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Abstract

This thesis consist of an introduction and four research papers concerning
numerical analysis for a certain class of free boundary problems.

Paper I is devoted to the numerical analysis of the so-called two-phase
membrane problem. Projected Gauss-Seidel method is constructed. We prove
general convergence of the algorithm as well as obtain the error estimate for
the finite difference scheme.

In Paper II we have improved known results on the error estimates for a
Classical Obstacle (One-Phase) Problem with a finite difference scheme.

Paper III deals with the parabolic version of the two-phase obstacle-like
problem. We introduce a certain variational form, which allows us to define
a notion of viscosity solution. The uniqueness of viscosity solution is proved,
and numerical nonlinear Gauss-Seidel method is constructed.

In the last paper, we study a numerical approximation for a class of sta-
tionary states for reaction-diffusion system with m densities having disjoint
support. The proof of convergence of the numerical method is given in some
particular cases. We also apply our numerical simulations for the spatial
segregation limit of diffusive Lotka-Volterra models in presence of high com-
petition and inhomogeneous Dirichlet boundary conditions.
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Sammanfattning

Denna avhandling består av en introduktion och fyra vetenskapliga artik-
lar inom numerisk analys för en viss klass av frirandsproblem.

Den första artikeln är en numerisk analys av det så kallade tvåfasprob-
lemet. Vi konstruerar en ickelinjär Gauss-Seidelmetod, visar generell konver-
gens av lösningsalgoritmen och ger en feluppskattning för finita differens-
schemat.

I den andra artikeln förbättrar vi kända resultat för feluppskattningar för
det klassiska enfas hinderproblemet med hjälp av ett finita differens-schema.

Den tredje artikeln behandlar en parabolisk version av tvåfas hinder-
problemet. En speciell variationsformulering introduceras vilket möjliggör att
definiera viskositetslösningar. Vi visar att problemet har en unik viskositet-
slösning och konstruerar en Gauss-Seidel lösningsmetod för problemet.

I sista artikeln studerar vi ett stationar problem (genom numeriska metoder)
for en reaction-diffusion system, med m olika tathet, med distinkta stodd. Vi
visar konvergens hos algoritmen visas i specifika fall, och tillampar metoden
i problemet med Lotka-Volterra modellen.
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Chapter 1

Introduction

1.1 Free Boundary Problems

Many problems in physics, industry, finance, biology, and other areas can be de-
scribed by partial differential equations that exhibit apriori unknown sets, such as
interfaces, moving boundaries, shocks, etc. The study of such sets, also known as
free boundaries, often occupies a central position in such problems. In this sec-
tion we give a brief introduction to the free boundary problems (FBPs). We start
with the Classical Obstacle Problem which has been widely studied starting form
60′s. In the second subsection we discuss the so-called Two-Phase Obstacle-Like
Problems that are arising in the different branches of physics.

The Classical Obstacle Problem

An obstacle problem arises when an elastic string is held fixed at two ends, A and
B, and passes over a smooth object which protrudes between the two ends (see
Figure 1.1). We do not know a priori the region of contact between the string and
the obstacle, only that either the string is in contact with the obstacle, in which case
its position is known, or it must satisfy an equation of motion, which, in this case,
says that it must be straight. Beyond this, the string must satisfy two constraints.
The first simply says that the string must lie above or on the obstacle, combined
with the equation of motion, the curvature of the string must be negative or zero.
Another interpretation of this is that the obstacle can never exert a negative force
on the string: it can push but not pull. The second constraint on the string is that
its slope must be continuous. This is obvious except at points where the string first
loses contact with the obstacle, and there it is justified by a local force balance: a
lateral force is needed to create a kink in the string, and there is none.

Under these constraints, the solution to the obstacle problem can be shown to
be unique. The string and its slope are continuous, but in general the curvature of
the string, and hence its second derivative, has discontinuities. Mathematically the
problem can be described as a minimization of the certain energy functional over

1



2 CHAPTER 1. INTRODUCTION

the set of admissible ”deformations”.
Suppose we are given a certain function ψ ∈ C2(D), known as the obstacle,

satisfying the compatibility condition ψ ≤ g on ∂D in the sense that (ψ − g)+ ∈
W 1,2

0 (D). Consider then the problem of minimizing the (Dirichlet) functional

J(u) =
∫
D

1
2 |∇u|

2dx,

over the constrained set

Kg,ψ = {u ∈W 1,2(D) : u− g ∈W 1,2
0 (D), u ≥ ψ a.e. in D}.

Since J is continuous and strictly convex on a convex subset Kg,ψ of the Hilbert
space W 1,2(D), it has a unique minimizer on Kg,ψ.

As before, we may think of the graph of u as a membrane (string) attached to a
fixed wire, which is now forced to stay above the graph of ψ. As mentioned above
the membrane (string) can actually touch the obstacle, i.e. the set

Λ = {u = ψ},

known as the coincidence set, may be nonempty. We also denote

Ω = D\Λ.

The boundary
Γ = ∂Λ ∩D = ∂Ω ∩D

is called the free boundary, as it is apriori unknown.

Figure 1.1: The classical obstacle problem: the string is held fixed at A and B.
Here P and Q are the free boundary points.
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The Two-Phase Obstacle-Like Problems

Given a bounded domain Ω ⊂ Rn, and g ∈ W 1,2(Ω). Assume λ± are nonnega-
tive bounded measurable functions in Ω. We consider the following minimization
problem: ∫

Ω

[
1
2 |∇u|

2 + λ+ max(u, 0) + λ−max(−u, 0)
]
dx, (1.1)

over the set
Kg = {u ∈W 1,2(Ω) : u− g ∈W 1,2

0 (Ω)}.

The Euler-Lagrange equation for (1.1) reads{
∆u = λ+ · χ{u>0} − λ− · χ{u<0} x ∈ Ω,

u = g x ∈ ∂Ω.
(1.2)

The two phases for this problem are {u > 0} and {u < 0}, and the free boundary
consist of two parts - ∂{u > 0} ∩ Ω, and ∂{u > 0} ∩ Ω.

One of the physical interpretation of this problem is the consideration of a thin
membrane (film) which is fixed on the boundary of a given domain, and some part
of the boundary data of this film is below the surface of a thick liquid (heavier than
the film itself). Now the weight of the film produces a force downwards (call it λ+)
on that part of the film which is above the liquid surface. On the other side the
part in the liquid is pushed upwards by a force λ−, since the liquid is heavier than
the film. The equilibrium state of the film is given by a minimization of the above
mentioned functional.

One of the difficulties one confronts in this problem is that the interface {u = 0}
consists in general of two parts - one where the gradient of u is nonzero and one,
where the gradient of u vanishes. Close to points of the latter part we expect the
gradient of u to have linear growth. However, because of the decomposition into
two different types of growth, it is not possible to derive a growth estimate by
classical techniques. The case λ− = 0 and g ≥ 0 the problem is equivalent to the
classical obstacle problem with zero obstacle, see above.

A good reference for this problem is Shahgholian-Uraltseva-Weiss [SUW07].
The parabolic version of the two-phase obstacle-like problem has the following

form
∆u− ut = λ+ · χ{u>0} − λ− · χ{u<0}, in (0, T )× Ω, (1.3)

where

λ± ∈ C0,1(Ω), 0 < T <∞, and Ω ⊂ Rn is a given bounded domain. (1.4)

The problem arises as limiting case in the model of temperature control through
the interior described in [DL76, Section 2.3.2].



4 CHAPTER 1. INTRODUCTION

1.2 Viscosity Solutions

The theory of viscosity solutions has gained much ground since its (formal) in-
troduction in the celebrated paper [CL83] by Crandall and Lions. It provides a
notion of solutions to problems for which neither classical nor weak (in the Sobolev
sense) solutions are known to exist. Typical examples of such problems are found
among non-linear PDEs and free boundary problems. In short, a function can be a
viscosity solution as long as it is continuous, no requirements are made regarding
existence of derivatives.

Consider a general fully non-linear PDE

F (D2u(x, t), Du(x, t), ut(x, t), u(x, t), x, t) = 0 in Ω, (1.5)

and the set of paraboloids P = {ϕ : ϕ(x, t) = at+ xTBx+ cx+ d}.

Definition 1.1. u is a viscosity solution to (1.5) if it is continuous and satisfies
for any ϕ ∈ P and all (x0, t0) ∈ Ω:

a) If u− ϕ has a local maximum at (x0, t0) then

F (D2ϕ(x0, t0), Dϕ(x0, t0), ϕt(x0, t0), ϕ(x0, t0), x0, t0) ≥ 0.

b) If u− ϕ has a local minimum at (x0, t0) then

F (D2ϕ(x0, t0), Dϕ(x0, t0), ϕt(x0, t0), ϕ(x0, t0), x0, t0) ≤ 0.

1.3 Barles-Souganidis Theorem

In this section we present a very fundamental theorem related to the convergence
of difference schemes. The result has been obtained by G.Barles and P.Souganidis
in 1991 (see [BS91]) and since then many applications in numerical analysis of
monotone difference schemes, has been made.

The equations we are considering are of the form

F (D2u,Du, ut, u, t, x) = 0 in [0, T ]× Ω. (1.6)

Here Ω is an open subset of Rn, and Ω is its closure. The functions

F : Sn × Rn × R× [0, T ]× Ω→ R and u : [0, T ]× Ω→ R,

are bounded (possibly discontiuous), and finally, Du andD2u stand for the gradient
vector and second derivative (Hessian) matrix of u. We say that (1.6) is elliptic if
for all x ∈ Rn, t > 0, pt ∈ R, px ∈ Rn, and M,N ∈ Sn

F (M,px, pt, u, t, x) ≤ F (N, px, pt, u, t, x) if M ≥ N.
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Before stating the theorem we need to define some notions related to the finite
difference schemes.

A numerical scheme is an equation of the following form

S(h, t, x, uh(t, x), [uh]t,x) = 0, (1.7)

where uh stands for the approximation of u and [uh]t,x represents the value of uh
at other points than (t, x). Here for simplicity we take ∆x = ∆t = h.

The theory requires the following assumptions:
Monotonicity: If u ≤ v,

S(h, t, x, r, u) ≥ S(h, t, x, r, v).

Consistency: For every smooth function φ(t, x),

S(h, t, x, φ(t, x), [φ(t, x)]t,x)→ F (D2φ,Dφ, φt, φ, t, x),

as ∆x→ 0 and ∆t→ 0.

Stability: For every h > 0, the scheme has a solution uh which is uniformly
bounded independently of h.

The theorem reads as follows:

Theorem 1.2. (Barles-Souganidis) Under the above assumptions, if the scheme
(1.7) satisfy the consistency, monotonicity and stability property, then its solution
uh converges locally uniformly to the unique viscosity solution of (1.6).

1.4 Numerical Methods

The three scientific papers presented in this thesis have involved some numerical
calculation for graphical illustrations of the presented methods. It is, however, well
known that numerical methods tend to perform poorly close to free boundaries.
This is in fact one motivation to study free boundary problems analytically. In
this chapter we outline the procedure of computing numerical solutions and also
mention a few known issues when treating free boundary problems numerically.
Our main reference for numerical methods in this class of problems is [WHD95].

The Finite Difference Methods for PDEs
We use finite difference schemes to solve free boundary problems. They have the
advantage (over finite element methods) that they are easy to implement on rect-
angular domains, which are of interest in our papers. To concretize, we usually
consider a space-time domain of points (x, t) ∈ [a, b] × [0, T ]. Discretize the do-
mains with the steps ∆x and ∆t so that b = a + (N + 1)∆x and T = (M + 1)∆t
and denote umn = u(a+n·∆x,m·∆t). PDEs can be solved by replacing the involved
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partial derivatives by their discrete approximations, e.g. ∂u/∂t ≈ (um+1
n −umn )/∆t

in the point (a + m∆x, n∆t). The replacement results in M · N linear equations
from which umn can be solved.

We use predominantly the Implicit discretization schemes for which ∂u/∂t is
discretized as in the example above and the second spacial derivative is discretized
by

∂2u

∂x2 ≈
1

∆x2

(
um+1
n+1 − 2um+1

n + um+1
n−1

)
,

and for the Crank-Nickolson approximation we take

∂2u

∂x2 ≈
1

2∆x2

(
um+1
n+1 − 2um+1

n + um+1
n−1 + umn+1 − 2umn + umn−1

)
.

This discretization schemes have the advantage over the explicit scheme of being
stable also when ∆t/∆x2 > 1/2.

Implicit Schemes for Free Boundary Problems
When applying explicit schemes to heat-type PDEs all information for calculating
the current time step is given by the previous time step. In other words um+1

n =
F (umi ) where 0 ≤ i ≤ N + 1 for some function F . Implicit schemes, such as the
Crank-Nicholson, interconnect all current time steps, um+1

n = F (um+1
i ) for i 6= n,

hence all values for the current time step must be calculated simultaneously.
This complicates the application of implicit schemes to free boundary problems.

For the explicit scheme the free boundary problem can be solved by calculating the
PDE solution from the explicit scheme and then applying the obstacle condition.,
The same procedure does not work for implicit schemes. After applying the obstacle
condition the solution would no longer satisfy the PDE.

To overcome this issue we apply the following method, known as the Gauss-
Seidel method. For each time step we follow an iterative procedure which is initiated
with the values from the previous time step. We then borrow the molecule from
the scheme we chose, so for Crank-Nicholson, at the (k+ 1)’th step of the iteration
we obtain

um+1,k+1
n = F (umn−1, u

m
n , u

m
n+1, u

m+1,k+1
n−1 , um+1,k

n+1 ). (1.8)

The Gauss-Seidel method converges for increasing k (see [Str89]). It can however
be further improved as described in the next section.

Successive Over-Relaxation
The analysis in [Str89] suggests that the rate of convergence of the Gauss-Seidel
method can be considerably improved by introducing an over-relaxation parameter.
The method suggests adding a multiple of the difference (uk+1 − uk) to uk+1. We
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choose an over-relaxation parameter ω ∈ (1, 2) and get the following modification
of (1.8):

um+1,k+1
n = um+1,k

n + ω
(
F (umn−1, u

m
n , u

m
n+1, u

m+1,k+1
n−1 , um+1,k

n+1 )− um+1,k
n

)
. (1.9)

The value of the parameter ω is continuously updated for each time step, with
the aim of finding the value which minimizes the number of iterations. The method
goes by the name of successive over-relaxation (SOR). Introducing the obstacle
condition does not affect the convergence of the method. In this case it is called
the projected SOR method.





Chapter 2

Overview of Papers

2.1 Overview of Paper I

In the following paper we discussed the finite difference approximation of the fol-
lowing minimization problem:∫

Ω

[
1
2 |∇u|

2 + λ+ max(u, 0) + λ−max(−u, 0)
]
dx, (2.1)

over the set of admissible “deformations” u ∈ H1(Ω) with given boundary data g,
where Ω ⊂ Rn is a bounded domain. The Euler-Lagrange equation for (2.1) is{

∆u = λ+ · χ{u>0} − λ− · χ{u<0}, x ∈ Ω,

u = g, x ∈ ∂Ω.
(2.2)

Here λ+, λ− > 0, g are given Lipschitz functions. The two phases for this
problem are {u > 0} and {u < 0}, and the free boundary consist of two parts -
∂{u > 0} ∩ Ω, and ∂{u > 0} ∩ Ω.

The optimal C1,1
loc regularity for the solution to (2.2) has been proved by Ural’tseva

[Ura01] and Shahgholian [Sha03]. The regularity for the free boundary has been
studied by Shahgholian, Ural’tseva and Weiss [SW06], [SUW07].

Discretized Solution
We consider the following nonlinear problem{

min(−∆u+ λ+,max(−∆u− λ−, u)) = 0,
u = g.

(2.3)

The next Proposition shows the connection between the problems (2.3) and
(2.2).

9
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Proposition 2.1. If u is the solution (in the weak sense) to (2.2), then it is a
viscosity solution to (2.3). Moreover, u satisfies (2.3) a.e.

Let N ∈ N be a positive integer h = 1/N and define the partition points

xi = ih, yj = jh, i, j = 0, 1, ..., N.

A point of the form (xi, yj) is called a grid point and we are interested in computing
approximate solution values at the grid points. We use the notation vij for an
approximation to vij = v(xi, yj) computed from a finite difference scheme. Write
λ+
ij = λ+(xi, yj), λ−ij = λ−(xi, yj). Denote

Nh = {(i, j), s.t.0 ≤ i, j ≤ N},

No
h = {(i, j), s.t.1 ≤ i, j ≤ N − 1},

and
∂Nh = Nh \No

h .

For any node (i, j) ∈ No
h , we consider 5-point stencil for the Laplace operator

Lhui,j = −ui−1,j + ui+1,j − 4ui,j + ui,j−1 + ui,j+1

h2 .

Then we apply the finite difference method to (2.3) and obtain the following non-
linear system:{

min(Lhui,j + λ+
ij , max(Lhui,j − λ−ij , ui,j)) = 0, (i, j) ∈ No

h ,

ui,j = gi,j (i, j) ∈ ∂Nh.
(2.4)

The main result in this section is the following lemma:

Lemma 2.2. There exists a unique solution to the nonlinear system (2.4).

Error Estimate and Numerical Algorithm
For the unique solution to (2.4), we obtain the following error estimate:

Theorem 2.3. (Error estimate) Let λ+(x), λ−(x) ∈ C3(Ω) and u and uh are the
solutions of (2.2) and (2.4), respectively. Then there exist a constant K > 0,
independent of h, such that

|u(x)− uh(x)| ≤ K · h2/7, x ∈ Ω.

In particular, uh → u as h→ 0.
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We use an idea from Krylov [Kry97, Kry00]. The approach follows the following
steps: First, we consider a regularized problem for which the solution is smooth.
Next, we derive error estimates between the solutions of the regularized problem
and the original problem - this is done for both continuous solutions and the finite
difference solutions. We then estimate the error between the continuous and the
finite difference solutions for the regularized problems. Finally, combining all the
estimates, we obtain the convergence rate.

Concerning the numerical algorithm of the problem we refer to the well-known
Projected Gauss-Seidel Method. Our method reads as follows:

Given initial approximation

u0 = (u0
1, u

0
2, ..., u

0
n) = (a, 0, ..., 0, b),

we set
uk1 = a; ukn = b ∀k.

For every k = 1, 2, ... and 2 ≤ i ≤ n− 1 we denote

z1
i = 1

2
(
uki−1 + uk−1

i+1 − h
2 · λ+

i

)
,

z2
i = 1

2
(
uki−1 + uk−1

i+1 + h2 · λ−i
)
.

Here h is a discretized mesh size.
Then we proceed as follows:

if z1
i ≥ 0, then ũki = z1

i ;

if z2
i ≤ 0, then ũki = z2

i ;

if z1
i < 0 < z2

i , then ũki = 0.

(2.5)

The sequence ũk =
(
ũk1 , ũ

k
2 , ..., ũ

k
N−1

)
constructed in this way we will call the

sequence obtained by PGS method. For the method we obtain the following con-
vergence result:

Theorem 2.4. (Convergence of Algorithm) Constructed Projected Gauss-Seidel
method converges towards to the unique solution of (2.4).

Remark 2.5. We emphasize that for finite element discretization the constructed
nonlinear Gauss-Seidel method will work as well, moreover the prove of convergence
of the algorithm can be repeated by taking into account certain differences between
the Finite Difference and Finite Element Methods.

2.2 Overview of Paper II

In the following paper we revisited the One-phase (Obstacle) Problem:



12 CHAPTER 2. OVERVIEW OF PAPERS



−∆u(x) ≥ λ(x), x ∈ Ω,

−∆u(x) = 0, x ∈ {u(x) > ψ(x)},

w(x) ≥ ψ(x), x ∈ Ω,

w(x) = g(x), x ∈ ∂Ω.

(2.6)

Here the inequality and equation for Laplacian of u should be understood in the
weak sense, but using the optimal C1,1(Ω) regularity result for One-Phase Obstacle
Problems over sufficiently smooth obstacles (cf. [Fre72], [Caf98]), we can assure that
they hold a.e.. The aim of this paper is for optimal regular solution of (2.6), to prove
that the sequence uh converges towards u as h → 0, and to obtain approximation
error estimate in terms of h.

Here we use the technique that was used in [HLJ09] to prove the convergence
of Finite Difference Scheme for One-Phase Obstacle problem.

Preliminaries
Let Ω ⊂ Rn be bounded open set, λ ∈ L2(Ω) and ψ ∈ H2(Ω).

It is well-known fact, that the classical (One-Phase) Obstacle problem, i.e. the
problem of minimization of the functional

E(u) = 1
2

∫
Ω
|∇u(x)|2dx+

∫
Ω
λ(x)u(x)dx,

over the set Kψ can be transformed to the minimization of the functional

J(u) = 1
2

∫
Ω
|∇u(x)|2dx+

∫
Ω
f(x)u(x)dx, (2.7)

over the set
K = {v ∈ H1(Ω) : v − ψ ∈ H1

0 , v(x) ≥ 0 in Ω}, (2.8)

where f(x) = λ(x)−∆ψ(x), and the later can be formulated as

min{−∆u(x) + f(x), u(x)} = 0.

If we denote
F(v) = min{−∆v(x) + f(x), v(x)},

then the classical Obstacle problem (2.7)-(2.8) can be written as{
F(u) = 0 in Ω,
u = g on ∂Ω. (2.9)

Let ∆hu be the Finite Difference Scheme approximation operator for Laplace op-
erator.
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We denote
Fh(v) = min{−∆hv(x) + f(x), v(x)},

and by uh we denote the solution of the following problem:{
Fh(uh) = 0 in Ω,
uh = g on ∂Ω. (2.10)

Error estimate

The Finite Difference Scheme were extensively used for numerical solutions to One-
Phase Obstacle problems of elliptic and parabolic type. The method is easily im-
plementable and the rate of approximation is good enough in practice, so there is
theoretical and practical interest for investigation and mathematical justification
of convergence. Strangely enough, there were no convergence and error estimate
results up to 2006, when Xiao-liang and Lian (see [CX06]) proved the quadratic
convergence of the FDS for the two-dimensional Classical Obstacle Problem under
the condition, that the solution belongs to C4(Ω). This is not surprising result,
since for u ∈ C4(Ω), by the Taylor expansion, the local estimate

∆u(x)−∆hu(x) = O(h2)

is true (∆h is the FDS approximation to Laplacian). But it is known (see [Caf98]),
that in general, even for infinite differentiable obstacle ψ, the solution u of the
Obstacle Problem belongs only to C1,1(Ω).

Our main result reads

Theorem 2.6. Let f and g be as above and u and uh are the solutions of (2.9)
and (2.10), respectively. Then there exists a constant C0 > 0, independent of h,
such that

|u(x)− uh(x)| ≤ C0 · h4/11, x ∈ Ω.

In particular, uh → u as h→ 0.

2.3 Overview of Paper III

In this paper we study the finite difference approximation for two-phase parabolic
obstacle-like problem,

∆u− ut = λ+ · χ{u>0} − λ− · χ{u<0}, (t, x) ∈ (0, T )× Ω, (2.11)

where 0 < T <∞, λ+, λ− > 0 are Lipschitz continuous functions, and Ω ⊂ Rn is a
bounded domain. Denote ΩT = (0, T )× Ω.
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Variational form
The idea of constructing the numerical scheme is to define a variational form that
will provide us the same solution (in viscosity sense) as the solution to (2.11). In
the paper we consider the following variational equation:

G[D2u, u, ut] = min(ut −∆u+ λ+,max(ut −∆u− λ−, u)) = 0, (2.12)

where λ+ and λ− are as in (2.11).
We prove the following lemma:

Lemma 2.7. If u is the solution (in the weak sense) to (2.11), then it is a viscosity
solution to (2.12).

Similarly for the two-phase membrane problem discussed in the paper I, we
considered the following variational form:

F [D2u, u] = min(−∆u+ λ+,max(−∆u− λ−, u)) = 0. (2.13)

We define for parabolic two-phase obstacle-like variational equation a notion of
viscosity solution and prove the following uniqueness result

Theorem 2.8. (Uniqueness of viscosity solution) There exists at most one viscosity
solution of (2.12).

Note that the same result holds true for the elliptic two-phase membrane prob-
lem as well.

Convergence of schemes
Elliptic case

Consider the nonlinear, degenerate elliptic partial differential equation with Dirich-
let boundary conditions, {

F [u](x) = 0 in Ω,
u(x) = g(x) on ∂Ω.

(2.14)

Definition 2.9. The equation F is degenerate elliptic if

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X,

where Y ≤ X means that Y −X is a nonnegative definite symmetric matrix.

In our case for the two-phase membrane problem we have,

F [u](x) = min(−∆u+ λ+,max(−∆u− λ−, u)). (2.15)

Hence

F (x, r, p,X) = min(−trace(X) + λ+,max(−trace(X)− λ−, r)).
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Lemma 2.10. The two phase-membrane problem (2.15) is degenerate elliptic.

Proof. In order to prove degenerate ellipticity one has to check the definition stated
above. Since we have that

−trace(X) ≤ −trace(Y ), whenever Y ≤ X,

and

max(−trace(X)− λ−, r)) ≤ max(−trace(X)− λ−, s)), whenever r ≤ s.

Therefore

F (x, r, p,X) = min(−trace(X) + λ+,max(−trace(X)− λ−, r))
≤ min(−trace(X) + λ+,max(−trace(X)− λ−, s))
= F (x, s, p, Y ).

This completes the proof of the lemma.

We define the approximation scheme for the elliptic two-phase membrane prob-
lem as follows:

F i[u] ≡ Fh,i[ui, ui − uj ] = min
(
Lhui + λ+

i ,max
(
Lhui − λ−i , ui

))
, (2.16)

where

Lhui =
N(i)∑
j=1

1
h2 (ui − uj), i = 1, ..., N. (2.17)

For this scheme we show that it is a degenerate elliptic scheme (see[Obe06]), which
in turn implies the monotonicity and stability for the scheme (2.16). Then by
applying the Barles-Souganidis theorem we prove the following theorem:

Theorem 2.11. (Convergence) The finite difference scheme given by (2.16) con-
verges uniformly on compacts subsets of Ω to the unique viscosity solution of the
two phase-membrane variational equation (2.13).

Parabolic case

We follow the notations of [BDR95]. A numerical scheme can be written as

S(m, ũ) ≡ S(∆t,∆x,m, j, umj , ũ) = 0,

for 1 ≤ j ≤ N and 1 ≤ m ≤ M, where N and M are respectively the number of
grid points in space and in time. Here ũ denotes the vector (ulk)k,l in RNM . Finally
∆t and ∆x denote the time and the space mesh size respectively. For parabolic
case we consider the following explicit scheme:

S(m+ 1, ũ) = min(S̃(ũ) + ∆tλ+m
j ; max(S̃(ũ)−∆tλ−mj ,∆tum+1

j )), (2.18)
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where

S̃(ũ) = um+1
j − umj + ∆t

(∆x)2Lu
m
j , and Lumi =

N(i)∑
j=1

(umi − umj ), i = 1, . . . , N.

We prove the following lemma

Lemma 2.12. The scheme (2.18) is monotone and stable provided the following
non-linear CFL condition holds

∆t
(∆x)2 ≤

1
K
, (2.19)

where K = max
1≤i≤N

N(i).

Finally again applying the Barles-Souganidis theorem we obtain the following
convergence result for parabolic two-phase obstacle-like problem:

Theorem 2.13. (Convergence for parabolic case) The solution ũ of (2.18) con-
verges as ∆t,∆x→ 0 uniformly on compacts subsets of ΩT to the unique viscosity
solution of the two-phase parabolic obstacle-like variation equation (2.12) .

Numerical Method
For constructing a numerical method we refer to nonlinear Gauss-Seidel method.
Suppose um is a shorthand of (umj )j . We proceed as follows:

• First Step.

um+ 1
2 = min

(
um − ∆t

(∆x)2Lu
m + ∆tλ−, 0

)
,

• Second Step.

um+1 = max
(
um − ∆t

(∆x)2Lu
m −∆tλ+, um+ 1

2

)
.

At the end of the paper the numerical simulations are presented.

2.4 Overview of Paper IV

In this paper, we study a numerical approximation for a class of stationary states
for reaction-diffusion system with m densities having disjoint support, which are
governed by a minimization problem. We consider the following two problems called
Problem (A) and Problem (B).
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Problem (A)

Minimize E(u1, · · · , um) =
∫

Ω

m∑
i=1

(
1
2 |∇ui|

2 + fiui

)
dx, (2.20)

over the set

S = {(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω}.

Here φi ∈ H
1
2 (∂Ω) with property φi · φj = 0, φi ≥ 0 on the boundary ∂Ω. Also we

assume that fi is uniformly continuous and fi(x) ≥ 0.
First of all we discuss the existence and uniqueness of minimizer (2.20). The

existence follows from the general theory of calculus of variations for coercive and
convex functionals (see [Str90]). For the uniqueness we prove the following propo-
sition:

Proposition 2.14. The minimizer of (2.20) is unique.

We use quantitative properties of the solution and free boundaries to derive
our scheme. Suppose there is a grid on the domain Ω; then our method can be
formulated as follows:

• Initialization: For l = 1, · · · ,m, set

u0
l (xi, yj) =

{
0 (xi, yj) ∈ Ω◦,
φl(xi, yj) (xi, yj) ∈ ∂Ω.

• Step k + 1, k ≥ 0: For l = 1, · · · ,m, we iterate for all interior points

u
(k+1)
l (xi, yj) = max

−flh2

4 + u
(k)
l (xi, yj)−

∑
p 6=l

u(k)
p (xi, yj), 0

 . (2.21)

For the scheme discussed above we prove the following lemma:

Lemma 2.15. The iterative method (2.21) satisfies

u
(k)
l (xi, yj) · u(k)

q (xi, yj) = 0,

for all k ∈ N and q, l ∈ {1, 2, . . . ,m}, where q 6= l.

Convergence of the scheme in particular case is shown.
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Problem (B)
Known results

The second problem appears in the study of population ecology. In this case high
competitive interactions between different species occurs. As the rate of interac-
tion of two different species goes to infinity, then the competition-diffusion sys-
tems shows a limiting configuration with segregated state. We refer the reader
to [CTV05, CDH07, CDH+04, DD94] and in particular to [DHMP99] for models
involving Dirichlet boundary data. A complete analysis of the stationary case has
been studied in [CTV05]. Also numerical simulation for the spatial segregation
limit of two diffusive Lotka-Volterra models in presence of strong competition and
inhomogeneous Dirichlet boundary conditions is provided in [SZ08].

Let di, λ be positive numbers. Consider the following system of m differential
equations {

−di∆ui = λui(1− ui)− 1
εui
∑
j 6=i u

2
j in Ω,

ui(x, y) = φi(x, y) on ∂Ω, (2.22)

for i = 1, · · · ,m, where again φi ∈ H
1
2 (∂Ω) with property φi · φj = 0, φi ≥ 0 on

the boundary ∂Ω. Our aim is to present numerical approximation for this system
as ε→ 0. This system can be viewed as steady state of the following system in the
case that boundary values are time independent.


d
dtui − di∆ui = λui(1− ui)− 1

εui
∑
j 6=i u

2
j in Ω× (0,∞),

ui(x, y, t) = φi(x, y, t) on ∂Ω× (0,∞),
ui(x, y, 0) = ui,0(x, y) in Ω,

(2.23)

for i = 1, · · · ,m.

Numerical approximation of Problem (B)

We present a numerical scheme for elliptic system in Problem (B) as ε→ 0.
Form components we obtain the following iterative method: For all l = 1, . . . ,m,

u
(k+1)
l (xi, yj) = max

 2wl(k)(xi, yj)

dl − α+
√

(dl − α)2 + 4αwl(k)(xi, yj)
, 0

 , (2.24)

where
wl

(k)(xi, yj) = dlul
(k)(xi, yj)−

∑
p 6=l

dpup
(k)(xi, yj),

here α = λh2/4.
Again by using the same approach as in Lemma 2.15, one can prove the same

result for this method as well.
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Lemma 2.16. If min
l
dl > α, then the iterative method (2.24) satisfies

u
(k)
l (xi, yj) · u(k)

q (xi, yj) = 0,

for all k ∈ N and q, l ∈ {1, 2, . . . ,m}, where q 6= l.

The main idea of deriving the numerical scheme is consider two components case
and generalize it for m components. For two components we proceed as follows:

We have

d2∆v − d1∆u = λu(1− u)χ{u>0} − λv(1− v)χ{v>0}.

This equation is solved numerically by employing second order, centered, finite
differences on the given grid i.e,

−d1

h2 [4u(xi, yj)− 4u(xi, yj)] + d2

h2 [4v(xi, yj)− 4v(xi, yj)] = (2.25)

λu(xi, yj)(1− u(xi, yj))χ{u(xi,yj)>0} − λv(xi, yj)(1− v(xi, yj))χ{v(xi,yj)>0}.

It is easy to see that the equation (2.25) is a quadratic equation with respect to
u(xi, yj) and v(xi, yj). If u(xi, yj) > 0 then we set v(xi, yj) = 0 and vice versa. Let
4α = λh2 then from (2.25) we get the following iterative formulas

u(k+1)(xi, yj) = max

 2(d1u
(k)(xi, yj)− d2v

(k)(xi, yj))

d1 − α+
√

(d1 − α)2 + 4α(d1u
(k)(xi, yj)− d2v

(k)(xi, yj))
, 0


and

v(k+1)(xi, yj) = max

 2(d2v
(k)(xi, yj)− d1u

(k)(xi, yj))

d2 − α+
√

(d2 − α)2 + 4α(d2v
(k)(xi, yj)− d1u

(k)(xi, yj))
, 0

 .

In the last section of the paper numerical examples are presented.
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