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Abstract—Transports on rail are increasing and major invest-
ments in the railway infrastructure, including the Railway Power
Supply System (RPSS), are expected. The future railway power
demands are naturally not known for certain. The more remote
the uncertain future, the greater the number of scenarios that
have to be considered. Large numbers of scenarios make time
demanding simulations unattractive.

The aim of this paper is to present a fast approximator
that uses aggregated RPSS information. Since the electrical and
mechanical relations governing an RPSS are quite intricate, an
approximator based on Neural Networks (NN), is applied. This
paper presents a design suggestion for an NN estimating the
power and energy flows through each converter station, given
RPSS data and levels of train traffic. Even if the future usage
of the NN is investment planning, the modeling of such an
approximator has a value in itself concerning the understanding
of the relations between RPSS and train traffic.

I. INTRODUCTION

For environmental and economic reasons, in Sweden and the

rest of Europe, both personal and goods transports on rail are

increasing. Therefore major railway infrastructure investments

are expected. An important part of this infrastructure is the

RPSS. One phase low frequency AC RPSSs are normally

connected to the ordinary 50 Hz power system through

frequency converters, see Figure 1.

The converters may be merely used as power sources,

as in Sweden for example, whereas in other countries the

railway administrations produce electricity on their own. The

railway overhead contact line from which the locomotive

extracts electric power is called the catenary. The original

type of catenary, Booster Transformer (BT), has a relatively

high impedance. The RPSS can be strengthened by replacing

BT catenaries with Auto Transformer (AT) ones, placing the

converter stations closer to each other, or connecting a High

Voltage (HV) transmission line in parallel to the catenary

system.

RPSSs are changing all the time. When a train moves, the

impedances between it, other trains, and the feeding points

changes. Both the active and reactive power demands of the

locomotives may vary with the slopes of the railway, the train

weights, the desired train velocity, etc.

When considering future possible RPSS investments, for

each possible expansion alternative, many different situations

of railway operation causing different loading on the RPSS

have to be studied. This is a kind of transmission expansion

planning. Similar approaches can be found in the references

[1]–[3]. In the case of the railway, however, the locations of

feeding points are up to the RPSS administrator, and not to

the actors on the market as in the case with the public grid.

For each possible investment alternative, the power grid

calculations have to be performed fast. There are a number

of simulators available, e.g. TPSS (Train Power System Sim-

ulator) [4] and also commercial software such as TracFeed

Simulation [5]. These are however not fast enough, though,

when several thousands of cases have to be studied. The

intention of this paper is to propose a solution of how to

design an approximator that rapidly estimates some of the

properties of an RPSS which are considered important in the

studies of future expansion alternatives. This approximator

uses aggregated results from many load flow calculations in a

fast way.

The two most important consequences of train traffic related

to the state of the RPSS, having the railway operation costs

in mind, are:

• The maximal power consumption and the energy con-

sumption of the grid, preferably divided up by individual

converter stations, which is studied in this paper.

• The impact of catenary voltages on the minimal traveling

times, studied in [4], [6], [7].

Since the electrical and mechanical relations of an RPSS

are quite intricate, an approximator of the black box kind

is used. Therefore, NNs (Neural Networks), which basically

are a kind of nonlinear predictors, were selected as a suitable

approximator type. An NN with too many inputs and outputs

may need a tremendous number of training cases in order to

become reliable and general [8]. Therefore TPSA just uses a

few aggregated inputs and outputs.

II. THE MODEL OF THE APPROXIMATOR

Since a detailed description of RPSS modeling in general,

and the modeling of TPSS in particular can be found in [4] no

such details will be presented in this paper. Moreover, in [4],

[6], [7] detailed backgrounds to the need for fast approximators

as well as thorough descriptions of the first part of the

approximator, TPSA-V (Train Power System Approximator

Velocity) are present.
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Figure 1: A section of the RPSS, illustrated as an electric circuit.

TPSA-V tells, in aggregated form, how fast an extra train

on an RPSS section can go on average – given the RPSS

technology used on the section and the already existing traffic

levels there. In this paper, the second part of TPSA, which is

called TPSA-E (Train Power System Approximator Energy), is

presented. In TPSA-E, energy consumption and peak apparent

power usage are estimated. In the following section, the

choices of aggregated inputs and outputs are described and

motivated.

A. Choices of Approximator Inputs and Outputs

1) The Aggregation of Inputs: The TPSA-E inputs can be

classified as either parameters giving rise to power consump-

tion, informing of the RPSS impedances, related to the relative

locations of the loads, or combinations of those.

In the TPSS simulations, which results are used for the

aggregation of training data for the inputs and outputs to the

NNs building up TPSA, the trains are allowed to stop only

at the locations of converter stations. In addition to that, the

simulations are restricted to one type of trains traveling in

one direction, and finally, all the trains try to maintain the

same velocity. These are all facts that reduces the number

of possibly needed input variables. The exact details of the

simulation setups can be found in the full report [4].

The intention is that TPSA should be able to work as a

traffic constraint with respect to the RPSS for software that

is planning for the future train traffic. This also restricts the

choices of possible inputs to the TPSA. For example, in a train

time table, only positions and locations are known, therefore

only the average velocity can be calculated. For more details

about these ideas, see [4], [6], [7].

Two binary TPSA inputs, ρcatenary and η, describes the

RPSS technologies used and also which of the four NNs in

Figure 2 to use. When ρcatenary has the value 1 one of the NNs

representing AT catenaries are active, and if it equals 0 one

of the two BT catenary NNs are active. The second binary

variable, η, tells whether or not an NN representing an RPSS

with an HV line should be used. The remaining six TPSA-E

inputs are NN inputs.

The reason not to let inputs that cannot be modeled

as continuous variables be inputs to the NNs have been

explained by [8]. Shortly, the kind of NNs used in this

paper, backpropagation ones [9], [10], can be very good

approximators of continuous functions but are comparatively

bad at coping with discrete inputs of a more classifying

kind. In the following paragraphs, the NN inputs are listed,

described and motivated.

a) The Length of the Power System Section: is the

distance between the pair of converters defining the borders of

the RPSS section. This kind of division of the power grid is

motivated in [4]. The distance gives information of the RPSS

impedance. And in this paper it is also always the distance

traveled for all trains, not necessarily within the time window

of the studied case though, see Section II-B.

b) The Average Inclination: of the RPSS section. The

average inclination gives information of the net potential

energy consumed by the trains traveling through the section.

c) The Standard Deviation of the Inclination: of the

RPSS section. The average inclination is not expected to

always be good enough. It would for example equal zero

for both flat ground as well as for a rail section with 20

per mille uphill half the section and 20 per mille downhill

the remaining half. The standard deviation is a measure of

how much the inclinations fluctuate, which will influence the

consumed electric power of the trains.

d) The Average Number of Trains: on the section is also

calculated. The number of trains is important because the more

trains, the greater the need for electricity. The average number

of trains is calculated as total train traffic time divided by the

length of the time window. In this study, all time windows

have the same size of 17 minutes, for details see Section II-B.

e) The Average Velocity of the Trains while Driving:

on the studied RPSS section, within the time window is also

measured. This parameter is used because higher train speeds

means greater power consumption. The average velocity is

measured only when trains are in service.

f) The Relative Average Locations: of the trains in traffic

on the section within the studied time window, ρlocation. This

parameter is supposed to be helpful for the approximator to

determine how much of the by the trains consumed electric

power are taken from each of the two converter stations. A

ρlocation valued less than 0.5 indicates that the train centroid is
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Figure 2: There are four available NNs, AT and BT catenaries, which can be either connected to or without an HV line, are

allowed.

closer to the left converter station, and conversely, a parameter

value between 0.5 and 1 means that the trains most of time is

located closer to the right-hand side converter station.

2) The Aggregation of Output: There are six different

outputs studied in this paper. The list below consists of only

three items, but since there are two converter stations and it is

desirable to be able to predict which of the converter stations

that are loaded at a certain level, this number must be doubled.

a) The Peak Apparent Power: flow through each con-

verter station within the time window is considered to be

important for dimensioning reasons. The higher the capacity

needed of the RPSS, the higher the investment cost.

b) The Peak Six-minute-average Apparent Power: flow

through each converter station within the time window is

another common dimensioning measure.

c) The Consumed Electric Energy: by each converter

station is of importance because the more energy that is

consumed, the more the railway administrator has to pay to

the power companies.

B. The Time Window Size

First of all, TPSA-E does, unlike TPSA-V, consider all trains

equally important. Therefore, the sizes of the time windows

used for aggregation of TPSA inputs and outputs cannot be

defined by the action of some specific train, they have to be

predefined and preferably equal in size.

In theory, when having the future use of TPSA as a tool for

calculating operation costs of the railway, the time windows

could be pretty big, orders of magnitude like days. In reality,

however, the aggregated data is created from simulation results

of more detailed kind. As indicated earlier in this paper, the

NNs, that TPSA is made of, has to be trained with aggregated

data as inputs and outputs. Creating a variety of simulated

cases is a necessity if the approximator should be reliable for

all sorts of inputs. The longer the cases are, the more time

demanding they will be to simulate also. Therefore, the time

windows cannot be too long. Moreover, even more time is

saved if already existing simulations can be used. So the time

windows of this study is determined by the durations of the

shortest traffic studies in the 400 simulations made for the

studies of TPSA-V presented in [4], [6], [7]. The shortest of

these simulations represented 17 minutes of RPSS operation.

Here, the RPSS is considered to be in operation for all time

steps where power flows through the converter stations in the

system. Sometimes the power flows are zero in the first time

step, this happens if all trains are assumed to be standing still

in the beginning. In such cases, time step one is still considered

as one when the RPSS is in operation.

TPSS determines train positions and velocities in time step

t + 1 by usage of the load flow results from time step t. The

load flow calculations gives the accelerations, that in turn gives

the velocities and the positions for the following time step.

Many of the existing 400 simulations also represent RPSSs

in operation for much longer than so – there are cases enduring

up to 99 minutes. Since it would be a waste just using 17

minutes of each simulation for the creation of the training

cases for the four different NNs, each simulation is divided

into
⌊

τ

w

⌋
different time windows, where τ is the simulated

time, and w is the length of the time window. That means that

the remaining pieces of the simulations that are shorter than 17

minutes are not used in this paper for training set creation. The

above described chopping up of simulations into equally sized

time windows results in 283 cases for the pure BT system, 293

cases for the pure AT system, 292 cases for the BT system

with parallel HV line, and 290 cases for AT with HV line.

These numbers can be explained by the fact that the trains go

faster the stronger the RPSSs are, so the simulations are longer

for weaker systems. In the pure BT case however, which is an

exception, nine out of 100 simulations did not converge [4] so

the cases are a bit fewer.

C. The Neural Network Design

As in the previous descriptions of TPSA-V [4], [6], [7],

also TPSA-E uses one hidden neural layer with tansig (tanh)

transfer functions. The NN is also here trained with the

algorithm trainbr [11], with an error goal of 10-5 and the

limit in number of allowed epochs (iterations) is set to 1000.

Before training, the inputs and outputs are normalized to span

from -1 to 1. The output layer has linear transfer functions.

In order to determine a suitable number of neurons in the

hidden layer, for each of the four different RPSS types, the

aggregated data was divided into two subsets. The biggest
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Figure 3: A study of the average errors on the training and testing sets as a function of the number of hidden neurons. Circles

denote the training set and squares denote the test set. The scale of the vertical axis is logarithmic.

subset, two thirds of the cases, constitutes the training set

against which the parameters of the NN are estimated. The

remaining third of the cases are used as a testing set. The NN

performs better against the training set than against the testing

set. However, since both sets are coming from the same kind

of study, one can expect that if the NN catches the trends of

the training set, also the properties of the testing set will be

caught. This is true as long as the NN has a limited enough

number of degrees of freedom. If the NN can adapt too good

to the training set, its adaptation capability against the testing

set will decrease. That is in turn a sign of an NN that is

not good enough at generalization, i.e. an overlearned NN. A

reasonable strategy is to choose the number of neurons that

gives the smallest approximation Mean Square Error (MSE)

for the training set. In Figure 3 one can see an illustration of

how the mean of the MSEs for the training and testing sets

vary for different numbers of neurons in the hidden layer. The

mean is taken over all six inputs, but also over 20 different

random choices of training and testing sets in order to even

out the noise and making it possible seeing the trend.

It is not easy to see in the graph, but for the pure BT case

in Figure 3c, the MSEs keeps on decreasing until there are

11 neurons in the hidden layer. The difference between 8 and

11 neurons are however so small that it is considered safer to

choose 8. In the pure AT case, Figure 3a, it is actually for 8

neurons the smallest MSEs for the testing set are produced.

When the BT system is connected to the HV lines one can

in Figure 3d see that the testing set MSEs decrease for an

increasing number of neurons, up to 5. Noteworthy is however,

that the MSE is at the smallest for 7 hidden neurons. In the

case of AT catenaries combined with HV lines, it is clearly

visible in Figure 3b that the MSE of the testing set is the

smallest for 5 neurons.

The above presented results ends up in a choice for a

TPSA-E model where for the NNs representing RPSSs without

the additional parallel HV line, the number of neurons in the

hidden layer are 8. For the NNs representing RPSSs with the

HV line, on the other hand, the number of neurons in the

hidden layer are chosen to be 5.

It is noteworthy that different numbers of neurons are

needed for the RPSSs with HV line present compared to

the RPSSs without the HV line. Possibly this is because

with an HV line present, the power does not have to be

produced locally, which is the case with a catenary as the

only transmitter of electric power.

III. NUMERICAL RESULTS

A. The Impact of the Relative Location of the Loads

In this part of the paper, all available data are used for the

training of the NNs. The studies are focused on the possibility

to allocate the correct amounts of power and energy to the two

converter stations, in particular how big the gain of the input

variable ρlocation is.

First, the correlation coefficients were calculated for the

input variable ρlocation against the six outputs. The peak

apparent power inflow, is in the following denoted Ŝ1 for

the left hand side converter station, and Ŝ2 for the right one.

Furthermore, the total energy consumed within a time window

is denoted E1 for the left hand side converter station, and



Table I: The correlations between the input ρlocation and the six different TPSA-E outputs for the four different RPSS types.

Power Supply The correlation coefficient,
cov(ρlocation,X)

D(ρlocation)D(X)
, where ...

Technology X = Ŝ1 X = Ŝ2 X = E1 X = E2 X = Ŝ1
6m Ŝ2

6m

BT 1.58 ·10−1 2.95 ·10−1 1.51 ·10−1 2.91 ·10−1 1.45 ·10−1 3.08 ·10−1

AT 2.44 ·10−1 3.03 ·10−1 2.45 ·10−1 2.84 ·10−1 2.36 ·10−1 3.02 ·10−1

BT+HV 2.44 ·10−1 2.68 ·10−1 2.40 ·10−1 2.49 ·10−1 2.39 ·10−1 2.64 ·10−1

AT+HV 2.79 ·10−1 2.79 ·10−1 2.67 ·10−1 2.68 ·10−1 2.75 ·10−1 2.74 ·10−1

E2 for the right one. Finally, the maximal six-minute-average

apparent power flows are denoted Ŝ1
6m and Ŝ2

6m, respectively.

One can in Table I see that the stronger the RPSS, the more

equal the correlations are. The correlations are quite weak,

between 0.15 and 0.30. One peculiar thing is that it seems like

the power consumption always increases if the traffic moves

to the right. One explanation is probably that the system is

not linear enough to be explained with correlations. Another

explanation could be that the slopes are heavier at the end of

the track [4]. Also a too small set of training data might be

an explanation.

We must investigate the differences in NN performance with

and without the ρlocation input. One could expect that it might

still be a non-linear dependence there. In Figure 4 the results

of the nonlinear investigations are shown. The average MSEs

are compared for the six outputs and the four RPSS types both

with and without the ρlocation input. In order to even out the

results, the MSE plots of Figure 4 are averaged for 20 different

training situations, where the ordering of the input and output

data sets are randomly changed for each of the situations.

A trend all over Figure 4, except for the case with AT

catenaries and HV line parallel to it, is that it seems to be

harder to predict the power and energy flows through the

right hand side converter station than through the left one.

No obvious explanation exists, and deeper investigations as

well as greater data sets for training are needed for making

such. However, one possible contribution is that there are

probably less training sets where the right hand side station

is heavily loaded. This is because in the simulations used,

the trains depart from the left station, and arrive at the right

one. Naturally, trains consume more power while accelerating

compared to when braking, but that does not explain it all

since accelerating takes only about three to four kilometers,

and braking is done even faster [4]. A greater contribution

is believed to be that many ends of the simulations are not

used for aggregation into the data sets used. If for example

a simulation represents 50 minutes of RPSS operation, then

only the first 34 minutes will be used for aggregating two

data sets of inputs and outputs, and the last 16 minutes will

simply be wasted. Therefore, the risk is that less cases with

high consumption on the right side will be registered. It is also

possible that these differences in MSEs are just coincidences,

one should bear in mind that the MSEs are still quite small.

This study indicates that it is only for RPSSs with high

impedances, i.e. the pure BT RPSSs, that the information about

the relative locations of the loads are needed.

B. The Performance of TPSA-E for Cases it is Not Trained

for

This section exist, not primarily to benchmark or evaluate

TPSA-E, but more in order to give a visual description of

how it can predict the outputs both for cases simulated and

interpolate and extrapolate for cases not simulated.

There are infinitely many possibilities of what to show.

However, in this paper the choice on fell on showing the

energy consumption of the two converter stations during a

time window. All parameters but the velocity are being held

constant. The RPSS simulated in Figure 5 is a pure BT system

with 114 km between the converter stations, and in this type of

study the inclinations are uniquely given by the inter-converter

distance [4]. Since the median mean velocity over all cases on

this distance and RPSS type is about 108 km/h, the reference

point is chosen as this median sample from the simulations.

Moreover, the number of average trains on the section are

4.50, and their average relative location is 0.473. This median-

velocity case is plotted as a star in Figure 5.

The graphs are not completely realistic far from the training

data points. The most obvious example is that in Figure 5b,

the consumed average energy is negative for really low

train speeds. This does not happen if no trains are braking

regeneratively. More generally, however, the approximation is

reasonable because one can expect that the higher the speeds,

the higher the loads.

For the 400 simulations made for the NN training set, the

trains normally are located close to the left-hand-side converter

station when driving slow. This is because all trains start there.

That can be one explanation to why the energy goes down

so much faster for low train speeds for the right-hand-side

converter station than for the left one in TPSA-E. One should

also bear in mind that in the simulated material it is rare that

the trains drive slowly, this is another reason to why TPSA

has a harder time approximating well for low speeds.

IV. CONCLUSIONS

It has been shown that an approximator based upon NNs

can estimate power and energy flows through RPSS converter

stations in a fast and reliable way given the RPSS data

and the intensity level of the train traffic. Moreover, adding

information to the NN about the relative average locations of

the loads makes it easier predicting the locations of the power

and energy flows. However, it is probably only worth doing

so for RPSS technologies like pure BT where the impedance

is quite high and power needs to be consumed locally.
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Figure 4: The average MSEs are compared for an NN given the average relative location of the loads, and for another NN

that is not given it. The prior are marked × and the latter +.
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Figure 5: The consumed electric energy at both of the converter stations, the only input that is varied is the velocity.
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