Master of Science Thesis

Consistently Estimating Route Choice Models using Indirect Inference Based on Empirical Observation Data

Tongzhou Bai
Supervisors: Anders Karlström, Marcus Sundberg

Division of Transport and Location Analysis
Department of Transport Science
KTH Royal Institute of Technology, Stockholm
Summer 2011
TSC-MT 11-016
Abstract

In the thesis, a proposed route choice model is tested on the empirical observation data. The model gives link specific errors to the links in the network, which allows natural correlation structure among paths. Indirect inference method is used to consistently estimate the route choice model, and a logit model is chosen to be the auxiliary model. The observation data with multiple OD pairs was collected in the Borlänge, a city located in the middle part of Sweden. Two main experiments are carried out, one with only one attribute, length to be specific in the route choice model and the other with two attributes, namely length and speed bump dummy. The final estimates of parameters have positive signs as anticipated and the magnitudes are reasonable. In addition, judging from the estimated binding functions, parameters in the cost function have negative effect on utility in the logit model and the parameter in the logit model are more apparently affected by its indirectly inferred parameter in the route choice model than the others do. Some other trials of the model are also carried out, but the estimates are not satisfying. This may be due to lack of attributes in the route choice model and further suggestion on better defined model is given out. A Monte Carlo experiment is also carried out to test the efficiency of model with unfixed scale parameter to the random term in the route choice model.

Acknowledgement

I would like to show my sincere gratitude to my supervisor Anders Karlström, who has been giving patient instructions and brilliant ideas during the past few months on how the thesis moves on. Without all these, I couldn’t have finished it in time with fine quality. My work is basically started from the work dedicated by Vivian, who helped me a lot in getting familiar with relevant theories. Marcus paid attention to my work intently and gave inspiring advices on possible modifications of the model. In addition, Per guided me a lot in using C#. I would like to thank these colleagues for their useful help. Of course, my thanks go to all that are in the office of TLA, who contribute to the wonderful atmosphere where I worked happily on my thesis.
Contents

Abstract .. 2
Acknowledgement .. 2
List of Figures .. 5
List of Tables .. 6
1 Introduction .. 7
 1.1 Motivation .. 7
 1.2 Background ... 7
 1.3 Objective .. 8
 1.4 Scope of the Thesis ... 9
2 Literature Review ...11
3 Methodology ... 18
 3.1 Multinomial Logit Model (MNL) ... 18
 3.1.1 Model Description ... 18
 3.1.2 Model Estimation .. 21
 3.2 Dijkstra’s Algorithm ... 22
 3.2.1 Introduction ... 22
 3.2.2 Algorithm ... 23
 3.2.3 Explanatory Example ... 24
 3.2.4 Discussion ... 26
 3.3 Indirect Inference .. 26
 3.3.1 Introduction ... 26
 3.3.2 Definition of the method ... 27
 3.3.3 Choices of the metrics .. 29
 3.3.4 Consistency Interpretation ... 30
 3.4 Model Specification in the Thesis ... 30
 3.4.1 Basic Route Choice Model .. 30
 3.4.2 Auxiliary Model .. 33
 3.4.3 Consistency Discussion .. 35
 3.4.4 Binding Function ... 37
4 Data ... 39
 4.1 Road Network ... 39
 4.2 Observation Data ... 42
 4.3 Further Exploration of data .. 44
List of Figures

Figure 1 S-shaped relationship between probability and deterministic part of utility 20
Figure 2 A simple network for Dijkstra’s Algorithm explanation................................. 24
Figure 3 Illustration of the Borlänge road network ... 39
Figure 4 Histogram of link length data ... 40
Figure 5 Histogram of link length data (zoomed within 1km) 41
Figure 6 Illustration of links with speed bumps.. 41
Figure 7 Histogram of link numbers in observations data set 43
Figure 8 Illustration of the flow in the experiment.. 46
Figure 9 Scatter plots of the 90 beta-theta pairs .. 49
Figure 10 OLS regression based on the 10 beta-theta points from one run................. 50
Figure 11 Scatter plot of the input values for beta_length and beta_sb 53
Figure 12 Scatter plot of theta_length with regard to beta_length and beta_sb 54
Figure 13 Display of the estimated binding function for theta_length 54
Figure 14 Scatter plot of theta_sb with regard to beta_length and beta_sb 55
Figure 15 Display of the estimated binding function for theta_sb 55
Figure 16 Scatter plots of theta_sb against beta_sb and beta_length 57
Figure 17 Scatter plot of theta_length against beta_length and beta_sb; estimated binding function ... 59
Figure 18 Scatter plot of theta_sb against beta_length and beta_sb; estimated binding function ... 60
Figure 19 Scatter plot of theta_ln against beta_length and beta_sb; estimated binding function ... 60
Figure 20 Plots of theta_length against beta_length, beta_sb and sigma respectively 63
Figure 21 Plots of theta_sb against beta_length, beta_sb and sigma respectively......... 64
Figure 22 Plots of theta_ln against beta_length, beta_sb and sigma respectively........ 65
Figure 23 Plots of theta_length against beta_length, beta_sb and sigma respectively 67
Figure 24 Plots of theta_sb against beta_length, beta_sb and sigma respectively........ 68
Figure 25 Plots of theta_ln against beta_length, beta_sb and sigma respectively........ 68
List of Tables

Table 1 Descriptive statistics of link length ... 40
Table 2 Descriptive statistics of link numbers in observation data set 43
Table 3 Descriptive statistics of estimated travel time on links 44
Table 4 Descriptive statistics of duration of trips ... 45
Table 5 Statistics of estimation of beta_length ... 51
Table 6 Estimated coefficients of binding function for model with two attributes 56
Table 7 Statistics of estimation of beta_length and beta sb ... 56
Table 8 Estimated coefficients of binding functions for model with exponential cost function .. 61
Table 9 Statistics of estimation of beta_length and beta sb in exponential-cost-function model .. 61
Table 10 Estimates of three binding functions .. 65
Table 11 Estimates of three binding functions in the Monte Carlo experiment 69
Table 12 Statistics of estimation of beta_length, beta sb and sigma in the Monte Carlo experiment .. 69
1 Introduction

1.1 Motivation
With the development of ITS, there is a stronger desire for more accurate and efficient vehicle orientation systems and devices, which relies much on the mechanism of route choice models. In other cases, well estimated route choice models reveals travel behavior of the car drivers, which contributes to system-scaled analysis, such as design and appraisal of road pricing system across the road network. On the other hand, newly developed GIS techniques provide sufficient route choice data as solid basement for research on route choice behaviors. Both the desire for better developed model and more available prerequisites stimulate the research on route choice modeling.

1.2 Background
Route choice modeling has been discussed for a long time. Given a basement network composed by a finite number of nodes, which are connected by directed links, we assume that individuals travel from an origin node to a destination node in the network. Thus, the choice of an individual turns out to be an observed path, represented by a sequence of links, considering inherent attributes of links such as length or presence of speed bumps. From this point of view, individuals make discrete choices, the behavioral mechanism of which could be seen in two different ways. Individuals could either be seen as choosing links from each junction node or choosing from possible paths connecting the origin node and the destination one. In line with a great body of literatures, we focus on the path-based approaches to develop our model.

There are two important issues that need to be considered for this kind of approach, namely the generation of choice set and model formulation to address alternative correlation due to path overlapping. To be specific, when we assume that individuals choose from paths connecting the origin and destination, it is infeasible to enumerate the full-size choice set or universal choice set which includes all possible paths between the OD pair in a given road network. Individuals may not virtually consider the universal choice set when they make decisions, and in practice algorithms implemented to find the shortest paths avoid the usage of choice set at all, such as the Dijkstra’s algorithm we implement in the model. Hence, we give each individual the right to consider all possible
paths. It is common practice to generate samples from the universal choice set, yet this may easily introduce biases to the estimation. Samples are supposed to be randomly drawn from the population and good samples can reproduce the features in the population. Since in real-size network, it is impossible to know the full-size choice set, let alone to reproduce the features of it. We could only draw from certain known paths and this is more like an importance sampling, which gives links different possibilities to the drawn into paths. As a result, estimation based on the sampled paths will have biases.

The other problem with regard to path-based approaches is the inherent limitation of multinomial logit model (MNL), which requires no correlation among alternatives. This is practically unrealistic, since in the context of route choice modeling, paths sharing certain links are correlated due to unobserved features of the common links. Numerous literatures contribute to improvement in terms of the problem based on logit models.

We choose to use an approach with additive link specific errors, which belongs to probit-like models. This kind of model is efficient for applications, yet it is still not able to be estimated consistently given a partial choice set. So we turn to indirect inference as the tool to estimate the probit-like model with additive link specific errors. All feasible paths for each individual are technically allowed, which means that a universal choice set is provided for each OD pair to avoid bias caused by sampling from full choice sets. The universal choice set generated here is a so-called pseudo-universal choice set, which contains as many feasible paths as desired to eliminate possible biases but not all paths since it is practically impossible to get the true universal choice set. We choose to use an MNL model as the auxiliary model, which is easy to estimate. The estimate of MNL model is biased based on the choice set we generate as discussed above, yet the estimate of parameters in the basic route choice model will be consistent thanks to the features of the indirect inference method.

1.3 Objective

A Monte Carlo simulation experiment has been carried out based on synthetic trip data and real-sized road network to appraise the proposed model (See Karlström, Sundberg, &
Wang, 2011). The basic route choice model includes two attributes, namely length and speed bump dummy, while an MNL model is chosen as the auxiliary model, with the same two attributes. Simulated trip data given two pseudo-true values for coefficients of length and speed bump dummy are used as a substitution of the empirical data. The presence of speed bumps is randomly allocated over the network. Estimation results and sensitivity test confirm the efficiency and consistency of the proposed estimator.

What needs to be done in the thesis is that true trip data should be implemented as well as the modification of the network. To be specific, realistic speed bump distribution is used to replace the randomly allocated one. Without knowing the true values of the coefficients, several iterations need to be carried out to get to know the raw domain of the values and by shrinking input intervals, more accurate estimates will be attained as the accomplishment of the thesis.

1.4 Scope of the Thesis

Based on the route choice model used in the synthetic experiment, extensions are done in five main aspects. First, we implement the newly proposed estimator in real world issues by replacing the simulated observations with the true observations collected in a real world network. Unlike the simulated data, which is generated following certain assumptions, the true observations have more noises inside, and thus more difficult to capture their features. Second, the observations we use contain many OD pairs and not restricted with one or four of them as in the synthetic experiment; this gets rid of the possibility of bias caused by restricted OD pairs. Third, since we are implementing the new method in true observations, the formulation of route choice model, cost function to be specific, is not known beforehand and correspondingly, the formulation of the utility function in the logit model is not for sure as well. We need several trials to get well defined formulations to capture the features of the data. Fourth, we have no idea what the parameters are like based on true observation, and thus a raw guess of input domain is needed at first and centered with shrinkage in later iterations. Last but not least, in one trial, we included a scale parameter to the random term in the cost function, and use number of links in the auxiliary model to infer it. To test the efficiency of this trial, a

Monte Carlo simulation experiment is carried out, with some arbitrary pseudo-true values of the parameters based on which simulated observations are used. On the other hand, what is done in the synthetic experiment, such as test with simulated observations for one OD and four ODs, sensitivity of estimates with choice set size and number of observations is not included in this thesis. Instead, we will identify some limitations of the model formulation tried in the thesis and make suggestions how the model can be improved.

As follows, Section 2 reviews relevant literatures on route choice modeling, as well as indirect inference. In Section 3, relevant methods are introduced in detail as backgrounds; afterwards, methods and models used in this thesis are illustrated. Section 4 gives description of the empirical data we use for estimating and Section 5 shows the estimation results of the Monte Carlo simulation-based experiment, followed by some conclusions in Section 6.
2 Literature Review

Route choice modeling has long been discussed and many efforts have been made to solve this problem. Simple and easy to estimate, the multinomial logit model (MNL) is widely used in choice modeling, yet it has certain restrictions to be implemented in route choice context. Due to its inherent property of Independence from Irrelevant Alternatives (IIA), the multinomial logit model is not easily applicable since routes in the choice set tend to be correlated with the presence of overlapping paths. Cascetta et al. (1996) proposed a correction term, called Commonality Factor (CF), in the deterministic part of the utility function\(^2\). And the probability of path \(i\) to be chosen from the choice set \(C_n\) becomes

\[
P(i \mid C_n) = \frac{e^{\mu(V_n - CF_n)}}{\sum_{j \in C_n} e^{\mu(V_n - CF_n)}}.
\]

As proposed by Cascetta et al. the Commonality Factor is specified as

\[
\text{CF}_n = \beta_{CF} \ln \sum_{j \in C_n} \left(\frac{L_{ij}}{L_i L_j} \right)^{\gamma},
\]

in which \(L_{ij}\) is the length of links common to path \(i\) and path \(j\), while \(L_i\) and \(L_j\) are the total length of path \(i\) and path \(j\), respectively. The parameter \(\gamma\) is left to be estimated or practically constrained to a fixed value, like 1 or 2. The CF term of one path is proportional to the length of overlapping part with other paths. This proposed model is referred to as C-Logit model. Bearing some similarities, Ben-Akiva and Bierlaire (1999) proposed the Path Size Logit (PSL) model\(^3\). This model is based on a different theoretical basis as the C-Logit. The original formulation of Path Size (PS) comes from the discrete choice theory of aggregate alternatives. Similar to the CF in C-Logit, the log of Path Size (PS) is added to the utility function. The probability of path \(i\) to be chosen from the choice set \(C_n\) becomes

\[
P(i \mid C_n) = \frac{e^{\mu(V_n + \ln PS_n)}}{\sum_{j \in C_n} e^{\mu(V_n + \ln PS_n)}}.
\]

The Path Size is specified as

\[
PS_n = \sum_{a \in C_n} \frac{1}{L_i} \sum_{j \in C_n} \delta_{aj} \frac{L_{ij}}{L_j}.
\]

which Γ_i is the set of links in path i; l_a and L_i are the length of link a and path i, respectively. δ_{aj} is the link incidence variable with value of 1 when link a belongs to path j and zero otherwise. And L^*_n is the shortest path in choice set C_n. The size of a path has a maximum value of one, when it shares no links with other paths.

C-Logit model and PSL model are the most widely used models in practice of route choice modeling due to their simple forms. Since both of them originate from the MNL model and maintain the basic MNL structure, they can be estimated by existing software designed for logit models. Apart from these two types of models, there are other recent efforts in the route choice context.

Bekhor, Ben-Akiva and Ramming (2002) adapted the Logit Kernel model to apply in a route choice context. The Logit Kernel model was proposed by combing Gaussian and Type I Extreme Value error terms, by researchers such as Ben-Akiva and Bolduc (1996), and McFadden and Train (2000), who also referred to it as Mixed Logit. By making certain assumptions under route choice context, Bekhor, Ben-Akiva and Ramming (2002) proposed a way to apply the model to route choice modeling. Based on the data from Boston, several kinds of models are estimated, including multinomial logit model, Path Size Logit and the newly proposed Logit Kernel model. Seen from the estimation results Logit Kernel has a better overall performance than the other two kinds of models. This result needs to be verified in other data sets, since the one used in the paper has a relatively small size.

Frejinger and Bierlaire (2007) proposed an approach to capture correlation among alternative routes with subnetworks, and carried out estimation based on several kinds of route choice models. The paper gives an overview of the latest development of route choice modeling and discusses the Path Size Logit model in detail. As part of the

conclusion, a behavioral interpretation of the Path Size in the model is given. The
subnetwork is defined, so that the alternative routes sharing the same section of it are
seen as correlated. This correlation is captured using the Error Component model, and
estimation results show that this new approach gives better property than PSL models. To
complement, the paper uses a real size network and true travel data is collected, which is
the same network we are going to use in this thesis project. Additionally, the paper
displays forecasting results, which indicates that models with Path Size component tend
to have bad performance in prediction.

Ben-Akiva and Bierlaire (2003) pointed out that under route choice context, the
significant correlation among alternatives due to path overlapping and the generation of
choice set are two important issues and main difficulties.9

There are some algorithms used in practice for generating choice set for route choice
modeling, both deterministic methods and stochastic ones. The deterministic methods
tend to give the same set of paths for a given OD pair. Some examples are the link
penalty algorithm (De La Barra, Pérez, & Anez, 1993) which increases gradually the
impedance of all the links on the shortest path10, the link elimination algorithm (Azevedo,
Costa, Madeira, & Martins, 1993) which removes links on the shortest path in sequence
to generate new paths11 and the labeled paths (Ben-Akiva, Bergman, Daly, &
Ramaswamy, 1984)12. In terms of the stochastic methods, they tend to produce individual
specific choice set. One example is the simulation method (Ramming, 2001) which
generates alternative paths by drawing link impedances from different distribution
densities.

When it comes to appraisal of the generated choice set, some literatures give evaluations
on the efficiency of different sampling algorithms for choice set generation (See Bekhor,

9 Ben-Akiva, M., & Bierlaire, M. (2003). Discrete Choice Models with Applications to Departure Time and
Summer Meeting, (pp. 307-319).
12 Ben-Akiva, M., Bergman, M., Daly, A., & Ramaswamy, R. (1984). Modeling Inter Urban Route Choice
Behaviour. In J. Vollmuller, & R. Hamerslag (Ed.), the 9th International Symposium on Transportation and
Technology.
Ben-Akiva, & Ramming, 2006 for example). Apart from this, there are some recently proposed methods for sampling alternatives under route choice context (See Frejinger, Bierlaire, & Ben-Akiva, 2009 for example).

Nerella and Bhat (2004) carried out a numerical analysis on the effect of sample size on the efficiency of the estimation of parameters\(^\text{14}\). The analysis is done for two kinds of discrete choice models, namely the multinomial logit model, for which consistency of estimation based on subset of alternatives is theoretically proved, and non-MNL model, taking mixed multinomial logit model as an example. Four evaluation criteria are chosen, namely the ability to recover model parameters, ability to estimate overall log-likelihood function value, ability to estimate individual choice probabilities and ability to estimate aggregate shares of alternatives. The results show that the MNL model works well on small sample size, yet certain portion of full choice set need to be kept as a practical baseline. For the non-MNL model, small sample size gives poor estimation and increase of sample size gives obvious increase of estimation quality. Certain portion of full choice set is suggested for practical convenience, yet the generalization of sample size portion is not feasible, since difference kinds of models may require different portion to guarantee accuracy. In general, for the non-MNL models, full choice set is suggested to be used if feasible and larger sample gives better estimation.

Bekhor, Ben-Akiva and Ramming (2006) carried out route choice modeling based on a large-scale urban network, including both choice set generation part and route choice estimation part, which compose the process of route choice modeling together\(^\text{15}\). Given that previous literatures did not pay too much attention to empirical estimation, the paper used a true observation data set collected in Boston. As the first step, several choice set generation algorithms are listed and compared in their efficiency of reproducing the observed paths, on which the evaluation of the algorithms are based. The data in Boston is described in the paper and used in the second step, i.e. model estimation. Several route choice models are presented and estimation results based on different kinds of models are shown for comparison of the efficiency of the models. The Path Size Logit model is

proposed for its property to overcoming the drawbacks of the conventional MNL models. This type of model can be easily estimated using popularized software. The main conclusion is that route choice models could be estimated for large-scale networks based on the true observation data and prominent computing resources.

Frejinger, Bierlaire, and Ben-Akiva (2009) proposed a paradigm for choice set generation based on sampling for route choice modeling. In the context of route choice modeling, the universal choice set, which denotes all possible alternatives for a traveler to choose from, is not able to be enumerated. So we practically work on a sampled choice set from the universal one, which may easily introduce bias to the final estimate. In this paradigm, they focus on unbiased estimation of parameters instead of generating actual choice set. The path generation is seen as an importance sampling approach and a correction of sampling is added to the path utility. Since the following estimation process is based on the sampled choice set, which is treated as the universal one, a correction for sampling is added to the path size attribute in the commonly used path size logit (PSL) model, ending up with the expanded path size. Modification in the previous two steps guarantees unbiased estimation of the parameters. Numerical results based on synthetic data are presented in the paper to reveal that models with a sampling correction in the path utility are better than those without it. The proposed expanded path size logit model provides unbiased estimation and is better than the original path size models.

In this paper we will examine indirect inference. Indirect inference is not a new method; it was first introduced by Smith (1990, 1993). Then Gouriéroux et al. (1993) gave overall introduction to the methods and extended it in important ways. Gallant and McCulloch (2004) transferred the idea of indirect inference and used it for Bayesian inference in models where likelihood function is intractable.

Gouriéroux, Monfort and Renault (1993) proposed the inference methods based on an “incorrect” criterion, which does not give consistent estimation to parameters of interest directly\(^{20}\). The argument of the criterion is called the auxiliary parameter, which may have a larger dimension than the parameters of interest in the basic model. After the auxiliary parameters are selected, a simulation-based process is carried out to get a consistent and asymptotically normal estimator of parameters of interest. As a simulation-based method, the only requirement for the basic model is that it could be simulated, regardless of formulations of the model. So it could be used for estimating models which are too complex to carry out direct approaches. The paper shows how this kind of method can be applied in fields such as micro-econometrics, macro-econometrics and econometrics of finance.

Keane and Smith (2003) proposed a generalized form of the indirect inference method to be implemented in the discrete choice model context\(^ {21}\). Theoretically, indirect inference could deal with estimation of any economic models, yet it has some limitations per se that decrease the estimation efficiency or even make it difficult to implement. Problems arise when we use indirect inference in estimating discrete choice models since the objective function, the metric of distance between the auxiliary models estimated on observed data and simulated data to be specific is inherently discrete, which leaves the gradient-based optimization methods infeasible. Keane and Smith (2003) proposed that the estimation procedures used for observed data and simulated data can be different\(^ {22}\). Instead of the discrete choice, a continuous function of latent utilities including a smoothing parameter is used as the dependent variable in the auxiliary model. When the smoothing parameter goes to zero, the function of latent utilities converges to the discrete choices this way to guarantee consistency. According to the Monte Carlo results, the generalized indirect inference method proposed in this paper yields good estimates in small samples, being as efficient as maximum likelihood estimates in comparison.

Creel (2009) presented a data mining approach to indirect inference23, which is similar to the regular indirect inference method, yet with certain advantages over it. The method is a simulation-based estimator, relying also on an auxiliary model. In line with the indirect inference method, an underlying economic model with parameter β is referenced by an auxiliary model with parameter θ. Certain values of the parameter β^h in underlying economic model are drawn randomly from a known density; simulated data is generated using Monte Carlo methods to estimate $\tilde{\theta}^h$ of auxiliary model, which ends up with a set of tuples $(\beta^h, \tilde{\theta}^h)$. Nonparametric methods are used to get the function $E(\beta | \tilde{\theta} = a)$, and the final estimate of β is supposed to be the result of regression function evaluated at the estimate of θ based on true observations, $\tilde{\beta} = E(\beta | \tilde{\theta} = \tilde{\theta})$. Creel (2009) also presented a way of calculating confidence intervals24. Monte Carlo results in dynamic and nonlinear panel models and vector autoregressions show good performance of the new estimator.

23 Creel, M. (2009). \textit{A Data Mining Approach to Indirect Inference}. Universitat Autonoma de Barcelona, Department of Economics and Economic History.

24 Creel, M. (2009). \textit{A Data Mining Approach to Indirect Inference}.
3 Methodology

3.1 Multinomial Logit Model (MNL)

3.1.1 Model Description

Route choice modeling is somewhat complicated when we want to capture the attributes of both the alternative routes and choice maker accurately and reflect the choice making process in the model. Intuitively, route choice can be regarded as choosing one specific route from several alternative routes, which coincides with the prerequisites of discrete choice models. Actually a lot of literatures have explored the route choice modeling and possible improvements based on discrete choice models (see Cascetta et al, 1996; Vovsha and Bekhor, 1998; Ben-Akiva and Bierlaire, 1999 for more information on development in route choice models with regard to discrete choice models)\(^25\).

To understand the frontier development of route choice model, we have got to know the discrete choice models, among which multinomial logit model (MNL) is the most widely used. In addition, we choose to implement a new method – indirect inference, in which MNL is used as it is.

Logit model is the most widely used discrete choice model till now, due to its excellent qualities in model specification. To be specific, the choice probability takes a closed form, which is easy to estimate and interpret (Train, 2003)\(^26\).

The multinomial logit model is a kind of choice model with more than two alternatives in the choice set. We assume that the choice maker makes his or her decision based on the utility maximization rule (Ben-Akiva & Lerman, 1985)\(^27\). With regard to the utility \(U_{nj}\) the decision maker \(n\) obtains from the \(j^{th}\) alternative in the choice set, it is made up of two parts: the deterministic part and the stochastic part. The deterministic part, denoted

by V_{nj}, contains attributes known by the modelers, while the stochastic part, denoted by ε_{nj}, is the attributes affecting people's the decision which cannot be observed by the modelers, yet are known by the decision makers themselves. So the utility function turns out to be:

$$ U_{nj} = V_{nj} + \varepsilon_{nj} \forall j $$

(1)

The type of choice model is basically decided by the distribution of the stochastic part. When we assume that ε_{nj} is independently, identically Gumbel distributed, the model becomes a logit model.

As stated above, the decision follows utility maximization rule, which means that the decision maker n chooses the alternative with the highest utility, say the i^{th} alternative. Use as the probability the i^{th} alternative is chosen over the others, we have

$$ P_{ni} = P(U_{ni} = \max_{j \in C} U_{nj}) = P(U_{ni} \geq U_{nj} \forall j \neq i) $$

$$ = P(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj} \forall j \neq i) $$

$$ = P(\varepsilon_{nj} - \varepsilon_{ni} < V_{nj} - V_{ni} \forall j \neq i) $$

(2)

With Equation (2) above and the assumption that ε_{nj} follows i.i.d Gumbel distribution, we could derive the probability of decision maker n chooses alternative i, which is

$$ P_{ni} = \frac{e^V_{ni}}{\sum_j e^V_{nj}} $$

(3)

Typically, we specify the deterministic part of the utility function in a linear form, which is $V_{nj} = \beta'x_{nj}$. Then the probability becomes

$$ P_{ni} = \frac{e^{\beta'x_{ni}}}{\sum_j e^{\beta'x_{nj}}} $$

(4)

This is the most common form of probability function for multinomial logit models. There are some good properties for this kind of logit probability, as discussed by Train (2009)\(^{28}\). With this form, the probability of choosing certain alternative will be between zero and one inherently, which is basically required for probability definition. Yet the

value of P_{ni} will never drop to zero mathematically, which means that all the alternatives in the choice set are perceived to have chance to be chosen. On the other hand, if an alternative is perceived never to be chosen, it should not be included in the choice set at all.

The probabilities for all the alternatives in the choice set sums to be one, which is easily illustrated from the analytical properties. $\sum_{j=1}^{J} P_{ni} = \left(\sum_{j=1}^{J} e^{V_{nj}} \right) / \left(\sum_{j=1}^{J} e^{V_{nj}} \right) = 1$, in which J denotes the number of alternatives in the choice set.

The logit probability and the deterministic part of the utility function follow an S-shaped curve line, shown in Figure 1 below.

![Figure 1: S-shaped relationship between probability and deterministic part of utility](image)

This property gives implications for possible impacts of the deterministic utility of certain alternative on its chances to be chosen. We could see that when an alternative has about 50% probability to be chosen, which infers to the steepest part on the curve, a small change in the deterministic part of the utility function could lead to a large change in the probability the alternative has to be chosen.

Apart from the nice properties of logit probability, logit models have some disadvantages as well (Bartels, Boztug, & Müller, 1999)\(^29\). One shortcoming is the assumption of

Gumbel distribution of error terms in the utility function. The inherent requirement for i.i.d property sets restrictions for logit model to be widely used, especially in route choice modeling context. Several models have been proposed to overcome this shortcoming; in particular modifications based on MNL to adjust it to route choice practices have been proposed. Another drawback is the assumption of the linear composition for the deterministic part of utility function. Actually this assumption is for ease of following estimation process, since McFadden (1974) demonstrated that under this condition the probabilities will be universally concave with regard to the coefficients β, which improves the performance of numerical estimation. Yet, there could be nonlinear compositions in the deterministic part to relax the restriction. Under this condition, the universal concavity cannot be guaranteed, which may lead to local convergence in the estimation process.

3.1.2 Model Estimation

The most commonly used numerical estimation method for multinomial logit models is the Maximum Likelihood Estimation (MLE). In principle, given a set of data and the underlying probability model, the method tries to find coefficients of the probability model with which produced data has a distribution most likely resembles the distribution of the observed data.

Consider the case that N decision makers with their choice data are obtained. Parameters to be estimated are the coefficients in the utility function, denoted by β. We could then use the MLE to try to get the values of β vector, with which the probability that choice maker choose their observed alternatives is maximized.

The probability of choice maker n to choose his or her observed alternative can be written as

$$\prod_i (P_m)^{y_n},$$

in which, y_n is a dummy with value 1 if choice maker choose alternative i and value 0 otherwise.

Choice makers choose their alternative independently from each other, so the probability of all sampled choice makers choose their observed alternative is

\[L(\beta) = \prod_{n=1}^{N} \prod_{i} (P_{ni})^{y_{ni}} \]

(6)

This is the likelihood function with regard to the parameters to be estimated, \(\beta \) in this case. We can take the logarithm of it to get the log-likelihood function

\[LL(\beta) = \sum_{n=1}^{N} \sum_{i} y_{ni} \ln P_{ni} \]

(7)

Since we aim at getting the value of \(\beta \) to make the log-likelihood function maximized, we can take the derivative of it with respect to \(\beta \) and set it to zero

\[\frac{dLL(\beta)}{d \beta} = 0 \]

(8)

By solving this equation, we could get the estimate of \(\beta \).

3.2 Dijkstra’s Algorithm

3.2.1 Introduction

A method is needed for generating feasible alternatives and compose the choice set as well as for deriving simulated observations for each OD pair in the process of indirect inference. As for choice set generation, we would like to include certain number of high ranking shortest paths in the choice set, since these paths tend to have more possibility to be chosen. Similar to this, the simulated observation is generated as the shortest path between each OD pair. We implement a method for shortest path finding, which is the Dijkstra’s Algorithm.

Dijkstra’s Algorithm is named after the Dutch computer scientist Edsger Dijkstra, who conceived this method in 1956 and got it published in 1959\(^{31} \). This is a graph search algorithm aiming at solving shortest path problem for a graph, the edge cost of which is defined nonnegative. The outcome of it is a shortest path tree demonstrating the path with lowest value with respect to the defined cost.

This algorithm deals with single-source problem. To be specific, given one source node in the graph, the algorithm will give paths with the lowest value with regard to cost from this source node to every other node in the network. Given certain criterion, we could use the algorithm to find shortest path between two specific nodes by setting one node as the source and the other as the target.

After released, it is widely used in path searching problems, especially in transportation related practices. Routing problem is considered in investigation on traffic assignment and optimization in logistics. Real sized road network could be perceived as a graph with vertices and edges, in which cities can be abstracted as the vertices in the graph and the roads connecting cities can then be regarded as the edges. With the aid of Dijkstra’s Algorithm, the shortest path with respect to cost could be found from certain city to the other cities. The outcome is valuable for logistics corporations to work out their region-wide distribution plans.

3.2.2 Algorithm

We connect a “distance” value with all the vertices in the graph, indicating its distance from the source vertex. To be accurate, the “distance” could be actual length of edges or the generalized cost on the edges or anything desired. The source vertex is defined as the initial node, with a value of zero. In the process, Dijkstra’s Algorithm will assign values to vertices detected in one loop and update the values in the following loops till a minimum value is found for each vertex. The steps for searching and updating are presented below.

1. Initialize the network, and assign the distance values of vertices other than the initial node as infinity.

2. When one vertex is to be detected, it is denoted as current node. All the vertices that have been detected and attained the minimum distance values will be marked as detected, and will not be detected in the following loops; while the vertices remaining unvisited will be marked undetected. To initialize, all the vertices are marked undetected, and the initial node is set as current node.

3. For current node, all its directly connected adjacent nodes are considered, except for the newly detected vertex. Labeled distance values of the neighbor vertices will be updated if the calculated values from current node are smaller than their current values. For example, current node A has a distance value of 4 and one of its neighbors B has a value of 8. The edge linking A and B has a distance of 2. The newly calculated distance value for B will be 4+2=6, which is smaller than 8. So the labeled distance value for B will be updated to 6, indicating that the minimum distance from the source vertex to B till now is 6 and the path should pass A.

4. When all the neighbors of the current node are considered and updated, mark the current node as detected. And mark the undetected node with the lowest distance value as the current node and do the detection in step 3 again.

5. When all the vertices in the network are marked detected, the algorithm is finished and we get the minimum distance from the source to all the other vertices. The shortest path from the source to a specific vertex could be found out following the detecting process. As mentioned above, the stop criterion could also be modified as we desired. If we aim at finding the shortest path between two vertices at the beginning, one vertex should be set as the initial node and the algorithm could be stopped once the other vertex is marked as detected.

3.2.3 Explanatory Example

Here is a simple network to illustrate the mechanism of Dijkstra’s Algorithm. There are five vertices and six edges with distance values labeled beside. We define A as the source and set it the initial node.

![Figure 2 A simple network for Dijkstra’s Algorithm explanation](image-url)
Initialization:
Initial node: A;
Detected: null;
Distance value: A=0, B=C=D=E=+\infty.

Loop 1:
Current node: A;
Adjacent vertices: B, C;
Detected: null;
Distance value: A=0, B=4, C=1, D=E=+\infty.

Loop 2:
Current node: C;
Adjacent vertices: B, D;
Detected: A;
Distance value: A=0, C=1, B=\min\{4, C+2\} =3, D=C+3=4, E=+\infty.

Loop 3:
Current node: B;
Adjacent vertices: E;
Detected: A, C;
Distance value: A=0, C=1, B=3, D=4, E=B+3=6.

Loop 4:
Current node: E;
Adjacent vertices: null;
Detected: A, B, C, D;
Distance value: A=0, C=1, B=3, D=4, E=6.
If we want to get the shortest path from A to E, following the detecting process we could know that it should be A-C-B-E.
3.2.4 Discussion

Dijkstra’s Algorithm has a clear logical structure, which makes it easy to understand as well as to implement in programming. Nonetheless, this method cannot search directly from one node towards the other to find the shortest path between the two. It works more like detecting all the adjacent nodes in terms of shortest paths and expands from the source iteratively until the target node is included and that is when we could figure out the shortest path between the two specific vertices. This reveals the fact that the method wastes a lot of time in the blind search leaving it inefficient. In addition, this method is not able to deal with networks with negative edge values; yet this is not a problem in our research since link cost on our network is defined nonnegative.

3.3 Indirect Inference

3.3.1 Introduction

For problems in route choice context, choice set size may be way too large to enumerate all the alternatives. Yet estimation based on sampled choice set may introduce biases, which can be corrected in some special cases (see Frejinger, Bierlaire, & Ben-Akiva, 2009)33. While in cases where estimation models are not based on MNL, say multinomial probit model, we could not find corrections for biases caused by sampled choice set. Estimator based on the principle of indirect inference is then introduced to overcome inconsistency problem34.

Indirect inference35 is a simulation-based method for estimating parameters in economic models by making references to the parameters of interest (Smith, 2008). It is motivated when general statistical estimation method such as Maximum Likelihood is intractable, or as discussed above, consistent estimation is required given that only sampled choice set is available. Since in economic analysis, we tend to build models which guarantee scientific logic and inclusion of necessary attributes, quite often the models will end up

It is common character that simulation-based methods allows modelers to simulate data from the economic model of interest, given certain perceived values of the parameters to be estimated. Since to generate data is essential and simple, the true challenge is how to estimate coefficients. Indirect inference uses an auxiliary model, which gives a rich description of the covariance patterns in the data by including certain variables from the basic economic model. On the other hand, the auxiliary model does not need to reflect accurately the data generating process, since it is supposed to be estimated based on the data derived, not to generate data itself. The basic function of the auxiliary model is that it provides a criterion to compare observed data and simulated data from the basic economics model.

We do iterations with the aim of finding the parameters of the basic economic model so the observed data and the simulated data from the basic model looks almost the same by the criterion of auxiliary model. To be specific, the auxiliary model is estimated based on both observed data and simulated data; we choose parameters for the basic model to make sure that the two estimator of auxiliary model are as close as possible. Based on this idea, the auxiliary model should be easy to estimate.

3.3.2 Definition of the method
We define an economic model with the form of

\[y_t = G(x_t, \varepsilon_t; \beta), \quad t = 1, 2, ..., T \]

in which, \(\{x_t\}_{t=1}^{T} \) is a sequence of observed exogenous variables, \(\{y_t\}_{t=1}^{T} \) is a sequence of observed endogenous variables and \(\{\varepsilon_t\}_{t=1}^{T} \) is a sequence of unobserved random error terms, \(\beta \) is a \(k \)-dimensional coefficient vector of the exogenous variables (Smith, 2008)\(^{36}\).

This model generally describes a relation that \(y_t \) is dependent on \(x_t \), with some random errors. Given the distribution of the random errors, we could get the probability density

function of y_i conditional on x_i. We will not focus on this density, and instead this model is only used for simulating data in indirect inference.

In terms of the auxiliary model, it could be defined by a probability density function with the form of

$$f(y_i \mid x_i, \theta)$$

in which, θ is a p-dimensional coefficient vector and p is supposed to be not smaller than k, since we should capture characteristics of all the parameters in the underlying economic model. In addition, the auxiliary model needs not be defined to reproduce the distribution of y_i in the basic model, yet it needs to have a convenient analytical format.

Based on the observed data, we could estimate the parameters in the auxiliary model using Maximum Likelihood Method

$$\hat{\theta} = \arg \max_{\theta} \sum_{t=1}^{T} \log f(y_i \mid x_i, \theta)$$

(11)

The estimated coefficient vector $\hat{\theta}$ could be used as an indicator of certain features of the observed data.

On the other hand, the auxiliary model can be estimated based on simulated data from the basic model as well. We need to draw a sequence of random error terms $\{\varepsilon^n\}_{m}^{T}$ from the defined distribution, in which m denotes the number of simulation with an interval of [1, M] generally. Given a coefficient vector β, we could generate the values of endogenous variables $\{\hat{y}^n_i (\beta)\}_{m}^{T}$, which are explicitly dependent on β. With the help of Maximum Likelihood Method, we could get

$$\tilde{\theta}(\beta) = \arg \max_{\theta} \sum_{m=1}^{M} \sum_{t=1}^{T} \log f(\hat{y}^n_i (\beta) \mid x_i, \theta)$$

(12)

According to the principle of indirect inference, we try to find the values of β to make $\tilde{\theta}(\beta)$ as close to $\hat{\theta}$ as possible. Practically, we need a metric to measure the distance between $\hat{\theta}$ and $\tilde{\theta}(\beta)$, and by minimizing the distance we could find out the estimates of β in the basic economic model.
3.3.3 Choices of the metrics

As mentioned above, we need a metric to measure the distance between $\hat{\theta}$ and $\tilde{\theta}(\beta)$. There are three approaches corresponding to the three classical hypothesis tests, namely Wald, likelihood ratio (LR) and Lagrange multiplier (LM). In the Wald approach, we try to minimize a quadratic form in the difference between the two estimators of $\hat{\theta}$ and $\tilde{\theta}(\beta)$, which is

$$\tilde{\beta}_{\text{Wald}} = \arg\min_\beta (\hat{\theta} - \tilde{\theta}(\beta))' W (\hat{\theta} - \tilde{\theta}(\beta))$$ \hspace{1cm} (13)

in which, W is a positive definite “weighting” matrix.

In the LR approach, a metric is formed based on the likelihood function related to the auxiliary model, which is

$$\tilde{\beta}_{\text{LR}} = \arg\min_\beta (\sum_{i=1}^{T} \log f(y_i | x_i, \hat{\theta}) - \sum_{i=1}^{T} \log f(y_i | x_i, \tilde{\theta}(\beta)))$$ \hspace{1cm} (14)

According to the definition of $\hat{\theta}$, the first part of the objective function before the minus sign on the right-hand side is always larger than the second part after the minus sign. And the first part is not dependent on β.

To minimize the objective function is equivalent to maximizing the log-likelihood function with $\tilde{\theta}(\beta)$, that is

$$\tilde{\beta}_{\text{LR}} = \arg\max_\beta (\sum_{i=1}^{T} \log f(y_i | x_i, \tilde{\theta}(\beta)))$$ \hspace{1cm} (15)

In the LM approach, the metric is formed using the derivative of the log-likelihood function related to the auxiliary model, which is

$$\tilde{\beta}_{\text{LM}} = \arg\min_\beta S(\beta)' V S(\beta)$$ \hspace{1cm} (16)

in which,

$$S(\beta) = \sum_{m=1}^{M} \sum_{i=1}^{T} \frac{\partial}{\partial \theta} \log f(y_i | x_i, \tilde{\theta})$$ \hspace{1cm} (17)

and V is a positive definite matrix.

By using any of the approaches, we aim at getting the minimized distance between $\hat{\theta}$ and $\tilde{\theta}(\beta)$, so the value will approach to zero as expected. So the hypothesis test of the minimized value could be used as an indicator of whether the auxiliary model is suitably specified. In other words, the minimized value being significantly different from zero indicates a bad specification of the auxiliary model.

In comparison, the LM approach has an advantage over the others in computation, when it is relatively time-consuming to estimate the auxiliary model.

3.3.4 Consistency Interpretation

Suppose the observed sample size T grows large, while total number of simulations stays fixed as M, the estimator based on simulated data $\tilde{\theta}(\beta)$ will converge to a pseudo-true value, denoted as $h(\beta)$, which is also dependent on β. This is called binding function, which characterized the relationship between the coefficients in the basic model and the auxiliary model. At the same time, the estimator based on observed data $\hat{\theta}$ will converge to a pseudo-true value θ_0. In case that T grows to a large number, the aim of indirect inference changes to finding β that guarantees $\theta_0 = h(\beta)$. This could explain that indirect inference gives consistent estimate of the parameters in the basic economic model.

In this project, the binding function is what we focus on to get the correct estimates instead of finding certain metrics. Detailed methods will be discussed in the following part.

3.4 Model Specification in the Thesis

3.4.1 Basic Route Choice Model

Based on all the methods mentioned in previous sections, the specification of models and methods we use in the thesis will be explained in this section. Since we are to estimate the model based on true observations, no model is known beforehand to adjust to the data we use. Several formulations of the model have been tested in the thesis. The one explained here could be seen as an example and all the other trials contain modifications based on this model. The other specifications of model will be explained along with the results in the result section.
We start by describing the underlying route choice model of interest. We need to define a road network as a representation of a real-size one, from which we collected the trip data. The network, denoted as N, consists of a set of nodes (vertices) v and links (edges) l. Each link has a source node $s(l)$ and a target node or a destination node $d(l)$, which together indicate the direction of the link. A path from an origin node v^o to a destination node v^d could be seen as a sequence of links $\{l_1, \ldots, l_n\}$, of which $s(l_1) = v^o$, $d(l_1) = s(l_2)$, and $d(l_n) = v^d$. So a path can be defined by the index of links, which is $\pi = \{l_1, \ldots, l_n\}$.

A vector of characteristics, denoted as x_l, is associated to each link, as well as a strictly positive cost function $c(x_l, \varepsilon_i; \beta)$, in which ε_i is an individual specific random link cost with i denoting the individual and β is a vector of coefficients of the link characteristics left to be estimated. In the Indirect Inference context, we need an auxiliary model with easily-estimated analytical form, yet there is no such requirement for the basic model. Although not necessary, we assume that the cost function has a linear deterministic form; the deterministic part and the random part are additively separable. So we have the cost function as

$$c(x_l, \varepsilon_i; \beta) = \beta^T x_l + \varepsilon_{li}$$

In addition, one important assumption is that the link cost is additive, which means that the cost of a path can be attained by the sum of all the link costs along the path. This way, we have the cost of a path π as

$$C(\pi) = \sum_{l \in \pi} c(x_l, \varepsilon_{li}; \beta)$$

We focus on the path-based model, which means that the individuals choose among all possible paths. As defined above, this turns out to be a random utility choice model. As indicated by the standard assumptions of this kind of models, choice makers are assumed to know both the link characteristics and their idiosyncratic random utility ε_{li} associated to each link. Since the choice makers maximize their utility, this means that they will choose the path with the lowest generalized cost in this model. This way we have the choice of individual i as

\[\pi_i = \arg \min_{\pi \in \Omega(v_i^o, v_i^d)} C(\pi) \]

(20)

in which, \(v_i^o \) denotes the origin point of the trip for individual \(i \) and \(v_i^d \) denotes the destination. \(\Omega(v_i^o, v_i^d) \) denotes all possible paths connecting the origin and destination in the network for individual \(i \), which forms the choice set for the individual.

When implementing the model, we assume that the random utility component \(\epsilon_i \) follows a truncated normal distribution. To be specific, \(\epsilon_i \) follows a standard normal distribution yet with only the positive values retrieved. This way, we could guarantee that the link costs are always positive, so that additively the path would not have infinite loops. With this feature of the random component, we could say that our model is probit-like. Based on this assumption, the prerequisite of Dijkstra’s Algorithm is satisfied, which always needs positive edge values on the network. We can use the Dijkstra’s Algorithm to find the shortest paths \(\pi_i \) as an intermediate step in the implementation. Apart from this, we assume that the unobserved cost captured by the random term is proportional to the length of link. To embody this in the cost function, we add a fixed scale parameter to the random term with a form of \(x_{\text{Length},i} \cdot \text{Mean}(x_{\text{Length}}) \), in which \(\text{Mean}(x_{\text{Length}}) \) is the average length of links in the network.

We will assume that the data consists of \(J \) paths as dependent variables, which means that the dependent variables for the choice model are \(y = \{ \pi_i \}_{i=1}^J \). In addition, the observed characteristics of links in the network are provided, \(x = \{ x_i \}_{i=1}^J \). To be specific, we choose to use two attributes of the links, namely the length of the links, \(x_{\text{Length}} \) and the dummy variable indicating the presence of speed bumps on the links, \(x_{\text{SB}} \). The cost function then is specified as

\[c(x_i, \epsilon_i) = \beta_{\text{Length}} x_{\text{Length},i} + \beta_{\text{SB}} x_{\text{SB},i} + \epsilon_i \cdot \text{Mean}(x_{\text{Length}}) / \text{Mean}(x_{\text{Length}}) \]

(21)

Now the objective is to estimate the parameters \(\beta \) in the model, for which we will make use of an auxiliary model.
3.4.2 Auxiliary Model

Based on the idea of Indirect Inference, we treat the route choice model defined above as the basic model of interest, which might have complex formation and be difficult to estimate directly. Then we need an auxiliary model to form a criterion which takes into certain aspects of data to focus the analysis. The auxiliary model needs not to reflect the data generating process exactly as in the basic model, yet it needs to include attributes of interest in order for reference and to be easy to estimate. We choose to use a logit model for route choice as the auxiliary model, since the logit model has always been a useful tool for discrete choice analysis thanks to its analytical form and there is software for estimating logit models which ensures that we can estimate very efficiently.

As to the auxiliary model, it is chosen to be a logit model for route choice. We consider that each individual \(i \) is choosing from a set of alternative routes \(r \). Each route \(r \) is given a utility of

\[
U_{ri} = V_{ri} + \epsilon_{ri} = -\theta^T X_{ri} + \epsilon_{ri}
\]

in which, \(\theta \) is the vector of auxiliary parameters, which gives inference to the parameters in the basic model. One thing to be mentioned is that, as expected the coefficients in the utility function should have negative signs. To make it easier for comparison with the coefficients in the basic route choice model, we assume the sign of \(\theta \) to be positive per se and add a negative sign ahead of it to guarantee that the coefficient part is negative as a whole. \(X_{ri} \) denotes route characteristics and \(\epsilon_{ri} \) is the random utility for each individual, which is assumed to follow an i.i.d (independently, identically distributed) Gumbel distribution, following the standard assumption of logit models.

Note that, as required for the auxiliary model, it should be flexible enough to capture the variability in the data and thus contains no fewer attributes than the basic model\(^{39}\). In order to infer the parameters in the basic model and in consideration of efficiency, we pick the same attributes of interest in the basic models, which are the link length \(x_{\text{Length}} \) and the speed bump dummy variable \(x_{\text{SB}} \). So the utility function turns out to be

\[
U_{ri} = -\theta_{\text{Length}} x_{\text{Length},ri} - \theta_{\text{SB}} x_{\text{SB},ri} + \epsilon_{ri}
\]

The probability of individual i choosing path r given an individual specific choice set $I_i(o,d)$ is

$$P_n = \frac{e^V_i}{\sum_{n \in I_i(o,d)} e^V_n}$$

(24)

Theoretically, we allow the individuals to choose from all possible paths between the origin and destination in the network, which intuitively could be infinite and impossible to enumerate. When implementing the model, we generate the individual choice set based on the basic route choice model. Through simulation of the basic model, we generate infinite unique shortest paths for all the unique OD pairs by redrawing the random link cost ε_r. Without loss of generality, the number of paths generated would be big enough, with fully consideration of efficiency. We name the finite choice set composed by the shortest paths generated as the pseudo-universal choice set $I(o,d)$, which is a sample of the infinite universal choice set. The individual specific choice sets are generated by randomly drawing certain number of paths out of the pseudo-universal choice set. And the size of individual specific choice set could be equal to or smaller than that of the pseudo-universal one.

The resulting individual specific choice set $I_i(o,d)$ describes a finite subset of all possible paths connecting the origin o and destination d, for individual i. When implementing the methods, the way of generating the choice set $I_i(o,d)$ for each individual i is viewed as part of the auxiliary model.

After the auxiliary model is built, it could be estimated using a Maximum Likelihood estimator based on the observed data of individual choices y and attributes variables x, for individual $i = 1, \ldots, N$. The estimate of parameters in the auxiliary model is

$$\hat{\theta} = \arg \max_\theta L(y; x, \theta)$$

(25)

in which, $L(y; x, \theta)$ is the log-likelihood function for the auxiliary model.

Given the data of the link attributes x and some random draws of structural parameters β_m, $m = 1, \ldots, M$ we can simulate choice data through the basic route choice model. With M draws of β from some given density, we could simulate M sets of data, resulting in
simulated choices $\tilde{y}(\beta_m)$. Same as before, parameters θ in the auxiliary model can be estimated based on the simulated data, as

$$\tilde{\theta}_m(\beta_m) = \arg\max_{\theta} L(\tilde{y}(\beta_m); x, \theta)$$ (26)

As the process indicated, the simulated choice data depends on the structural parameter β in the basic route choice model, and in sequence the estimates of parameters θ in the auxiliary model depends on β, when estimated based on the simulated data. Based on this, theoretically we have a relationship of $\theta(\beta)$, referred to as the binding function in indirect inference literatures, which we will discuss in detail for implementation of model in this thesis. A metric is then chosen to measure the distance between the observed and simulated data, viewed by the auxiliary model, as a way to indirectly infer the values of parameters β in the basic model. To be specific, for each draw of the structural parameter β_m, we can get the estimates of $\tilde{\theta}_m(\beta_m)$ based on the simulated data, and the distance between $\tilde{\theta}_m(\beta_m)$ and $\hat{\theta}$ measured by the chosen metric. By doing more iteration with the aim of minimizing the distance, we will get the value of β_m, which spurs the $\tilde{\theta}_m(\beta_m)$ closest to $\hat{\theta}$, and this β_m is the inferred estimates of the parameter in the basic model.

3.4.3 Consistency Discussion

The process of indirectly estimating parameters in the basic model is described above, yet we need to know whether the method we provide gives consistent estimation. Here are some discussions explaining the consistency in estimating, by which consistency of the estimator we proposed is illustrated.

As proved, the multinomial logit model (MNL) can be estimated consistently based on a subset of alternatives (McFadden, 1978)\(^4\). We may need to use the classical conditional maximum likelihood estimator to deal with the problem; at the same time, the probability that an individual n chooses an alternative i conditional on the subset of alternatives, denoted as c_n, becomes the conditional probability

\begin{equation}
 P(i \mid c_n) = \frac{e^{\mu V_n + \ln q(c_n \mid j)}}{\sum_{j \in c_n} e^{\mu V_n + \ln q(c_n \mid j)}}
\end{equation}

in which, \(\mu \) is a scale parameter and \(V_n \) is the deterministic part of the utility. There is a term \(\ln q(c_n \mid j) \) for correcting the sampling bias, in which \(q(c_n \mid j) \) denotes the probability of sampling \(c_n \) given that alternative \(j \) is chosen.

If all the alternatives in the choice set have the same probability to be chosen into the subset, the estimation on the subset of alternatives is equivalent to that on the full choice set. To be specific, in this case \(q(c_n \mid i) \) is equal to \(q(c_n \mid j) \forall j \in c_n \), so by calculation the term for sampling bias correction will cancel out in the probability function.

In route choice context, the alternative paths between an origin and a destination may be in large amount and it is inefficient to give some very long-distance paths the same probability as those short and attractive ones. This means that we may need the importance sampling method when generating subsets of alternatives, which selects attractive alternatives with higher probability than unattractive ones. And the correction term does not cancel out in this case. Note that, if alternative specific constants are estimated, we can get unbiased estimates of all the parameters except the constants even if the correction term is not included in the utility function (Mansi & Lerman, 1977)\(^{41}\).

Back to the route choice context, we tend to use large number of alternatives even with subset of the full choice set, which means that it is generally impossible to estimate the constants and thus the correction term is essential. To solve this problem, Frejinger et al (2009) developed a sampling approach in the context of route choice\(^{42}\).

The discussion above focuses on the usage of MNL for route choice modeling. When it comes to our method, the individual specific choice set is generated by randomly drawing alternatives from the pseudo-universal choice set with the same probability, yet there is bias when generating the pseudo-universal ones, since the pseudo-universal choice set is composed of certain number of shortest paths between two nodes and this generating process gives some paths higher probability to be included into the choice set. So we

actually use importance sampling to get the choice set, which may consequently introduce bias in estimating the parameter θ in the auxiliary model as discussed above. With the idea of indirect inference, we consider only the relationship between θ and β, denoted as $\theta(\beta)$ and use this relation to infer the value of β. From this point of view, whether θ is estimated with bias or not does not matter, since the relation between it and β could always be captured, which is the specific thing we focus on using the method of indirect inference. So we can say that, even with biased subset of alternatives, we could still get consistent estimation by using indirect inference.

3.4.4 Binding Function
As discussed in indirect inference method section, when the sample size N increases, which means that we have more observations of choice, the estimated parameter in the auxiliary model, $\hat{\theta}_m(\beta_m)$, will converge to a stable value $\theta(\beta_m)$, which is often referred to as the binding function. Given that route choice model deals with discrete choices and by using indirect inference, we have a discrete choice model as the auxiliary model as well, the estimates of binding function $\hat{\theta}_m(\beta_m)$ will inherit the discontinuous feature due to discrete individual choices $\hat{\gamma}(\beta_m)$. Keane and Smith (2003) proposed a solution of using logit-smoothing on the simulated dependent choice data43. Following this idea, we assume a continuous binding function $\tilde{\theta}(\beta)$ for simplicity, which could be approximated by a linear function locally within small intervals. With the M randomly drawn values of β_m and the corresponding estimated parameters $\tilde{\theta}_m(\beta_m)$ in the auxiliary model, we could perform an Ordinary Least Square (OLS) regression to estimate the local approximation of binding function.

$$\tilde{\theta}(\beta) = c + D\beta$$

in which, c denotes the constant vector and D denotes the OLS parameter matrix44. To be specific, in our case, each parameter in the auxiliary model will have a restriction function with regard to both parameters in the basic model, which is

Based on the observed data of choices \(y \) and explanatory variables \(x \) and the estimated binding function, which indicates the restrictions between \(\tilde{\theta} \) and \(\beta \), we could use the maximum likelihood method to give estimation of the parameters of interest. The likelihood ratio approach to indirect inference is, following ideas of Smith (1993)\(^{45}\) and Keane and Smith (2003)\(^{46}\)

\[
\tilde{\beta} = \arg \max_{\beta} L(y; x, \tilde{\theta}(\beta))
\]

in which, \(\tilde{\beta} \) is the estimate of the parameter of interest, \(\beta \), in the basic economic model. With the restriction of binding function, this is actually an indirectly inferred estimate. In line with the estimating process in auxiliary model, \(L(\cdot) \) is the likelihood function of the auxiliary model.

Note that the form of binding function is based on an assumption; in the result part we will verify that this assumption is realistic.

4 Data

4.1 Road Network

The data we use for estimation is based on a GPS data set collected in the Swedish city of Borlänge. Borlänge is located in the middle part of Sweden and has a population of about 47,000 inhabitants.

The virtual road network contains 3077 nodes and 7459 unidirectional links (Frejinger & Bierlaire, 2007), of which 3061 nodes and 7288 links are included in the network for estimation. Figure 3 gives a visual illustration of the road network in Borlänge.

With regard to our research, two of the link attributes are included, namely link length and speed bump dummy. Link length is in the unit of km and speed bump dummy is an indication of speed bump existence on the links, which has the value 1 when there is a speed bump on the link and 0 otherwise.

- Link length

Some descriptive statistics of the link length data for the whole network is presented in Table 1 below.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Descriptive statistics of link length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of links</td>
<td>7288</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.001</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.599</td>
</tr>
<tr>
<td>Mean</td>
<td>0.184487</td>
</tr>
<tr>
<td>Median</td>
<td>0.102</td>
</tr>
<tr>
<td>Variance</td>
<td>0.103722</td>
</tr>
<tr>
<td>Lexis ratio (var./mean)</td>
<td>1.016884</td>
</tr>
<tr>
<td>Skewness</td>
<td>9.871144</td>
</tr>
</tbody>
</table>

To describe the overall character of the link length attribute, the histogram is shown in Figure 4 below.

![Figure 4 Histogram of link length data](image)

We could see that the link length data is quite clustered, most of which lies within the range of 0.1km and 0.6km. Nonetheless, there are some extreme values far away from the range, indicating extremely long links. To display the variation in the relatively clustered area, we draw a histogram zoomed in the interval of (0, 1km], shown Figure 5 in below.
Over 80% of all the links have length shorter than 0.3 km, indicating concentration of link length data.

- Speed bump dummy

Speed bump dummy is based on true situation in the network. Of all the links, 82 links are equipped with speed bumps, which account for a percentage of 1.13%. The following Figure 6 displays the locations of links with speed bumps.
4.2 Observation Data

The GPS data set is collected as a part of the Swedish Intelligent Speed Adaptation (ISA) study, which aims at traffic safety effects of in-car information systems. In the study, 186 vehicles were equipped with GPS devices and traced within a radius of 25 km from the center of Borlänge. The monitoring lasted for 30 days from 22nd June, 2000 to 4th March, 2002, obtaining 49 667 vehicle days of travel and nearly a quarter of a million trips (for more information on the GPS data set, check Axhausen, Schönfelder, Wolf, Oliveira, & Samaga, 2003; Schönfelder & Samaga, 2003; Schönfelder, Axhausen, Antille, & Bierlaire, 2002)48.

The data collection is not originally designed for route choice analysis, so the raw data cannot be used in our research directly. Extensive data processing is performed by the company GeoStats in Atlanta, to retrieve new data set available for route choice analysis, which contains 24 vehicles and 16 035 observations. The final data set we use is provided by Emma Frejinger, which contains in total 1832 observations corresponding to 1458 observed unique routes made by 24 vehicles and 1409 unique origin-destination pairs. Considering that certain route may have been observed more than once, we make a distinction between observations and unique routes, and number of unique routes should be less than that of observations consistently with the numbers listed above.

As indicated by data collection in the ISA study, only licensed drivers with access to his or her only car are recruited to minimize sharing or swapping of cars. Minimum socio-economic data of the drivers is included in data collection, so we have no way to understand driver characteristics from the data set. Logically, we make an assumption that there is only one individual per vehicle.

In the observation data, a route is represented by a series of links and also an origin-destination pair. With relatively intensively distributed link length, number of links could

be used to indicate total length of routes. Some of the descriptive statistics of link number is shown in Table 2 below.

Table 2 Descriptive statistics of link numbers in observation data set

<table>
<thead>
<tr>
<th>Number of observations</th>
<th>1832</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>5</td>
</tr>
<tr>
<td>Maximum</td>
<td>106</td>
</tr>
<tr>
<td>Mean</td>
<td>20.2877</td>
</tr>
<tr>
<td>Median</td>
<td>16</td>
</tr>
<tr>
<td>Variance</td>
<td>187.1968</td>
</tr>
<tr>
<td>Lexis ratio (var./mean)</td>
<td>9.227126</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.732597</td>
</tr>
</tbody>
</table>

For further overall inspection of link number distribution in the observation data set, the histogram is shown in Figure 7 below.

![Histogram of link numbers in observations data set](image)

Figure 7 Histogram of link numbers in observations data set

Seen from the histogram, distribution of number of links is relatively dispersed with a large range interval. Judging by the statistics, in general the routes observed have about
20 links in average. Yet the data has a big variance, which is reasonable. As stated above, there are 1409 unique OD pairs for 1832 observations, indicating that for most OD pairs there is only one observation. Spread within the detecting area, different OD pairs could have various numbers of links in between.

Following our experiment design, only a portion of the data could be used. To be specific, routes with number of links fewer than ten would be eliminated when used for estimation.

4.3 Further Exploration of data

Apart from the characters discussed above, there are some other attributes in the data set interesting to be explored. Both in link attribute data set and observation data set, there is travel time data which to some extent is parallel with length in indicating distance between two nodes.

In the link attribute data set, one attribute is denotes the estimated travel time of links, in unit of hour. Some of the descriptive statistics is shown in Table 3 below, switching unit to minute.

<table>
<thead>
<tr>
<th>Number of links</th>
<th>7288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.00186</td>
</tr>
<tr>
<td>Maximum</td>
<td>5.78268</td>
</tr>
<tr>
<td>Mean</td>
<td>0.281696</td>
</tr>
<tr>
<td>Median</td>
<td>0.18744</td>
</tr>
<tr>
<td>Variance</td>
<td>0.119337</td>
</tr>
<tr>
<td>Lexis ratio (var./mean)</td>
<td>0.423638</td>
</tr>
<tr>
<td>Skewness</td>
<td>5.785361</td>
</tr>
</tbody>
</table>

Seen from Table 3, estimated travel time seems to have a more clustered distribution than link length judging by lexis ratio and skewness. Yet this time is roughly estimated, not so qualified as link length to use in estimation, since the latter is much easier to measure and guarantee precision.

In the observation data set, we have the duration time of the observations in the unit of minute. Some of the descriptive statistics is shown in Table 4 below.
<table>
<thead>
<tr>
<th>Number of observations</th>
<th>1832</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.07</td>
</tr>
<tr>
<td>Maximum</td>
<td>31.6</td>
</tr>
<tr>
<td>Mean</td>
<td>4.991195</td>
</tr>
<tr>
<td>Median</td>
<td>3.925</td>
</tr>
<tr>
<td>Variance</td>
<td>17.75639</td>
</tr>
<tr>
<td>Lexis ratio (var./mean)</td>
<td>3.557542</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.174728</td>
</tr>
</tbody>
</table>

Duration of trips can be used as an indication of distance between origin and destination, yet it is roughly measured and strongly affected by traffic condition on the road network. With similar reasons as discussed on estimated travel time on link, we use number of links instead of duration of trips to indicate the distance between OD pairs.
5 Experiment Design

When doing the simulation-based estimation, it is physically divided into two parts for convenience of operation. As discussed in the method section, we choose to use a pseudo-universal choice set, which is generated and stored in the first part and ready for use in the following experiment. Then in the second part, we do the simulation-based experiment to carry out indirect inference method for estimating the parameters of interest in the basic model, \(\beta \) to be specific. The Figure 8 below illustrates an abstracted flow of how the estimation is carried out given certain origin-destination pair.

As shown in the flow chart, we get all the unique OD pairs in the trip data. For each of the OD pairs, the Dijkstra’s algorithm is used to find the shortest paths between them without duplicates. We set the intended number of paths to be 400 as well as time terminator in case not enough paths could be generated within certain bearable time.
interval. The generated paths form the pseudo-universal choice set of each OD pair, which is stored for future use. Note that, we abandon some OD pairs with too few paths in the pseudo-universal choice set. Observations containing the kept OD pairs are used for following estimation, which turns out to be 940 of them.

For the OD pair in a given observation, 200 alternatives are randomly drawn from the pseudo-universal choice set and the sequential links in the observation itself is read as an alternative path. The 201 paths compose the observed choice set. On the other hand, a given value of β_m is drawn from a predefined domain D. The shortest path is generated based on the given β_m as the simulated observation. Like in the observed choice set part, 200 alternatives are randomly drawn from the pseudo-universal choice set to form the simulated choice set together with the simulated observation. The auxiliary model is estimated based on the simulated choice set and we could get a set of $(\beta_m, \hat{\theta}_m(\beta_m))$ pairs which will be used to estimate the binding function. Based on the binding function and the observed choice set, the parameters in the basic model could be indirectly estimated.

The process described above is abstracted with no illustration of iterations. Since this is an experiment based on simulations, certain loops of iteration should be carried out to get statistics of the results.

Given observed trip data, at first we have no idea of the value of β. In the process of retrieving value of β, the estimation process is repeated for several stages, denoted as S, starting from a rough guess of the domain D^0, while for each following stage the domain shrinks. Since we tend to use a local OLS regression to approximate the smooth binding function, the draws of β'_m need to be around the true value to prevent misspecification of OLS regression due to the possibly inherent nonlinearity of the binding function. The estimated $\hat{\beta}^0$ is not satisfactory in precision in the first stage, yet it could give a hint of where the true value lies. The domain D^1 is centered on $\hat{\beta}^0$ with smaller interval before the estimation in the second stage. This way, D^{s+1} is dependent on D^s with smaller interval. As it goes on, we will get a more accurate domain and as a result a well specified OLS regression to approximate the binding function.
The process of experiment with iterations is described below. Suppose that we have the experiment carried out for \(K \) times and the number of observations used is \(N \).

for run \(k = 1, \ldots, K \)
 for true observation \(i = 1, \ldots, N \)
 Randomly draw alternatives from the pseudo-universal choice set;
 end
 Form the observed choice set \(y \);
 for stage \(s = 1, \ldots, S \)
 for \(m = 1, \ldots, M \)
 Draw \(\beta_m^{ks} \) from the domain \(D^{ks} \);
 Simulate paths for OD pairs in the used observations with \(\beta_m \);
 for simulated observation \(i = 1, \ldots, N \)
 Randomly draw alternatives from the pseudo-universal choice set;
 end
 Form a simulated route choice set \(\tilde{y}(\beta_m^{ks}) \);
 Estimate \(\tilde{\theta}_m (\beta_m^{ks}) \) in Equation (26);
 end
 Estimate \(\tilde{\theta}^{ks} (\beta) \) in Equation (28);
 Estimate \(\hat{\beta}^{ks} \) in Equation (31);
 end
 Center the domain \(D^{k,s+1} \) on \(\hat{\beta}^{ks} \) and shrink the interval;
end

As a trial, we first do the experiment on a route choice model with one parameter, link length to be specific. For simplicity, the random term is not scaled as described in the model specification section, which means we attach a truncated normally distributed random term to the cost function without scaling it with link length. After getting the estimation of \(\beta_{\text{Length}} \), we move on to estimating the route choice model with both parameters as described in the model specification. Results under these two formulations of models are presented separately in the result part.
6 Results

6.1 Validation of Binding Function

As discussed in the binding function section, we assume the binding function to be continuous and feasible to be approximated by a linear function locally. The assumption of binding function can be verified based on the \((\beta_m, \bar{\theta}_m(\beta_m))\) pairs we attained as intermediate results. To explain this more explicitly, we carry out a simple example with only one parameter in the route choice model, \(\beta_{\text{Length}}\), to be specific.

The cost function is specified as

\[
c(x_l, \varepsilon_l) = \beta_{\text{Length}}x_{\text{Length}, l} + \varepsilon_{li}
\]

corresponding to which the auxiliary model is

\[
U_{ri} = -\theta_{\text{Length}}x_{\text{Length}, r} + \varepsilon_{ri}
\]

For each run, 10 values of \(\beta_{\text{Length}}\) are evenly drawn from a given domain. By simulating observations, and estimating the auxiliary model, 10 corresponding \(\theta_{\text{Length}}\) are generated to form ten \((\beta_m, \tilde{\theta}_m(\beta_m))\) pairs. As assumed, the binding function \(\tilde{\theta}(\beta)\) is continuous, which could be approximated by a linear function locally. To display the trend of binding function, we choose a relatively large domain for \(\beta_{\text{Length}}\) in the beginning, \(D = [0, 10]\) and carry out 10 runs which generate 100 points in the beta-theta diagram, shown in Figure 9 below.

![Figure 9 Scatter plots of the 90 beta-theta pairs](image)

\[
y = 1.2804x + 1.6264 \\
R^2 = 0.9959
\]
We do OLS regression for the dots and estimate the binding function. Intuitively, the smaller the domain is, the more accurate is the approximation of the binding function. We shrink the input domain based on the final estimate of β_{Length} from last trial.

As it turned out to be, we choose an input domain of $D = [1.2, 1.4]$ for β_{Length} and the binding function is assumed to take the form of

$$\bar{\theta}_{\text{Length}}(\beta) = c_1 + d_1 \beta_{\text{Length}}$$

(34)

The result for one run is displayed in Figure 10 below.

The estimated binding function based on the 10 points is

$$\bar{\theta}_{\text{Length}}(\beta) = 1.7371 + 1.0838 \beta_{\text{Length}}$$

(35)

as indicated by $R^2 = 0.9783$, the function describes the trend of points very well. Since the interval is quite small, we could use the estimated function to approximate the binding function.

When it comes to more parameters in the route choice model, what we do is simply to add more elements in the binding function. After getting a vector of β and the corresponding vector of $\bar{\theta}(\beta)$, binding functions of each element in vector $\bar{\theta}(\beta)$ with
regard to all the elements in vector β are estimated. One example is shown in the Equation (29) and Equation (30).

6.2 Estimation of model with one attribute

The route choice model with one attribute we used is the one described in Section 6.1 above. After several trials, by shrinking input interval every time, we finally affirm that the true value β_{Length} of lies in a relatively small interval of $[1.2, 1.4]$. Based on this domain, $K = 50$ runs are carried out to get statistics of the estimate of β_{Length}. As discussed in the experimental design, several stages S mean different trials before final affirmation of input interval, yet for the statistics only one stage is carried out for each run. Within each run, $M = 10$ values of input β_{Length} are drawn for estimating binding function.

The estimation statistics of $\hat{\beta}_{\text{Length}}$ is shown in Table 5 below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\hat{\beta}_{\text{Length}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.337353</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.107537</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.013227</td>
</tr>
</tbody>
</table>

In the table, RMSE is the root-mean-square error, which is used to measure the distances between the observed values being estimated and the predicted values by the estimator. The individual differences are called residuals, and RMSE is an aggregated measure of the residuals. To be specific,

$$ \text{RMSE}(\hat{\theta}) = \sqrt{\text{MSE}(\hat{\theta})} = \sqrt{E((\hat{\theta} - \theta)^2)} $$

in which, $\hat{\theta}$ is the estimator and θ is the parameter to be estimated, so the RMSE is the square root of the mean square error. As defined, the smaller the value of RMSE is, the better the estimator is.
Here the RMSE is calculated based on the ten points \((β_m, \tilde{θ}_m(β_m))\) for estimating binding function, so basically it describes the goodness of fit of the estimated binding function with regard to the points we generated. The Equation (36) is specified as

\[
RMSE(θ(β_m)) = \sqrt{\text{Mean}((θ(β_m) - \tilde{θ}_m(β_m))^2)}
\]

(37)

The value of RMSE displayed in the Table 5 is the mean value of all the RMSE values for 50 runs. Seen from this, we have well-estimated binding function for all the 50 runs on average. In terms of the estimates of binding function, taking the one in Section 6.1 as an example, the binding function estimated in the interval of \([1.2, 1.4]\) in Equation (35) has a positive constant and a positive coefficient for \(β_{\text{Length}}\), which indicates that with larger value of \(β_{\text{Length}}\) we will get larger value of \(\tilde{θ}_{\text{Length}}\), and as a result a negative coefficient for length in the utility function of the logit model. This is reasonable for bigger \(β_{\text{Length}}\) reveals larger incremental effect on the cost of certain path, while lower \(-\tilde{θ}_{\text{Length}}\) reveals larger disutility effect on certain path; these two effects are in fact equivalent.

By the way, the high fitness of binding function is probably due to the relatively small input interval of \(β_{\text{Length}}\), after certain trials and shrinkage. As the final estimate indicates, \(\tilde{β}_{\text{Length}}\) falls right into the interval of \([1.2, 1.4]\) with small standard deviation. So we can say that the estimate is quite good.

6.3 Estimation of model with two attributes

We use the model described in the model specification section to carry out the estimation. Two attributes are used, namely length and speed bump dummy. Similar to the one attribute case, we carried out several trials and shrinkage to finally determine the relatively small input intervals for \(β_{\text{Length}}\) and \(β_{\text{SB}}\), \([0.5, 1]\) and \([0, 0.5]\) respectively. \(K = 50\) runs are carried out to get statistics of the estimates of the two parameters. Within each run, \(M = 10\) values are drawn for inputs \(β_{\text{Length}}\) and \(β_{\text{SB}}\) respectively for estimating binding function.
One important thing to mention here is that the inputs are drawn evenly from the domain; yet to guarantee that the values of β_{Length} and β_{SB} are independent from each other or to get rid of collinearity, the domains of two parameters are defined in two dimensions. To explain this more explicitly, we choose data of one run as an example. The input points of $(\beta_{\text{Length}}, \beta_{\text{SB}})$ are shown in Figure 11 below.

![Figure 11 Scatter plot of the input values for beta_length and beta_sb](image)

We can see from Figure 11 that, the points spread evenly in the domain quadrant. Based on these draws we could estimate the binding function and evaluate the relationship between parameters in the logit model and β_{Length} and β_{SB} without worrying about possible correlation between β_{Length} and β_{SB}.

As discussed before, in the binding function, we are supposed to find the relationship between each of the parameters in the logit model and both parameters in the route choice model. Mathematically, this binding function should be a surface in the 3D coordinate system. We take the results of one run as an example and thus we have ten sets of β_{Length} and β_{SB} along with corresponding $\tilde{\theta}_{\text{Length}}$ and $\tilde{\theta}_{\text{SB}}$.

A set of points is collinear if they lie on a single straight line or a projective line (for example, projective line over any field) and this way the two factors represented by the points are correlated.
For the first binding function, $\tilde{\theta}_{\text{Length}}$ and $(\beta_{\text{Length}}, \beta_{\text{SB}})$ are plotted in Figure 12 below. And the binding function takes a form as described in Equation (29).

By multi-linear regression, we can get a surface to approximate the binding function locally. The estimated binding function is displayed in Figure 13 below.

And the first binding function has a formula of
\[
\tilde{\theta}_{\text{Length}} = 1.8234 + 1.6933 \beta_{\text{Length}} + 0.0633 \beta_{\text{SB}}
\]

(38)

For the second binding function, \(\tilde{\theta}_{\text{SB}} \) and \((\beta_{\text{Length}}, \beta_{\text{SB}})\) are plotted in Figure 14 below.

And the binding function takes a form as described in Equation (30).

By multi-linear regression, we can get a surface to approximate the binding function locally. The estimated binding function is displayed in Figure 15 below.
And the second binding function has a formula of
\[
\tilde{\theta}_{SB} = -0.6698 + 0.0371 \beta_{\text{Length}} + 1.7619 \beta_{SB}
\] (39)
The t-test of estimated parameters in the binding function is carried out with null hypothesis of zero. Estimates that are significantly different from zero, with 95% confidence interval are marked as bold.

| Table 6 Estimated coefficients of binding function for model with two attributes |
|-----------------------------------|------------------|------------------|------------------|
| Constant | \(\beta_{\text{Length}} \) | \(\beta_{SB} \) |
| \(\tilde{\theta}_{\text{Length}} \) | 1.8234 (43.632) | 1.6933 (33.481) | 0.0633 (1.392) |
| \(\tilde{\theta}_{SB} \) | -0.6698 (-7.991) | 0.0371 (0.366) | 1.7619 (19.323) |

Seen from the magnitude of coefficients in the binding functions, both \(\beta_{\text{Length}} \) and \(\beta_{SB} \) have positive effect on \(\tilde{\theta}_{\text{Length}} \) and \(\tilde{\theta}_{SB} \) and in sequence negative effect on the coefficients in the logit model. In addition, coefficients of \(\beta_{SB} \) with regard to \(\tilde{\theta}_{\text{Length}} \) and \(\beta_{\text{Length}} \) with regard to \(\tilde{\theta}_{SB} \) are not significantly different from zero, so we can say \(\beta_{\text{Length}} \) has a more apparent effect on \(\tilde{\theta}_{\text{Length}} \) than \(\beta_{SB} \) does, while \(\beta_{SB} \) has a more apparent effect on \(\tilde{\theta}_{SB} \) than \(\beta_{\text{Length}} \) does.

But on the estimated binding functions and the true observation data, we could get the estimates of \(\beta_{\text{Length}} \) and \(\beta_{SB} \) as shown in Table 7 below.

| Table 7 Statistics of estimation of \(\beta_{\text{Length}} \) and \(\beta_{SB} \) |
|-----------------------------------|------------------|------------------|
| Parameter | \(\hat{\beta}_{\text{Length}} \) | \(\hat{\beta}_{SB} \) |
| Mean | 0.761383 | 0.079874 |
| Standard deviation | 0.068493 | 0.034375 |
| RMSE | 0.022772 | 0.085113 |

Seen from the RMSE results, the relatively small values indicate that we have well-estimated binding functions for all the 50 runs on average. With regard to the estimates of parameters in the route choice model, both of them fall into the input domain we choose.
and the standard deviation is quite small. So we can say that the estimates are actually very good.

One thing to notice here is that the final estimate of $\hat{\beta}_{\text{Length}}$ falls approximately in the middle of the input domain, [0.5, 1], while the estimate of $\hat{\beta}_{\text{SB}}$ falls closer to the left limit, which might need further shrinkage of input domain and more precise estimate of the binding function. To get rid of this, we use the binding function estimate from all the 500 points to give a hint on the reasonability of acceptance of the estimate of $\hat{\beta}_{\text{SB}}$. The scatter plots of theta_sb against beta_sb and beta_length are shown in Figure 16 below.

![Figure 16 Scatter plots of theta_sb against beta_sb and beta_length](image)

The scatter plots in Figure 16 above are the decompositions of the binding function from three dimensions to two dimensions. Seen from the linear regression in the two plots, $\hat{\theta}_{\text{SB}}$ is almost strictly positive proportional to $\hat{\beta}_{\text{SB}}$ and hardly effected by β_{Length}. This means
that by shrinking the input domain of β_{sb}, we would probably get the same estimate of binding function since it changes little in current domain. And this leads to our acceptance of the final estimate of $\hat{\beta}_{sb}$.

Given that we have a random cost following a truncated standard normal distribution, and the magnitudes of the estimated parameters are relatively small, this would mean that the randomness of the cost function are relatively large, which in sequence leads to relatively large randomness in individual’s choice of route.

Another thing to be mentioned is that the magnitude of $\hat{\beta}_{Length}$ is smaller than that when estimated singly. Though these two values are not logically comparable with different formation of random term in the cost function, we could still get a hint from the comparison. This difference is probably due to the form of random cost we used, which is $\epsilon_{li} \cdot x_{Length,i} / E(x_{Length})$ and the effect of length on the cost is partially captured by this random term.

6.4 Estimations of other trial formulations of the model

6.4.1 Model with exponential form of cost function

During the process of estimation, we carried out a lot of other trials in the formulations of the basic route choice model, the cost function to be specific and the auxiliary logit model. As it turned out, the there are negative estimates of coefficients in the cost function, which conflicts our anticipation. To capture this kind of negative estimation, we choose to use the exponential form of the cost function. Without loss of generality, the random term is not scaled by the length of links. The cost function is specified as

$$c(x, \epsilon_l) = e^{\beta_{Length} \cdot x_{Length,i} + \beta_{sb} \cdot x_{sb}} \cdot \epsilon_l$$

(40)

Two attributes are used, namely length and speed bump dummy variable. Unlike the form in Section 6.3, we allow the parameters β_{Length} and β_{sb} to have negative input and the random term ϵ_l now follow a standard normal distribution without truncation. Since we take the exponential form of the cost function, the cost of links could be kept positive thus allowing the use of Dijkstra’s Algorithm to operate.
In terms of the auxiliary model, since we could have more attributes in the auxiliary model than the underlying model. Instead of using the same attributes as in the cost function, we choose to add an attribute, which is number of links in the path x_{LN}. So the utility function of the logit model is specified as

$$U_{ri} = -\theta_{Length} x_{Length, r} - \theta_{SB} x_{SB, r} - \theta_{LN} x_{LN, r} + \varepsilon_{ri}$$ \hspace{1cm} (41)

We still expect the value of θ to be positive and the coefficient of variables with the form of $-\theta$ would be negative.

Several trials and shrinkage were carried out for this formulation of our model to finally determine the relatively small input intervals for β_{Length} and β_{SB}, [2.5, 2.7] and [-0.5, 0] respectively. $K = 15$ runs are carried out to get statistics of the estimates of the two parameters. Within each run, $M = 10$ values are drawn for inputs β_{Length} and β_{SB} respectively for estimating binding function.

To visualize the trend of binding function more clearly, we make use all the 150 sets of vector β and vector θ to estimate the binding function. Since we have three variables in the logit model, we have to estimate three binding functions.

For the first binding function, $\bar{\theta}_{Length}$ and $(\beta_{Length}, \beta_{SB})$ are plotted in Figure 17 below, shown along with the estimated binding function.

The first binding function takes the form of

$$\bar{\theta}_{Length} = 1.312 + 0.9114 \beta_{Length} + 4.4845 \cdot 10^{-1} \beta_{SB}$$ \hspace{1cm} (42)
For the second binding function, $\tilde{\theta}_{SB}$ and $(\beta_{\text{Length}}, \beta_{SB})$ are plotted in Figure 18 below, shown along with the estimated binding function.

![Figure 18 Scatter plot of theta_sb against beta_length and beta_sb; estimated binding function](image)

The second binding function takes the form of

$$\tilde{\theta}_{SB} = 0.1147 - 0.1362\beta_{\text{Length}} + 0.7119\beta_{SB}$$ \hspace{1cm} (43)

For the third binding function, $\tilde{\theta}_{LN}$ and $(\beta_{\text{Length}}, \beta_{SB})$ are plotted in Figure 19 below, shown along with the estimated binding function.

![Figure 19 Scatter plot of theta_ln against beta_length and beta_sb; estimated binding function](image)

The third binding function takes the form of

$$\tilde{\theta}_{LN} = 1.0043 - 0.3378\beta_{\text{Length}} + 0.0068\beta_{SB}$$ \hspace{1cm} (44)

The t-test of estimated parameters in the binding function is carried out with null hypothesis of zero. Estimates that are significantly different from zero, with 95% confidence interval are marked as bold.
Table 8 Estimated coefficients of binding functions for model with exponential cost function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>θ_{Length}</th>
<th>β_{Length}</th>
<th>β_{SB}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.312</td>
<td>0.9114</td>
<td>4.4845 x 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(2.411)</td>
<td>(4.360)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>$\tilde{\theta}_{\text{SB}}$</td>
<td>0.1147</td>
<td>-0.1362</td>
<td>0.7119</td>
</tr>
<tr>
<td></td>
<td>(0.425)</td>
<td>(-1.314)</td>
<td>(17.221)</td>
</tr>
<tr>
<td>$\tilde{\theta}_{\text{LN}}$</td>
<td>1.0043</td>
<td>-0.3378</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>(13.767)</td>
<td>(-12.051)</td>
<td>(0.607)</td>
</tr>
</tbody>
</table>

Same as in the model with two attributes, θ_{Length} and θ_{SB} are significantly affected by β_{Length} and β_{SB} respectively. The negative signs for β_{Length} in the second and third binding functions draw our attention. Since in the second binding function, it is not significantly different from zero, we can disregard the effect. In the third binding function, β_{Length} has significantly negative effect on θ_{LN}. The larger value of β_{Length} we have, the more influential of path length on cost is. With negative effect on θ_{LN}, we can say at the same time number of links become less influential on the utility. This is reasonable, since intuitively if we are sensitive to the path length, we wouldn’t care too much of having to switch several more or fewer links, based on that path length and number of links are more or less correlated to each other.

Based on the estimated binding functions and the true observation data, we could get the estimates of β_{Length} and β_{SB} as shown in Table 9 below.

Table 9 Statistics of estimation of beta_length and beta_sb in exponential-cost-function model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\hat{\beta}_{\text{Length}}$</th>
<th>$\hat{\beta}_{\text{SB}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.537672</td>
<td>-0.45601</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.068377</td>
<td>0.133036</td>
</tr>
</tbody>
</table>

We have negative estimate of $\hat{\beta}_{\text{SB}}$, which conflicts our assumption that length and presence of speed bump on the path may increase the cost of traveling through certain path. This is probably due to omission of important attributes in the deterministic part of the cost function. Based on the estimate, we are led to think that presence of speed bump decrease the cost and individuals would prefer to drive on paths with speed bumps. Yet
this is not true based on our estimation, since we are only using two attributes. And there are great chance that some important features are not captured, which accidentally are related with speed bump. So the estimate of β_{SB} is misleading per se in the simple model as we are using. To get more accurate estimate of β_{SB} we may need to include more variables in the deterministic part of the cost function.

6.4.2 Model with estimated scale parameter for random term

Considering the trial with two attributes in Section 6.3, we add a fixed scale parameter to the random term to make it proportional to the length of links. This appeals to our assumption, yet lays restrictions to the model. Apart from this, we also try to add an unfixed scale parameter σ and estimate it along with the other two parameters β_{Length} and β_{SB}. Note that if we add a scale parameter directly to the random term, it won’t work out as we expect, since that way the scale parameter will scale the other two parameters β_{Length} and β_{SB} as well as shown below

$$\beta_{Length}x_{Length,l} + \beta_{SB}x_{SB,l} + \epsilon_{li} \cdot \sigma = \sigma(\frac{\beta_{Length}}{\sigma} x_{Length,l} + \frac{\beta_{SB}}{\sigma} x_{SB,l} + \epsilon_{li})$$

(45)

The right side equation is equivalent to $\beta_{Length}x_{Length,l} + \beta_{SB}x_{SB,l} + \epsilon_{li}$, thus making no difference. So we choose to add a new random term including the scale parameter. In addition, since we can get good estimate by assuming the random term proportional to length, we will keep this in the newly added random term. Now the cost function is specified as

$$c(x, \epsilon_{li}, \eta_{li}) = \beta_{Length}x_{Length,l} + \beta_{SB}x_{SB,l} + \epsilon_{li} + \eta_{li} \cdot x_{Length,l} / Mean(x_{Length}) \cdot \sigma$$

(46)

ϵ_{li} and η_{li} follow the same truncated normal distribution, but are drawn separately so that they are not equal.

In terms of the auxiliary model, since now we have three parameters to be estimated in the underlying model, we need one more attribute in the logit model and number of links in the path x_{LN} is chosen. The utility function of the logit model is actually the same as in Section 6.4.1, which is

$$U_{ri} = -\theta_{Length}x_{Length,r} - \theta_{SB}x_{SB,r} - \theta_{LN}x_{LN,r} + \epsilon_{ri}$$

(47)
With three parameters in the underlying model, it is more reasonable to include interactions of parameters in the binding function. The binding functions take the form of

\[
\tilde{\theta}(\beta) = c + d_1 \beta_{\text{Length}} + d_2 \beta_{\text{SB}} + d_3 \sigma \\
+ d_4 \beta_{\text{Length}} \beta_{\text{SB}} + d_5 \beta_{\text{Length}} \sigma + d_6 \beta_{\text{SB}} \sigma + d_7 \beta_{\text{Length}} \beta_{\text{SB}} \sigma
\]

(48)

Since the estimates are not good, we did not carry out too many trials to center the input interval. As a result, the binding function may be of more interest in this case. The chosen interval is a trial one, which is identical [0, 3] for \(\beta_{\text{Length}}, \beta_{\text{SB}}\) and \(\sigma\). We choose ten sets of \(\beta_m\) and \(\tilde{\theta}_m(\beta_m)\) from one run as an example. The values of \(\tilde{\theta}_m(\beta_m)\) are plotted against \(\beta_{\text{Length}}, \beta_{\text{SB}}\) and \(\sigma\) respectively. The interactions are not shown in the figure, yet we have the estimates of binding function, which will give a numerical description of how the interactions impact the \(\tilde{\theta}_m(\beta_m)\).

![Figure 20 Plots of theta_length against beta_length, beta_sb and sigma respectively](image)

\[
y = 0.9114x + 2.7818 \\
R^2 = 0.7361
\]

\[
y = 0.3568x + 3.6215 \\
R^2 = 0.0897
\]

\[
y = 0.2572x + 3.8468 \\
R^2 = 0.0516
\]
Figure 21 Plots of theta_sb against beta_length, beta_sb and sigma respectively
As we can see from the three figures above, $\tilde{\theta}_{Length}$, $\tilde{\theta}_{SB}$ and $\tilde{\theta}_{LN}$ are more affected by β_{Length}, β_{SB} and σ respectively. Especially, we can see a strong relationship between $\tilde{\theta}_{LN}$ and σ, which assures that number of links can be used to infer the scale parameter in the underlying model.

The estimates of three binding functions are shown in Table 10 below, with each row representing the estimates for one of the three binding function and each column representing certain variable in the binding function. In the parenthesis below each estimate of the coefficients is the t-test value with the null hypothesis of zero. We take the 90% confidence interval, and estimates with t-test value larger than 1.64 are supposed to be significantly different from zero, which are marked as bold.

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{\theta}_{Length}$</th>
<th>β_{Length}</th>
<th>β_{SB}</th>
<th>σ</th>
<th>$\beta_{Length}\beta_{SB}$</th>
<th>$\beta_{Length}\sigma$</th>
<th>$\beta_{sb}\sigma$</th>
<th>$\beta_{Length}\beta_{SB}\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\theta}_{Length}$</td>
<td>1.814 (3.085)</td>
<td>0.861 (2.417)</td>
<td>-0.089 (-0.258)</td>
<td>1.038 (2.913)</td>
<td>0.202 (1.030)</td>
<td>-0.246 (-1.240)</td>
<td>-0.056 (-0.292)</td>
<td>-0.045 (-0.412)</td>
</tr>
<tr>
<td>$\tilde{\theta}_{SB}$</td>
<td>0.284 (1.482)</td>
<td>-0.125 (-1.081)</td>
<td>0.942 (8.371)</td>
<td>-0.247 (-2.127)</td>
<td>0.118 (1.856)</td>
<td>0.070 (1.086)</td>
<td>-0.141 (-2.275)</td>
<td>-0.067 (-1.883)</td>
</tr>
<tr>
<td>$\tilde{\theta}_{LN}$</td>
<td>0.819 (18.643)</td>
<td>0.015 (0.577)</td>
<td>-0.026 (-0.997)</td>
<td>-0.261 (-9.794)</td>
<td>0.006 (0.419)</td>
<td>0.007 (0.498)</td>
<td>0.024 (1.663)</td>
<td>-0.007 (-0.803)</td>
</tr>
</tbody>
</table>

As the constants indicate, given no other attributes, length and number of links have more negative effects on the utility than the speed bump dummy does. Judging from the significance of coefficients for the three input parameters, $\tilde{\theta}_{Length}$, $\tilde{\theta}_{SB}$ and $\tilde{\theta}_{LN}$ are significantly affected by β_{Length}, β_{SB} and σ respectively. As we can see, σ has a negative
effect on θ_{SB} and θ_{LN}. Since to some extent, σ measures the scale of randomness, we could say that, the more randomness of the costs on the links have, the less influential of presence of speed bump and number of links become. For θ_{SB}, it is significantly affected by some of the interaction terms. Notice that β_{SB} has positive effect on θ_{SB}, while σ has effect. The interaction terms including both σ and β_{SB} have negative effect on θ_{SB}, which indicates that randomness of cost is more influential than presence of speed bump on the disutility of speed bump.

In terms of the final estimate, as stated above, the estimates of β_{Length} and β_{SB} have negative signs, while σ has positive sign. This result conflict our expectation that β_{Length} and β_{SB} should have positive signs, so we did not carry out more trials and shrinkage. The possible reason for negative estimate is similar to that in the model with exponential form of cost function. Given more attributes in the deterministic part of both the cost function and utility function in the logit model, we might be able to capture the features of the data better and have the right sign in the final estimates.

6.4.3 Monte Carlo evidence of model with estimated scale parameter for random term

Based on the model formulation with estimated scale parameter for random term, we also carried out a Monte Carlo simulation experiment to verify the efficiency of using number of links in the logiti model to infer the scale parameter in the cost function, and what we do is to simulated observations instead of the true ones.

We take three arbitrary values for the three parameters in the cost function β_{Length}, β_{SB} and σ to be 0.5. And simulated observations are generated based on the given values of parameters in the cost function. Since we know the true values for the parameters, the input domain is centered around the true values to be [0.4, 0.6] for β_{Length}, β_{SB} and σ. $K = 10$ runs are carried out to get statistics of the estimates of the three parameters. Within each run, $M = 10$ values are drawn for inputs β_{Length}, β_{SB} and σ respectively for estimating binding function.
In terms of the binding function, by doing regression test we can see that the intersection terms are unnecessary to be included or even hazardous for good estimate of binding function, so we decide to remove them and keep the binding function as

\[
\tilde{\theta}(\beta) = c + d_1 \beta_{\text{Length}} + d_2 \beta_{\text{SB}} + d_3 \sigma
\]

(49)

We choose ten sets of \(\beta_m \) and \(\tilde{\theta}_m(\beta_m) \) from one run as an example. The values of \(\tilde{\theta}_m(\beta_m) \) are plotted against \(\beta_{\text{Length}}, \beta_{\text{SB}} \) and \(\sigma \) respectively.

Figure 23 Plots of \(\theta_{\text{Length}} \) against \(\beta_{\text{Length}}, \beta_{\text{SB}} \) and \(\sigma \) respectively.
The figures show similar trend to those in the trial model with estimated scale parameters, which is in line with our expectation.

The estimates of three binding functions are shown in Table 11 below, with each row representing the estimates for one of the three binding function and each column
representing certain variable in the binding function. In the parenthesis below each estimate of the coefficients is the t-test value with the null hypothesis of zero. We take the 95% confidence interval, and estimates with t-test value larger than 1.96 are supposed to be significantly different from zero, which are marked as bold.

Table 11 Estimates of three binding functions in the Monte Carlo experiment

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\theta}_{\text{Length}})</th>
<th>(\hat{\beta}_{\text{Length}})</th>
<th>(\hat{\beta}_{SB})</th>
<th>(\hat{\sigma})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.853 (3.606)</td>
<td>1.009 (3.724)</td>
<td>-0.034 (-0.125)</td>
<td>2.569 (9.482)</td>
</tr>
<tr>
<td>(\theta_{SB})</td>
<td>-0.062 (-0.385)</td>
<td>-0.104 (-0.564)</td>
<td>1.208 (6.591)</td>
<td>-0.226 (-1.227)</td>
</tr>
<tr>
<td>(\theta_{LN})</td>
<td>0.854 (46.688)</td>
<td>0.013 (0.624)</td>
<td>-0.004 (-0.185)</td>
<td>-0.302 (-14.428)</td>
</tr>
</tbody>
</table>

The estimates of binding function have similar characteristics as in the trial model with estimated scale parameters as well. They contain almost the same significant coefficients and those significant estimates have the same signs as in the trial with true observations. Based on the estimated binding function and the simulated observations given true values of the three parameters to be 0.5, the final estimates of \(\hat{\beta}_{\text{Length}}, \hat{\beta}_{SB}\) and \(\hat{\sigma}\) are shown in Table 12 below.

Table 12 Statistics of estimation of beta_length, beta sb and sigma in the Monte Carlo experiment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\hat{\beta}_{\text{Length}})</th>
<th>(\hat{\beta}_{SB})</th>
<th>(\hat{\sigma})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.404138359</td>
<td>0.458624533</td>
<td>0.639191487</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.109279424</td>
<td>0.242570421</td>
<td>0.377069799</td>
</tr>
</tbody>
</table>

As we can see the estimates of \(\hat{\beta}_{\text{Length}}, \hat{\beta}_{SB}\) and \(\hat{\sigma}\) are quite close to their true values. What is not satisfying is that the estimate of \(\hat{\sigma}\) is a little large and lies outside the input domain of [0.4, 0.6], but is still quite near to this interval. In addition, the estimate of \(\hat{\beta}_{\text{Length}}\) is within the input domain, yet the variation is large. This is understandable, since we scale the random term by length together with the scale parameter, and thus the parameter for length could be influenced by the random term and turns out to have large variations. In a word, the result of Monte Carlo experiment verifies that we get use the model.
formulation with unfixed scale parameter for the random term to get the right estimate of the true values. And number of links is strongly related with σ, which means that it is reasonable and efficient to use it as a reference to σ in the cost function.
Conclusions

This thesis aims at implementing the newly proposed route choice model based on indirect inference in true observations. The model assigns links specific errors for a network, which allows natural correlations among paths and is practical in simulating observations by means of shortest path searching algorithms like the Dijkstra’s Algorithm used in our experiment. To get consistent estimation of this kind of model, indirect inference method is used and a simple model like logit model is used as an auxiliary model. The route choice model and indirect inference estimator has been tested on synthetic data with simulated observations and proved to be capable of consistently estimated.

Compared to the synthetic experiment, some extensions are done in this thesis. By replacing the simulated observations with the true observations, the method is tested on the empirical circumstance to prove that it could be used in solving practical problems. The true observations have more noises than the simulated ones, thus more difficulty to capture their features. We know neither the right formulations of models based on the data, nor the values of parameters in the route choice model, yet as defined the parameters should have positive signs. As it turned out to be, in the experiment with only length in the model, we get the estimates of β_{Length} as 1.337, while with two attributes in the model, we get the estimates of β_{Length} and β_{SB} as 0.761 and 0.0799 respectively. The estimates in both experiments seem reasonable with the right sign. In addition, seen from the estimation of the binding function, the coefficients in the logit model is negatively affected by the parameters they infer in the basic route choice model; in the two attributes case, one parameter in the logit model is more apparently affected by the parameter it refers than the other parameter in basic model.

In the trial where we include a scale parameter to the random term and estimate it along with the other parameters in the route choice model, a Monte Carlo simulation experiment is carried out using simulated observations. The result shows that it is efficient to use number of links in the auxiliary model to infer the scale parameter in the basic route choice model.
In other trial formulations of the model, we got negative estimates which may probably be due to missing attributes in the cost function. Future work should be done to include more attributes.

Another thing to recommend for future is that, we generate the pseudo-universal choice set as part of the auxiliary model. Since the pseudo-universal choice set is partially used for deciding which ODs and observations to be used in the project, it is essential and should be generated beforehand. But from the choice set generation point of view, we could generate individual specific choice set directly instead of random drawing paths from the pseudo-universal choice set. This would increase computational efficiency.
Bibliography

74

