function
is Schur-convex with respect to 𝝀𝑅 (when 𝝀𝑇 is fixed).
The function is Schur-convex with respect to the 𝑚 largest
elements of 𝝀𝑇 (when 𝝀𝑅 is fixed) at large 𝑥, while it is
Schur-concave with respect to the complete vector 𝝀𝑇 at small
𝑥.

Proof: The proof is given in Appendix B.
The following corollary interprets the theorem in terms of

the SER.

Corollary 4. With SER-optimal precoding for 𝑀 -PAM, 𝑀 -
PSK, or𝑀 -QAM, the impact of spatial correlation depends on
the SNR. In jointly-correlated systems, spatial correlation is
characterized as the spread of channel gains between different
eigendirections at the transmitter and receiver side. Spatial
correlation in receive eigendirections always degrades the
performance. At high SNR, spatial correlation in transmit
eigendirections also degrades performance, while correlation
improves the SER at low SNR. Under the Kronecker model,
these behaviors decouple; receive-side correlation decreases
the performance, while transmit-side correlation improves the
performance at low SNR and degrades it at high SNR.

In other words, even if optimal precoding is applied, spatial
receive-side correlation will always degrade the performance.
For transmit-side correlation, there is however a remarkable
change in behavior between low and high SNR, which requires
further specification. The low SNR behavior was proved

using Theorem 2 which showed that beamforming is optimal
in this SNR region. Thus, spatial correlation improves the
performance in an SNR region that is at least as large as the
beamforming optimality range. This range is characterized by
the following theorem.

Theorem 5. When minimizing the function 𝐹a,b,c(Φ, 𝑥), a
necessary and sufficient condition for optimality of beamform-
ing (i.e., 𝑝1 = 1, 𝑝2 = . . . = 𝑝𝑚 = 0) is

𝑛∑
𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

(
𝑛𝑅∑
𝑙=1

𝜔𝑙,1

sin2(𝜃)+𝑥𝜔𝑙,1

− 𝜔𝑙,2

sin2(𝜃)

)
𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)
A
)

≥ 0,
(18)

where 𝜔𝑙,𝑗 is the (𝑙,𝑗)th element of Ω and A =
diag(𝜔1,1, . . . , 𝜔𝑛𝑅,1).

Proof: The proof is given in Appendix B.
The following corollary interprets the theorem in terms of

the SER.

Corollary 5. The SNR range with optimality for single-stream
beamforming is 𝛾 ∈ [0, 𝜐], where the upper bound 𝜐 solves
(18) with equality using 𝑥 = 𝜐𝑔PAM, 𝑥 = 𝜐𝑔PSK, and
𝑥 = 𝜐𝑔QAM for 𝑀 -PAM, 𝑀 -PSK, or 𝑀 -QAM, respectively.
The parameters a, b, c are given in (6) for each modulation
scheme.

In general, the beamforming optimality range cannot be
derived explicitly. The expression in (18) is however mono-
tonically decreasing in 𝑥 and thus the 𝑥-value that provides
equality can be derived by simple line search procedures.
An approximate expression for the optimality range can be
derived using the low-complexity precoding strategy proposed
in Strategy 1 by simply substituting �̃� = 1 into (16).

Finally, we stress that in practice the positive impact of
transmit-side correlation in Theorem 4 can be observed for
an SNR range considerably larger than the optimality range
for single-stream beamforming3. This analytical result stands
in contrast to the numerical conclusion in [13] that the SER
increases monotonically with the correlation. This miscon-
ception originates from varying the transmit and receive-side
correlation simultaneously. Next, we will show numerically
that transmit-side correlation improves the performance at
both low and medium SNRs, while the correlation impact is
negligible at high SNR.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples that demon-
strate the precoding results in Section III and the impact
of spatial correlation that was analyzed in Section V. First,
the performance loss of the proposed heuristic power allo-
cation strategy will be evaluated along with the size of the
beamforming optimality range. Then, we will clarify how the
low and high SNR-behaviors derived in Section V affect the
performance in the range of practical SNRs.

3In fact, the beamforming range cannot be used directly to determine the
low SNR region since it depends on the spatial correlation, while the low
SNR property is valid for any correlation.
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Fig. 2. Power allocation among 𝑝1, 𝑝2, 𝑝3 as a function of the SNR in a
jointly-correlated system with 𝑛𝑇 = 3, 𝑛𝑅 = 2, and 16-QAM. The SER
minimizing strategy is compared with the low-complexity approach proposed
in Strategy 1.
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Fig. 3. Relative increase in SER, as a function of the SNR, when using the
heuristic power allocation as compared to SER minimizing power allocation.
A jointly-correlated system is considered with 𝑛𝑇 = 3, 𝑛𝑅 = 2, 𝑀 = 16,
and different symbol constellations.

A. Precoding Strategies

When the transmitter has statistical CSI, the structure of the
SER minimizing precoding matrix was given by Theorem 2.
The remaining convex power allocation problem can either be
solved optimally using numerical methods or approximately
using Strategy 1. Next, we evaluate the difference in per-
formance and behavior between these strategies. To ensure
repeatability, we consider the coupling matrix

Ω =
[
3.6 0.4 0.5
1 0.3 0.2

]
(19)

that was introduced in [34] and has 𝑛𝑇 = 3 and 𝑛𝑅 = 2. This
coupling matrix represents a clearly non-Kronecker model
scenario with one strong transmit eigendirection and two
equally weak transmit directions with different spreads over
the receive eigendirections. In Fig. 2, the optimal and heuristic
power allocations are shown as functions of the SNR, 𝛾. The
symbol constellation is 16-QAM and observe that the total
element sum in Ω is normalized to 𝑛𝑇𝑛𝑅. The difference
between the two strategies is clearly visible; the heuristic
strategy requires slightly higher SNR before allocating power
in more than one direction and always gives 𝑝2 = 𝑝3, although
the first of these directions is slightly advantageous.

The perceived difference between the optimal and heuristic
strategy, in terms of the relative increase in SER when using
the latter, is illustrated in Fig. 3. The performance loss is
given for 16-PAM, 16-PSK, and 16-QAM as a function of the
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Fig. 4. Upper bound on the beamforming optimality range (in SNR) as
a function of the modulation size. A jointly-correlated system is considered
with 𝑛𝑇 = 3, 𝑛𝑅 = 2, and different symbol constellations.

SNR. At low and high SNR, the difference is nonexistent or
negligible, while there is a peak in the area where the heuristic
strategy uses beamforming although higher performance can
be achieved by spatial multiplexing. The maximum relative
performance loss is around 5 percent, which can be seen as
validation of the heuristic strategy.

As observed in Fig. 2, the SER is minimized by allocating
all power to the strongest eigendirection for a large range
of SNRs. Theorem 2 proved that this type of single-stream
beamforming is optimal at low SNR and the optimality range
was characterized in Theorem 5. Next, we illustrate the upper
bound of this range. In Fig. 4, the largest SNR that gives
beamforming as the SER minimizing precoding is shown as
a function of the modulation size, 𝑀 , for PAM, PSK and
QAM. As noted in Corollary 2, the upper bound increases
with 𝑀 and they will approach infinity together. In general,
the beamforming optimality range is much wider for PAM
and PSK, than for QAM. As we move towards modulations
as 64-QAM and 128-QAM, the optimal precoding strategy is
beamforming for most practical SNRs.

B. Impact of Spatial Correlation

Next, we illustrate the impact of spatial correlation when
the transmitter has either no CSI or statistical CSI. As proved
in Section IV, the power distribution in columns and rows
of the coupling matrix affects the SER in different ways.
To show this in a simple way, we consider a system with
𝑛𝑇 = 𝑛𝑅 = 4 that satisfies the Kronecker model. The
antenna correlation follows the exponential model [35], which
in principle models a uniform linear array (ULA) with the
correlation between adjacent antenna elements as a parameter.
The symbol constellation is 16-QAM and the coupling matrix
is normalized such that the total element sum is 𝑛𝑇𝑛𝑅.

In Fig. 5, we keep the transmit correlation fixed at 0.5, while
the correlation between adjacent receive antennas changes
between 0 and 1 (i.e., from completely uncorrelated to com-
pletely correlated). As expected from Theorem 3 and 4, the
SER is a Schur-convex function with respect to the spatial
correlation at all SNRs. Having statistical CSI improves the
SER, especially at low and medium SNR, but the overall
conclusion is that receive-side correlation always degrades the
performance.
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Fig. 5. The SER as a function of the correlation between adjacent receive
antennas with either uniform (no transmit side CSI) or optimal precoding
(statistical transmit-side CSI). The system uses 16-QAM and follows the
Kronecker model with 𝑛𝑇 = 𝑛𝑅 = 4 and a transmit antenna correlation
of 0.5.

Next, we keep the receive correlation fixed at 0.5 and vary
the correlation between adjacent transmit antennas. This case
is of special interest since Theorem 3 and 4 showed different
behaviors depending on the SNR and available CSI. Without
transmit-side CSI, Fig. 6 shows that the SER becomes a Schur-
convex function at all SNRs. With statistical CSI, we observe
the opposite behavior; the SER is a Schur-concave function,
and thereby improves the performance with increasing cor-
relation, in an SNR range that reaches up to 14 dB. For
larger SNRs, there is a transition range where the SER is
neither Schur-convex nor Schur-concave. At very high SNR,
the SER becomes Schur-convex, but observe that it has already
reached such low values (below 10−6) that the dependence
on the spatial correlation in principle is negligible. Thus, we
conclude that with statistical transmit-side CSI, the SER is
Schur-concave at low to medium SNRs and approximately
Schur-concave at high SNRs.

VI. CONCLUSION

The optimal precoder and the impact of spatial correlation
on the symbol error rate have been shown to depend strongly
on the CSI available at the transmitter. The considered system
was Rayleigh fading with OSTBC transmission, perfect CSI
at the receiver side, and the SER was used as performance
measure. If the transmitter has no CSI, then the optimal
precoding strategy is to allocate the power equally over all
eigendirections and thereby protect the system against the
worst-case conditions. For this type of open-loop system, the
intuitive result that spatial correlation degrades the perfor-
mance was proven.

When the transmitter has statistical CSI, the transmission
strategy can be adapted to the spatial correlation and ex-
ploit its advantages. While correlation increases the channel
knowledge at the transmitter, it also decreases the degrees
of freedom, and thus it is not intuitively clear how spatial
correlation affects the SER. The analysis herein was based on
the assumption of jointly-correlated channel statistics, which
better complies with measurements than the Kronecker model
previously used in this area. The optimal precoding strategy
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Fig. 6. The SER as a function of the correlation between adjacent transmit
antennas with either uniform (no transmit-side CSI) or optimal precoding
(statistical transmit-side CSI). The system uses 16-QAM and follows the
Kronecker model with 𝑛𝑇 = 𝑛𝑅 = 4 and a receive antenna correlation
of 0.5.

exploits the channel eigendirections at the transmitter side and
allocates power according to a convex optimization problem.
While equal power allocation is optimal at very high SNR,
it was shown that single-stream beamforming in general is
optimal at low SNR and often at most practical SNRs. The
beamforming optimality range was characterized and shown
to increase with the size of the symbol constellation. Fur-
thermore, a low-complexity algorithm for power allocation
was proposed and it was illustrated that its performance loss
compared with power optimal allocation is small.

For this type of closed-loop systems, it was proven that
receive side correlation always degrades the performance,
while transmit side correlation is favorable at low and medium
SNR (including the beamforming optimality range) and has
negligible impact at high SNR. In practice, these results
impose difficult design considerations as the uplink-downlink
channel reciprocity means that we cannot achieve an optimal
fading environment in both the uplink and downlink.

APPENDIX A

The following lemma shows some behaviors of the class of
functions introduced in Definition 3.

Lemma 1. The function 𝐹a,b,c(Φ, 𝑥) is Schur-convex with
respect to the eigenvalues of Φ and it is a decreasing function
in 𝑥. The function is also decreasing in tr(Φ) for fixed
eigenvalue spread.

Proof: First, by inserting (7) into (5), and multiplying
with sin2(𝜃)/ sin2(𝜃), we achieve

𝐹a,b,c(Φ, 𝑥) =

𝑛∑
𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

(
𝑚𝑛𝑅∏
𝑖=1

sin2(𝜃)

sin2(𝜃) + 𝑥𝜆𝑖(Φ)

)
︸ ︷︷ ︸
≜𝑔(𝜃,𝑥,𝜆1(Φ),...,𝜆𝑚𝑛𝑅

(Φ))

𝑑𝜃.

(20)

This expression resolves the ambiguity in intervals [𝑎𝑘, 𝑏𝑘] that
contain 𝜃 such that sin2(𝜃) = 0 and keeps the strict equality
since these points have zero measure. Next, observe that the
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integrand 𝑔(𝜃, 𝑥, 𝜆1(Φ), . . . , 𝜆𝑚𝑛𝑅(Φ)) is continuous for 𝑥 ≥
0 and 𝜆𝑗(Φ) ≥ 0 for all 𝑗. The partial derivatives of 𝑔(⋅) are

∂

∂𝑥
𝑔(⋅) = −𝑔(⋅)

𝑚𝑛𝑅∑
𝑗=1

𝜆𝑗(Φ)

sin2(𝜃) + 𝑥𝜆𝑗(Φ)
,

∂

∂𝜆𝑗(Φ)
𝑔(⋅) = −𝑔(⋅) 𝑥

sin2(𝜃) + 𝑥𝜆𝑗(Φ)
,

(21)

which both are continuous and negative. Hence, we use [36,
Theorem 9.42] that states that differentiation of 𝐹a,b,c(Φ, 𝑥)
with respect to 𝑥 and 𝜆𝑗(Φ) can be determined by differ-
entiation of the integrand (i.e., interchanging the order of
integration and differentiation).

We should prove that the function is Schur-convex. Ac-
cording to Schur’s condition [28, Theorem 3.A.4], a function
𝑓(𝑥1, . . . , 𝑥𝑁) is Schur-convex if and only if 𝑓 is symmetric
in its arguments and if

(𝑥1 − 𝑥2)

(
∂𝑓

∂𝑥1
− ∂𝑓

∂𝑥2

)
≥ 0. (22)

Similarly, the function is Schur-concave if and only if it is
symmetric in its arguments and (22) is fulfilled with the
opposite inequality. Using (21), we have

∂

∂𝜆𝑗(Φ)
𝐹a,b,c(Φ, 𝑥)

= −
𝑛∑

𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

𝑔(𝜃, 𝑥, 𝜆1(Φ), . . . , 𝜆𝑚𝑛𝑅(Φ))𝑥

sin2(𝜃) + 𝑥𝜆𝑗(Φ)
𝑑𝜃

(23)

which is negative since all components of the sum are positive
(recall that 𝑐𝑘 ≥ 0 and 𝑏𝑘 ≥ 𝑎𝑘 by definition). Except from
within the function 𝑔(⋅), the eigenvalue 𝜆𝑗(Φ) only appears in
numerators and hence the derivative with respect to 𝜆1(Φ) will
be larger than for 𝜆2(Φ) if 𝜆1(Φ) > 𝜆2(Φ). Thus, Schur’s
condition in (22) is fulfilled and 𝐹a,b,c(Φ, 𝑥) is Schur-convex
with respect to the eigenvalues of Φ.

Next, by interchanging integration and differentiation order
and using (21), we have that

∂

∂𝑥
𝐹a,b,c(Φ, 𝑥)

= −
𝑛∑

𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

𝑚𝑛𝑅∑
𝑗=1

𝑔(𝜃, 𝑥, 𝜆1(Φ), . . . , 𝜆𝑚𝑛𝑅(Φ))𝜆𝑗(Φ)

sin2(𝜃) + 𝑥𝜆𝑗(Φ)

≤ 0
(24)

since the sum coefficients and the integrands are all positive.
Hence, the function is decreasing in 𝑥.

Finally, let 𝛽 ≜ tr(Φ) and define the normalized ma-
trix Φ̃ ≜ Φ

𝛽 (with constant unit trace). We want to show
how 𝐹a,b,c(Φ, 𝑥) depends on the trace 𝛽. Observe that the
function identically can be expressed as 𝐹a,b,c(𝛽Φ̃, 𝑥) =

𝐹a,b,c(Φ̃, 𝛽𝑥), and thus increasing 𝛽 is equivalent to increas-
ing 𝑥. We conclude that the function is decreasing in tr(Φ)
for fixed eigenvalue spread in Φ.

The concepts of the next lemma have previously been
used to prove that optimal precoders diagonalize the channel
statistics [6], [26], [32]. Herein, it is generalized for non-
Kronecker model systems.

Lemma 2. Let 𝑓(⋅) be a Schur-convex function and consider
the matrix A = Λ1 + Λ2(F ⊗ I)Λ3, where Λ𝑗 are positive
semi-definite diagonal matrices for all 𝑗 and W is positive
semi-definite. Then,

min
F; tr(F)=1

𝑓([𝜆1(A), . . . , 𝜆𝑁 (A)]𝑇 ) (25)

can only be solved by matrices F that are diagonal.

Proof: Assume, for the purpose of contradiction, that
there exist a non-diagonal optimal solution Fopt. It can be
expressed as Fopt = D+B, where D is diagonal and B ∕= 0
has zero diagonal elements. Observe that

A = Λ1 +Λ2((D+B)⊗ I)Λ3

= Λ1 +Λ2(D⊗ I)Λ3︸ ︷︷ ︸
≜C, diagonal

+Λ2(B⊗ I)Λ3︸ ︷︷ ︸
zero diagonal

. (26)

Next, [28, Theorem 9.B.1] says that the eigenvalues of A
majorizes the vector with diagonal elements of A. Thus, the
eigenvalues of A majorizes the eigenvalues of C, which means
that

𝑓([𝜆1(A), . . . , 𝜆𝑁 (A)]𝑇 ) ≥ 𝑓([𝜆1(C), . . . , 𝜆𝑁 (C)]𝑇 ) (27)

with equality if and only if A = C. Hence, Fopt can be
replaced by D (with identical trace) that gives a lower function
value. This optimality contradiction means that the solution
must be diagonal.

APPENDIX B

Proof of Theorem 1: In the case 𝐵 < 𝑛𝑇 , every W can be
described by the singular value decomposition

W = V1

[
D
0

]
V2 (28)

for some diagonal D ∈ ℂ𝐵×𝐵 and unitary V1 ∈ ℂ𝑛𝑇×𝑛𝑇

and V2 ∈ ℂ
𝐵×𝐵 . By selecting

R = (V∗
1

[
0 0
0 A

]
V𝑇

1 ⊗ I) (29)

for some arbitrary A ∈ ℂ
𝑛𝑇−𝐵×𝑛𝑇−𝐵 that fulfills tr(A) =

𝑛𝑇 , we achieve

Φ = (W𝑇 ⊗ I)R(W𝑇 ⊗ I)𝐻

=
(
V𝑇

2 [D
𝑇 0]

[
0 0
0 A

] [
D∗

0

]
V∗

2 ⊗ I
)
= 0

(30)

which is the global maximum of the outer optimization in
(10) since Lemma 1 states that 𝐹a,b,c(Φ, 𝑥) increases with
decreasing tr(Φ). If 𝐵 < 𝑛𝑇 , we can thus achieve the global
maximum of 𝐹a,b,c(Φ, 𝑥) by worst-case selection of R for
any choice of W.

In the case 𝐵 ≥ 𝑛𝑇 , we first analyze the maximal function
value with respect to R for a given W. Then, we identify
the matrix W that gives the smallest maximized value. Let
the singular value decomposition of W be denoted W =
V1[D 0]V2, where D = diag(𝑑1, . . . , 𝑑𝑛𝑇 ) has elements
ordered with decreasing magnitude and V1 ∈ ℂ

𝑛𝑇×𝑛𝑇 ,
V2 ∈ ℂ𝐵×𝐵 are unitary matrices. Lemma 1 showed that
𝐹a,b,c(Φ, 𝑥) increases with decreasing tr(Φ), and thus we
want to maximize

tr(Φ) = tr
(
(W𝑇 ⊗ I)R(W𝑇 ⊗ I)𝐻

)
= tr

(
R̃(D∗D𝑇 ⊗ I)

) (31)
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where R̃ = (V𝑇
1 ⊗ I)R(V∗

1 ⊗ I) and we used Schur
determinant lemma [37]. According to [28, Theorem 20.A.4],
(31) is minimized when R̃ is diagonal and ordered such that
its smallest elements are multiplied with the largest elements
of D∗D𝑇⊗I, and vice versa. Thus, the remaining optimization
is

min
R; tr(R)=𝑛𝑇𝑛𝑅

𝑛𝑇∑
𝑗=1

∣𝑑𝑛𝑇−𝑗+1∣2
(

𝑛𝑅∑
𝑙=1

𝜆𝑙+(𝑗−1)𝑛𝑇
(R)

)
= 𝑛𝑇𝑛𝑅∣𝑑𝑛𝑇 ∣2

(32)

which is clearly minimized when all power of the correlation
matrix is in direction of the weakest ∣𝑑𝑗 ∣2. Finally, we want
to select the precoding matrix W that yields the best worst-
case performance, or in other words maximizes the worst-case
expression for tr(Φ) in (32). We observe that this precoding
matrix should fulfill that all diagonal elements 𝑑𝑗 have the
same magnitude; that is, D =

√
1/𝑛𝑇 I.

Proof of Theorem 2: For the jointly-correlated
model, the correlation matrix becomes R =
(U∗

𝑇 ⊗ U𝑅)diag(vec(Ω))(U∗
𝑇 ⊗ U𝑅)

𝐻 . For simplicity,
we will use the notation Λ ≜ diag(vec(Ω)). Suppose that
the solution to (12) is denoted Wopt and let its singular
value decomposition be Wopt = UΔV for some rectangular
diagonal matrix Δ and unitary matrices U, V. We will first
show that U = U𝑇 .

If we find a W that minimizes the integrand of 𝐹a,b,c(Φ, 𝑥)
in (5) for all 𝑥 and 𝜃, then we have reached the global
minimum of the function. Let A = I + (𝑥/ sin2(𝜃))Φ, then
the integrand becomes 1/ det(A) = 1/(

∏𝑚𝑛𝑅

𝑗=1 𝜆𝑗(A)), which
is a Schur-convex function with respect to the eigenvalues of
A since the partial derivative

∂

∂𝜆𝑙(A)

𝑚𝑛𝑅∏
𝑗=1

1

𝜆𝑗(A)
= − 1

𝜆𝑙(A)

𝑚𝑛𝑅∏
𝑗=1

1

𝜆𝑗(A)
(33)

satisfies Schur’s condition in (22) for Schur-convexity. Now,
we simplify the integrand as

1

det
(
I+ 𝑥

sin2(𝜃)
Φ
)

= det−1
(
I+

𝑥

sin2(𝜃)
(W𝑇

opt ⊗ I)(U∗
𝑇 ⊗U𝑅)Λ

× (U∗
𝑇 ⊗U𝑅)

𝐻(W𝑇
opt ⊗ I)𝐻

)
= det−1

(
I+

𝑥

sin2(𝜃)
Λ(U𝑇

𝑇U
∗Δ∗Δ𝑇U𝑇U∗

𝑇︸ ︷︷ ︸
=F

⊗ I)
)
,

(34)

where the second equality follows from the singular value
decomposition of Wopt and from using Schur’s determinant
lemma [37], det(I + BC) = det(I + CB). Since we have
shown that the expression in (34) is Schur-convex, we can
apply Lemma 2 on the last expression in (34) and conclude
that F needs to be diagonal in order for Wopt to be an optimal
solution. Since Δ is a rectangular diagonal matrix, ΔΔ𝐻 will
be diagonal, and therefore U𝐻

𝑇 U needs to be diagonal. Thus,
U = U𝑇Π, where the permutation matrix Π decides which
singular value of Δ that belongs to each of the eigenvectors
in U𝑇 .

Using the optimal precoder structure, each integral in (12)
can be expressed as∫ 𝑏𝑘

𝑎𝑘

𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)Φ
)=∫ 𝑏𝑘

𝑎𝑘

𝑛𝑅∏
𝑙=1

𝑚∏
𝑗=1

1

1+ 𝑥
sin2(𝜃)

𝜔𝑙,𝜋(𝑗)𝑝𝑗
𝑑𝜃,

(35)
where 𝜔𝑙,𝑗 is the (𝑙,𝑗)th element of Ω. The integral is a convex
function of each 𝑝𝑗 . At large 𝑥, we have∫ 𝑏𝑘

𝑎𝑘

𝑛𝑅∏
𝑙=1

𝑚∏
𝑗=1

1

1 + 𝑥
sin2(𝜃)

𝜔𝑙,𝜋(𝑗)𝑝𝑗
𝑑𝜃

≈
𝑚∏
𝑗=1

1

𝑝𝑛𝑅

𝑗

⎛⎝𝑛𝑅∏
𝑙=1

𝑚∏
𝑗=1

1

𝜔𝑙,𝜋(𝑗)

⎞⎠∫ 𝑏𝑘

𝑎𝑘

(
sin2(𝜃)

𝑥

)𝑚𝑛𝑅

𝑑𝜃.

(36)

The second factor is minimized by a permutation matrix that
orders the columns of Ω with decreasing element product.
Since 1/(

∏
𝑗 𝑝

𝑛𝑅

𝑗 ) is a Schur-convex function, it is minimized
by equal power allocation [29, Theorem 2.21]. Thus, each term
of 𝐹a,b,c(Φ, 𝑥) is minimized by the same power allocation and
permutation matrix and we have reached the global minimum.

To prove the behavior at small 𝑥, observe that
minW; ∥W∥2=1 𝐹a,b,c(Φ, 𝑥) = minW; ∥W∥2=𝑥 𝐹a,b,c(Φ, 1).
Now, suppose that 𝜋(𝑗) = 𝑗 for 𝑗 ≤ �̃�. Let the power
allocation be parameterized as 𝑝𝑗 = 𝛽𝑗(𝑥− 𝑡) for 𝑗 ≤ �̃� and
𝑝𝑗 = 𝛼𝑗𝑡 for 𝑗 > �̃�, where 𝛼𝑗 ≥ 0 and 𝛽𝑗 ≥ 0 are arbitrary
coefficients that fulfill

∑
𝑗>�̃� 𝛼𝑗 = 1 and

∑
𝑗≤�̃� 𝛽𝑗 = 1,

respectively. It is straightforward to show that 𝐹a,b,c(Φ, 1)
is convex with respect to 𝑡. Hence, in order to show that
𝑡 = 0 (i.e., selective power allocation to strongest direction,
with multiplicity) minimizes the SER for small values on 𝑥,
it is sufficient to show that (∂/∂𝑡)𝐹a,b,c(Φ, 1) > 0 at 𝑡 = 0
for such 𝑥. Recall from the proof of Lemma 1 that we can
interchange differentiation and integration. Define

𝑔𝑙,𝑗(𝑝) ≜
1

1 +
𝜔𝑙,𝑗𝑝
sin2(𝜃)

. (37)

Using the parametrization in 𝑡, the derivative of (41) at 𝑡 = 0
is

∂

∂𝑡

∫ 𝑏𝑘

𝑎𝑘

𝑛𝑅∏
𝑙=1

⎛⎝ �̃�∏
𝑗=1

𝑔𝑙,𝑗 (𝛽𝑗(𝑥− 𝑡))
𝑚∏

𝑗=�̃�+1

𝑔𝑙,𝜋(𝑗)(𝛼𝑗𝑡)

⎞⎠ 𝑑𝜃
∣∣
𝑡=0

=

𝑛𝑅∑
𝑙=1

∫ 𝑏𝑘

𝑎𝑘

⎛⎝ �̃�∑
�̃�=1

𝛽�̃�𝜔�̃�,�̃�𝑔�̃�,�̃�(𝛽�̃�𝑥)

sin2(𝜃)
−

𝑚∑
�̃�=�̃�+1

𝛼�̃�𝜔�̃�,𝜋(�̃�)

sin2(𝜃)

⎞⎠
×

𝑛𝑅∏
𝑙=1

�̃�∏
𝑗=1

𝑔𝑙,𝑗(𝛽𝑗𝑥)𝑑𝜃

≥
𝑛𝑅∑
𝑙=1

∫ 𝑏𝑘

𝑎𝑘

(∑�̃�
�̃�=1 𝛽�̃�𝜔�̃�,�̃�𝑔�̃�,�̃�(𝛽�̃�𝑥)− 𝜔�̃�,�̃�+1

sin2(𝜃)

)

×
𝑛𝑅∏
𝑙=1

�̃�∏
𝑗=1

𝑔𝑙,𝑗(𝛽𝑗𝑥)𝑑𝜃,

(38)

where the inequality follows from selecting 𝛼�̃�+1 = 1 and
𝛼𝑗 = 0 for 𝑗 > �̃� + 1 (i.e., placing all power in 𝑡 on the
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column among 𝑗 = �̃� + 1, . . . , 𝑛𝑇 that maximizes
∑

𝑙 𝜔𝑙,𝑗).
At 𝑥 = 0, the derivative is strictly positive for all 𝛽1, . . . , 𝛽�̃�
and since it is a continuous function, it will remain positive
for a certain interval of small values on 𝑥. In other words,
each sum component of 𝐹a,b,c(Φ, 𝑥) will increase with 𝑡 for
small 𝑥 and thus the function is minimized by 𝑡 = 0.

Finally, under the Kronecker model it holds for 𝑗1 < 𝑗2
that 𝜔𝑙,𝑗1 ≥ 𝜔𝑙,𝑗2 for all 𝑙. Hence, each integral in (41) is
minimized when Π = I. In addition, if two columns in Ω have
an identical element sum, then the columns will be identical.
Thus, Lemma 1 gives equal power allocation among them.

Proof of Theorem 4: First, we consider the Schur-convexity
properties with respect to �̄�1,𝑗, . . . , �̄�𝑛𝑅,𝑗 for a given 𝑗. Using
[6, Lemma 2] and that 𝐹a,b,c(Φ, 𝑥) is continuous and twice
continuously differentiable, we know that partial derivatives
of the optimization problem in (12) can be calculated by eval-
uating the derivative of 𝐹a,b,c(Φ, 𝑥) at the optimal solution.
Thus, we have

∂

∂�̄�𝑙,𝜋(𝑗)
min

W∈ℂ𝑛𝑇 ×𝐵 ; ∥W∥2=1
𝐹a,b,c(Φ, 𝑥)

= −
𝑛∑

𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

1

det
(
I+ 𝑥

sin2(𝜃)Φ
) 𝑥

sin2(𝜃)𝜇𝜋(𝑗)

1 + 𝑥
sin2(𝜃)

�̄�𝑙,𝜋(𝑗)𝜇𝜋(𝑗)
𝑑𝜃

(39)

for 𝑗 = 1, . . . ,𝑚, which is negative and only contains �̄�𝑙,𝜋(𝑗)

in a denominator (and within the determinant). Hence, the
derivative is smaller for �̄�𝑙2,𝜋(𝑗) than for �̄�𝑙1,𝜋(𝑗) if �̄�𝑙1,𝜋(𝑗) ≥
�̄�𝑙2,𝜋(𝑗). Recall from (22) that a function is Schur-convex with
respect to �̄�1,𝜋(𝑗), . . . , �̄�𝑛𝑅,𝜋(𝑗) if �̄�𝑙1,𝜋(𝑗) ≥ �̄�𝑙2,𝜋(𝑗) implies
that the corresponding function derivatives satisfies the same
inequality. Thus, 𝐹a,b,c(Φ, 𝑥) is Schur-convex.

At large 𝑥, equal power allocation is the optimal precoding
strategy and each integral in 𝐹a,b,c(Φ, 𝑥) can be approximated
according to (36) as∫ 𝑏𝑘

𝑎𝑘

𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)Φ
)

≈ 𝑚𝑛𝑅𝑚

⎛⎝𝑛𝑅∏
𝑙=1

𝑚∏
𝑗=1

1

�̄�𝑙,𝜋(𝑗)

⎞⎠⎛⎝ 𝑚∏
𝑗=1

1

𝜇𝑛𝑅

𝜋(𝑗)

⎞⎠∫ 𝑏𝑘

𝑎𝑘

sin2𝑚𝑛𝑅(𝜃)

𝑥𝑚𝑛𝑅
𝑑𝜃.

(40)

This is a Schur-convex function with respect to
𝜇𝜋(1), . . . , 𝜇𝜋(𝑚) [28, Theorem 3.A.4].

At small 𝑥, all power is allocated in the direction with
the largest 𝜇𝑗 . In general, this direction is distinct and each
integral in 𝐹a,b,c(Φ, 𝑥) can be expressed as∫ 𝑏𝑘

𝑎𝑘

𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)
Φ
) =

∫ 𝑏𝑘

𝑎𝑘

𝑛𝑅∏
𝑙=1

1

1 + 𝑥
sin2(𝜃) �̄�𝑙,1𝜇1

𝑑𝜃.

(41)
This is a decreasing function with respect to 𝜇1 and indepen-
dent of all other 𝜇𝑗 . Thus, it is a Schur-concave function with
respect to the ordered vector with 𝜇1, . . . , 𝜇𝑛𝑇 .

Finally, under the Kronecker model, observe that �̄�𝑙,1 =
. . . = �̄�𝑙,𝑛𝑇 for all 𝑙. Since Ω = 𝝀𝑅𝝀

𝑇
𝑇 , this implies that 𝝀𝑅

and [�̄�1,𝑗 , . . . , �̄�𝑛𝑅,𝑗 ]
𝑇 are identical (up to a scaling factor) and

it is straightforward to show that the function is also Schur-
convex with respect to 𝝀𝑅. In the same way, we conclude that

𝝀𝑇 and 𝜇1, . . . , 𝜇𝑛𝑇 are identical (up to a scaling factor) and
share the same Schur-convexity properties.

Proof of Theorem 5: The proof uses the same type of
parametrization as in the ”small 𝑥”-part of the proof of
Theorem 2. First, we make sure that the eigendirection with
the largest column sum in Ω (or one of them) is among the
active directions by selecting 𝜋(1) = 1. We parameterize
as 𝑝1 = 𝑥 − 𝑡 and 𝑝𝑗 = 𝛼𝑗𝑡 for 𝑗 > 1, where 𝛼𝑗 ≥ 0
are arbitrary coefficients that fulfill

∑
𝑗>1 𝛼𝑗 = 1. The

function 𝐹a,b,c(Φ, 𝑥) is convex with respect to 𝑡 and thus a
necessary and sufficient condition for beamforming optimality
is ∂

∂𝑡𝐹a,b,c(Φ, 𝑥)∣𝑡=0 ≥ 0. Similar to (38), straightforward
differentiation of 𝐹a,b,c(Φ, 𝑥) with respect to 𝑡 yields

𝑛∑
𝑘=1

𝑐𝑘
𝜋

∫ 𝑏𝑘

𝑎𝑘

⎛⎝ 𝑛𝑅∑
𝑙=1

𝜔𝑙,𝜋(1)

sin2(𝜃) + 𝑥𝜔𝑙,𝜋(1)

−
𝑚∑
𝑗=2

𝛼𝑗𝜔𝑙,𝜋(𝑗)

sin2(𝜃)

⎞⎠
× 𝑑𝜃

det
(
I+ 𝑥

sin2(𝜃)
A
) ≥ 0.

(42)

This condition needs to be fulfilled for any set of 𝛼𝑗 .
Therefore, the expression in (18) is achieved by replac-
ing

∑𝑚
𝑗=2(𝛼𝑗𝜔𝑙,𝜋(𝑗))/ sin

2(𝜃) by its maximum, achieved by
𝜋(2) = 2, 𝛼2 = 1 and 𝛼𝑗 = 0 for 𝑗 > 2. Finally, consider the
initial assumption that 𝜋(1) = 1. If this is not case, then the
second sum within the integral in (42) is larger than the first
sum and the beamforming optimality condition can never be
fulfilled.
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