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FRAMEWORK FOR MASSIVELY PARALLEL ADAPTIVE FINITE
ELEMENT CFD ON TETRAHEDRAL MESHES

NICLAS JANSSON† , JOHAN HOFFMAN‡ , AND JOHAN JANSSON§

Abstract. In this paper we describe a general adaptive finite element framework for unstruc-
tured tetrahedral meshes without hanging nodes suitable for large scale parallel computations. Our
framework is designed to scale linearly to several thousands of processors, using fully distributed
and efficient algorithms. The key components of our implementation, local mesh refinement and
load balancing algorithms are described in detail. Finally, we present a theoretical and experimental
performance study of our framework, used in a large scale Computational Fluid Dynamics (CFD)
computation, and we compare scaling and complexity of different algorithms on different massively
parallel architectures.
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1. Introduction. Adaptive mesh refinement methods are effective techniques
used for reducing computational cost of a finite element based solver. By using error
indicators, an adaptive solver can add more elements in regions of interest, for instance
where the local error is large. Hence, locally enhance the resolution of a solution, with
minimal extra computational cost. However, for most computationally demanding
large scale problems, these reductions are often not enough, and they are still too
computationally expensive for ordinary computers.

By utilizing parallel computing one could gain access to the large amounts of
memory and processors demanded by for example complex flow problems. Despite all
the work in the field of adaptive finite element methods most of this work could not
easily be applied in the parallel setting, mostly due to the distributed memory model
required by most larger message passing parallel computers.

As mentioned, the main obstacle towards an adaptive parallel finite element solver
is the distributed memory model, which adds additional constraints on both solver and
mesh refinement methods. This paper addresses the problem of adaptive refinement
of unstructured tetrahedral meshes without hanging nodes. Most state-of-the-art
finite element packages with support for parallel processing, bypass this problem by
distributing the entire mesh to all processors, assigning parts of the mesh to each
processor [18, 2]. This lowers computational time, but not memory requirement.

In this paper, we present a fully distributed adaptive solver framework were all
components, assembly, error estimation, refinement and load balancing scalable to
thousands of processors in parallel with fully distributed data. We here describe an
open source implementation DOLFIN [20]. To our knowledge this is one of the few
unstructured finite element solvers which has this, regarding open source solvers we
believe it is the first.

The remainder of this paper is organized as follows. First we give an overview
of our solver (section 2), the basic components and the parallelization strategy. In
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section 3 we describe error estimation, in section 4 we give some background on local
mesh refinement and the challenge with parallel implementations. We present two
methods which we use in our solver and compare them to related work. In section 5
we describe the solver’s load balancing framework. Finally, in section 6 we present a
theoretical and experimental performance analysis of our solver.

2. Solver. The adaptive flow solver is based on a General Galerkin (G2) finite
element method [15]. It consists of four major components, the main Navier-Stokes
equations solver, the dual Navier-Stokes equations (on the same mesh) solver, error
estimation and finally mesh refinement. This loop is repeated until some convergence
criterion is satisfied.

Primal solver

Dual solver

Error estimator

Mesh refinement

Fig. 2.1. Overview of our adaptive framework.

2.1. Error estimation. Adaptivity is here based on a posteriori error estima-
tion, where we always refine a subset of the largest indicators. Since we work with a
fully distributed solver we have to choose these indicators from a global perspective.
Due to the large problem sizes for which we are aiming, gathering all error indicators
on each processor is not an option. Instead we present two different methods, one
parallel merge routine and one interval halving method.

2.2. Mesh adaption. The solver’s mesh adaption routines can be based on
different local mesh refinement methods. These methods enhance the mesh resolution
locally from the given error indicators. In the parallel setting there is an additional
problem not present in the serial case. As the mesh is refined, new vertices are added
arbitrarily at any processor. Hence the work distribution changes over time, rendering
an initially good load balance useless.

Therefore in order to sustain a good parallel efficiency the mesh must be reparti-
tioned and redistributed after each refinement. In other words dynamic load balancing
is needed. In the worst case, the load balancing routine must be invoked every time
a mesh is adapted, it has to be rather efficient, and for our aim, scale well for a large
number of processors.

2.3. Implementation. This work is implemented as a parallel version of the
incompressible flow solver in Unicorn [13, 14], which is based on the finite element
library DOLFIN [19, 20]. At the time of this work, DOLFIN was not fully parallelized.
We created a parallel branch based on initial work described in [17].

This version is a fully parallel variant of DOLFIN, where everything in the pre-
processing, assembly and post-processing chain is parallelized. For efficiency the par-



MASSIVELY PARALLEL ADAPTIVE FINITE ELEMENT CFD 3

allelization utilizes a fully distributed mesh, where each processor only stores a small
portion of the entire mesh, which reduces memory footprint and allows efficient usage
of thousands of processors, each with a small amount of local memory. The overlap
is stored as ghosted entities on each processor, and a unique global numbering glues
the smaller meshes together into a consistent global mesh. Parallel matrix/vector
representation and linear solvers are handled through PETSc [1]. This experimental
version has also proven to scale well for a wide range of processors.

3. Error estimation. We here present two different strategies for selecting er-
ror indicators for refinement. The first method selects a percentage of the largest
indicators, while the other method selects indicators such that the sum of the selected
indicators reduce the estimated error by a given percentage.

Parallelization of the first method is more or less straightforward. Clearly it is
trivial to gather all indicators onto all processors, select the local indicators which
corresponds to the given percentage of the global indicators. However, as mentioned
before, for larger problem sizes this is not an option due to memory constraints.

To reduce the memory footprint we use a parallel merge routine. Each processor
stores the defined largest percentage from the local indicators, then communicates
these with all other processors, and for each received set of indicators, merges these
indicators with the local ones. In the end all processors will have a list of indicators
that are valid from a global perspective. Let L be a sorted list of local error indicators
e on the processor, Nc be the number of cells on the processors, p the given percentage
and P the number of processors, then the algorithm can be expressed as in Algorithm
1.

Algorithm 1: Method 1

S = {ei ∈ L | i ≥ (1− p)Nc}
for i = 1 to P − 1 do

src← (rank − i+ P ) mod P
dest← (rank + i) mod P
Send S to dest
Receive cells from src
Sglobal ← merge(received,Sglobal)

end

For the second method, the problem lies in selecting a subset of indicators whose
sum is a given percentage of the total sum. Since the summation has to be done
globally, the parallelization involves a bit more work.

One solution to this problem is interval halving, first compute a local sum of a
subset of the largest local indicators. Then compute the global sum and compare it
against the target value. The interval halving enters as a threshold value, for which
each processor computes the local sum of all indicators which are larger. If the global
summation does not reach the given target value, the threshold value is changed,
and the process is repeated until convergence. Let P, p be as before, e be all error
indicators (globally), el, eg local and global sums of indicators respectively, t be the
global threshold value and c a global cutoff value, then the algorithm can be expressed
as in Algorithm 2.

4. Local mesh refinement. Local mesh refinement has been studied by several
authors over the past years. The general idea is to split an element into a set of
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Algorithm 2: Method 2

t← p
∑

e
maxe = max(e)
mine = min(e)
while |eg − t| > ε do

c← (maxe +mine)) /2
el ←

∑
ei≥c ei

eg ← Allreduce(el)
if eg > t then

mine = c
else

maxe = c
end

end

new ones in order to improve the solution in that region. For most finite element
formulations, mesh refinement has a constraint that the produced mesh must be valid.
A mesh is considered valid if there are no “hanging nodes”, that is no node should
be on another element’s facet. How elements should be split in order to ensure this
differs between different methods. Often one uses some kind of edge bisection scheme.

A common edge bisection algorithm bisects all edges in the element, introducing a
new vertex on each edge, and connecting them together to form the new elements (see
for example [4]). Other methods focus only on bisecting one of the edges, which edge
depends on the method. For example one could select the edge opposite to its newest
vertex, this method is often referred to as the newest vertex approach, described
in [3]. Another popular edge bisection method is the longest edge [22], where one
always selects the longest edge for refinement. In order to ensure that the mesh is
free of “hanging nodes”, the algorithm recursively bisects elements until there are no
“hanging nodes” left.

4.1. The challenge of parallel mesh refinement. Performing the refinement
in parallel adds additional constraints on the refinement method. Not only should the
method prevent “hanging nodes”, it must also be guaranteed to terminate in a finite
number of steps.

In the parallel setting, each processor has a small part of the distributed mesh
in the local memory. If a new vertex is introduced on the shared boundary between
processors, the algorithm must ensure that the information propagates onto all the
neighboring processors.

For an algorithm that bisects all edges in an element, the problem reduces after
a propagation step to a global decision problem, deciding which of the processor’s
information should be used on all the other processors. For an algorithm that propa-
gates the refinement (several times) like the longest edge, the problem becomes a set
of synchronization problems: i) to detect and handle refinement propagation between
different processors and ii) to detect global termination.

The first synchronization problem could be solved by dividing the refinement into
two different phases, one local refinement phase and one global propagation phase.
In the first phase, elements on the processor are refined with an ordinary serial local
refinement method. This could create non conforming elements on the boundary
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between processors. These are fixed by propagating the refinement to the neighboring
processors in the second propagation phase. The next local refinement phase could
create a non conforming element, and another propagation phase is needed with the
possibility of another and so forth. However, if the longest edge algorithm is used,
termination is guaranteed [6]. But the problem is to detect when all these local
meshes are conforming, and also when they are conforming at the same time. That
means, one has to detect global termination, which is a rather difficult problem to
solve efficiently, especially for massively parallel systems for which we are aiming.

There has been some other work related to parallel refinement with edge bisec-
tion. For example a parallel newest vertex algorithm was presented by Zhang [5].
Since the algorithm does not need to solve the termination detection problem, scaling
is simply a question of interconnect latency. Another work is the parallel longest
edge algorithm done by Castaños and Savage [6]. They solve the termination detec-
tion problem with Dijkstra’s general distributed termination algorithm, which simply
detects termination by counting messages sent and received from some controlling pro-
cessor. However, in both of these methods only a fairly small number of processors
is used, less than one hundred, so it is difficult to estimate how efficient and scalable
these algorithms are. For more processors, communication cost and concurrency of
communication patterns start to become important factors. Our aim is to design an
algorithm that scales well for thousands of processors.

4.2. A modified longest edge bisection algorithm. Instead of trying to
solve the termination detection problem, one could try to modify the refinement al-
gorithm in such a way that it would only require one synchronization step, thus less
communication. With less communication overhead it should also scale better for a
large number of processors.

1. 2. 3.

Fig. 4.1. An example of the refinement algorithm used. First a set of elements are marked
for refinement (1). The longest edges are found (2), and all elements connected to these edges are
finally bisected, the dashed lines in (3).

One simplification that can be made to the longest edge algorithm is that instead
of recursively fixing “hanging nodes”, elements could instead be bisected in pairs (or
groups) (see Figure 4.1). With this modification, the algorithm would always termi-
nate the refinement by bisecting all elements connected to the refined edge, it will
never leave any non conforming elements, hence if the longest edge is shared by dif-
ferent processors, the algorithm must only propagate the refinement onto all elements
(processor) connected to that edge, but then no further propagation is possible (see
Figure 4.2). This makes the modified algorithm a perfect candidate for an efficient
parallel algorithm, we here refer to this algorithm as simple bisection.

However, notifying an adjacent processor of propagation does not solve the prob-
lem entirely. As mentioned in section 2, all mesh entities shared by several processors
must have the same global number in order to correctly represent the distributed mesh.
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Cpu 0 Cpu 0

Cpu 1 Cpu 1Cpu 2 Cpu 2Propagation

Fig. 4.2. An example of the two simple cases of a propagation. Shading refers to elements
marked for refinement, dashed lines show how a processor want to bisect an element and dash dotted
lines refers to the mesh partitioning.

The refinement process must therefore guarantee that all newly created vertices are
assigned the same unique number on all the neighboring processors. Another problem-
atic case arises when processors refine the same edge and the propagation “collides”
(see Figure 4.2). In this case the propagation is done implicitly but the processors
must decide which of the new numbers to use.

A more complicated case is when an element receives multiple propagations (pos-
sibly from different processors) on different edges (see Figure 4.3). Since the modified
longest edge algorithm only allows one edge to be bisected per element, one of the
propagations must be selected and the other one rejected. This however adds a dif-
ficulty to the simple algorithm. First of all, how should the processors decide upon
which edge to refine? Clearly this can not be done arbitrarily since when a propaga-
tion is forbidden, all refinement done around that edge must be removed. Thus, in
the worst case it could destroy the entire refinement.

Cpu 0

Cpu 1 Cpu 2

Fig. 4.3. An example of the problematic case with multiple propagations. Shading refers to
elements marked for refinement, dashed lines show how a processor want to bisect an element and
dash dotted lines refers to the mesh partitioning.

To solve the edge selection problem perfectly one needs an algorithm with a global
view of the mesh. In two dimensions with a triangular mesh, the problem could be
solved rather simply since each propagation could only come from two different edges
(one edge is always facing the interior). By exchanging the desired propagation edges,
processors could match theirs selected edges with the propagated ones, in an attempt
to minimize the number of forbidden propagations. However, in three dimensions the
problem starts to be so complicated that multiple exchange steps are needed in order
to solve the problem. Hence, it becomes too expensive to solve.

Instead we propose an algorithm which solves the problem using an edge voting
scheme. Each processor refines the boundary elements, finds their longest edge and
cast a vote for it. These votes are then exchanged between processors, which add
the received votes to their own set of votes. Now the refinement process restarts,
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but instead of using the longest edge criteria, edges are selected depending on the
maximum numbers of votes. In the case of a tie, the edge is selected depending on a
random number assigned to all votes.

Once a set of edges has been selected from the voting phase the actual propagation
starts by exchanging these with the other processors. However, the voting could fail to
“pair” refinements together. For example, an element could lie between two processors
which otherwise does not share any common face. Each of these processors wants to
propagate into the neighboring element but on different edges (see Figure 4.4). Since
the processors on the left and right side of the element do not receive the edge vote
from each other, the exchange of votes will in this case not help with selecting an edge
that would work for both processors.

Cpu 0

Cpu 1 Cpu 2

Fig. 4.4. An example of the case when edge votes could be missed. Shading refers to elements
marked for refinement, dashed lines show how a processor want to bisect an element and dash dotted
lines refers to the mesh partitioning.

To fix this, an additional exchange step is needed and maybe another and so forth,
rendering the perfect fix impossible. Instead, the propagation step ends by exchanging
the refined edges which gave rise to a forbidden propagation. All processors could then
remove all refinements that these edges introduced, and in the process, remove any
hanging nodes on the boundary between processors.

Let B be the shared boundary between processors in our mesh T . For a set R of
elements c marked for refinement, the algorithm can be expressed as in Algorithm 7
(see Appendix).

4.3. Parallel recursive longest edge bisection. A major drawback of the
simple edge bisection algorithm is the poor mesh quality (see Figure 4.5), most notably
after several refinements due to the illegal propagation issues. Since the core of an
adaptive CFD solver is the repeated use of mesh refinement to improve the solution,
poor mesh quality is a severe problem. One solution is to use local edge/face swaps
[7]; but this introduces new problems in the parallel setting. In order to cope with
this quality problem, our framework also contains a parallel implementation of the
longest edge algorithm, which is known to produce good quality refinements.

We follow the work by Castaños and Savage [6] and use a pure recursive longest
edge algorithm, decomposed into a serial refinement phase and a parallel propagation
phase. As discussed before, the main problem with this approach is to efficiently
solve the termination detection problem. Since we aim for algorithms that scale well
for thousands of processors, we design a new termination detection method without
centralized control.

Our solution is to include termination detection in the propagation step. This can
be realized if one uses a collective all-to-all exchange algorithm, since each processor
would then receive data from all the other processors, hence if it doesn’t receive
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(a) Simple edge bisection (b) Recursive longest edge

Fig. 4.5. A comparison between mesh quality for the two different refinement methods.

any propagations, the refinement has terminated. However, all-to-all communication
could have a high communication cost O(P − 1), which scales acceptably well if it is
done once, but it is not suitable for a recursive algorithm were each recursion ends
with an exchange step.

To realize the distributed termination detection on a massively parallel computer
the communication pattern must be highly concurrent and memory efficient. The
all-to-all approach with O(P − 1) communication steps is very memory conservative
and concurrent enough, but for a large number of processors even the linear cost is
too expensive, and becomes the bottleneck for an efficient implementation.

However, since mesh refinement is a local problem, many processors will not bisect
any elements. Thus, they will not send any propagation information. Therefore, we
could route propagation information through all processors without consuming too
much memory. This could be realized with O(logP ) cost recursive doubling and
hypercube exchange type communication patterns, as in Algorithm 3.

Algorithm 3: Hypercube exchange

for i = 0 to logP − 1 do
dest ← rank ⊕ 2i

exchange propagation with dest
propagation ← merge(received, propagation)

end

Another problem to solve for the parallel longest edge refinement is the consis-
tency of mesh entities global numbers. For the simple edge bisection method, this
was a minor problem, since refinement only consisted of one bisection step, the only
problematic case were if two processors bisected elements around the same edge.

For the parallel recursive algorithm this problem becomes more problematic to
solve. Now each processor could have created a sequence of new vertices on the
shared edge. Each of these vertices needs an unique global number, which has to be
transmitted to the adjacent processors. This could of course be solved by expanding
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the recursion with a renumbering step, however this would not scale well.
We solve the consistency problem by always generating unique global numbers

(same on all processors) for each bisection. One way to generate these numbers would
be to use the already uniquely numbered partitioned, unrefined mesh. For an already
partitioned and distributed mesh, each edge e consists of two vertices (v1, v2), each
with a unique global number. Bisection only occurs around one edge, we could then
use the edge’s vertex numbers to generate a new unique number v3 as,

v3 = (v1 · C + v2) + maxv if v1 < v2
v3 = (v2 · C + v1) + maxv if v2 < v1

where maxv is the largest assigned number in the unrefined mesh and C is a large
constant. If the new numbers are unique, the next set of generated numbers (v′1, v′2)
will also be unique and so forth. Hence we do not need to explicitly take care of the
consistency problem during the recursive refinement.

Let R ∈ T be a set of elements marked for refinement. The parallel variant of
the recursive longest edge bisection can be expressed as in Algorithm 4

Algorithm 4: Parallel rivara recursive bisection

while R is not empty do
for each c ∈ R do

Bisect (c)
end
propagate refinement using Algorithm 3
add received refinements to R

end

5. Load balancing. There are mainly two different load balancing methods
used today, diffusive and remapping methods. Diffusive methods, like the physical
meaning, by finding a diffusion solution of a heavy loaded processor’s vertices would
move vertices to another processor and in that way smear out the imbalance, described
for example in [16, 24]. Remapping methods relies on the partitioner’s efficiency of
producing good partitions from an already partitioned dataset. In order to avoid
costly data movement, a remapping method tries to assign the new partitions to pro-
cessors in an optimal way. For problems where the imbalance occurs rather localized,
the remapping methods seems to perform better [25]. Hence, it fits perfectly to the
localized imbalance from local mesh refinement in an adaptive solver.

In this work, we used the load balancing framework of PLUM [21] a remapping
load balancer, modified to suite our finite element setting. The mesh is repartitioned
according to an imbalance model. Repartitioning is done before refinement, since
this would in theory minimize data movement and speedup refinement, since a more
balanced number of elements would be bisected on each processor.

5.1. Workload modelling. We model the workload by a weighted dual graph
of the finite element mesh. Let G = (V,E) be the dual graph of the mesh, q be one of
the partitions and let wi be the computational work (weights) assigned to each graph
vertex. The processor workload is then defined as

W (q) =
∑

∀wi∈q

wi (5.1)
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where communication costs are neglected. Let Wavg be the average workload and
Wmax be the maximum, then the graph is considered imbalanced if

Wmax/Wavg > κ (5.2)

where the threshold value κ is based on problem or machine characteristics.
One could argue that our workload model is too coarse grained since we neglect

the communication cost in the graph. However, since mesh refinement only occurs
once per adaptive iteration. We believe that the absence of transient refinement
reduces the importance of this metric.

5.1.1. Simple edge bisection. This workload model suits the modified longest
edge algorithm (section 4.2) perfectly. Since the simplifications reduces the algorithm
to only have one propagation and/or synchronization step. If we neglect off processor
propagation, a priori workload estimation becomes a local problem. Let each element
represent one unit of work, a dry run of the refinement algorithm would produce a
dual graph with vertex weights equal to one or two. Each element is only bisected
once, giving a computational weight of two elements for each refined element, see
figure 5.1.
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Fig. 5.1. An example of the workload weights, added to the dual graph prior to refinement with
the simple edge bisection algorithm.

5.1.2. Recursive longest edge. Estimating workload for the recursive longest
edge algorithm (section 4.3) involves a bit more work. Neglecting off processor propa-
gations for the modified algorithm does not change the refinement footprint by much
(since elements are only bisected once), for the recursive longest edge a refinement
could start in one processor and propagate into all the others, hence neglecting prop-
agation could reduce the a priori workload estimation. However, we believe that the
cost of modelling this outweights the possible gain of adding them to the model.

In order to estimate the refinement footprint without refining the mesh we use
the concept of longest edge propagation paths, LEPP [23]. A LEPP is the set of
elements we obtain if we follow the longest edge of an element until the next longest
edge is the same as the one we came from. In other words, the LEPP estimates the
refinement footprint produced by one element. If we follow the LEPP for each element
marked for refinement, increasing the dual graph weight for each element, we would
in theory get a good estimate of the workload after refinement since the combination
of all LEPPs produces almost the same refined mesh as the recursive algorithm, in
two dimensions they are identical [23].

In two dimensions LEPP workload estimation works well, a propagation path does
only increase with one element per longest edge. For higher dimensions, LEPP paths
can be propagations trees rooted in the element marked for refinement. When a LEPP
propagates through a longest edge the tree has to expand into all cells connected to
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that edge, thus after a couple of propagation the tree could have grown to such an
extent that workload becomes too costly to estimate. To bypass this problem we
terminate a path after a specified depth.

Algorithm 5: LEPP workload estimation

for each c ∈ T do
if c marked for refinement then

e← longest edge of c
for each c connected to e do

Propagate LEPP
end

end

end

5.2. Remapping strategies. Remapping of the new partitions can be done in
numerous ways, depending on what cost metric one tries to minimize. Usually one
often talks about the two metrics TotalV and MaxV. MaxV tries to minimize the
redistribution time by lowering the flow of data, while TotalV lower the redistri-
bution time by trying to keep the largest amount of data local, for a more detailed
description see [21]. We have chosen to focus on the TotalV metric, foremost since
it is much cheaper to solve than MaxV, also it produces equally good (or even better)
balanced partitions.

Independent of which metric one tries to solve, the result from the repartitioning
is placed in a similarity matrix S, where each entry Si,j is the number of vertices on
processor i which would be placed in the new partition j. In our case, we want to keep
the largest amount of data local, hence to keep the maximum row entry in S local.
This could be solved by transforming the matrix S into a bipartite graph where each
edge ei,j is weighted with Si,j , the problem then reduces to the maximally weighted
bipartite graph problem, which can be solved in an optimal way in O(V 2 logV +V E)
steps [21]. Since the vertices V in the graph are the processors, solving the graph
problem quickly becomes a major bottleneck. Since the solution does not need to be
optimal, a heuristic algorithm[21] with a runtime of O(E) is used.

The heuristic algorithm starts by generating a sorted list of the similarity matrix
S. It then steps through the list and selects the largest value which belongs to an
unassigned partition. Sorting was in the original PLUM paper performed with a serial
binary radix sort, gathering the similarity matrix onto one processor. Since the matrix
is of size P × P where P is the number of processors, sorting quickly becomes the
bottleneck on a massively parallel machine.

Instead of sorting the matrix in serial, we improved the heuristic algorithm, im-
plemented an efficient parallel binary radix sort, performing β passes and using 2r

“buckets” for counting. In order to save some memory the sorting was performed
per byte of the integer instead of the binary representation. Since each integer is
represented by 4 bytes (true even for most 64-bits architectures) the number of passes
required was β = 4. For unsorted data of lengthN , divided intoN/P parts distributed
across all processors, the algorithm could be expressed as,

6. Performance analysis.
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Algorithm 6: Parallel radix sort

for i = 0 to β do
for j = 0 to N do

count[i’th byte of data(j)] ← count[i’th byte of data(j)] + 1
end
count ← global reduction(count)
for j = 0 to 2r do

index(j) ← ParallelPrefix(count(j))
end
Redistribute elements according to index

end

6.1. Theoretical. To analyze the experimental result we used a performance
model which decompose the total runtime T into one serial computational cost Tcomp

and a communication cost Tcomm, hence T = Tcomp + Tcomm. In our model, focus
lies on refinement and load balancing algorithms and not assembly and linear algebra
back-ends, since these operations are handled by external libraries.

6.1.1. Simple edge bisection. The simple edge bisection algorithm has a local
computational costs consisting of iterating over and bisecting all elements marked for
refinement. For a mesh with Nc elements, this becomes O(Nc/P ). Communication
only occurs when boundary elements needs to be exchanged. Our implementation
uses an all-to-all communication pattern, hence each processor has to communicate
with P − 1 other processors. If we assume that there are Ns shared edges and each
edge is on average connected to c elements, the total runtime with communication
becomes:

T = O
(

Nc

P
c τf

)
+ (P − 1)O

(
τs +Nsτb

)
(6.1)

Where τf, τb and τs are the time required to perform a flop, transmit data and the
latency of the interconnect respectively. Based on this performance model, more
processors would lower the computational time, but in the same time increase the
communication cost.

6.1.2. Recursive longest edge bisection. For the longest edge implementa-
tion we have a similar local computation cost, and a similar communication cost. The
main difference is that refinement occurs γ times, thus we need to perform α prop-
agation steps, transmitting Ng propagations each time and the hypercube exchange
communication needs only logP steps, hence.

T = O
(

Nc

P
γ d τf

)
+ α(logP )O (τs +Ngτb) (6.2)

where d is the average number of non conforming elements per recursion.
As before, more processors would lower the computational time, but increase

communication cost. But for this algorithm we have some extra parameters which
make it difficult to state a precise model. But the main difference between (6.1) and
(6.2) is the complexity of the communication P − 1 versus logP .
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Table 6.1

Theoretical speedup with respect to 32 nodes.

Simple edge Recursive Load Ideal
P bisection longest edge balancer speedup
32 1.00 1.00 1.00 1
64 1.96 1.99 0.99 2
128 3.64 3.97 0.98 4
256 5.64 7.82 0.95 8
512 5.89 14.92 0.88 16
1024 4.08 26.91 0.77 32

6.1.3. Load balancing. The most computationally expensive part of the load
balancer is the remapping of new partitions. As discussed earlier we used an heuristic
with a runtime of O(E), the number of edges in the bipartite graph, in the worst case,
E ≈ P 2. The sorting phase is linear, and due to the parallel implementation it runs
in O(P ), since the P 2 elements to be sorted are distributed across all P processors.

Communication time for the parallel prefix calculation is given by, for m data it
sends and calculates in m/P steps. Since the prefix consists of 2r elements, it would
take 2r/P step, and it is performed for each β sorting phase. In the worst case the
reordering (during sorting) needs to send away all the elements, thus P communication
steps, which gives the total runtime.

T = O(P 2τf) +O
(
βτs + β

(
2r

P
+ P

)
τb

)
(6.3)

where the O(P 2) is due to the O(E) heuristic, since this is the worst case a more
realistic average case should be O(P ). If not, these should be fairly easy to observe
in the experimental analysis if a large number of processors (128-256) are used.

Redistributing the elements is done with a communication pattern that groups
processors together as in an all-to-all operation, but with a data exchange performed
on a point-to-point basis (see Appendix, Algorithm 8). In the worst case each proces-
sors has to redistribute elements to P − 1 other processors, hence a run time of.

T = O
(

Nc

P
τf

)
+ (P − 1)O

(
τs +

Nc

P
τb

)
(6.4)

To conclude the analysis we present the theoretical speedup obtained from these
models. Machine specific parameters τf , τs and τb where choosen to match a Blue
Gene/L [12], the others were determined empirically. The result, presented in Table
6.1 is less then encouraging, but it should be noted that these results are worst case
scenarios, for the average case we except far better scalability.

6.2. Experimental. The adaptive solver described in this paper has success-
fully been tested on two completely different architectures. First the 1024 node Blue
Gene/L, Hebb at PDC/KTH. Secondly a regular 805 dual quad core node cluster,
Neolith at NSC/LiU.

Our experimental analysis of the solver’s performance has been divided into two
different parts. First we have tested smaller components with synthetic data, match-
ing different worst cases for the component. Secondly we have measured the perfor-
mance of the entire solver, solving flow past a circular cylinder on large unstructured
meshes.
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6.2.1. Mesh refinement. To measure performance of our mesh adaption rou-
tines we defined a set of cells to refine, and measured the total runtime for refinement
and load balancing. For this analysis we marked all cells inside a small region for re-
finement, foremost since this model the behavior of error indicators from a real solver
and secondly, if we define a large set of cells for refinement communication cost would
be less important since the local computation time will be dominant. A downside of
this method is that most of the processors would be idling during refinement, hence
we would gain less from additionally processors.

We used Hebb for our performance measurements, using a mesh with 25·106 cells.
The small mesh size was dictated by the small local memory capacity for each node,
and in order to have a mesh that would have a reasonable amount of local elements
for larger number of processors, we chose 32 nodes as our baseline.
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Fig. 6.1. Strong scaling result for refinement, including both mesh refinement and load balanc-
ing. The dashed line refers to ideal speedup.

As seen in Figure 6.1, the mesh refinement part of the solver scales well up until
the point were a majority of the processors don’t engage in any refinement activity.
The interesting part here is that both methods scale equally well, even if the recursive
rivara refinement routes propagation information through all nodes, and performs
several communication steps.

Our a priori workload estimation were measured by counting both maximum
and minimum number of cells per node after the refinement. As seen in Figure 6.2,
workload modelling together with our scratch and remap load balancer does a good
job distributing the workload. As mentioned in section 5.1, workload modelling for
the simple bisection is more or less exact while for the recursive rivara it is a rough
estimation. Therefore it is interesting that the experimental results indicates that our
estimation does a fairly good job (Figure 6.2(b)), and in some case even better than
the more exact workload modelling (compare with Figure 6.2(a)).

Furthermore, the results clearly shows that the communication cost in (6.1)-(6.4)
are less than the computational cost, hence the good scalability compared to the
theoretical results in Table 6.1. Also the assumption O(P 2) ≈ O(P ) in (6.3) seems to
be reasonable. Otherwise the speedup would have been much less, or even negative
as observed in the theoretical results.

6.2.2. Solver. The entire CFD solver was tested on both Hebb and Neolith,
solving a flow problem with the largest possible unstructured mesh that we could fit
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(a) Simple bisection
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(b) Rivara bisection

Fig. 6.2. Number of cells per processor after load balancing.

into 32 nodes. For Hebb the entire solver could solve a problem with 6 ·106 cells, while
the bigger memory capacity of Neolith allowed us to use a mesh with 50 · 106 cells.
We measured the time to assemble the momentum matrix and how long it takes to
compute a full time step. Here we neglect the refinement since most of the time in our
solver is spent on solving the primal and dual problems. Often the refinement cost
around 1−10 flow solution time steps, which is negligible compare to the primal/dual
solvers thousands of time steps.
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Fig. 6.3. Strong scaling result for matrix assembly, three dimensional momentum equation.
The dashed line refers to ideal speedup.

As seen in Figure 6.3, assembly performance drops fairly quickly. When the
number of processors becomes large, the communication cost seems to dominate, and
the initial almost linear scaling suffer. It should be noted that 85− 90% of all matrix
entries are local in the computation, and care has been taken to reorder the MPI
communicator in such way that it maps to the different network topologies provided
by the different architectures.

In the solver, each time step is computed by a fixed point iteration which assem-
bles and solves the coupled continuity and momentum equation, for a more detailed
description see [15]. Initially, each time step involves several fixed point iterations,
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but after a short startup phase, each time step converges in only one iteration.
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Fig. 6.4. Strong scaling result for entire solver, measuring the entire fixed point iteration in
the flow solver. The dashed line refers to ideal speedup.

As seen in Figure 6.4, the solver performs fairly good for larger problem sizes
on Neolith, while the smaller problem shows decent scaling on Hebb. Furthermore,
the decent scaling shows that matrix assembly is not the main bottleneck for larger
problems. In our case it seems to be the linear solvers, more specifically solving the
continuity system.

An interesting observation that can be made in Figure 6.4 is the super linear scal-
ing. From theory we known that this can only be observed if a suboptimal execution
time is used as the baseline. However, this is only true if one solves the exact same
problem for all number of processors. In our case, due to a communication optimiza-
tion routine we reorder the matrix entries, so we do not solve the exact same problem
in each run.

Another interesting observation we made during our performance evaluation was
the impact of different preconditioners for the overall execution time. During our
experiments we used two different preconditioner. First the most simple, and default
preconditioner in PETSc block Jacobi, where each sub block is solved with ILU(0).
Secondly we tested with the parallel algebraic multigrid solver BoomerAMG from
Hypre [10]

As seen in Figure 6.5 there is a major impact on scaling when different precondi-
tioners are used. Interestingly, Hypre scales better than bjacobi for a small number
of processors. However, for a large number of processors bjacobi scales better, which
is strange since BoomerAMG has previously shown to excelent weak scaling for thou-
sand of processors [9, 11]. Speedup results do not give any information of the overall
execution time, hence a slow preconditioner can scale well, we also present actually
execution time. As seen in Figure 6.6, Hypre has far better execution time up until
128-256 processors. After that, Hyper’s performance appear to suddenly drop, and
the entire solver’s speedup becomes negative.

It should be noted that during these experiments we did not have a large enough
time allocation on Neolith to tune all of Hypre’s parameters. Hence, all reported
results are with the default parameters provided by PETSc.

7. Summary. We have presented an efficient general adaptive FEM framework
for parallel computation on unstructured meshes, with fully distributed algorithms
for assembly, error estimation, mesh adaption and load balancing.
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Fig. 6.5. Comparison of the solvers scaling when using two different preconditioners.
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Fig. 6.6. Comparison of the execution time for one time step using different preconditioners.

Our framework has shown to perform well, with strong linear scaling up to one
thousand processors for an incompressible flow solver. Furthermore, we have improved
an earlier parallelization strategy for the recursive longest edge bisection and key parts
of an intelligent remapping load balancing framework. With these improvements we
also obtained strong linear scaling for our mesh adaption routines up to one thousand
processors, allowing us to perform adaptive large eddy simulation simulations of in-
dustrial flow problems for realistic geometries [8]. We have thus shown that a general
FEM framework can be parallelized efficiently for unstructured meshes.
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Appendix.

Algorithm 7: Parallel refinement of shared entities

for each c ∈ B ∪R do
find longest edge e
if e �= ∅ and e is on the boundary then

vote(e) ← vote(e) + 1
end

end
Exchange votes between processors, mark c ∈ B with maximum number of
edge votes for refinement
for each c ∈ B do

mark e with maxe∈c (vote(e)) for refinement
end
Exchange refinement between processors
for each received refinement do

if e is not refined and not part of a refined element then
mark edge and propagate refinement

else
send back illegal propagation

end

end
for each received illegal propagation do

remove refinements and hanging nodes
end

Algorithm 8: All-to-all like exchange

for j = 1 to P − 1 do
src← (rank − i+ P ) mod P
dest← (rank + i) mod P
sendrecv(send buffer(dest) to dest and recv from src)

end
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