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Abstract

Advances in the design and manufacture of microelectronic devices since the
1960s have enabled embedded computers that are ubiquitous. Microprocessors,
the core component in modern computers, and their architectures have evolved
continuously over this time, too. During the 1980s a new architectural ap-
proach, favoring a reduction in design complexity, emerged and became known
as reduced instruction set computer, or RISC, architectures. The mid-1980s
also saw the beginning of a widespread change in the attitudes towards com-
puter software. The Free Software Foundation (FSF) was set up and aimed
to foster the development of free (as in freedom) and open source software,
as a reaction to increasingly protective measures software vendors were taking
to restrict the use of their software. The concept of less restrictive software
has proved successful but it took over fifteen years before this philosophy was
applied to the discipline of electronic hardware design. One of the earliest and
most prominent projects to do so was initiated in the late 1990s by a group
of students aiming to develop an open source microprocessor architecture and
set of implementations. Their goals were realised in the OpenRISC project,
a RISC microprocessor specification and implementations. The initial devel-
opment team then created OpenCores, an online open source hardware design
community focusing on developing register transfer level (RTL) designs of func-
tional cores based on the principles of the open source software movement. The
application of open source principles to hardware design gathered pace through-
out the decade that followed, but despite good progress early in the OpenRISC
project, it slowed as the maintainers decided to pursue commercial interests
and ceased development of the publicly released versions. Recent interest in
the architecture, and increased uptake in use of open source hardware, has
lead to a much-needed rejuvenation of the project. Twelve years on from the
inception of the OpenRISC project, this work has lead to questions about the
state of the open source hardware development movement, and about a possi-
ble successor to the first OpenRISC architecture. This document will discuss
the underlying technologies and philosophies of the OpenRISC project, present
the recent work on the platform, undertake a critical analysis of the project
as a whole, and present a section on the future directions of the OpenRISC
1000 project in particular, and open source hardware development in general.
Recommendations of specific work to be done on the project and arguments
for the general direction of development are presented. Finally, the proposed
successor architecture, OpenRISC 2000, is discussed.
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Chapter 1

Introduction

This document is a look at both the technical aspects of a microprocessor project
and open source development. The technology involved in microprocessors and the
philosophy and practices of open source development are first explained, before the
OpenRISC project, a project combining the two, is presented. This project is then
evaluated and the results of the development effort and the role open source has
played are discussed.

This thesis was produced to satisfy the requirements of the Master of Science in
Engineering at KTH, Sweden. The work was done while in employment at ORSoC
AB, a fab-less design house based in Stockholm, Sweden.

The field of microprocessor architecture design has continued to evolve since
the 1970s. The major developments of the technology are presented in the second
section. This overview will attempt to select the important developments up until
the late 1990s. This section will then look at the emergence of reconfigurable logic,
and how that has played a role in digital design. Finally there is an introduction
to the concept of open source and its genesis. This should provide enough of a
background on the technology and philosophy the OpenRISC project is based on.

The third section further introduces the OpenRISC project, and the OpenRISC
1000 architecture. The basics of the architecture, the implementations and support
tools are presented. This mainly presents the state of the project as it was before
the work outlined in section five commenced. This should help frame the work
outlined in the next section.

The fourth section will outline some of the advances in microprocessor design
and the open source movement from the beginning of the OpenRISC project in 1999
to today, nearly twelve years on. In particular, the massive success of open source
development is bought into focus and hopefully reinforces the motivation behind
this development model.

The fifth section outlines the work done on the OR1K implementations and
toolchain during the last three years. The work performed during the course of
this thesis project is presented here. Work the author was directly responsible for
is presented in greatest detail. The work involved in upgrading the toolchain and
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2 CHAPTER 1. INTRODUCTION

Linux kernel ports, which the author was not wholly responsible for, is outlined.
The sixth section is a critical look at the OR1K architecture and implemen-

tations. It identifies issues with the RTL implementation, and limitations of the
defined architecture. These details will form the basis of the recommendations pre-
sented in the final section. The issues faced by the open source hardware community
will also be presented in this section. This is a discussion of the aforementioned
intersection of open source and hardware design.

The final section begins by making recommendations regarding the OR1K im-
plementations. Primarily this is a list of features that could be added to increase
the potential of the platform. The lack of testing, identified in previous sections,
is considered to be an issue that should be addressed to increase the appeal of the
platform by ensuring its functionality is well proved. Ways of improving the acces-
sibility of the platform are also presented. A critical point for the the toolchain is
to ensure an effort is made to submit it upstream, similarly with the Linux kernel
port, which will increase both the visibility, accessibility and ease of use of the plat-
form. Finally, it is argued that modifying OR1K to add or alter features is not the
best option, and that instead a new architecture should be considered. The initial
features being discussed for this successor architecture, named OpenRISC 2000, are
presented.

The author was responsible for all RTL modifications to the OR1200, and the en-
tire re-implementation of the OpenRISC Reference Platform SoC (ORPSoC) project
outlined in section five. The author also contributed to the or1ksim project in the
floating point unit and testsuite work described here. Finally, the author has been
responsible for, or involved in, many elements of the project too numerous to name
here, but has at the very least read, if not tested and reviewed, every line of code
that has been edited or contributed to the project over the last three years. This
was done with support by, and in conjunction with, the core group of OpenRISC
contributors, all of who’s work I’ve attempted to acknowledge accurately in this
document.



Chapter 2

A Historical Perspective

2.1 The Dawn Of The Microprocessor Era

The dawn of the microprocessor era was ushered in by advancements in design tech-
nology enabling Large Scale Integration (LSI), or circuits containing up to 10,000
transistors. The first microprocessor emerged in 1971, with the term coined a year
later by Intel upon the introduction to the market of its 4004 CPU (1).

Early implementations of microelectronic systems typically consisted of various
discrete components acting together to form a system capable of arithmetic calcu-
lation and system control. With increased integration of circuit elements onto a
single silicon substrate, solutions emerged where these discrete components could
be contained in a single chip. The microprocessor, in a strict sense, is capable of
performing three basic tasks: arithmetic or logical operations, memory transactions
and control decisions(2). The earliest example of this is the aforementioned 4004
CPU, which Intel developed when tasked with developing a processing system capa-
ble of being used in an array of business calculators. After being presented with an
overly complex proposal for a calculator design, Intel’s engineers decided to create
a simpler, yet more versatile solution to the problem.

It is argued that the advancements enabling early microprocessors were in-
evitable, and that the microprocessor’s rapid acceptance was in many ways pre-
determined (1). The technology’s popularity is then thought to have driven the
advancements in LSI and VLSI design for non-memory applications, advancements
that would not have happened without the innovation of the microprocessor (2).

The microprocessor design and manufacture revolution was underway by the
middle of the 1970s. Greater potential for processor and system architecture was
realised immediately. Within two years there was an array of implementations
offering a great deal of variability among them in terms of instruction sets, capability
and speed(3). This period witnessed innovations that still occupy the cutting edge
of technological development today. The design of micro-architectures, or sub-
microprocessor level design, became a common design method when partitioning
blocks within the microprocessor. One such micro-architecture approach is that of

3



4 CHAPTER 2. A HISTORICAL PERSPECTIVE

microcode programs, consisting of simpler instructions, triggered by more complex,
code-dense instructions. The complexity of the designs ultimately increased with
the the capability to implement them.(4).

It would be remiss not to mention the infamous Moore’s Law pertaining to
advancements in fabrication and the number of transistors that can be implemented
on an integrated circuit over time. Gordon Moore observed in 1965 that reduced cost
is one of the big attractions to integrated electronics, and as process technologies
advance, the per component cost plummets.

The complexity [of a manufactured circuit,] for minimum component
costs has increased at a rate of roughly a factor of two per year. Cer-
tainly over the short term this rate can be expected to continue, if not
to increase. Over the longer term, the rate of increase is a bit more un-
certain, although there is no reason to believe it will not remain nearly
constant for at least 10 years(5).

This prediction remains accurate 40 years later, although perhaps not much
longer. It is progress in this area (among the leaders of which is the company co-
founded by Moore, Intel) that has driven the computing revolution and changed
literally every facet of life.

Advancements in software design were also to come. Even though high level
languages had been in use during the 1960s, the arrival of LSI and higher density
memories meant the increased potential of software. Even by the mid-seventies,
in most microcomputer applications, software development accounted for fifty to
eighty percent of total development costs(6). This resulted in a shift away from
programming in machine code toward higher level languages which typically gener-
ated, at the time, a ratio of five to ten assembly instructions per source code line
(6). This spurred a renewed focus on compilers for the rapidly improving hardware
and instigated a shift in the approach to both software and hardware. There was
a questioning of the value of having such complex hardware if the compiler were
able to synthesize streams of simpler instructions to do the same job. Others, such
as researchers at IBM, wondered if most of the instructions in sets, designed with
an emphasis on code density, were even used all that often. At a time when the
sophistication of compilers was considered less than that of the hardware, a different
approach was taken to hardware-software interaction in an attempt to address the
balance. Other motivations were in breaking free from the microprogram trend,
and removing what was seen to be an expensive overhead in performing the most
frequently executed instructions(7).

At the time of the mid-seventies the acronyms CISC and RISC had yet to be
termed, but the realisations that would lead to these distinctions in architecture ap-
proach were being made. John Cocke of IBM’s Thomas J. Watson Research Center
worked with a group that took the approach of simplifying things and stripped back
hardware and high-level language to their elementary components. Hardware fea-
tures barely used by existing compilers, such as the ability to use operands from main
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memory, were scrapped. Their chosen high-level programming language (PL/I) also
had those features scrapped which appeared to defy reasonable translation to ma-
chine code(7). This work resulted in the 801 microprocessor, and with it they
confirmed their predictions regarding this approach on overall system performance.
The 801’s capability to be on par with, if not surpass, microcode architectures in
performance terms was due to compilers which had greater opportunity for opti-
mization due to simpler instruction formats and a greater number of registers. Also
put to rest were concerns about path-length, or the number of instructions taken
to perform specific operations, with results indicating execution times on par with
microprogrammed implementations. According to the paper released by IBM’s re-
search group, “on the whole, the code generated for the 801 confirmed our belief that
an exposed vertical-microcode machine was a very cost-effective, high-performance
machine”(7). And so the RISC architecture approach was gathering momentum.

Much was to be made of the difference between the RISC and CISC approaches,
and their respective benefits and limitations. The simplest distinction that sets
them apart is the number of opcodes supported by the instruction set. The idea of
a complex instruction set architecture, is to move complicated software functions
into hardware. This complicated software function can then be represented by a
single machine code instruction. By itself this seems like a good idea until every
tricky problem is moved from software to the hardware, which then suffers under
the burden of then being a highly complex implementation. Early RISC designs
tended to have just 30-40 instruction opcodes, whereas CISC machines of the time
had hundreds.

Two of the most influential public RISC architecture research projects occurred
during the early 1980s. The first project chronologically, and that which coined the
acronym RISC, was undertaken at the University of California’s Berkeley campus
by David Patterson and Carlo Sequin. This work resulted in the RISC-I processor.

The Berkeley team’s motivation for the research came from the observation that
the architectures of the time were increasing in complexity commensurate with ad-
vancing implementation technologies, and that this lead to unnecessary increases in
design implementation time, inconsistency and errors(8). Better use of the scarce
resources (less silicon used up by control logic means more space for cache or regis-
ters) they argued, could be had by an architecture with an instruction set, reduced
in size and complexity, which would also result in reduced design time, errors and
execution time of each instruction.

With the self-imposed restrictions on instruction width, memory accesses and
execution time (a single cycle), they predicted results tending towards performance
worse than existing architectures. Despite their prediction they found comparable
performance largely, they argue, due to the use of register windows(8). Register
windowing requires a large number of registers, typically over one hundred, and
when performing a function call, instead of memory accesses to save register values,
a register window moves to a different set of registers and the called procedure then
uses those within the newly shifted window.

Other architectural choices were to use a delayed jump. When a program jumps
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or branches to a new address for execution, there is typically a latency involved.
A delayed jump feature always executes the instruction following a branch, and
therefore uses up some of the time required to switch address and perform a fetch.
In implementation terms, it reduces the temptation to add complexity to the fetch
logic to reduce wait times when a program branch is taken. Techniques such as
this, although appearing to burden the user by having to fill an extra instruction
slot for each branch, taken or not, had the execution time penalty largely mitigated
by compilers that could optimize around the problem by using the instruction after
a branch efficiently.

Like other RISC projects, it was essential that a high level programming lan-
guage was supported to aid in programming the new architecture. The C language
had come into fashion by the early eighties and was chosen primarily due to its
popularity at the time.

The implementation of the first RISC processor at Berkeley showed that its
control logic occupied only 6% of overall silicon area, compared with at least forty
in implementations of its contemporaries. The large number of registers, though,
ultimately made it a larger chip than most, but with six percent of the logic being
the irregular control logic, and over 90% a highly regular memory layout, time to
manufacturing was well below the others. Performance benchmarks indicated it was
ahead of the rest in a standard set of C language algorithms.

Just as the microprocessor was seen to be a more efficient approach than the
usual electronic systems of its day, the UC Berkeley work on RISC architectures
showed how a reduction in complexity can be a better solution in every aspect.

Around the same time as the work at Berkeley was proceeding, a similarly
RISC-based research project was underway, headed by John L. Hennessey, at Stan-
ford University. The processor they implemented aimed to be of modest size, low
power dissipation and high regularity. The regularity aspect focused on keeping
the five stage pipeline as full as possible at all times. The compiler was an in-
tegral part of this, aiming to optimize the machine code to achieve high pipeline
utilization(9). This architecture became known as MIPS, short for “Microprocessor
without Interlocked Pipeline Stages”.

As the work on the MIPS architecture progressed, they identified the trade-
off of silicon area between processor logic and memory cells as being critical to
performance(10). They noted that as instruction rates increase, the bandwidth
and latency of memory systems becomes a important factor in determining overall
performance. By increasing the amount of cache available on-chip, this limiting
factor is then mitigated somewhat. Additionally, when compared with CISC, RISC
instructions typically perform less complex operations, and thus a continuous stream
is required to match the performance of CISC ISAs. This makes on-chip caching
crucial if any level of performance, comparable to CISC machines, is to be reached.

By the end of the 1980s there were several RISC architectures in production tar-
geting everything from embedded to desktop computers. The architectural design
from the work done at Berkeley was the basis for the Scalable Processor Archi-
tecture, or SPARC, developed by Sun Microsystems. The goal of SPARC was to
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define an architecture and have the cost/performance ratio of implementations scale
with, or at least track, improvements in fabrication technology, while staying ahead
of CISC architectures in terms of performance(11). Sun released the specification
publicly (later turned into the IEEE Standard 1754) and encouraged other compa-
nies to implement it.

Early implementations of SPARC microprocessors included the Cypress Semi-
conductor CY7C601 and the Fujitsu/Sun MB86900, and were first used in Unix
workstations in 1987, replacing processors from Motorola’s 68000 family of CISC
microprocessors(12).

The first commercial offering of the MIPS design was from the company spun
out from the research done at Stanford, MIPS Computer Systems, and was named
the R2000. This chip implemented the MIPS-I ISA. These early MIPS processors
were adopted by US based firm SGI, a market leader in graphics processing at the
time.

Another notable RISC architecture emerging from the 1980s was by a British
company named ARM. In 1989 their paper announcing the ARM3 CPU indicated it
was targeted at low-cost high-performance personal workstations(13). Despite this
attempt, and others, to target the desktop market they would all largely lose out
to Intel’s dominant x86 CISC architecture during the final decade of the twentieth
century century. ARM soon targeted their designs toward embedded computing,
focusing more on efficiency than performance. This would prove to pay off in the
long run.

Despite all of the progress on the RISC architecture front, Intel’s x86 CISC
architecture took over from RISC-based designs in a majority of desktop computer
implementations at the beginning of the 1990s. Beginning with Intel’s 8086 CPU
from 1978, a string of backward compatible microprocessors were released over
the next decade and a half, gaining increasing market share. Around the early
1990 there was a boom in personal computer ownership, mostly beginning with
Intel’s 386 and 486 chips. Their first superscalar chip (ability to execute more
than one instruction at a time due to multiple pipelines) known as the Pentium,
further enforced their market dominance. Intel’s work toward addressing compiler
complexity, and advancements in fabrication technology gave them a level playing
field on performance terms with low- to mid-end RISC-based workstations(15). This
factor, in combination with the large legacy code base that was entirely compatible
with the Pentium, meant it improved its already dominant market position for
desktop systems.

In an attempt to produce a RISC-based competitor for the commodity PC mar-
ket, in 1991 two large firms, IBM and Motorola, and an up-and-comer, Apple,
formed an alliance with the goal of creating such a family of microprocessors. Cit-
ing the eighty five percent market share Intel enjoyed with its x86 architecture in this
area, they saw no reason why a RISC-based competitor couldn’t be introduced(16).
Despite initial benchmarks indicating an up to five times performance increase over
the Pentium architecture, and relative success in Apple desktop PCs, the PowerPC
architecture failed to significantly dent the popularity of x86 machines. This has
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been put down to a more advanced fabrication process available to Intel, and a large
legacy x86 codebase.

Throughout the 1990s, Intel’s CISC implementations started to blur the line
between pure CISC and RISC. The core execution units in the micro-architecture
began to resemble RISC machines. Instruction decode began taking a CISC in-
struction and issuing a sequence of instructions from a RISC instruction set(14).

While Intel and the PowerPC consortium pushed the limits of processor ar-
chitectures for commodity PCs and servers, the embedded microprocessors market
began to grow rapidly. The architectural considerations for embedded applications
and workstations are quite different. Mobile embedded applications have energy
and power efficiency, and thus battery power use efficiency, as their highest design
priority. Real time embedded applications require architectures designed with low
latency as a priority. Mobile multimedia applications present a challenge in the
attempt find the right balance between performance and low-power features.

Tightly defined applications of microprocessor-based systems, where the ma-
chine is typically not easily reprogrammed or retasked, are referred to as embedded
systems. These systems are used regularly in telecommunications, networking, mul-
timedia and appliance applications. Typically, if an application is physically small,
the system is designed specifically for that application only and the implementation
is generally not reusable or easily disassembled into its constituent parts.

The large market that opened up during the 1990s for embedded computers saw
ever increasing use of previous generation microprocessor architectures relative to
what was selling in desktop computers. The typical embedded processor of the time
were power and size conservative versions of chips that originated in the 1980s, such
as the Motorola 68k CISC platform and assorted 32-bit RISC machines. The size of
this market by 1995 was valued at around one billion dollars(18). Significant in this
market were the chips based on a processor by the UK-based firm ARM. ARM’s
ISA was their own take on the RISC approach to microprocessors and proved to be
rather popular during this period. Other competitors in this market were Motorola’s
Coldfire 68000-based CISC microprocessors and embedded variants of PowerPC and
MIPS processors.

As the advancements in VLSI manufacturing technology continued, geometries
were made ever smaller resulting in far more design potential on a single die than
ever before. By the mid-90s VLSI implementations of high-end processors were
around the ten million transistor mark. Just as the LSI advancements of the seven-
ties saw the consolidation of the discrete components making up a processor onto
one chip, so too did the fruits of VLSI advancements in the 1990s provide increasing
room on chips to incorporate more complex logic. Known as system-on-a-chip, SoC,
these designs typically combined the processor, memory controllers and peripherals
onto a single die, and further shrunk the physical size of embedded system designs.

Over the final three decades of the twentieth century the technological advance-
ment made by the semiconductor industry had commoditized high performance
processors and ushered in a wave of personal computing and telecommunications
that changed the way we worked and lived. There is no doubting there was an
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important role played by the microprocessor in this transformation.

2.2 FPGAs and Soft-Core Microprocessors

Semiconductor device fabrication is a highly complicated, expensive and lengthy
process. The expense involved typically means designs intended for silicon chip
implementation get few opportunities to have prototypes fabricated before high-
volume production begins. This places a great deal of importance on the testing
and verification phases of a design before fabrication.

Simulation of a design intended for fabrication, at various levels of abstraction,
has traditionally been the method used to confirm functionality according to speci-
fication, and that it meets timing (requirements relating to signal propagation time
throughout the design) and other physical constraints. Computer simulations of
large designs have their drawbacks. One is that the simulations occur at a rate
many orders of magnitude slower than the circuits actually operate at. This means
the testing of functions which require large simulation time frames are cumbersome
and difficult to test.

Breadboarding was one technique for testing the logical function of a system,
however this became impractical as designs grew in size, and more appropriate mod-
eling of the final integrated system was desired(19). Programmable logic solutions
before the early 1980s included those implementing combinatorial logic functions
from a ROM’s address inputs. Devices with sequential logic elements eventually
emerged. However these were typically small and of little use when prototyping
larger designs.

At the time of the early eighties, although silicon real estate was considered
extremely valuable and thus strictly rationed, Ross Freeman bet that LSI advance-
ments according to Moore’s Law would enable chips with enough transistors to
allow arrays of programmable logic blocks. The company he founded, Xilinx, of-
fered its first chip in 1984, containing logic cell arrays (LCAs), programmable by
the user into just about any configuration they wished. These were referred to as
field programmable gate arrays (FPGAs) and provided increased capacity over the
other programmable logic devices (PLDs) of the day.

Dual roles awaited FPGA technology - one as a final implementation target of
a design, and as a prototyping stepping-stone on the way to final fabrication of a
design.

Designs implemented in FPGA almost always have inferior area use, perfor-
mance and power characteristics when compared to an application-specific IC (ASIC)
implementation. This is due to the inherent nature of FPGA architectures. The fun-
damental components of FPGA fabric such as configurable connection lines (rout-
ing) and configurable logic blocks (CLBs), impose an inescapable area overhead.
Increased interconnect lengths, and the use of configurable look-up-tables (LUTs)
implementing combinatorial logic, result in increased propagation time of signals
between registering elements, and thus degraded speed performance overall. These
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additional resources implementing configurability contribute to both static and dy-
namic power consumption of a design implemented on FPGA.

The great benefit of FPGA implementations is that there’s no significant costs
involved when altering a design, whereas they may be crippling if a change is re-
quired to an ASIC design ready for production. This changes the development
cycle of FPGA-targeted designs, as they can be prototyped early and often. FPGA
prototyping can have a positive effect on time to market for a product, possibly elim-
inating entirely at least one prototype run and the time spent waiting for wafers
to return from fabrication. It must also be mentioned, however, that this applies
to the purely digital realm of microelectronic circuit design - FPGAs with arrays
of analog primitives do exist but are rarely used to prototype analog parts of a
mixed-signal design.

If a design is not intended to sell in large volumes, and neither complexity,
performance nor power consumption are a concern, FPGAs can potentially be an
option for implementation than ASIC fabrication. Although one’s competitive ad-
vantage is usually lost the moment a highly innovative solution is revealed to the
marketplace, a concept might be proved at relatively low cost and time-to-market on
FPGA and implemented in ASIC at a later time to provide an improved, cheaper,
solution.

VLSI manufacturing advances continued throughout the 1990s and so too in-
creases in FPGA capacities. Large digital system designs which were once only able
to be implemented as ASICs, then had the option of targeting implementation on
FPGA instead.

The microprocessor, either as a discrete component or alongside other logic on
the same chip, was an obvious candidate for implementation on FPGA. This intro-
duced greater potential for design space exploration by having custom computing
logic implemented alongside a standard microprocessor(20).

Digital circuit designs are typically partitioned into functional blocks, referred
to as modules, or cores. A core will consist of sub-blocks that help implement the
functionality. Cores can range in size up to that of an entire microprocessor. A core
might occupy an entire FPGA in one implementation, while only being instantiated
among others on a larger FPGA or in an ASIC. They are typically described using
a hardware description language (HDL) at a level of abstraction known as register
transfer level (RTL).

The process of taking the RTL description of a design and converting it into a
list of gates and connections between them, then allowing implementation on the
target technology, is known as synthesis. This can be thought of as akin to the
compilation of software - that is taking a program in a higher-level language such as
C, and converting into machine-specific primitives, or machine instructions in the
case of the software. For “hardware” designs done in RTL, there can be a slightly
varying level of abstraction, however it is the synthesis step which will generate the
list of primitives, or logic gates, for the targeted technology. The result of synthesis,
known as a netlist, is at a level of abstraction referred to as gate level. Simply put,
it is this netlist that is then used for further processing into an FPGA configuration
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or into a layout for an ASIC.
Cores can be, and often are, developed independently by design houses and

licensed or sold individually. They would be licensed or bought by firms who would
then typically use the core as a component to be instantiated in a larger design.
The commodity in this case is often referred to as an IP core (intellectual property
core) in the sense that the design is the IP of the third-party developer and the
right to use it is being licensed to the customer. The terms IP and core are used
interchangeably and in combination to mean the same thing.

IP can be in a variety of forms when licensed. When it is in the form of syn-
thesizable RTL then the IP is referred to as a soft core. If it is in a less abstracted
form, such as a netlist or a post-layout format ready for fabrication, it is known as
hard core IP.

Continuous innovation in semiconductor fabrication technology has seen the
available “real estate” on chips increase in line with the 1965 prediction by Gordon
E. Moore. The ability of digital design engineers to make use of these extra tran-
sistors has not kept pace with this increase in fabrication capability(21). The time
to market requirements of these increasingly complex designs has remained static,
if not tightened. This has lead to the emergence of the IP core industry made up
of firms specialising in developing and licensing IP to people building systems for
FPGA or ASIC implementation. This allows design teams to assemble a system
consisting of commodity components developed by third parties to implement sup-
port for standard communications protocols such as Ethernet, IIC or SPI, while
concentrating their design efforts on what it is that makes their design unique or
particularly valuable.

This model has proved successful. The market for silicon IP (SIP) is valued
at three hundred and twenty million U.S dollars in first quarter 2010(23). Despite
revenues receding following an international financial crisis in the last few years of
the first decade of the twenty-first century, the electronic design automation (EDA)
and IP industry has maintained quarterly revenues in excess of a billion dollars since
the beginning of the twenty-first century(22).

The best performing microprocessor IP company over this time by revenue has
been ARM. Although they provide a vast library of IP, their success has primarily
been with their soft core RISC microprocessors. In most cases a microprocessor is a
complicated and essential part of a SoC, making the use of pre-developed IP a sensi-
ble choice. ARM pioneered the so-called fabless semiconductor technology company
- meaning they designed IP but were never involved in fabrication, only the licens-
ing of it to other firms who instantiate and fabricate it. Although they originally
preferred selling hard IP, that is a core which is already synthesized and layed out
for a fabrication technology, they have since started to offer soft IP for processors
to select customers alongside a considerable library of other IPs for memory and
system interconnect.

Other vendors of microprocessor IP targeted for implementation in ASICS in-
clude Synopsys, MIPS, Freescale and Tensilica. Combined, they account for volume
in the tens of billions of microprocessors sold globally each year (23)(24)(25).



12 CHAPTER 2. A HISTORICAL PERSPECTIVE

There is also a slightly different group of soft microprocessors, primarily target-
ing reconfigurable hardware. Three of the largest FPGA vendors, Xilinx, Altera
and Lattice, all offer their own thirty-two bit RISC microprocessor cores. The two
largest FPGA device vendors, Altera and Xilinx, provide the Nios and Microblaze
cores, respectively. They are considered hard cores in that the source RTL is not
made available and they can only be implemented as netlists on their respective
FPGA technologies.

A group of open source cores exists which are not restricted by technology, and
are inherently soft cores. This group is usually developed by enthusiasts within open
source communities, or in a few cases, developed by commercial entities before being
open sourced. The notable thirty-two bit microprocessor cores in this category are
the OpenRISC 1200, the LEON SPARC processors, and the LatticeMico32 core
from the aforementioned Lattice Semiconductor firm.

For the majority of developers targeting a reconfigurable implementation their
options for thirty-two bit microprocessors are between their FPGA vendor’s offering
and the freely available open source soft cores. However, when it comes to being
able to develop and sell a product based on these cores, there are additional con-
siderations regarding the licensing of the designs. These licensing related issues will
be discussed in a later section.

The advantages of a true soft core over a hard core, obfuscated via netlist en-
cryption or similar, are to do with the openness of the design, and freedom from
restrictions on what one can do with the work. With a truly open source design
there is the option of customising the RTL description to implement optimisation
or desired functionality. Portability and product end-of-life concerns also do not
arise with the RTL description of the design.

As FPGAs and CPLDs have become cheaper and more power efficient they are
being considered for use instead of ASIC solutions in certain applications. If criteria
such as time to market or field updatability are crucial, with peak performance and
power use less so, then an FPGA implementation may be suitable.

For an appropriate application targeting typically mid-to-low volume and non-
mobile use (and thus relaxed area and power constraints) FPGA-based systems
using softcore processors are of great use as they allow a high degree of customisation
and flexibility. Apart from strictly market-oriented uses of such cores, there exists
significant hobbyist and academic use of such cores in uses ranging from tinkering
to design space exploration of new processing concepts.

2.3 Free and Open Source Software

A simple interpretation of what is meant by the term open source, when used in the
context of describing a software program or hardware design, is that the design’s
sources are somehow made available to look at. Although it is a broad and poten-
tially ambiguous term, a commonly agreed upon definition is in a document called
the Open Source Definition (OSD) published by the Open Source Initiative (OSI).
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The definition isn’t an open source license itself, rather something to measure distri-
bution terms against to determine if they comply and, if they do, can then be said
to be open source(36). What is not immediately clear is what could, or should, be
done with a copy of the design source, practically and legally. When free software
is used to describe open source software, it is referring not to the cost to the user,
but the rights of the user. The Free Software Foundation (FSF) provide a definition
to show clearly what must be true about a piece of software for it to be considered
free(35). The term free open source software (FOSS) is used to refer to software
adhering to both the OSD and FSD. Free and open source software is an inclu-
sive term which covers both free software and open source software which, despite
describing similar development models, have differing cultures and philosophies.

Free software focuses on the philosophical freedoms it gives to users while open
source focuses on the perceived strengths of its peer-to-peer development model(37)(38).
However, the proponents of free software and those of open source software do not
see eye to eye. In practical terms the license for software is controlled by the original
author and indicated via inclusion of license text with the design source.

The gamut of interpretation of the open source concept has emerged over the
past twenty years. Most adopt one of two positions, which can be described as either
pragmatic or ideological, in relation to the issues of enforcing the sharing of code
and the acceptance of the use of FOSS in conjunction with proprietary software. It
is these differences that cause proponents of free software to distinguish themselves
within the open source community. With the number of published open source
licenses approaching the hundreds(34) there are many examples of how different
organisations interpret the meaning, and make use of, open source.

Computer software has predominantly been, and continues to be, the subject
of open source licensing. Although the concept of open source licensing has now
been applied to other areas, it all started with computer software. When IBM
began computer sales on a large scale in the 1960s, their software came bundled
as source code. A decade later, however, they began to “unbundle” the software,
and it became usual for computer manufacturers to provide only software that did
not have its source disclosed, limiting the ability of competitors to run the same
code, but also eliminating the ability of the code to be free to modify and share
(26). It has also been helped by the fact that the Internet practically elminates the
cost of distribution, and the technology to use and developed software is relatively
inexpensive.

The genesis of two major open source licensing schemes occurred in the early
1980s. First, at MIT in Boston, Richard Stallman resigned from his position over a
disagreement with the ever increasing use of proprietary software in his department.
He begin work on the GNU project which focuses on implementing a free and open
operating system. Stallman argues that when forcibly restricted from modifying or
disclosing how proprietary software works one is unable to cooperate or help other
users of the software and are forced to beg the proprietary software developer for
any desired changes. His view is that this is antisocial and unethical. He challenges
the stance of proprietary software developers that they have a natural right to
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control the actions of the users of their software and argues this cannot be so and
gives the example of the case where the software causes harm (the users cannot
object), and that it is an established legal view that the rights of the software
producer are not natural, they are actually artificially imposed by Government(27).
Another point he makes is that the perception that there would be no software
without the rights of the developers to control who sees the source and how it is
used is also shown to be inaccurate by the masses of software produced by open
source contributors. Stallman founded the Free Software Foundation (FSF) in 1985
to promote computer user freedom and to defend the rights of all free software
users(28). The FSF sponsors the GNU project.

The second open source licensing group emerged out of work done by the Com-
puter Science Research Group (CSRG) of the University of California at Berkeley.
They were developing many applications for a proprietary form of Unix. Despite
producing a great deal of code under their own license, there wasn’t enough to
constitute an O/S free of the AT&T UNIX source code license that covered the
remainder of the kernel. However, William Jolix, a Berkeley alumni, was working
on the equivalent components that were missing to make an entirely unencumbered
O/S. By 1993 these parts were finally merged and released as 386BSD, under what
is called the Berkeley Software Division (BSD) license, which places very little re-
strictions on the code’s reuse.

The BSD license and the GNU Project’s General Public License (GNU GPL)
are two of the first such open source licenses. Both provide the freedom to use open
source software for any purpose and permit the modification and distribution of its
source code without having to pay any royalties. The differences between the two
highlights an ideological difference among the proponents of open source.

A significant point of difference between the BSD and GPL licenses is that the
latter allows you to

modify your copy or copies of the Program or any portion of it, and copy
and distribute such modifications ... provided that you also ... cause the
whole of any work that you distribute or publish, that in whole or in
part contains the Program or any part thereof, either with or without
modifications, to be licensed at no charge to all third parties under the
terms of this General Public License. (GPLv1) (29)

The GNU GPL is referred to as a viral license, in that any design making use of
code already licensed under the GNU GPL must then, itself, be licensed under the
GNU GPL, or any license judged as equally unrestrictive by the FSF. Put simply,
a condition of use of GPL’ed code is that your design must then be licensed under
the GPL, or a compatible license. Licenses deemed compatible with the GPL by
the FSF are typically similar in the freedoms it ensures for the software. In other
words, you are forced to share, if you were planning not to, and to be subject to
the GNU’s license, or an approved equivalent. The license, in effect, infects the
code making use of it. The GNU GPLv3 requires that when a project adopts this
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license the source code must be made available and that patents or digital rights
management (DRM) do not inhibit others from using the design. The original BSD
license, in contrast, simply requires recognition be paid to the original authors by
the inclusion of their name in the source code and all advertising. Later versions of
the BSD license dropped the requirement of names in the advertising material.

The GNU GPL is in a way,ironically, more restrictive than the BSD license
regarding ones freedom to do what one will with source code. It stipulates the
modified code must be made available, and any design used with GPL code must
also come under the GNU GPL. However this is no different to any proprietary
license, written by an employee of a company; all of the code they modify or create
comes under the company’s proprietary license. In the GNU license’s case, however,
users are forced to keep their design open and as free as the GNU GPL makes it, in
the same way the employee is forced to keep their code proprietary and secret from
anyone who is not the company.

Another point of contention is the combined use of designs where each is under
a different license, and has lead to the concept of license compatibility. The meaning
of use here is ambiguous and depends on the context, however in this instance it will
mean using a precompiled binary format version of a design. In the case that one
design uses a GPL’ed binary library, although no source code is seen or modified by
the user of the GPL’ed design, the GNU GPL specifies that it cannot be used unless
the other design is also under the GPL. The use of precompiled libraries, comprised
of common functions, in computer software is very common and is equivalent to the
example given here. In the case that a library is under the GPL, anything that uses
it (also known as creating a link to the library, or linking against the library) must
also come under the GPL.

However, the question of the actual inclusion within a compiled application of
GPL’ed binary (known as static linking) is not so contentious - this is considered
to be the equivalent of including and compiling the original source - the debate
is over dynamic linking. This involves using a precompiled software library resid-
ing elsewhere (not within a compiled application) when an application is executed.
Whether an program that dynamically links to a library is considered a derivative
work is a debated topic. The GNU Project considers those applications as deriva-
tive works and requires them to adhere to the GNU GPL license requirements.
An alternate view is that these programs using dynamic linking are not derivative
works(30)(31). A solution for those wishing to write libraries, and not have the
strictest interpretation of derivative work apply to them, was proposed by the GNU
Project in their Lesser General Purpose License (LGPL). It is a trade-off, allow-
ing them to demonstrate that GNU Project licensed technology is high quality and
thus encouraging people’s participation in the project, while still retaining some
their freedom requirements. The GNU Project, however, prefers developers to re-
lease libraries under the GPL, forcing those who use it to contribute their work to
the body of GNU GPL licensed software.

These differences of opinion in relation to what constitutes a derivative work, and
the ambiguity around other aspects of open source licensing could have consequences
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for fields such as hardware design and will be discussed in a later section.
The main difference of opinion, however, stems from the fact that the Free

Software Foundation wish to make it impossible for proprietary software to use
software released under the GNU GPL. The FSF asks why it is those who are not
willing to allow others to freely see or modify their code take advantage of those
who do. Other open source licenses, however, are more permissive of the use of
their designs, either as source of libraries, in proprietary applications. These more
permissive open source licenses are at the more pragmatic end of the ideological
spectrum.

The GNU Project’s goal of implementing an entirely open and free operating
system, was progressing well by the early 1990s, but was missing key lower level
components. By this time a Finnish university student, Linus Torvalds, had written
a replacement kernel (central hardware interface component of an operating sys-
tem) for MINIX, an inexpensive minimal Unix-like operating system restricted to
educational use only. Once Torvalds’ kernel had reached a relatively stable state the
operating system applications from MINIX were replaced with those made available
by the GNU Project. Torvalds then re-licensed the kernel (as the copyright owner
this was permissible) to the GNU GPL and the first functioning and wholly GNU
GPL operating system came into existence(32).

The combination of Torvald’s kernel, known as the Linux kernel, and the GNU
Project’s software applications and libraries has evolved into the most-used server
operating system in the world. It is referred to most often simply as the Linux
operating system, although the FSF prefers it to be known as the GNU/Linux OS.
Its adoption among desktop, workstation and mobile platforms isn’t as high, but are
increasing rapidly as operating system packages, known as distributions or simply
distros, become more widely available and provide equivalent, if not better, user
experiences than proprietary operating systems.

Its success demonstrates the potential of the free software development model.
It has not only disproved derision, such as that it is a disincentive for innovation,
or is incapable of providing a commercial business model(33), but prospered and
continues to gather momentum. Examples of other successful and widely adopted
open source projects are the web server Apache, office utilities suite OpenOffice.org
and the Mozilla project which creates email and web browser software. Although,
the latter pair were not originally open source, the release of their source code under
open source licenses was significant, and they continue as popular projects today.

Following increased adoption of open source software throughout the 1990s, in
1998 an organisation named the Open Source Initiative (OSI) was started by some
software developers who set out to convince people that free software (as it was
commonly referred to at the time) had a place in the commercial industry. One
of the founders, Eric Raymond, wrote a seminal paper on the way open source
development works named The Cathedral and the Bazaar, that gained his ideas
and subsequently the open source movement, a lot of publicity and interest.

The paper uses a bazaar as a metaphor for open source development communi-
ties consisting of large numbers of developers casually working on various problems
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coordinated only by the Internet. A release strategy involving a release each week
of work and getting feedback “created a sort of rapid Darwinian selection on the
mutations introduced by developers” and appeared to keep the quality of the de-
veloped code at a high standard (39). The success of the model surprised a lot of
people, and proved it was a viable development model. It is in contrast to highly co-
ordinated and centralised projects, there was “no quiet, reverent cathedral-building
here - rather, the Linux community seemed to resemble a great babbling bazaar
of differing agendas and approaches”(40). Raymond continues on in his essay to
recount initial confusion at the success of the model and his eventual efforts at
running an open source project coordinated in a similar fashion, and his success at
doing so.

The paper, presented in 1997, triggered a mass of interest in open source and
the largest projects around at the time, GNU/Linux among others. Almost immedi-
ately, there was a wish to participate, with the unprecedented announcement by the
Netscape company that it would release its popular web browser as an open source
project. In early 1998 the momentum due to incrased interest in open source caused
the initiators to attempt to make the most of the attention people were paying and
made an announcement requesting that the community refer to the software as open
source, rather than free(41).

The OSI was conceived as a general educational and advocacy organisation,
and the initial members agreed to promote the term “open source”, and adopt the
rhetoric of pragmatism and market-friendliness that Eric Raymond had been devel-
oping. Of course, this ran slightly contrary to the ideological position of Richard
Stallman’s GNU Project. In response to one of the OSI founders, Stallman is quoted
as saying “Free software and Open Source seem quite similar, if you look only at
their software development practices. At the philosophical level, the difference is
extreme. The Free Software Movement is a social movement for computer users’
freedom. The Open Source philosophy cites practical, economic benefits. A deeper
difference cannot be imagined.”

Despite this most fundamental of disagreements of the motives and goals of free
and open source software, the proponents of each are sympathetic to the other’s
cause.

As the popularity and utility of the Internet has grown, so too have online
communities for various causes. It is a little bit of a chicken or the egg question
about the growth of online open source communities; did the facility of the Internet
allow tinkerers to open up their solo endeavors to others, or did the advent of mass
Internet uptake and online communication provide the spark for large open source
communities. Regardless, what has resulted is countless communities and loose knit
groups contributing to open source development of almost anything.

Large web sites for communities focused on computer application software devel-
opment, such as SourceForce, freshmeat, ohloh, and CPAN host upwards of tens of
thousands of projects. A group named Freenode provide Internet relay chat (IRC)
servers where tens of thousands of open source developers gather to interact.

There are a number of smaller free project hosting services aimed at group
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development of software such as Google Code, Launchpad, GitHub, GNU Savannah,
as well as the aforementioned community sites.

One site, starting just after the year 2000, named OpenCores focuses on pro-
viding a site for the open source hardware community. It was among the first to
provide for the hardware development community and is currently the largest, with
over one hundred thousand users and almost one thousand projects.



Chapter 3

OpenRISC Overview

The OpenRISC project was started in 1999 by a group of Slovenian university
students. Their aim was to create an open source microprocessor architecture spec-
ification and implementation. Two years later they had produced an architectural
specification, architectural simulator and Verilog HDL implementation complete
and made publicly available through their new open hardware community, Open-
Cores. It has seen use by industry, academia and hobbyists in both FPGA and
ASICs. This section will look at the OpenRISC project, the first architectural
specification, the OpenRISC 1000 (OR1K) family of processors, and the first HDL
implementation - the OpenRISC 1200 (OR1200) processor.

3.1 Beginnings

The first public mention of the OpenRISC project was early in the year 2000 via
the EE Times, an electronics industry news media publisher. One of the project’s
initiators, Damjan Lampret, was interviewed and mentioned that by the end of
February designers should be able to download VHDL files for an OpenRISC 1000
core, to go with the already available C compiler(43).

The article continued on to say that offerings such as this could potentially alter
the SIP market landscape similar to the way Linux altered the operating systems
market. Lampret continued on to announce the OpenCores site which was designed
to host a community for online open source HDL development.

Lampret explained that the OR1K’s architecture was inspired by the DLX and
early MIPS RISC architectures, both prominent in the seminal text from RISC
CPU pioneers John Hennessy (of the Stanford MIPS project) and David Patterson
(UC Berkeley’s RISC project).

The last section of the article saw Lampret mentioning the potential of replacing
a single module in the design, the decode stage, to enable support for the MIPS
or ARM instruction sets. The article finished ominously by quoting some major
processor design houses indicating they would vigorously protect their IP.

The project attracted interest from around the world, with various IC manu-
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facturing companies eager to check out the capabilities of the first architecture and
implementations.

3.2 The OpenRISC Project

The OpenRISC project aims to define and implement free and open source fami-
lies of RISC microprocessor architectures. It provides the instruction architecture
specification (ISA) for free under the GNU GPL, and implementations under the
LGPL.

It is the flagship project of OpenCores, an online community set up to host and
help development of open source hardware projects.

3.3 OpenRISC 1000 Architecture

The first OpenRISC architecture defines an instruction set, addressing rules, ex-
ception system, register set, fast context switch mechanism, cache interface, MMU
interface and software ABI.

3.3.1 Instruction set

The OR1K instruction set consists of uniform width instructions grouped into 5
subsets.

All instructions are 32-bits wide and 32-bit aligned in memory.

• ORBIS32 - OpenRISC Basic Instruction Set operating on 8-, 16- and 32-bit
data.

• ORBIS64 - OpenRISC Basic Instruction Set operating on 8-, 16-, 32- and
64-bit data.

• ORFPX32 - OpenRISC Floating Point Extension Instruction Set operating
on 32-bit data.

• ORFPX64 - OpenRISC Floating Point Extension Instruction Set operating
on 8-, 16-, 32- and 64-bit data.

• ORVDX64 - OpenRISC Vector/DSP Extension Instruction Set operating on
8-, 16-, 32- and 64-bit data.

Within each instruction subset, there is the further distinction of class I and II
instructions. Only class I instructions are mandatory to implement.
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Instruction Subset Features

ORBIS32

32-bit integer instructions
Basic DSP instructions
32-bit load and store instructions
Program flow instructions
Special instructions

ORBIS64 64-bit integer instructions
64-bit load and store instructions

ORFPX32 Single precision floating point instructions

ORFPX64 Double precision floating point instructions
64-bit load and store instructions

ORVDX64 Vector instructions
DSP instructions

Table 3.1. OpenRISC 1000 Instruction Subset Features

31 . . . . 26 25 . . . . . . . . . . . . . . . . . . . . . . . . 0
6-bits 26-bits
Opcode Immediate

Table 3.2. OpenRISC 1000 Immediate Instruction Format (I)

31 . . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . . . . . . . 0
6-bits 5-bits 5-bits 5-bits 11-bits
Opcode rD rA rB Opcode

Table 3.3. OpenRISC 1000 Register-to-Register Instruction Format (R)

Instruction formats

As is common with RISC architectures, there are only a few instruction formats.
Opcodes are six bits wide. The remainder of the instruction accord to the following
formats in tables 3.2-3.7.

These are the Immediate type (I), Register-to-Register type (R), Register-with-
Immediate type (RI) and second Register-with-Immediate type (RI2), and types for
setting the flag bit in the status register Set Flag Register-with-Immediate (RSFI)
and Set Flag Register Format (RSF).

Opc. Mnemonic Opc. Fmt. Function
0x00 l.j - I PC <- exts(Immediate < < 2) + PC
0x01 l.jal - I PC <- exts(Immediate < < 2) + PC; LR <- PC + 8
0x03 l.bnf - I PC <- SR[F] ? PC + 4 : exts(Immediate < < 2) + PC
0x04 l.bf - I PC <- SR[F] ? exts(Immediate < < 2) + PC : PC + 4
0x05 l.nop - I -
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Opc. Mnemonic Opc. Fmt. Function
0x06 l.movhi - RI rD <- Immediate « 16
0x08 l.sys - I PC <- system-call exception
0x09 l.rfe - I PC <- EPCR; SR <- ESR
0x11 l.jr - R PC <- rB
0x12 l.jalr - R PC <- rB; LR <- PC + 8
0x21 l.lwz - RI rD <- [rA + Immediate][31:0]
0x22 l.lws - RI rD <- [rA + Immediate][31:0]
0x23 l.lbz - RI rD <- extz([rA + Immediate][7:0])
0x24 l.lbs - RI rD <- exts([rA + Immediate][7:0])
0x25 l.lhz - RI rD <- extz([rA + Immediate][15:0])
0x26 l.lhs - RI rD <- exts([rA + Immediate][15:0])
0x27 l.addi - RI rD <- rA + Immediate
0x28 l.addic - RI rD <- rA + Immediate + SR[CY]
0x29 l.andi - RI rD <- rA AND Immediate
0x2A l.ori - RI rD <- rA OR Immediate
0x2B l.xori - RI rD <- rA XOR Immediate
0x2C l.muli - RI rD <- rA * Immediate
0x2D l.mfspr - RI rD <- SPR[rA OR Immediate]
0x2E l.slli 0x0 R rD <- rA < < Immediate
0x2E l.srli 0x1 R rD <- rA » Immediate
0x2E l.srai 0x2 R rD <- rA »> Immediate
0x30 l.mtspr - RI2 SPR[rA OR Immediate] <- rB
0x35 l.sw - RI2 [rA + Immediate][31:0] <- rB
0x36 l.sb - RI2 [rA + Immediate][7:0] <- rB
0x37 l.sh - RI2 [rA + Immediate][15:0] <- rB
0x38 l.add 0x0 R rD <- rA + rB
0x38 l.addc 0x1 R rD <- rA + rB + SR[CY]
0x38 l.sub 0x2 R rD <- rA - rB
0x38 l.and 0x3 R rD <- rA AND rB
0x38 l.or 0x4 R rD <- rA OR rB
0x38 l.xor 0x5 R rD <- rA XOR rB
0x38 l.mul 0x6 R rD <- rA * rB
0x38 l.sll 0x08 R rD <- rA < < rB
0x38 l.srl 0x18 R rD <- rA » rB
0x38 l.sra 0x28 R rD <- rA »> rB
0x38 l.mulu 0xb R rD <- rA * rB
0x39 l.sfeq 0x0 RSF SR[F] <- rA == rB ? 1 : 0
0x39 l.sfne 0x1 RSF SR[F] <- rA != rB ? 1 : 0
0x39 l.sfgtu 0x2 RSF SR[F] <- rA > rB ? 1 : 0
0x39 l.sfgeu 0x3 RSF SR[F] <- rA >= rB ? 1 : 0
0x39 l.sfltu 0x4 RSF SR[F] <- rA < rB ? 1 : 0
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Opc. Mnemonic Opc. Fmt. Function
0x39 l.sfleu 0x5 RSF SR[F] <- rA =< rB ? 1 : 0
0x39 l.sfgts 0xa RSF SR[F] <- rA > rB ? 1 : 0
0x39 l.sfges 0xb RSF SR[F] <- rA >= rB ? 1 : 0
0x39 l.sflts 0xc RSF SR[F] <- rA > rB ? 1 : 0
0x39 l.sfles 0xd RSF SR[F] <- rA =< rB ? 1 : 0

Table 3.8: OpenRISC 1000 Class I ORBIS32 Instructions

The table 3.8 outlines the class I ORBIS32 instruction set, that is the set of
instructions that must be supported in an implementation dealing with up to 32-bit
data. This set of instructions encompasses a majority of the functionality of the
instruction set.

3.3.2 Addressing Modes

Memory Access

As is a standard RISC design feature, memory addressing features are limited to
simple loads and stores between memory and registers.

Memory accesses are always performed indirectly with the address calculated
from the addition of the contents of a register (indirect) and a sign-extended imme-
diate value embedded in the instruction.

Unaligned accesses are not permitted on OR1K.

Memory Operand Conventions

On the OR1K architecture, words are 4-bytes in length, and double words are 8-
bytes in length.

Despite there being much reference to OR1K being potentially bi-endian, all
implementations thus far have been big-endian (BE).

Program Control

Program execution control with conditional branch instructions occurs by calcu-
lating the target address from the addition of a sign-extended immediate value
embedded in the instruction to the program counter (PC). This is known as PC
relative addressing.

Jump instructions are unconditional and non-PC relative. All instructions must
be word-aligned.

3.3.3 Register Set

The set of supporting registers aiding system control is comprehensive. Operating
system support is provided by the use of user- and supervisor-level access restrictions
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31 . . . . 26 25 . . . 21 20 . . . 16 15 . . . . . . . . . . . . . . 0
6-bits 5-bits 5-bits 16-bits
Opcode rD rA Immediate
Table 3.4. OpenRISC 1000 Register-with-Immediate Instruction Format (RI)

31 . . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . . . . . . . 0
6-bits 5-bits 5-bits 5-bits 11-bits
Opcode Immediate rA rB Immediate
Table 3.5. OpenRISC 1000 Register-with-Immediate Instruction Format Two (RI2)

31 . . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . . . . . . . 0
6-bits 5-bits 5-bits 5-bits 11-bits
Opcode Opcode rA rB Reserved
Table 3.6. OpenRISC 1000 Set Flag Register-to-Register Instruction Format (RSF)

to certain system registers. All registers, aside from the GPRs, are referred to as
special purpose registers (SPRs).

Register File

The register file registers, otherwise referred as general purpose registers (GPRs),
are either 32- or 64-bits wide depending on the implementation. Although it’s
possible to have just 16 registers, all publicly available implementations of hardware
and compiler implement and make use of 32 GPRs. However, the facility to support
only 16 is available.

Unit Dependent Registers

The unit dependent registers implement control interfaces to the optional units
of the architecture. These units are the instruction cache, data cache, instruc-
tion memory management unit (MMU), data MMU, debug interface, performance
counters tick timer, floating point unit, multiply accumulate unit (MAC), power
management unit, programmable interrupt controller (PIC) and tick timer (TT).
Each of these sub-modules will be outlined in following sections. All of these

3.3.4 Privilege Modes
The processor can operate in either supervisor or user mode. The ability to exe-
cute in user mode, with reduced privileges, enables operating systems to support
execution of code in a controled environment. All processing of exceptions occurs
in supervisor mode. The MMUs can control permission of accesses to abritrary
regions of memory depending on the execution mode. Almost all special purpose
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31 . . . . 26 25 . . . 21 20 . . . 16 15 . . . . . . . . . . . . . . 0
6-bits 5-bits 5-bits 16-bits
Opcode Opcode rA Immediate

Table 3.7. OpenRISC 1000 Set Flag Register-with-Immediate Instruction Format
(RSFI)

registers are not accessible in user mode, with just a few status registers available
for reading.

3.3.5 Fast Context Switch Support

The capability to switch between contexts instantly is supported by the OR1K
ISA. This technique reduces the overhead when a context switch is forced due to
an exception or interrupt by providing multiple processor resources to save storing
the state to memory.

In order to provide a new processor state within a single cycle, multiple register
files must be implemented, as well as supporting logic to implement fast context
switching.

The current context is indicated in the supervision register in the bits SR[CID].
If fast context switching is in use, exceptions switch back to CID 0, the main context.
The context in which the exception occurred is stored in the CXR register.

Although there may be many more contexts than implemented hardware context
support, and thus some context may been to be saved back to the stack, it is
expected multiple context support can speed up performance by eliminating some
delay due to context switching.

3.3.6 General Purpose Registers

The OR1K ISA has a register file consisting of 32 registers either 32- or 64-bits wide,
depending on the implementation. Register zero, (mnemonic r0), is constantly zero.

It is possible that an implementation can support fast context switching, in
which case multiple physical register files will exist in an implementation.

Certain implementations may have a register file consisting of less than 32 GPRs,
which is acceptable so long as the software behaves appropriately. It is not clear
what should happen if an instruction addresses an out-of-bounds GPR.

3.3.7 Essential SPRs

The special purpose registers (SPRs) are 32-bit wide registers used to interface
with the modules defined by OR1K. The following is a list of the essential registers
required in an OR1K implementation.
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Opc. Mnemonic Opc. Fmt. Function
0x06 l.macrc - RI rD <- MACLO; MACLO/HI <- 0
0x08 l.trap - I PC <- SR[K] ? trap exception : PC + 4
0x08 l.msync - I mem sync.
0x08 l.psync - I pipline sync.
0x08 l.csync - I context sync.
0x13 l.maci - RI2 MAC with immediate
0x1C l.cust1 - I Cust. 1
0x1D l.cust2 - I Cust. 2
0x1E l.cust3 - I Cust. 3
0x1F l.cust4 - I Cust. 4
0x2E l.rori 0x3 R rD <- rotate(rA, Immediate)
0x2F l.sfeqi 0x0 RSFI SR[F] <- rA == Immediate ? 1 : 0
0x2F l.sfnei 0x1 RSFI SR[F] <- rA != Immediate ? 1 : 0
0x2F l.sfgtui 0x2 RSFI SR[F] <- rA > Immediate ? 1 : 0
0x2F l.sfgeui 0x3 RSFI SR[F] <- rA >= Immediate ? 1 : 0
0x2F l.sfltui 0x4 RSFI SR[F] <- rA < Immediate ? 1 : 0
0x2F l.sfleui 0x5 RSFI SR[F] <- rA =< Immediate ? 1 : 0
0x2F l.sfgtsi 0xa RSFI SR[F] <- rA > Immediate ? 1 : 0
0x2F l.sfgesi 0xb RSFI SR[F] <- rA >= Immediate ? 1 : 0
0x2F l.sfltsi 0xc RSFI SR[F] <- rA > Immediate ? 1 : 0
0x2F l.sflesi 0xd RSFI SR[F] <- rA =< Immediate ? 1 : 0
0x31 l.mac 0x1 R mac(rA, rB)
0x31 l.msb 0x2 R msb(rA, rB)
0x38 l.ror 0x38 R rD <- rotate(rA,rB)
0x38 l.div 0x9 R rD <- rA / rB
0x38 l.divu 0xa R rD <- rA / rB
0x38 l.extbs 0x1c R rD <- exts(rA)
0x38 l.exths 0x0c R rD <- exts(rA)
0x38 l.extbz 0x3c R rD <- extz(rA)
0x38 l.exthz 0x2c R rD <- extz(rA)
0x38 l.cmov 0xe R rD <- SR[F] ? rA : rB
0x38 l.ff1 0x0f R rD <- FindFirst1(rA)
0x38 l.fl1 0x1f R FindLast1(rA)
0x3C l.cust5 - I Cust. 5
0x3D l.cust6 - I Cust. 6
0x3E l.cust7 - I Cust. 7
0x3F l.cust8 - I Cust. 8

Table 3.9. OpenRISC 1000 Class II ORBIS32 Instructions
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Group Reg Reg User Mode Supv. Mode Description
Num Num Name Permis. Permis.
0 17 SR - R/W Supervision Register
0 32-47 EPCR0-EPCR15 - R/W Exception PC Registers
0 48-63 EEAR0-EEAR15 - R/W Exception EA Registers
0 64-79 ESR0-ESR15 - R/W Exception SRs

Table 3.10. OpenRISC 1000 Mandatory SPRs

The supervision register (SR), exception program counter (EPC), exception sta-
tus register (ESR) and exception effective address register (EAR) are the only reg-
isters mandatory for an OR1K implementation. These are outlined in table 3.10.

The multiple exception PC, EA and supervision registers are required when fast
context switching is required, and thus the SR[CID] are used to determine which
one corresponds to that context.

Supervision Register

The supervision register’s contents are described in table 3.11.

Exception SPRs

These registers provide copies of important registers when exceptions occur. The
ESR(s) contain a copy of the SR when an exception occurs. The EPCR(s) contain
the PPC where an exception occurred. The EEAR(s) hold the effective address in
the event that an exception is caused by an address-related fault. Read access when
in user mode is granted if the SR[SUMRA] bit is set.

3.3.8 Memory Management
OR1K defines an instruction and data MMU interface and address translation mech-
anism from the perspective of the programming model. It provides support for three
page sizes, page-based protection and demand-paged virtual memory. Translation
look-aside buffers are usually implemented and keep the most recently used trans-
lation cached. It is possible to have multiple-way associativity on these buffers.
The MMUs, using an exception-based processing mechanism, and implementing
permission-based page access, provide enough functionality for modern operating
systems’ paged virtual memory systems. Implementation of the MMU system on
either instruction or data buses is optional.

3.3.9 Cache System
OR1K defines a data and instruction cache control interface and multiprocessor co-
herency model. Implementation of cache is optional. A Harvard cache model should
implement both instruction and data caches, a Stanford implementation should only
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Bit Identifier R/W Reset Description
31 CID R/W 0 Context ID (optional)28
27 R/O 0 Reserved17
16 SUMRA R/W 0 SPRs User Mode Read Access
15 FO R/O 1 Fixed One
14 EPH R/W 0 Exception Prefix High
13 DSX R/W 0 Delay Slot Exception
12 OVE R/W 0 Overflow Flag Exception
11 OV R/W 0 Overflow in last op.
10 CY R/W 0 Carry Flag
9 F R/W 0 Flag
8 CE R/W 0 CID Enable
7 LEE R/W 0 Little Endian Enable
6 IME R/W 0 IMMU Enable
5 DME R/W 0 DMMU Enable
4 ICE R/W 0 Insn. Cache Enable
3 DCE R/W 0 Data Cache Enable
2 IEE R/W 0 Interrupt Exception Enable
1 TEE R/W 0 Tick Timer Exception Enabled
0 SM R/W 0 Supervisor Mode

Table 3.11. OpenRISC 1000 Supervision Register

use the data cache interface. The cache system can control from direct-mapped up
to an eight way, set associative, cache. The control interface allows for write-through
(CWT) or write-back (CWB) strategies to be implemented. Cache bypass is possi-
ble on data accesses when the top-most address bit is asserted. In conjunction with
the MMUs, pages can be marked as caching-inhibited (CI), cache coherent (CC),
or write-back. Multiprocessor systems are aided by a page-based cache coherency
system in conjunction with the MMU, whereby pages can be marked as CC ensuring
that the cache system across the processors will enforce coherency. This is most
useful among cache systems implementing any sort of data caching.

3.3.10 Power Management

OR1K defines a power management interface that can control an external clock
divider, control doze mode where all clocks in the processor are gated except to
the TT and PIC, control sleep mode where all clocks are gated, and potentially the
core voltage is lowered, or control suspend mode which must then be reset to enable
continuation of execution.
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3.3.11 Interrupt System

OR1K defines a programmable interrupt controller (PIC) which is optional to im-
plement. It provides a masking function for up to 30 interrupt request lines, and
up to two optional non-maskable interrupts. Edge-triggered, level-triggered, and
hybrid latched-level-triggered interrupts are supported.

3.3.12 Timer

OR1K defines the tick timer (TT) unit which is optional to implement and provides
a timer counting at the core CPU frequency and can be programmed to interrupt
the processor on reaching a programmable value. The TT can be programmed to
count in single run, restartable or continuous modes.

3.3.13 Debug Unit

OR1K defines a debug unit providing watchpoints conditional on fetch address and
load/store address and data. Watchpoints can trigger breakpoints or increment
counters. Counting watchpoints can also be specified. Several watchpoints can be
combined to create complex watchpoints. The unit can also be programmed to stall
the processor on any exception.

3.3.14 Configuration Registers
OR1K defines a group of SPRs indicating the configuration of the microprocessor
implementation. As much of the architecture is optional, and various revisions of
implementations may exist, these registers exist to assist software, such as a complex
OS, in appropriately controlling the microprocessor. All configuration registers are
read only.

Version Register

OR1K defines a version register (VR) consisting of a 6-bit revision number, an 8-bit
configuration value and an 8-bit version number. All are used to help identify the
processor’s capabilities, and any specific software workarounds required.

Unit Present Register

OR1K defines a unit present register (UPR) for identifying which of the many
optional units are implemented in the design.

CPU Configuration Register

OR1K defines a CPU configuration register (CPUCFGR) which is used to identify
the CPU capabilities and configuration. It holds the number of shadow GPRs (for
fast context switching), and if the GPR is less than 32 registers in size.



30 CHAPTER 3. OPENRISC OVERVIEW

MMU Configuration Registers

OR1K defines data and instruction MMU configuration registers (I/DMMUCFGR)
indicating the number of TLB ways, number of sets, number of entries and if other
supported features of the MMUs are available.

Cache Configuration Registers

OR1K defines data and instruction cache configuration registers indicating the ca-
pabilities and capacity of any implemented caches.

3.3.15 Software ABI

OR1K defines the software application binary interface (ABI). Defined are the phys-
ical sizes of standard scalar types used in the ISO/ANSI C language, the physical
layout of structs and arrays, and register usage for function calls and stack man-
agement.

The OR1K has two execution modes; user and supervisor. All exceptions are
switched to with supervisor mode enabled. Operating system functions requiring
supervisor execution privileges can be called via the system call mechanism using
the l.sys instruction.

3.3.16 Exception Interface

OR1K defines an exception interface describing the cause of exceptions, and state
of the system when they occur. Exceptions cause the PC to jump to a pre-defined
location in memory to execute handler code. Table 3.12 shows the exceptions defined
by OR1K.

3.3.17 Omissions

For brevity, overviews of OR1K features left out include the ORFPX32/64 and
ORVDX64 instruction sets, which instructions can cause which exceptions, SPR
details for almost all unit dependent registers and parts of the ABI such as position-
independent code formats.

For complete information see the OR1K specification (44).

3.4 Comparison

OR1K is much like early incarnations of the MIPS ISA. The main differences are the
extra instruction formats (RI2, RSF, RSFI) in OR1K and the flag setting mechanism
which sets a flag in the supervision register instead of a ’1’/’0’ in a destination
register as on MIPS.
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Exception Handler Address Cause of
Type Offset Exception
Reset 0x100 Hardware reset event

Bus Error 0x200 Error signal from bus asserted due to nonexistent
address, parity error, etc.

Data Page Fault 0x300 Unmapped data location or protection violation
in data MMU

Insn. Page Fault 0x400 Unmapped insn. location or protection violation
in instruction MMU

TT Interrupt 0x500 Tick timer enabled and hit programmed count limit
Alignment 0x600 Access to unaligned instruction or data
Illegal 0x700 Illegal or unsupported instructionInstruction

External 0x800 External IRQ assertedInterrupt
DTLB Miss 0x900 DMMU TLB miss, reload required
ITLB Miss 0xa00 IMMU TLB miss, reload required
Range 0xb00 Arithmetic overflow

System Call 0xc00 System call instruction executed
Trap 0xd00 Trap instruction executed as software breakpoint

Table 3.12. OpenRISC 1000 Exceptions

3.5 First Implementations

By 2004 the architectural simulator or1ksim, and first RTL model in Verilog HDL
had been largely completed.

3.5.1 Architectural Model

Transactional level models of microprocessor architectures are very useful for early
development of software, and later on as a golden functional reference for other
implementations. One such model was developed at the onset of the OpenRISC
project, named or1ksim.

It is a custom built model, written in C, capable of near-cycle accurate simu-
lation of the CPU pipeline, and transactional level emulation of memory mapped
peripherals. It is highly configurable at runtime making it very versatile. It pro-
vides a remote debugging interface for the GNU debugger (GDB). It is a high speed
model, and allows early code analysis and system performance evaluation.

It comes with a suite of models of peripherals commonly found in SoC designs.
All of these cores are models of designs available on OpenCores.

It originated with the beginning of the OpenRISC project in 1999. Initially,
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it supported the ORBIS32 instruction set, and emulated all optional modules of
OR1K. Including peripherals, support modules and tests, the codebase of the sim-
ulator comprised fifty thousand lines of ANSI C code.

3.5.2 RTL Model

The first synthesizable implementation, according to early reports on the OpenRISC
project, was a 32-bit single-issue model written in VHDL that achieved 100 MIPS
at 100MHz (43). The only implementation made publicly available by 2001 was the
32-bit OpenRISC 1200 (OR1200) written in Verilog HDL. Originally, each major
architectural feature included in the implementation would mean an increased model
number, OR1300 and OR1400 etc. However, regardless of the configuration, the core
has only been referred to as the OR1200.

By 2004 the implementation supported most ORBIS32 class I and II instruction,
except for synchronisation instructions and various instructions not generated by
the compiler, but still capable of being generated by the assembler.

The additional modules included direct mapped instruction and data cache
(write-through scheme only) of up to eight kilobytes in size. The data cache was not
fully functional and the instruction cache’s bus interface produced invalid accesses
occasionally. Instruction and data MMUs were implemented, each with sixty-four
entries. The tick timer and programmable interrupt controller were fully imple-
mented. The software debug module did not appear to be correctly implemented
and features such as hardware breakpoints were not working. The ALU contained
a pipelined multiply accumulate (MAC) unit.

The model was targeted at implementation on Xilinx FPGAs, and was also
produced in ASICs by Flextronics from 2003(45).

3.5.3 Support Tools

The software support tools, such as compilers and operating systems are just as
important in enabling use of the platform as the hardware implementation. As
is typical for most microprocessor architectures, work towards implementing the
architecture-specific parts of the GNU binutils and compiler collection (GCC) started
soon after the first hardware was working, in around the year 2000. In 1999, Dam-
jan Lampret made the first submissions to the GCC mailing list to announce the
architecture(61). In early 2001, the first contributions to binutils for OpenRISC sup-
port were made by Johan Rydberg(62). By 2002, posts made to the GCC’s mailing
list indicated the entire toolchain looked to be complete, and further submissions
to the respective tools’ repositories were made.

By the time of the demonstration of the first OpenRISC ASIC in 2003, there
were working ports of the GNU tool suites such as the binutilities package, GCC and
the GNU debugger (GDB). Additionally, there were ports of the uClibc C library,
the full Linux kernel, lighter uClinux kernel, and eCos operating system.
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A reference SoC implementation, called the OpenRISC Reference Platform Sys-
tem on Chip (ORPSoC), was released which provided the RTL and software to
implement an OpenRISC-based SoC. This platform was intended to be the test
harness for the OpenRISC processor, as the OR1200’s project came with little in
the way of RTL-level testbenches. ORPSoC was targeted at the XESS XSV800
board, containing a Xilinx XCV800 Virtex series FPGA, and a range of peripherals
such as Ethernet, audio, VGA, and USB controllers.

3.6 Commercialisation
By the end of 2004, the core of the original developers and contributors had largely
stopped their open source contributions to the project, and were instead focused on
commercialised version of the OpenRISC platform. In 2005, the company Beyond
Semiconductor was launched in Slovenia and employed the bulk of the OpenRISC
contributors up to that point. Unfortunately, the company decided to re-license
the OR1200 for their own purposes, and re-branded it the BA1200, and ceased all
contribution to the project on the OpenCores site.

In 2007, they decided the OpenCores website was to be closed down if suitable
backers for it were not found(46). Fortunately some engineers who had worked
with the OpenRISC platform at Flextronics, and who had recently started ORSoC,
a Swedish fabless digital design house, decided to take over the operations of the
OpenCores site(47).

Unfortunately, by this time, the significant progress made on the OpenRISC
project in its first four years of development had largely come to a halt. However,
the next few years would see a revival of the project, thanks to ORSoC and a small,
but dedicated, group of contributors.





Chapter 4

A Contemporary Overview

This chapter will give an overview of the technological and market developments
continuing from the time frame covered in the historical overview section. The two
central topics are microprocessor design, and the open source movement.

4.1 Microprocessors

The trends in microprocessor design and fabrication that have emerged over the first
decade of the twentieth century were largely related to reducing the power usage of
processors. High performance processing has been constrained by the inability to
cost effectively dissipate the energy generated when designs are pushed to the limits
of their operating frequency, and embedded computing has focused on decreasing
power usage in an effort to increase the available usage time when operating on
battery power.

Despite the various proposals of different circuit technologies in the early 1990s,
it became clear by the mid 1990s that CMOS technology had the best characteristics
for voltage scaling as process geometries shrank(48). Lower voltages in the circuit
result in less dynamic power consumption. Fabrication processes advanced, designs
were pushed to operate faster, and by the year 2000 the first one gigahertz processor
was revealed by IBM(49). Three years later Intel surpassed the three gigahertz
mark(50).

Significant roadblocks to increasing operating frequency soon began to be iden-
tified. Primarily the issue was power dissipation, with machines predicted to reach
100 watts of power usage, the limit of cost-effective cooling solutions would quickly
be reached(48). As a result, peak operating frequencies were to plateau for the rest
of the decade. This meant for performance to increase, alternate routes to increase
processing capacity had to be found.

Similarly for embedded processing technology. Consumer electronic trends have
been such that there has been a continual and rapid rise in demand for cutting edge
portable devices such as mobile phones and media players since the mid 1990s. The
net value of consumer electronics sold by the U.S in the 1990s doubled from around
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forty billion dollars in 1999 to eighty billion at the end of the decade, and again
to one hundred and sixty five billion dollars by the end of the next decade(51)(52).
There has been a continual increase in the capabilities provided by manufacturers,
and demanded by consumers of portable electronics. The integration of media and
telecommunication features into portable devices has been a notable trend that has
lead to the demands on processor performance to increase greatly. However, being
portable means that must rely on battery supplied power, and the longer the device
can go before requiring recharging the better. Thus the two major but conflicting
goals for designs are are high performance and low power consumption.

How little power is considered low power? One paper from 2005 gives examples
of power targets for various mobile applications; playing video at 250mW, playing
audio at 75mW, O/S scheduling at 50mW, and standby mode of 3mW(53). Mea-
sured power consumption of a microprocessor implementation from Apple released
in 2010 indicate the estimated combined microprocessor and DRAM (in single pack-
age) power consumption is between 250mW and 520mW during audio and video
playback applications(54). However these are relatively high performance designs,
capable of running multi-tasking operating systems and compute-intensive media
applications. The other end of the mobile, embedded microprocessor spectrum,
there is the need for processors to perform basic synchronisation and maintenance
functions only, and may be limited to less than 1mW peak usage, and spend most
of the time on standby, consuming only micro or nano watts of power.

This, however, looks at dynamic power consumption, or primarily the power
dissipated due to digital signals throughout the design toggling (charging and dis-
charging gates.) Power use considerations have shifted somewhat as advances in the
manufacturing processes have lead beyond the nominal 90 nanometer fabrication
process point. As the smallest possible feature size of these fabrication processes
decreases with advancements, a quantum effect referred to as leakage has emerged,
which sees mobile charge carriers tunnel through ever thinner insulating materials
(potentially from an active line to a grounded substrate) and ultimately resulting
in increased current draw by the circuit, whether it is toggling or not. The static
leakage of current this way increases exponentially as the feature size of processes
become smaller, and by middle of the first decade of the twenty-first century, was
seen as an inhibitor to simply printing ever-growing circuits for mobile or embedded
uses. Leakage adds a third constraint to designs targeted at mobile use; area, as
the larger the design, the larger the static current component or the designs power
usage.

Implementations using the 90 nanometer process node began to see leakage
power become more dominant than dynamic power in some designs(55). Mitigation
techniques for overall power consumption, including a complete power off for unused
modules, among others others, became commonplace and result in up to forty times
leakage power saving(56). However, there is still a need to continue increasing per-
formance of these systems while keeping energy use down. Architectural approaches
to this include re-approaching certain tasks and implementing logic that can com-
plete algorithmic work that might have otherwise been done on a generic processor.
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Another solution is to lower the power use of otherwise unused logic, gaining some
room in the power budget which can be spent on other operations(57).

With frequency limited due to power concerns, a trend after the 1990s was
architecture-level parallelisation of processing. Various techniques had been used
previously, such as fast context switching, hardware threading and superscalar im-
plementations to improve throughput but one widely-used approach was multi-core
implementation. This design has provided increases in performance while keep-
ing power costs at a minimum(55). Purpose-designed co-processor units for audio
and video encoding and decoding (CODEC), and single instruction multiple data
(SIMD) processing modules are now very common modules to include, reducing the
time taken to perform common algorithmic tasks, thus reducing overall dynamic
power consumption of the system. Microprocessors with the ability to scale their
frequency, and in some cases voltage, have been shown to result in up to eighty
percent reduction in dynamic power consumption for scheduling tasks, and up to
forty percent reduction for MPEG4 playback(53). This means things such as cus-
tom processing blocks and power minimisation control logic are must-haves for a
modern digital design.

Desktop and server-targeted microprocessor architectures were the first to im-
plement multi-core designs, with embedded and mobile applications processors soon
following their lead. For mobile applications requiring increased processing capacity,
a multi-core approach provides better power economy than frequency scaling. De-
spite the software design challenges imposed by new requirements on load-balancing
among processes and threads, multi-core implementations ultimately provide more
processing capacity.

FPGA-targeted microprocessor designs do not have the operating frequency
ranges of an ASIC-implemented designs. This makes multi-core implementation on
FPGA a necessary step to increase general purpose processing capabilities. Despite
FPGAs and customisable soft-core microprocessors being prime candidates for cus-
tom processing blocks to speed up specific tasks, there is still a desire to increase
processing capacity.

On the market front, ARM are forecast to become the leading 32-bit micropro-
cessor architecture, by sales volume, in the year twenty eleven(58). ARM specialise
in microprocessors for mobile and embedded platforms, highlighting the focus and
demand on these areas. Additionally, Intel are focusing on the embedded and
portable market as it identifies it as a strong growth area.

The methods of power-conscious design, and multi-core architectures have be-
come, and are likely to remain, standard practice for SoC designers.

4.2 Open Source

The increased development and use of open source software during the first decade
of the 21st century has seen it become so common that there is likely to be open
source software running on almost every modern computer system. The use of
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desktop computer systems and servers running entirely open source and free (as in
freedom) software is now commonplace. The development model has been proved,
and has been adopted by some of the largest corporations and governments.

Although the world does not yet run on entirely open source software, increasing
amounts of computer software, once in the domain of proprietary software vendors
only, is now available free of restrictions and, largely, for free. The distinction
between the two uses of free here is significant. The first “free”, as in freedom, is
used to indicate the software has no restrictions and the user at liberty to do as
they wish, usually in regard to modification and distribution. This is the meaning
of the “free” in the Free Software Foundation, and free and open source software
(FOSS). It just also happens that a lot of this software is made available for free,
where the “free” is used to mean no cost, in the way that the “free” in “free beer”
can only mean one thing. However, despite the free of cost of a lot of the software,
the “free” is rarely used to indicate this.

Software such as advanced multimedia software, office productivity, graphics
tools, operating systems, and communications software all have open source alter-
natives, developed in the open, and usually free to download and use. Governments
and large corporations are increasingly leveraging existing open source software and
are becoming significant contributors to the projects of the software they adopt. Re-
cent trends have done much to dispel the image of the legions of lone open source
developers being the sole contributors of work. As large commercial entities increase
their adoption and utilisation of open software projects, they are becoming, by far,
the most frequent contributors. The Linux kernel now has the largest proportion
of its code contributions coming not from individual hobbyists or enthusiasts, but
instead from commercial entities either working with the Linux kernel in their prod-
ucts, such as Red Hat, or wishing to ensure support for their hardware in the kernel,
such as Intel, AMD, and IBM. The same is true for project such as Apache and
MySQL.

The plethora of open source software available provides the choice between
adopting FOSS but having to release their derivative work, and developing a solu-
tion internally or purchasing a proprietary solution and revealing the work to no
one. The GNU GCC and binutils project’s development and maintenance is being
performed largely by those employed by companies with an interest in keeping sup-
port or their platforms in top condition. The health of the project, then, obviously
is driven by the widespread use of the GCC tools, which is due to the initial strong
implementation. The increased commerical potential of open source software has
resulted in enterprises contributing resources to these projects rather than, devel-
oping and maintaining their own proprietary compiler suite in the case of GCC, for
example. This is one of the aims of open source’s originators - to provide a base
of open source software so rich that developers are better off adopting FOSS and
releasing their derivative work and thus increasing the existing mass of software
rather than develop from scratch or purchase a proprietary solution. Once a critical
mass is reached the participation and contribution back to the project increases
and in effect “snowballs”, for lack of better term. Although simply described here,
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the motivations for adopting and contributing to open source would be many and
varied and would depend greatly on the actual functionality of the open source
project. Despite its success in software, open source hardware design has not seen
the successes of the software world, and the reasons for this will be explored in later
sections.

Despite open source software’s seemingly unstoppable rise in popularity and
use, there have been many detractors of open source development to voice their
opinion in recent times. Obviously there’s going to be opponents of open source
who’s established dominance of a niche market may be threatened by an open source
alternative, and may suffer diminishing revenues because of it, but these opponents
rarely argue interesting or useful points of the debate and suffer mainly from failing
to innovate sufficiently, a point which will be discussed further.

There are arguments that open source development impedes competition by re-
ducing the chances a proprietary developer has of developing a similar, potentially
better, solution because the open source variant usually gets used regardless of its
failings largely because it is initially free of cost to the user. Thus, it is argued, that
innovation is stifled because smaller companies can’t get a foot in between the open
source solution and the products of larger established firms whereas, previously, they
might have had an opportunity to prove their technology. The counterpoint to this
is that any sufficiently superior proprietary implementation will of course attract
users, and all that is occurring is a raising of the required quality-of-implementation
bar due to the presence of a free-of-cost alternative. One suggestion here would be
that these innovators leverage the existing open source implementation to demon-
strate their innovation, and thus improve the open source implementation, hopefully
allowing it to compete with any dominant proprietary player. In doing so the de-
velopers become knowledgeable about the project they’ve contributed to, become
known among the users of the software, and develop a business providing develop-
ment or support services for the project they’ve improved. The obvious down side
to this is that they have exposed their innovative technique, and cannot reap the
rewards as done traditionally in proprietary software products. However, this is
offset by their reduced overhead in developing their product (large proportions of
the supporting infrastructure adopted from open source implementation), and their
improved potential as a gun-for-hire on the newly improved open source project
which, in turn, attracts other contributors who decide to work with the project.

Other standard complaints about open source projects are in regard to the qual-
ity of implementation. It is true that open source implementations do vary greatly
in quality and functionality and this is typically due to a limited contributor base
that is implementing only enough so that it works for their application. For the
uninitiated, the barriers to entry for contributing to an open source project can
be significant and this is another common criticism of open source development.
Larger, better managed projects, typically do not have these issues as they adopt a
more professional approach to the development, and typically have full time main-
tainers who will ensure any new features do not cause errors elsewhere, or regress
the project’s functionality. However, on smaller projects, with only a handful of
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contributors, unfinished features can be common. On the other hand as the design
is completely open, and although there’s a relatively steep learning curve, missing
features can be added and problems can be fixed by anyone, as they’re required.

There’s no doubting some very useful software has been written and contributed
to open source software projects, however open source should not be seen as an in-
novative force, rather a step on the way to further commoditising a technology.
Entrepreneurship and the profit motive typically drive the high risk and high in-
novation firms which are involved in cutting edge technology implementation. The
whole premise of the GNU Project (GNU is a recursive acronym for “GNU is Not
UNIX”) was to develop, in essence, a free, open source copy of UNIX applications
and operating system. This was not innovation, rather imitation but with a differ-
ent goal for the resulting work. The Linux kernel was begun for similar reasons.
It demonstrated engineering capability but not ingenuity, at least not at that time.
It is not true to say that what has been developed in and around those projects
doesn’t have its innovative elements. It is one thing to wish to re-implement an
existing application for largely academic purposes, and another to wish to invest
large amounts of time and money to develop a new concept wishing to see a return
based on the innovation, rather than the accessibility, of the design.

One motivation for open source development from a commercial point of view,
as already eluded to, comes from the ability to provide and charge for services
relating to the open source project. Despite the fact that the IP is publicly available,
implementing or customising the project typically requires experience in the relevant
discipline and with the project specifically. Companies adopting and maintaining an
open source solution usually have only the cost of the skills required to do so, with
no additional royalty or licensing fees being paid. The information technology boom
of the late 1990s saw a large increase in technology workers, and the lack of any open
source solutions meant companies typically had costs of both workers and license fees
from large software vendors. Ten years later there now are open source alternatives
to the proprietary IT software systems of five to ten years ago, resulting in the cost
for the same functionality now being just the necessary expert support staff. This
need for expertise could potentially be shared between in-house support staff and
contracted workers from specialised consultants, or even the project’s developers
themselves. In summary, the open source developers give up certain claims over
the IP, which potentially was largely not their own idea or considered particularly
innovative to begin with, for reward in the form of continued employment performing
services related to the project.

Despite open source not being a traditional driver for innovation it does not pre-
clude it from being the chosen development strategy for an innovative technology.
Any sufficiently innovative design will usually see worthwhile returns for the invest-
ment required to bring it about. However, with open source alternatives springing
up relatively quickly, their advantage may not last for long as others take note of
what innovative developments have been made and whether they’re worth pursuing
as open source solutions. It may end up being a choice for the developer whether
they pursue open source development to begin with, based on how long any com-
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petitive advantage may be maintained with a proprietary implementation versus
the ability to provide long term support for an implementation which will poten-
tially see more use (the open source version.) The best of both worlds might be a
good approach, where initially the product is licensed for a fee, before the source
code is released allowing others to develop and hopefully improve the project. As a
product’s life cycle draws to a close, it may be advantageous to release the source
to allow any extended users to fix problems arising from the inevitable platform
updates which occur. There is still a problem here, though, as the proprietary im-
plementation maintains its dominance while there isn’t an open source equivalent,
the designer may never choose to release the source, but then runs the risk of a dif-
ferent implementation with equivalent functions gaining more popularity, and thus
the original designer’s idea lives on but not their ability to provide support for it.

This brief look at the current state of open source has indicated that open source
has become a force to be reckoned with in the software world, but this is definitely
not the case at present for open source hardware development. Reasons for this will
be explored in the final sections. However, the modern approach to open source
development, and the benefits and motivations of it were presented and indicate
there is certainly a case for adopting the open source development approach. There
is little doubt that there will continue to be increasing adoption of the open source
development and licensing model in the future. As the wealth of available open
source designs increases, and the understanding of the approach spreads, it will
surely continue to prove itself as a worthwhile approach to the development of
technology.





Chapter 5

OpenRISC Developments

This section will outline the developments made by the OpenRISC project since
2008. First the RTL and architectural model improvements and bug-fixes will be
outlined, and then the significant improvement in the testing for both of these will
be explored. Following this, the progress on the supporting toolchain and software
will be presented. Finally, the upgrades to ORPSoC, the reference implementation,
will be explained.

5.1 RTL Model

The OR1200 has remained as the main OR1K implementation available on Open-
Cores.org. Despite the core’s specification document indicating no updates since
2001, the RTL implementation was maintained until 2005. The period between
2005 and eight saw no maintenance work on the version of the OR1200 core avail-
able in the OpenCores repository.

Renewed interest due to commercial applications of the core saw an increase in
contributions to the project in 2009. It is almost certainly the case that the core was
developed further by third parties during the years it appeared to lie dormant in its
repository, however none of the work was contributed back to the public repository.

The following is some detail on the fixes applied to the OR1200 since 2008.
The symptom, or how the issue arose, will be explained, so too the implemented
solution.

5.1.1 Interrupt priorities

As outlined in section 6.3 of the OR1K architecture specification, there is a de-
fined order in which exceptions and interrupts, should they occur simultaneously,
are handled. Table 5.1 displays the exceptions and their priority. The exception
processing in the OR1200 is done in the or1200_except module.

The observed symptom, leading to the discovery of the incorrect implementation
of exception handling priority, was the seemingly random failure of system calls
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being performed in the Linux kernel software. This, of course, does not lead one
to immediately check exception handling priorities, and it was through a process of
elimination at every level from software application to RTL that it was determined
the issue was with exception handling.

System calls are typically used in an operating system to perform operations
which require permissions to be checked before operations can be performed. There
are, at present, hundreds of different system calls supported by the Linux kernel and
they typically implement a fundamental operation such a reading or writing data via
I/O, control of a process such as starting and stopping or forking, and inter-process
communication primitives. In OR1K the system call instruction, l.sys implements
support for an operating system’s system calls function. Its behavior is defined as
signaling an exception causing the processor to interrupt and start executing from
the exception handler address, 0xc00. As such, the required system call handler
code is arranged so its entry point is at 0xc00. As mentioned already, this is not
unique to Linux and is a common feature in other operating systems. The fact
that the system call instruction typically forces a change of context is used by other
operating systems, typically RTOSes, to force a context switch at a specific location
in the software to allow the scheduler to execute.

The system calls in the Linux kernel on OR1K which were identified as failing
were related to data I/O on peripherals. However, the first major indication or
what to investigate came when it emerged that altering the rate of the tick timer
correlated with the rate of system calls failing to be performed.

To test whether simultaneous tick timer and system call exceptions were being
handled correctly, a simple software test was implemented, and it exposed the issue
immediately. The RTL fix was implemented within minutes.

The OR1200’s exception module is in charge of determining which exception
should occur and when, issuing the appropriate signals to control the pipeline in
the event of an exception and saving the appropriate state of the processor. Its top
level block and relevant ports can be seen in figure 5.1.

The separate inputs prefixed with sig are generated throughout the processor.
For example, sig_itlbmiss and sig_immufault are generated in the instruction
MMU module. The signals sig_int sig_tick and sig_syscall come from the
user interrupt lines, tick timer, and instruction decode stage, respectively. It is the
exception unit’s task to synchronise these signals and indicate when the processor’s
usual execution flow should be interrupted and the state of important signals saved,
such as the supervision register (SR), program counter and effective address (EA)
into the exception versions of those registers, ESR, EPCR and EEAR, respectively.

For a tick timer interrupt, the contents of the EPCR are specified as “Address
of next not execution instruction”. The observation within the OR1200 was that
even though a system call instruction was in the execute stage and sig_int was
asserted, if the sig_tick was asserted at any point leading up to the exception
evaluation cycle, the tick timer would take precedence, and the EPCR would be set
to the address of the instruction following the system call, as it would be expected
that instruction would reach the write back stage and be finished as the exception
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Figure 5.1. OR1200 Exception Module Block Top Level

is called.
Once it was observed that the tick timer was taking precedence over the system

call instruction, in violation of the architecture specification, the interrupt priority
case statement within the or1200_except block simply had to have its cases rear-
ranged. This appeared to be the only incorrectly prioritised exception within the
case statement. Perhaps this incorrectly arranged case statement was leftover from
some exception testing of the tick timer which was never reverted. Once amended,
system calls in the kernel were observed to operate correctly. The test for this,
however, remains in the set of ORPSoC suite.

5.1.2 Data Cache

The data cache has received an update to first fix functionality, and next provide
an alternate caching scheme.

The OR1200’s data cache is direct mapped, single way with a configurable num-
ber of sets. Lines are physically tagged. The cache is bypassed if bit 31 of the
address is set, or if the page mapping in the DMMU has the cache inhibit bit set.
The address bit 31 bypass feature is convenient to ensure all peripherals, which are
typically mapped above the 0x80000000 address, do not have their accesses cached.

See appendix A for a diagram of the top level of the OR1200’s cache module.
The initial functionality issues were related to the data cache’s FSM block and

the relaying of accesses through to the Wishbone bus bridge. Trivial fixes were
applied to ensure correct behavior with the external bus interface and the internal
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Exception Priority Cause of
Type Exception
Reset 1 Hardware reset event

ITLB Miss 2 IMMU TLB miss, reload required

Insn. Page Fault 3 Unmapped insn. location or protection violation
in instruction MMU

Bus Error 4 Error signal from bus asserted due to nonexistent
address, parity error, etc. during instruction fetch

Illegal 5 Illegal or unsupported instructionInstruction
Alignment 6 Access to unaligned instruction or data
DTLB Miss 7 DMMU TLB miss, reload required

Trap 7 Trap instruction executed as software breakpoint
System Call 7 System call instruction executed

Data Page Fault 8 Unmapped data location or protection violation
in data MMU

Bus Error 9 Error signal from bus asserted due to nonexistent
address, parity error, etc. during data access

Range 10 Arithmetic overflow
Floating Point 11 Floating point calculation exception
TT Interrupt 12 Tick timer enabled and hit programmed count limit

External 12 External IRQ assertedInterrupt
Table 5.1. OpenRISC 1000 Exception Priorities

load-store unit interface.

Enabling

Enabling the data cache improves performance in the CoreMark testbench by about
40%. On an Actel ProASIC 3 board, at 20Mhz, without data cache enabled the
system receives a score of 11.97 from the CoreMark 1.0 test. Enabling the data cache
improves performance to a score of 19.01. The scale of this improvement depends
on the level of caching of data elsewhere in the design. On a Xilinx Virtex 5 part,
with caching in the interface to the memory controller, the improvement is only from
52.05 to 66.78 CoreMarks, so only about 10% improvement. This still indicates that
the data cache is an important factor in the performance of the processor module
and has most impact in smaller designs with less caching elsewhere in the system.
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Benchmarking

The CoreMark testbench has been developed by the Embedded Microprocessor
Benchmark Consortium (EEMBC) to help provide benchmark tests which are bet-
ter targeted at specific parts of embedded platforms. The scoring of the testbench
is related to the number of iterations of the algorithms performed within the time,
and is intended to be a single number to allow easy comparison. The CoreMark
test attempts to solely target the processor’s integer unit by running list sorting,
matrix calculation and FSM modeling algorithms. They also develop and provide
benchmarks for larger system profiling, such as MultiBench which stresses mem-
ory subsystems and operating system schedulers and synchronisation mechanisms,
and various testbenches for digital entertainment platforms, networking platforms
and telecoms platforms. A popular benchmark for embedded processors has been
the Dhrystone benchmark - an integer version of the Whetstone benchmark which
focused on floating point arithmetic. However it is no longer considered a reliable
benchmark and large vendors are shying away from using it(64). One criticism of
Dhrystone is that it may not accurately represent improvements of processor design
because it’s too susceptible to compiler optimisations. CoreMark ensures compiler
optimisation is limited by passing initial values as volatile values and in a way that
the compiler is unable to optimise in. The CoreMark test should give a better indi-
cation of the true performance of the processor and was considered to be a better
choice of benchmark software during processor development. Porting of CoreMark
to OpenRISC was performed as part of this processor development work.

Resource Usage

If added to a build of the OR1200 configured with instruction cache, timer and all
hardware integer arithmetic, the data cache accounts for an additional (3266 - 2984)
9% of LUTs and (19 - 10) 9 block RAMs (for 32 kilobytes) after synthesis, and no
timing penalty, on Xilinx Virtex 5 technology.

Size Enhancements

Later work involved increasing the number of words per line from 4 to 8, or 16 bytes
to 32, and increasing the maximum number of sets to 1024, the maximum supported
in OR1K. This improvement was also made to the instruction cache. The OR1200’s
Verilog HDL design relies on a single configuration file included by almost every
other file in the design. In this file there are defines for things such as the optional
modules, instructions and arithmetic units as well as cache configuration, among
others, which define the features of the processor at synthesis time. Although it
appeared as though a single value could be altered to implement a different line size,
OR1200_DCLS, it did not immediately work. Large portions of both the instruction
and data cache FSM modules required rewriting to allow a variable line size.

This has increased the configurability of the cache system, making possible an
additional level of granularity. The cache can now be configured in size up to 32
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kilobytes, much larger than the previous maximum of 8 kilobytes. With all 32
ways implemented, it would be possible to have a cache of 1 megabyte for each
instruction and data cache. For now, 32 kilobytes is acceptable for most FPGA
implementations.

Write Back

The final work on the data cache block involved implementing the option of us-
ing write-back strategy, rather than write-through. The implementation, as it was,
performed every write on the bus even if it was a cache hit. This write-through
strategy removes the overhead of recording dirty information about lines, and per-
forming write-back when flushing a line. However, when the processor is storing
data, it must wait for the write to occur over the bus to main memory before
continuing. The ability to simply write to the cache and continue removes this
bottleneck and will hopefully result in less time with the pipeline stalled. On the
other hand, there is an overhead of storing a line whenever a miss occurs and it is
marked as dirty. On a system with burst capability, and subject the appropriate
use, write-back strategy should result in performance increases.

The additional logic overhead for write-back strategy on Xilinx Virtex 5 tech-
nology, after synthesis is (3293 - 3266) 27 LUTs or about 0.8%. The improvement in
CoreMark score when using write-back is 10, (up to 98 from 88 for a 66Mhz design
with both instruction at data cache of 32 kilobytes) or a 9% improvement. The
performance increase due to this, relative to the logic overhead, is appreciable.

Experimental Feature

An experimental feature was implemented which looked at providing a trade-off
between write-through and write-back. Named no-stack-write-through, or stack-
write-back, it enforced write-back for all stores using the address in GPR1, which is
defined as the stack pointer by the software’s ABI. In this way, function prologues
and context saves, which typically use the stack pointer, will hopefully execute
faster, as the writes are not propagating through to the system bus. Another
mechanism in the OR1200 exists for speeding up writes - the other is the store buffer,
implemented in the or1200_sb module but this has remained largely untested and
undocumented and it remains to be seen if data hazards are avoided when the store
buffer is in use. The stack-write-back strategy hopefully reduces resource usage to
achieve a similar performance boost, as the store buffer requires at least 272 bits
to buffer just 4 stores. Employing the write-through strategy in the data cache,
which is likely to be implemented, uses no extra memory resources and marginal
logic overhead and will potentially be more efficient as lines are burst to and from
memory, rather than individually written. However, a case could be made for the
store buffer in an extremely low-resource implementation which optioned off the
data cache.
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The CoreMark result for the same design as above with stack-write-back strategy
is 93.6. This indicates an improvement over standard write-through strategy (88),
but only half as much as the full write-back strategy (98), this suggests the store
instructions from the stack pointer constitute half the performance overhead when
performing all write-through.

5.1.3 Carry Flag
The carry flag in OR1K is bit 10 of the supervision register (SR), and is used in
computation by the two add-with-carry instructions, l.addc l.addic, which add
two registers, or a register and an immediate, including the carry in. The carry flag
is optionally implemented in the OR1200, and these instructions using it do not
appear to be emitted by the compiler, and thus was never an issue during execution.
There were issues identified in (68) relating to the capturing of the carry flag by
the SR during execution. This pointed out the carry flag was not controlled by the
pipeline’s synchronous stall signals, and so may be written to the SR at the wrong
time, corrupting later calculations. It also pointed out the generated carry was not
present in the sensitivity list of the combinatorial result generation table, which may
have caused mismatch between simulation and synthesis. These issues have been
fixed, and software tests ensuring correct carry behavior have been developed and
included within the ORPSoC test library. Although the add-with-carry instructions
were implemented, there were issues with the way carry was calculated, and these
will be discussed in that section.

5.1.4 Overflow
The overflow flag in OR1K is bit 11 of the supervision register (SR). It is specified
as capable of being set by integer addition, subtraction, multiplication and division
arithmetic instructions, and is used to generate a range exception. This feature of
the processor was implemented as part of the work undertaken recently. It was not
a critical part for system operation as the OR1K compiler port does not have the
facility to make use of it, and thus compiled code runs with or without it. Despite the
C compiler’s inability to use it, having a proper implementation ensures those who
wish to perform arithmetic operations in assembly code have this facility available
to check for overflow.

The overflow flag in the SR can also be used to cause an exception. This behavior
is controlled by bit 12 of the SR, or the overflow flag exception bit. When set, and
an overflow occurs, this transfers execution to the address 0xb00, or the range
exception vector, for handling. This is most likely useful for operating systems
which wish to catch arithmetic overflow.

Divide By Zero

As will be discussed in the architecture section, the flags set by OR1K’s divide in-
structions, according to the specification, make little sense. A common exception
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when using divide instructions is when the divisor is zero. As the OR1K specifi-
cation indicates currently, this should set the supervision register’s carry bit. The
specification indicates that both the carry and overflow bits can be set by this in-
struction, however integer division cannot produce overflow of the kind seen in other
integer arithmetic instructions. So it is assumed a mistake has been made in the
OR1K specification, and that the carry bit is not used, and instead the overflow bit
is used to indicate divide by zero. This fits in perfectly, as it’s likely a divide by
zero exception should cause an exception in most operating systems, which it can
by causing a range exception if mapped to the overflow bit. This specification clar-
ification will be made in upcoming reviews of the OR1k architecture specification
document, but the implementation in the OR1200 has been updated, along with
the implementation of the capability to perform range exceptions, to make divide
by zero set the overflow bit of the supervision register.

5.1.5 Overflow and Carry Generation

The integer addition instructions on OR1K are defined as being for signed values.
It is common in ISAs to provide separate signed and unsigned addition, subtraction
and multiplication instructions so as to distinguish between cases of carry, occurring
in unsigned numbers, and overflow, occurring in signed arithmetic. The OR1K
addition, subtraction and multiplication instructions are specified as being able
to set both carry and overflow. This is an issue of clarity for the architecture,
most certainly, but the implementation of carry, as generated by the addition logic,
considering all additions were supposedly signed, is confusing. In implementation,
the addition ignores any sign and operates as a standard 32-bit adder. As signed
negative values are always two’s complement, this isn’t an issue for the results of
these additions, however it is not clear, as there is no distinction between supposedly
signed and unsigned additions, which of the flags should be set, and so, as some
architectures do, both carry and overflow are set as required and which flag is to be
used should be left to the user. Now that the overflow logic has been implemented,
this option exists. However, the addition instructions should probably be amended
in the architecture specification to avoid any confusion. As the ALU implementation
simply negates the second operand for subtraction and uses the same adder, and the
OR1k’s subtraction is also specified as signed but altering both carry and overflow
flags, this discussion applies to it as well.

There are both signed and unsigned variants of integer multiplication on OR1K
and both have been implemented to appropriately set the overflow flag. As discussed
earlier, although integer division is listed as affecting both carry and overflow, this
is assumed to be a mistake and overflow is now the only affect flag which is set
on divide by zero. This has been implemented within OR1200’s or1200_mult_mac
unit, which, with the ALU results, indicate to the SPR unit when an overflow flag
should be raised. A test program of the corner cases for each arithmetic operation
which triggers overflow and carry has been implemented in the ORPSoC test suite.
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5.1.6 Instructions

l.fl1

During development it was discovered, and also mentioned in in (68), the find-first-1
instruction was implemented but not the find-last-1, l.fl1, instruction. Although
it was not implemented, it was not not but causing an illegal instruction exception
when being executed. Instead, the find-first-1 result was generated. This has been
amended and a test ensuring its operation was developed and added to the ORPSoC
test suite.

Zero and Sign Extension

As discussed in the Master’s dissertation by Ahmed Waqas at KTH(68), the set
of value extension instructions in l.extbs, l.extbz, l.exths, l.exthz, l.extws,
and l.extwz, were not implemented correctly. Not only were they missing, they
appeared to execute the l.movhi instruction instead of causing an illegal instruction
exception. This was a major error, but was not noticed often due to the compiler
not being capable of emitting these instructions, although users could still assemble
and use these instructions.

The implementation of the instructions was simple enough as the OR1200’s
decode stage and ALU is easily extended. These instructions have been added
to the OR1200’s code, and have been made optional via a Verilog ‘define in the
or1200_defines.v file. Test software has been added to confirm their functionality.

5.1.7 Pipeline Indefinite Stall

There are indications that the OR1K ISA attempted to encode the number of cycles
taken to execute integer arithmetic in their instructions. The indication lies in the
OR1200’s Verilog HDL defines file which contained a second ALU operation decode
field for bits 9 and 8, interpreting them as the number of cycles for the integer
multiplication and division instructions.

However, no processor implementation uses this, and it’s unlikely they would
want to. One problem is that the multiply with immediate instruction l.muli does
not contain this field. Second is that implementations, such as the OR1200 may
not take the encoded number of cycles (3, into bits 9 to 8 of the instruction) to
execute the instruction, as the multiply may be a 32-cycle serial or 1-cycle parallel
implementation. Third, all floating point and vector instructions, which quite likely
require multiple cycles to execute, do not contain this field. For these reasons,
and for additions to the processor implementation that require it, a the processor’s
pipeline has had a mechanism added which allows it to be stalled for arbitrary
lengths of time.

The implementation required the addition of a signal generated during instruc-
tion decode in the or1200_ctrl module. This signal, wait_on, used in the or1200_freeze
module, now selects the appropriate signal to be included in the stall logic, keeping
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the pipeline from progressing until the appropriate module signals it has finished
its operation.

At present, this is used for FPU instructions which have a variety of cycle
lengths, and when causing a cache flush from the data cache with write-back strategy
as it will take a variable number of cycles to perform the bus accesses require to write
out a dirty line. An alternative solution to this is to use the l.msync instruction
to ensure all memory operations are complete before complete before continuing,
which should also rely on the same mechanism, but currently does not need to.

Another benefit of this approach is to simplify the work required to attach
other computation units which may require the processor to remain stalled until its
computation is complete. Examples of this may be a vector processing unit, or an
external, custom computation unit exercised by the OR1K’s custom instructions.

5.1.8 Multiply, Divide and MAC unit

One issue that arose when selecting which optional integer arithmetic operations to
support, via the OR1200’s defines file or1200_defines.v, was that integer divide
could not be included without the inclusion of support for the multiply-accumulate
(MAC) instructions.

Upon inspection of the RTL implementation within the multiply and MAC
unit, or1200_mult_mac, it was clear that this constraint was not necessary. Some
rearranging of Verilog HDL ‘ifdef statements meant that requirement was no
longer in place.

The inclusion of the MAC functionality does require that the multiply feature
be enabled, but forcing it to be enable to allow integer divide added an additional
64-bit adder/subtractor required for the accumulate or subtract stage of the l.mac
and l.msb instructions, respectively. As these instructions are useful only in DSP
applications, and integer divide is useful in any application, it was an unnecessary
resources overhead that has now been removed, allowing greater flexibility.

This unit, too, was largely re-written to aid clarity and the addition of the serial
multiply unit which is outlined in the next section.

5.1.9 Serial Multiplier

To aid in achieving a middle ground between a parallel multiplier implementation,
and relying on software libraries to implement multiplication, an optional serial
hardware multiplier was added to the OR1200. The main motivation arose when
synthesizing the OR1200 for the Actel ProASIC technology, which does not contain
any arithmetic macros such as multipliers, and finding area use was too high. The
full parallel multiplier, then, took up 6% of an A3PE1500, nominally 1.5 million
“gates”, percent of the core cells, and this was not considered reasonable resource
usage.

The “parallel” multiplier implementation in the OR1200 is a multiplication op-
erator with two 32-bit operands and 64-bit result vector. There are two registering
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stages of the 64-bit result after this to provide some flexibility to the synthesis tool
regarding its implementation.

A scaling accumulator design was chosen for its simplicity to describe and rela-
tively small amount of resources required to implement - mostly an adder and two
shift registers of the length of the multiplicands. This process takes 32 cycles for
two 32-bit words.

The difference in resource usage in Actel technology is presented in table 5.2.
The approximately two-thirds reduction in logic use does, of course come with the
added latency of performing the multiplication, but timing analysis also indicates its
critical path is longer, as the serial device had an estimated maximum frequency of
70Mhz, while the parallel implementation could, supposedly, be clocked at 270Mhz.

The advantage of this implementation is diminished on FPGA technologies such
as Xilinx, where the difference in implementation size is marginal - both use approx-
imately 200 LUTs, with the serial implementation using 72 FFs and the parallel 100.
The parallel implementation, however, makes use of 3 Xilinx DSP48E macro cells,
containing various hardware arithmetic circuits, no doubt being used to attempt
to calculate the multiplication as efficiently as possible. Again, the speed benefit
appears to be the with the full multiplier implementation, which XST claims can
reach 750Mhz, compared to the serial’s 250Mhz. Whether these values remain even
remotely the same after backend processing remains to be seen, but they at least
give an indication of the length of the critical paths after synthesis, which appears
to be longer with the serial implementation.

In all, this helps provide a area-saving option for designers who might be using
older FPGA technologies, or alternate ones such as Actel’s, which may not contain
hardware arithmetic macro cells to help implement operations such as multiply. De-
spite the multiply instructions being class I in ORBIS32, the compiler and OR1200
allows for hardware multiply support to be removed, and instead replaced with
software routines to perform multiplication. Despite multiplication taking approx-
imately ten times longer with serial divide (three cycles for usual multiplication
versus thirty two for scaling accumulator), this is still much less than the overhead
of storing, fetching, and executing the software multiplication routines required to
achieve the same result.

5.1.10 Single Precision FPU

The OR1K architecture defines two sets of instructions to support floating point
arithmetic, the ORFPX32 and ORFPX64 for single and double precision operands,
respectively. The ORFPX32 instruction set is presented in table 5.3. The ORFPX64
instruction set is equivalent to the ORFPX32 instruction set except that it operates
with double precision, and thus requires a 64-bit register file to operate. The goal
of this instruction set is to allow support for the IEEE 754 standard for floating
point computation on OR1K.

The architecture has a FPU control and status register (FPCSR) mapped in
SPR group 0, number 20. It allows the ability to enable one of four rounding
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Serial Parallel
Cell Count Cell Count Cell Count Cell Count

AND2 9 NOR2B 59 AND2 16 NOR3A 38
AND3 72 NOR3 39 AND3 72 NOR3B 94
AO1 45 NOR3A 13 AO1 31 NOR3C 8
AO13 4 NOR3B 30 AO13 30 OA1 11
AO18 2 NOR3C 12 AO18 8 OA1A 5
AO1A 13 OA1 11 AO1A 6 OA1B 32
AO1B 6 OA1A 5 AO1C 2 OAI1 1
AO1C 3 OA1C 3 AO1D 1 OR2 21
AO1D 3 OAI1 2 AOI1 5 OR2A 34
AOI1 4 OR2 18 AOI1B 10 OR2B 45
AOI1B 9 OR2A 12 AX1 4 OR3 6
AX1 12 OR2B 19 AX1A 2 OR3A 9
AX1A 3 OR3 2 AX1B 1 OR3B 24
AX1B 1 OR3C 6 AX1D 3 OR3C 15
AX1C 2 XNOR2 92 AX1E 14 XA1 3
AX1D 8 XNOR3 6 MAJ3 195 XA1A 2
AX1E 3 XO1A 1 MIN3 188 XA1B 6
MAJ3 9 XOR2 23 MX2 55 XA1C 1
MIN3 6 XOR3 4 MX2C 39 XNOR2 112
MX2 70 NAND2 5 XNOR3 92
MX2C 88 NOR2 48 XO1 2
NAND2 1 NOR2A 164 XO1A 4
NOR2 70 NOR2B 304 XOR2 142
NOR2A 78 NOR3 41

FFs Count FFs Count
DFN1C1 6 DFN1C1 98

DFN1E0P1 1 DFN1P1 1
DFN1E1C1 64
DFN1P1 1

Total Total
Count Device% Count Device%
954 2 2352 6

Table 5.2. OpenRISC 1200 serial versus parallel multiplier synthesis results in Actel
ProASIC3 technology
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Mnemonic Function Mnemonic Function
lf.add.s rD[31:0] < - rA[31:0] + rB[31:0] lf.cust1.s Custom instruction
lf.div.s rD[31:0] < - rA[31:0] / rB[31:0] lf.ftoi.s Convert float to int
lf.itof.s Convert int to float lf.madd.s Multiply accumulate
lf.mul.s rD[31:0] < - rA[31:0] * rB[31:0] lf.rem.s rD[31:0] < - rA[31:0] % rB[31:0]
lf.sfeq.s SR[F] < - rA[31:0] == rB[31:0] lf.sfge.s SR[F] < - rA[31:0] >= rB[31:0]
lf.sfgt.s SR[F] < - rA[31:0] > rB[31:0] lf.sfle.s SR[F] < - rA[31:0] =< rB[31:0]
lf.sflt.s SR[F] < - rA[31:0] < rB[31:0] lf.sfne.s SR[F] < - rA[31:0] != rB[31:0]
lf.sub.s rD[31:0] < - rA[31:0] - rB[31:0]

Table 5.3. OpenRISC 1000 ORFPX32 Instructions

modes, and signal all standard exceptions raised according to IEEE 754. The only
unsupported instruction in OR1K required by IEEE 754 is the square root function.

Motivation

It was identified during some profiling of video encoding software that extensive use
of floating point types caused significant amounts of time to be spent in software
functions performing floating point operations. As the OR1200’s ALU and decode
logic is relatively simple to expand, it was deemed a worthwhile exercise to look at
adding a floating point unit to the processor implementation. As the OR1K’s float-
ing point instructions use the same register file as integer arithmetic instructions,
and the OR1200 is a 32-bit implementation, with no native support for 64-bit data,
the implementation was limited to single precision support. It has recently been
observed, though, that the OR1K compiler handles 64-bit values in such a way that
adjacent register pairs are used for double precision values and this could easily be
used to implement a double precision FPU. This was not known at the time, and
as will be discussed in the architecture analysis section, the OR1K instruction set
does not contain the right instructions to implement double precision as efficiently
as possible.

Implementation

The first implemented solution was to provide a generic port from the OR1200’s
CPU to attach any floating point unit. The additional infrastructure required to
handle floating point operations had to be added, too. This included additional
logic in the exception unit to provide the ability to cause floating point excep-
tions when required, implementation of the floating point status and control SPR
(FPCSR), instruction decode and operation forwarded to FPU wrapper, addition
of MUX input to register file writeback stage, and the FPU wrapper itself which
contained logic to set flags in the FPCSR based on the operation and result, and
generate comparison results to set the flag for the lf.sfXX series of instructions. All
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floating point operation can be excluded by the removal of a Verilog HDL ‘define
at synthesis time.

There are several floating point arithmetic cores available on OpenCores.org, and
the one initially chosen was Rudolf Usselmann’s, named simply fpu. It is in Verilog
HDL and provides all required operations except for the remainder function. It was
designed to be an IEEE 754 compliant FPU, and also claimed to be compatible with
the OR1200 core, even though no implementations of this existed. The arithmetic
unit in Usselmann’s FPU is separate from the comparison unit, and as such, the
OR1200’s FPU wrapper instantiated it along side the arithmetic core.

Once instantiated the floating point operation was checked via some test software
which existed previously in the or1ksim testsuite. The OR1K compiler port, then
was tested to confirm basic FPU operations were working. However, upon check-
ing with some basic C code using floating point operations, it was noticed that
the OR1K compiler generated many double precision instructions, even though the
float type was used for the variables. This upgrading of precision occurs commonly
with floating point arithmetic in the C compiler, and so the OR1K GCC port was
modified to require an option to be passed at compile time if double precision in-
structions were to be generated. This involved modifying GCC’s OR1K machine
description, and adding a new option in the or32.opt file, requiring the machine op-
tion -mdouble-float to be passed for it to emit double precision opcodes. Once in
place, this allowed the GCC machine option -mhard-float to be passed at compile
time, and all single precision calculations would be performed with an instruction
instead of a software routine.

This implementation worked, but Usselmann’s implementation could not be syn-
thesized directly as it relied upon the the arithmetic primitives being implemented
as the user chooses. These primitives which required implementation are multiply,
divide and modulo-divide for the remainder. So, despite the core functioning in sim-
ulation, it could not be synthesized as no synthesis tools support integer division
with a divisor that isn’t a constant, base-2 number (so that it could be simplified
to a shifter.) At this stage the infrastructure was complete, but unfortunately the
design required implementations of these arithmetic primitives.

An alternative core was then evaluated. The OpenCores fpu100 core by Jidan
Al-Eryani was chosen as it claimed to be IEEE 754 compliant, and appeared to
have all of its required arithmetic blocks in synthesizable form. Although it took
significantly longer to perform FPU operations then Usselmann’s core, 35 cycles
for multiply or divide and 7 for add or subtract(69) compared to just 3 for all
operations in the fpu core, it was synthesizable and made use of serial multiply and
divide circuits so was area efficient.

The fpu100 core was attached to the OR1200 and tested to confirm its basic
functionality, and that it was synthesizable. Once this was confirmed, and its oper-
ation found to be satisfactory it was decided that this core was to be used for the
single-precision floating point arithmetic in the OR1200. Comparison logic could
still be done via Usselmann’s fpu project’s fcmp module, however the arithmetic
unit would come from the fpu100 project.
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This presented a problem, however, in that the fpu100 core was in VHDL, and
the OR1200 is in Verilog HDL, and all of the OR1200’s testbench and testing tools
only supported Verilog HDL. After several VHDL-to-Verilog tools were evaluated
and found to be lacking for various reasons, the fpu100 core was then transposed by
hand from VHDL to Verilog HDL. This code has now been included in the OR1200’s
source for distribution.

or1ksim implementation

The floating point test program included with or1ksim was found to test some, but
not all, corner cases designed to exercise the floating point exception logic. A more
thorough set of stimulus was needed to ensure the operation of the core. A well
written and thorough test package is provided in John Hauser’s SoftFloat. This
software, written in ISO/ANSI C, has two independently written floating point
unit emulation algorithms and a test vector generator. These two implementations
of an FPU, written entirely differently, help ensure the function is accurate. The
alternate, less efficient, FPU computation algorithm is included in the TestFloat
application, and is called SlowFloat, and the more efficient FPU emulation is im-
plemented in the SoftFloat library. SoftFloat can be used to simply simulate floating
point operations, but is also used against TestFloat. In this way, SoftFloat can be
tested against TestFloat, and any issues during compilation which cause incorrect
behavior by one of the FPU calculation libraries is bound to be picked up by the
other. To test an architecture’s floating point capability, architecture-specific code
is added to TestFloat, which is then compiled and executed.

Adding architecture-specific components to TestFloat can be achieved by simply
filling in skeleton functions called to perform standard floating point operations.
There also needs to be a way for TestFloat to set and test the architecture’s floating
point flags.

TestFloat’s test vector generation software can perform hundreds of thousands
of tests, checking exception state and result for each one. This was considered to
be a suitable test, then, for the newly implemented OR1200 FPU. It was initially
run against or1ksim to check the TestFloat software was ported correctly. This,
however, showed up problems with or1ksim’s single-precision floating point emu-
lation. The actual arithmetic and the behavior of the floating point flags varies
between host platforms or1ksim can run on, and for accurate emulation and access
to floating point flags would require architecture-dependent assembly language in-
lines in C, all of which was considered too much. The obvious alternative was to
implement the SoftFloat library to emulate single precision floating point in a host
architecture-independent way. The library was then implemented in or1ksim, and
the floating point instructions in or1ksim result in calls to SoftFloat’s emulation
functions. Running TestFloat, ported for OR1K, on or1ksim, is then a more elabo-
rate way of running TestFloat with SoftFloat, but it ensures all architecture-specific
parts of the port are functioning correctly, and ready to test on the hardware. A
mismatch in behavior is still possible, however, as running TestFloat on or1ksim
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Operation Software Hardware
Instructions Icache misses Dcache misses FPU cycles

Add 177 11 8 10
Subtract 151 9 3 10
Multiply 206 32 3 38
Divide 401 20 4 37

Int to Float 190 24 4 7
Float to Int 93 18 4 7

Table 5.4. OR1200 hard versus soft single precision floating point execution

using SoftFloat as its floating point emulation library could potentially have a bug,
as the SoftFloat library is compiled with the host machine’s compiler, in this case
GCC for x86, and TestFloat is compiled with GCC for OR1K. To confirm there are
no issues with OR1K’s compiler and it is compiling the TestFloat library correctly,
TestFloat testing against SoftFloat was compiled and executed in or1ksim and on
FPGA target to confirm TestFloat’s SlowFloat library is compiled correctly on
OR1K. With these tests done, the degree of confidence in TestFloat and SlowFloat
to test the OR1K’s FPU is very high.

Testing

Finally, with TestFloat testing the hardware implementation against SlowFloat,
some bugs in the exception handling wrapped around the FPU modules, and VHDL-
to-Verilog transposition bugs were found, but none were discovered in the FPU100
arithmetic core, or in Usselmann’s fcmp comparison module, either. Extensive
testing of the FPU on Actel FPGA target was done.

5.1.11 Results

Execution speedup is obviously going to be significant. The overhead required by
the software floating point calculation libraries is outlined in table 5.4. The exact
number of cycles varies depending on the memory subsystem to fetch the code and
process the data. But for a system with 4KB of instruction an data cache, with
16-byte (4 word) lines, the performance difference can be observed in table 5.4.

The synthesis results of the entire single precision FPU indicate that is quite
large. In the Actel ProASIC3 FPGA technology, the unit takes about 8400 combi-
natorial gates and 1500 flip-flops, which is about 25% of a “1.5 million-gate” Actel
A3PE1500 FPGA, and has a maximum frequency of 35MHz. On Xilinx’s Virtex5
FPGA technology, the number of LUTs required is about 3400 and 1200 flip-flops
and has a maximum frequency of about 100MHz, which is in line with the claims
of the FPU100 project’s developer. Although this is a very large module, it can
provide significant execution speedups for floating point arithmetic.
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5.2 Architectural Simulator
Similar to the OR1200, the OR1K architectural simulator, or1ksim, saw few if any
updates posted on OpenCores between 2005 and 2008.

Since 2008, however, or1ksim has been the recipient of a large amount of work
from a contributor using the OR1K platform to demonstrate the services of their
consultancy. Jeremy Bennett of Embecosm in the UK has lead the contributions
to or1ksim and implemented many new features, as well as giving the entire source
code a touch up. or1ksim is increasingly useful tool for early code development and
analysis for designs targeting the OpenRISC platform.

The significant portions of Embecosm’s work on the simulator (and other Open-
RISC related topics) are neatly and concisely presented in a series of application
notes available on the company’s website(59). Thanks largely to this work, or1ksim
has seen two point releases since 2008.

In all, or1ksim has probably seen the most work of any model from the collective
of contributors, and can now be seen as a very reliable model of OR1K. Outlined
below are the significant bug fixes and feature improvements made on or1ksim.

5.2.1 Testsuite
The testsuite code included with the project was the most extensive of any code
in the OpenRISC project, and shows the initial development of the simulator was
attempting to be thorough. The code was restructured so as to provide tests of
or1ksim itself, and tests of or1ksim as a library. Next, a test harness was added to
enable testing with DejaGNU. This system is highly automated and provides the
capability of quickly and easily performing regression testing, as well as making the
addition of new tests relatively simple.

Platform Support

Contributors have been maintaining the simulator so it can be built on non-Linux
POSIX-compliant systems, such as Mac OS X and Cygnus Windows. Not only
can the simulator be built and run on these platforms but there has been efforts
towards ensuring the regression testing suite using DejaGNU also functions correctly
on different platforms.

5.2.2 Debug Interface
As will be discussed in a later section, a GDB stub, supporting RSP, to provide
access to the debug interface was added. It provides GDB with a standard interface
to the system, and the implementation is very portable across the various OpenRISC
simulated models. As will be discussed later, essentially the same code that is in
or1ksim was used in the cycle accurate model, and attached to RTL simulators via
the Verilog procedural interface (VPI) to implement the same accessibility by GDB
to OR1K systems. The RSP server, in this case, talks directly to the emulated
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debug interface. As will be discussed later, in the models with less abstraction, the
JTAG lines are driven directly by the GDB stub and supporting interface modules.

5.2.3 Floating Point Emulation
As discussed in the previous section, emulation of the ORFPX32 and ORFPX64
instruction sets was enabled by the use of John Hauser’s SoftFloat floating point
emulation library. The issues surrounding providing accurate floating point system
emulation on any host system were presented in the previous section, but the use
of this emulation library gets around those issues, and while there may be a per-
formance penalty compared with executing floating point instructions natively, the
inherent portability of the solution between host platforms is a worthwhile benefit.

The TestFloat library was added to or1ksim’s testsuite to check all of the sup-
porting infrastructure around the FPU in the or1ksim model.

5.2.4 Instructions and Flags
As discovered during the development of a thorough verification suite for the Open-
RISC platform in (68), several instructions were not functioning correctly. As very
few of the assembly language tests in or1ksim’s testsuite were using these instruc-
tions, and the compiler did not emit them, these bugs were not picked up earlier.

The issues were with the l.divu instruction, as per bug 1770 on the OpenRISC
bugtracker, carry and overflow behavior for addition and division instructions, im-
plementation of the find first and last ’1’ instructions, the multiply and MAC in-
structions, alignment exception on jump instructions, and the rotate instructions
were all corrected and the appropriate tests have been added to the testsuite. For
further details on these bugs, see (68).

5.2.5 Peripherals
Several of or1ksim’s peripheral models have received updates and fixes. Most no-
tably, the Ethernet MAC model can now implement actual network connectivity
from within the simulator.

Ethernet

As virtualisation of whole machines on PCs has become more commonplace, so too
has the ability to implement virtual network interfaces to provide network accessi-
bility to VMs. A method of doing this was investigated and the OpenCores 10/100
Ethernet MAC peripheral model in or1ksim was updated to be able to use a virtual
network interface, and in doing so, can provide actual networking functionality to
software on or1ksim.

This was primarily developed to assist with the OpenRISC Linux kernel port
testing, as it’s desirable to provide network access to access via NFS to large stores
of files that cannot, practically, be embedded into a kernel boot image. It is a
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feature that is common, as mentioned, in large virtual machine suites, and is how
the QEMU simulator (discussed later), implements its network support.

The required network virtualisation feature is currently only supported under
GNU/Linux operating systems. Commonly referred to as TUN/TAP devices, they
provide software-emulated network interfaces operating at significantly lower levels
of abstraction than is available via the standard sockets networking API. A TAP
device supports OSI layer 2 information, such as Ethernet frames, to be processed
and passed to the interface, and a TUN device supports one level higher, layer
3, such as IP packets. TAPs are typically used for network bridging and virtual
interfaces, and TUNs are used for routing.

In the or1ksim Ethernet peripheral’s case, a TAP is what was required, as the
model is capable of generating Ethernet frames. The peripheral’s code was entirely
reorganised and had large sections reimplemented to provide TAP support. It had
previously only supported file I/O. It was a new and exciting challenge for those
involved as the result was a tangible and useful feature for the simulator. Several at-
tempts were made at implementing the model, with unexpected interrupt behaviors
being exhibited from time to time, but in the end the peripheral model proved well
done as it now implements solid networking support for the Linux kernel running
on or1ksim. This platform is being used by Embecosm to run multiple instantia-
tions of or1ksim and the Linux kernel port which is being used to perform userspace
software library regression test suites.

5.3 Toolchain

The OR1K port of the GNU toolchain, consisting of binutils, GCC, and GDB, was
included in the project from as early as the 2000. These ports, although opera-
tional to an extent, were far from perfect and implemented just the essentials for
a functioning C compiler. Despite the port being accepted into the mainline GNU
repositories early on, it has suffered from no continued maintenance for many years.

From 2006-08 contributor Rich D’Addio, who’s own site hosts a set of OpenRISC
toolchain related work(60), released work updating the port to support the more
recent releases of binutils, versions 2.16 and 2.18, and GCC versions 3.4.4 and 4.2.2.
This was the main source for the most updated release of the toolchain. This was
somewhat of a stop-gap as the OpenRISC project on OpenCores was in flux while
the new owners, ORSoC, took over and reorganised the OpenCores.org site.

Unfortunately no full time contributors for binutils or GCC stepped forward
after 2007, and again the development of the ports stagnated. As has been noted,
toolchain problems were one of the major detraction of the architecture, and the
lack of maintainers for an extended period did not help.

By twenty ten, commercial interest in the platform resulted in financial support
for a complete renewal of the toolchain. The GNU toolchain components were
improved and the port bought into line with the latest development versions of the
tools.
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The work done on the tool chain port has allowed the developers to gain a better
understanding of the architecture and how features are implemented in the various
tools. The issues which still remain in the tool chain hopefully have their days
numbered as better-skilled contributors are able to weed them out.

5.3.1 binutils

Improvements to the binutils suite, which was updated to version 2.20.1, include
the adoption of the RELA linking format, and various fixes improving consistency
with the architectural specification. The assembler and linker testsuites were also
made functional, and tests were added. However, there still remains some doubts
about the binutils port which will be discussed in later sections.

5.3.2 GCC

The following is a list of improvements made to the GCC port.

• Fixes providing compatibility with GCC version 4.5.2

• C++ language enabled

• C and C++ regression suites enabled and all GCC-port related errors fixed

• ABI updates according to architectural specification

• Various optimizations enabled

• Data alignment issues resolved

• Corrected assembly initialisation sequences

• Integration with OR1K newlib port

• Addition of flag to specify double or only single-precision floating point in-
structions

• Identification of issue with floating point to integer conversion

5.3.3 GDB

Work on the GDB port was related to the implementation of a wrapper for or1ksim
to be used as a simulation target, and porting gdbserver for OR1K Linux to allow
debugging of Linux userspace programs over a network connection.
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5.4 Software

The software available for the OR1K platform had been limited to a subset of
the standard embedded operating systems, libraries, and statically linked applica-
tions. The initial OR1K development effort included ports of the embedded system-
targeted C libraries newlib and uClibc, and operating systems eCos, RTEMS, as well
as a Linux kernel port. Each of these was left in varying states of functionality in
2005.

Development since the original team’s hand over to ORSoC was minimal, with
maintenance performed only when the software stopped compiling. No significant
amounts of development were undertaken and released publicly until 2009.

Contributor Rich D’Addio distributed patches keeping the uClibc port func-
tional, and an initial port of the newlib library, by Jacob Bower of Imperial College,
London, was significantly re-worked and bought up to date by Jeremy Bennett of
Embecosm. Work on the toolchain progressed somewhat under contributions by
the core community of developers. It was not until the significant reworking of the
toolchain that uClibc and the the Linux kernel port were greatly improved.

The work on the OpenRISC ports of uClibc and Linux kernel has enabled greater
functionality of the operating system. This has provided access to many of Linux’s
desirable features, such as its networking and file system capabilities. These features
have been tested heavily by recent work, too. The OR1K kernel port’s development
is now keeping up to date with the mainline kernel development tree.

5.4.1 newlib

The OpenRISC port of newlib now implements a more complete support layer for
the library. Significant work was made to ensure the port was thoroughly docu-
mented, ensuring it should be simple to customise for further implementation. Any
programs requiring compilation and execution in the GNU tool regression test suites
use newlib as their C library, and the underlying “board” support components of
libgloss.

libgloss

Libgloss is a part of newlib, and implements the lowest level board and architecture-
specific parts of the C library. This includes C runtime initialisation code, and
system call implementations, that are usually not only architecture specific, but
board-specific, too. Work towards implementing a simple API for the basic OR1K
architectural features, such as timers and cache control, has begun and is likely to be
implemented very soon. Work on implementing board support that is configurable
at compile time is also largely finished and awaiting review by the contributors.
This enables an easy way to pass parameters to configure the otherwise generic
sections of libgloss at compile time, or, put simply, allows many different boards to
be supported and selected at compile times.
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At present, the libgloss system calls provide no operating system support, and
are largely unimplemented, however the goal of the newlib and libgloss libraries is
to provide for software to run on the bare-metal, that is without any underlying
operating system layer. The idea behind a compiler providing bare metal support
is that it allows users in the process of developing OpenRISC systems to quickly
compile simple programs ad have them run on the board. By providing access to
a basic C library and UART I/O, which can help test the basics of the system
through hello-world type applications and other custom diagnostics C programs the
developer can quickly determine if it is functioning as expected. It is anticipated all
boards builds included in ORPSoC will have their boards also supported in libgloss,
which provides a quick and easy way for users of the board ports to compile and
run code on the system to check things are operational.

5.4.2 uClibc

The uClibc library is used to implement Linux operating system compatibility for
applications. The architecture port sections implement the glue layer between ap-
plications and operating system. The major improvements have been reducing the
complexity of the port by adopting as many generic features as possible, synchronis-
ing with interface changes in the kernel, and the addition of support for threading
with linuxthreads. The most recent changes have seen the system call interface
improved to become far more efficient.

5.4.3 Linux Kernel

Significant work has gone into bringing the kernel port back to life after approxi-
mately four years of inactivity of the port. It has had almost all architecture-specific
sections either wholly, or largely, reimplemented. The dated nature of the port, as
it was, meant large swathes of it, which are now implemented in architecture in-
dependent code, could be cleared away. Support for new kernel features such as
device trees for configuration, and dynamic ticks have been added. The simpler lin-
uxthreads threading support has been implemented. The architecture-specific signal
handling and debugging mechanisms in the port have also been updated. As men-
tioned previously in the uClibc work, the system call interface has been re-written
and is now more efficient.

5.5 Testing

Testing of each implementation, toolchain component and library has received im-
provements, particularly the GNU tools. The newly enabled GNU GCC regression
test suite is considered a significant development in terms of the amount of testing
the OR1K port, and implementations, now receive.
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5.5.1 RTL Model

The current OR1200 is a rather monolithic implementation, making RTL model
block-level testing difficult. A block-level approach to testing was never taken by
the original designers, and has not yet been implemented. The primary testbench
is the ORPSoC reference implementation, a minimal system-on-chip consisting of
the OR1200, bus system, memory and debug interface. The OR1200 is tested
by running the system from reset with different programs in the main memory. A
monitor module checks the processor and bus state, halting upon detection of errors.
The test suite then consists of the different individual software programs, written
in a mixture of C and assembly language. Each software test program exercises a
particular feature of the processor, and finishes with reporting a value indicating
whether the test was successful.

The OR1200 software tests included in ORPSoC have been improved to increase
the coverage of the processor’s features that are tested. Specific tests for the newly
upgraded MAC, multiply, divide and floating point units have been added, and tests
tests for the data cache, MMU and exception handling have been improved.

The testing done by Waqas Ahmed, presented in his Master’s dissertation(68)
discovered some instruction errors with the implementation. The developed test-
bench, which took a grey-box verification approach, and provided constrained ran-
dom stimuli, implemented a System Verilog wrapper for the OR1200, and paired
the OR1200 with the golden model, or1ksim, to compare internal registers, among
other things, after each executed instruction. The top level, tying it all together,
has been done according to the Open Verification Methodology, OVM, and should
be portable among compatible simulation environments. This approach discovered
irregular behavior of some instructions and status flags. The testbench is now avail-
able with the OpenRISC project on OpenCores.org. This testing did not, however,
go on to check the exception behavior, and that the execution flow is according to
specification. However it is a valuable piece of work and the project, as a whole,
has benefited from it.

GCC Regression Suite with Verilator-built Model

The newly enabled GNU GCC regression test suite also provides a large new set
of software tests to execute against the RTL model. However, running these many
thousands of tests on the RTL model in the open source Verilog simulator, Icarus
Verilog, proves to be a rather time intensive method of testing.

The simulation rate of the open source Verilog HDL event-driven simulator,
Icarus Verilog, is far from that of the commerical implementations. One method of
increasing simulation rate of the RTL model is to use the Verilator tool to generate
a cycle-accurate model of the RTL instead. This involves running the OR1200
Verilog HDL code through the Verilator tool, which generates a cycle-accurate C++
model, capable of running simulated systems in the hundreds of kilohertz range, as
opposed to the sub-ten kilohertz range simulation experienced with Icarus Verilog.
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This dramatically reduces simulation time, at the expense of sub-clock cycle timing
accuracy. This has enabled the capability to run testbenches orders of magnitude
greater, like the GCC regression suite, within a reasonable time frame.

This method of testing the OR1200 is a high level approach, essentially testing
every possible combination of instructions the compiler is likely to generate. For
the intended use of the OR1200, as a programmed core in a SoC, this is suitable as
it is exercising the core in its most likely use case. If the ORPSoC test suite and
GCC regression test suite programs all execute correctly on the RTL model then
it is a good indication that the model is correct and likely to function as desired
in other implementations. The lack of a formal verification suite for the OR1200
RTL description will be explored in the critique section. However for the primary
intended uses of the OR1200 - as a processor in a SoC system - this method of
testing verifies functionality in that capacity.

In one run of the GNU GCC testsuite for the C compiler of approximately 53,000
tests, it completed in five hours and twenty minutes, having simulated just under
five billion cycles. Compared with the architectural simulator, in terms of speed,
this turned out to be less than triple the amount of time for the same testsuite,
mainly due to the fact that execution time is only about fifteen percent of the
whole time, with compilation and linking and test harness overhead accounting for
the rest of the time(70). This test suite did report some errors on the cycle-accurate
model that were not present on the architectural simulator, and these reasons are
still being investigated.

5.5.2 Architectural Simulator

The architectural simulator, or1ksim, had a testsuite of C and assembly code de-
veloped to test the processor model, and the various peripherals, while it was being
implemented. The recent work on the simulator testing included adding scripts to
allow use of the DejaGNU testing system to run the regression testing, addressing
any test failures, and adding new tests as new features were added to or1ksim.

The GNU GCC regression testing suite was initially run against this simulator,
and it is used as the golden reference model for execution behavior by the RTL
implementation. With this in mind it is important to ensure the correct behavior of
the simulator’s modeling of an OR1K-compliant processor. For this, a set of tests
written in assembly ensure the processor behaves according to specification. This
regression test suite is continually expanding as bugs or missing features are fixed
and implemented, respectively.

At present or1ksim’s testsuite consists of 2174 tests of basic OR1K operation
and peripheral features, and 262 tests of or1ksim as a library and its interface.

5.5.3 Toolchain

The standard regression tests for each tool have been enabled to run against the
OR1K toolchain by recent work. This exposed many problems with the toolchain
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and enabled them to be fixed. As previously mentioned, this test suite is run against
both or1ksim (the golden reference) and the the RTL model.

Binutils

The binutils test suite, combined, contains 337 test, of which all but 16 linker tests
pass or are not applicable to the OpenRISC port. The missing sections of the OR1K
binutils port will be discussed in the future work section.

GCC C

The GCC C code compiler test consists of 53768 tests, 52869 of which pass, and the
remaining 809 are not applicable to the OpenRISC platform or fail due to causes
external to the OR1K port.

GCC C++

The GCC C++ code compiler tests consist of 21111 tests, 20721 of which pass,
and the remaining 390 are not applicable to the OpenRISC platform or fail due to
causes external to the OR1K port, or optional functionality not being supported.

Failures

The only true failures of the C and C++ compilers are related to the linker not
supporting the garbage collection mechanism (the option --gc-sections) and thus
are not really a failing of the compilers at all, rather the linker. This indicates the
status of the OR1K GCC port is that of an industry grade compiler. This is a great
advancement in the quality of the compiler.

GDB

The GDB test suite consists of 11934 tests, 11758 of which perform as expected, 42
of which fail due to a recent switch in debugging format used by GCC, 19 untested
testcases, and 115 unsupported tests. This indicates the debugger, too, is in a quite
robust state.

5.5.4 Software Libraries

The newlib regression suite is quite small and consists of just 24 tests, 23 of which
pass and one of which fails. However all of the above tests were compiled using the
newlib library so each program could execute on the “bare metal” of the simulated
models, indicating the newlib library provides the basics well.

At the time of writing the infrastructure required to run the uClibc library’s
test suite was in the state of being assembled.
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5.6 Accessibility
This section discusses the work that has helped make the OpenRISC platform more
accessible and easier to use. It will outline the standard debug interface now present
on every model, and the way ORPSoC provides an easy-to-use system for imple-
menting OpenRISC-based systems.

5.6.1 Debug Interfaces
A standard GDB stub with RSP interface was developed by contributor Jeremy
Bennett and included in all of the OR1k implementations as a way to provide a
standardised interface to each of the systems.

GDB and RSP

GDB, or the GNU Debugger, is a widely used software debug tool developed as
part of the GNU Project. It provides the capability to investigate and control
an executing program, the hardware it runs on and almost any other part of the
system that is memory mapped. It has access to memory and in this way can be
used to load programs onto a target, or the system it connects to, to debug. When
running natively, connecting involves the operating system giving GDB control of
the software process that is being debugged. In embedded debugging, connecting
usually means connecting via some channel to issue commands such as read and
write to system registers and memory.

The protocol used when connecting over network sockets is the remote serial
protocol. It is a simple packet-based protocol consisting of ASCII character control
words and raw data payloads. Almost all of GDB’s functionality can be extended
over RSP to control remote targets such as FPGA boards or simulators. Imple-
menting a system to provide GDB access and control is relatively straight forward
and requires just the parsing of commands and data from incoming network sockets
packets.

An RSP server provides GDB with the ability to connect via network sockets
and should support the necessary subset of RSP commands to give GDB control of
the target system. In the OR1K’s case, most of the capability of GDB is limited to
memory accesses, CPU register access, software breakpoints, single stepping and a
stall or unstall command.

Figure 5.2 shows the various targets and their mechanisms for connecting to the
OpenRISC systems. The common element between them is the RSP server, which
is largely the same code between or1ksim, the cycle accurate model, the Verilog
simulator VPI functions, and the USB debug proxy,or_debug_proxy.

JTAG

In all targets except for or1ksim, the system’s primary interface is via JTAG. The
debug interface module within the design is on the JTAG scan chain side the device.
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Figure 5.2. Debugging targets available via GDB and RSP over network sockets

Once the TAP has selected this module, it can be controlled via the use of a simple
protocol, which is the basis of all communication with the target. In all cases the
RSP server has no idea of how to actually perform transactions on its target, and
simply calls a simple function, or transmits a simple message to the handler for
each specific target target. In the case of or1ksim, the RSP server code actually has
direct access to the control and status structs of the processor, but in the case of the
Verilog and SystemC models, commands must be translated into JTAG transactions
with the debug interface module.

In the case of the cycle accurate model, a SystemC JTAG module is passed
basic JTAG operations to performed by this interface function between it and the
RSP server. The JTAG lines into the device are emulated and driven appropriately
to implement the transactions. A similar system is in place in the Verilog model,
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which uses Verilog’s system calls, or special simulator-implemented functions ac-
cessed via function names with dollar-signs preceding their name, such as $time
and $display. In this case, the RSP interface functions are accessed via functions
added to the simulator at runtime via the Verilog Procedural Interface, or VPI. This
allows custom system calls to be implemented, and thus custom C code to be run
within the simulator. In this case, the JTAG emulation module in the testbench
polls a link with the RSP server, which is running concurrently in a separate pro-
cess. It performs any request transactions and returns data as required via another
system call. In all, the interface is similar to the cycle accurate model’s SystemC
JTAG driver module, except this one is written in Verilog.

Interfacing to a physical target is done using a standard FTDIChip to perform
JTAG transactions on lines connected to the appropriate ports of an FPGA or
ASIC. The FTDI device is driven from a program implementing an RSP server and
appropriate debug interface protocol functions and driver functions.

Debug Interface

The debug interface unit in use in most OpenRISC platforms at present, although
not all, is the original module written by Igor Mohor. This device, sits on the
JTAG scan chain and receives and performs instructions, returning any data over
JTAG as required. Figure 5.3 indicates how a write command on the JTAG TDI
is performed. An initial low bit is followed by a command woord, in this case
GO. Previous command words would have configured the type, length and address
of access in a similar fashion. The result of the GO command is that it performs
the previously configured transaction and returns data if performing a read with,
or just, a status response message. In the case of a write, the data is shifted in
here, and once the data_len bytes have been written, the debug interface will shift
out a 4-bit status indicate if any issues with the writes occurred, such as a bus
error, overrun or underrun. Both ends of the transaction are validated with a 32-bit
checksum value.

Both transactions to the system bus and processor go through this debug inter-
face module. The debug interface is a master on the Wishbone bus, and thus has
access to all peripherals and memory that is mapped on the data bus.

Targets

Each simulation model, and physical target incorporating the appropriate debug
interface, can be connected to GDB to have software downloaded and executed.
This standardised interface is the only way to connect to, and debug, a physical
target such as an FPGA or ASIC, and can help recreate issues seen on target in
simulation, by allowing the exact same stimulus regardless of the model.
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Figure 5.3. Debugging interface write command over JTAG (71)

5.6.2 ORPSoC

The OpenRISC Reference Platform System-on-Chip is used as the primary test-
bench of the OR1200, and as a project providing implementations of OpenRISC-
based SoC designs.

It was initially an implementation targeted at a single board, but now contains
several synthesizable, push-button builds and a reference implementation intended
for processor core development. The project also contains software tests for various
peripherals and can serve as a useful peripheral testbench, but this is not one of its
primary purposes.

ORPSoC has been re-implemented over the past two years. It serves as the
reference implementation of the OR1200. It is largely a suite aimed at development
of OpenRISC-based SoCs, with a project structure allowing a full development flow
including backend processing to generate FPGA configuration files or ASIC mask
sets.

Command line control

ORPSoC’s scripts make use of common GNU tools used for development, such
as bash and make. The use of command line interfaces for launching simulations
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and synthesis makes the project simpler to automate which, arguably, increases the
productivity of the user once they are familiar with the system. It is often the case
that GUIs consume more time than command line interfaces, and provide less-than-
direct means of customisations. From a development point of view, GUIs, relying
on graphical libraries, are never as portable or widely compatible as command line
driven systems and incur greater development and maintenance overhead. ORPSoC
does not aim to provide attractive graphical menus, but instead a fully functional,
quick and powerful system of scripts.

There is widespread use of environment variables in the scripts, to help configure
things quickly and easily at compile time. It’s possible to configure things such as
specific FPGA device, synthesis directives, and which modules to synthesize, from
the command line. This level of configurability, from such a high level of abstraction,
is rarely found in GUI-based tools. Having said that, it requires the user be aware of
the capabilities of the system and perhaps, due to the lack of detailed documentation
about these features at this time, explore Makefiles to determine what options are
available. However, in most part, there has been an effort to document all of
the available options. Not only are there many useful features available from the
command line, all of the scripts, generally Makefiles, are are readily modified to
provide any custom function as required.

Manual

The original ORPSoC project had very little, if any, documentation. The new
project has attempted to document as much as possible in terms of the user interface,
but little exists regarding the internal technical workings of ORPSoC. However
documentation is considered important in ORPSoC, not just in the code, but in
a central source, which is provided and uses the portable and open GNU Texinfo
documentation system.

At present this manual is a forty page guide to simulating and building the
various designs included in ORPSoC. It can be found in the OpenRISC project
repository’s ORPSoC path.

Structure

The layout of the project is based around the reference design, that is the RTL,
testbench, and software and scripts available from the root path of the project. On
top of this are various OpenRISC SoCs targeting specific boards. The board builds
are sorted by targeted FPGA technology, and then by board name. This layout
aims to facilitate the development of both the processor and tests for it, as well as
encourage as much design re-use as possible and make porting for different boards
as easy as possible.

It has been suggested that the easier a platform is to access, that is, to get
“hands on” with, the higher the likely-hood it will be used. As ORPSoC functions
as both the official test bench for RTL of OpenRISC processors and a project for
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pre-built board packages, there is bound to be duplication, but the layout of the
project aims to minimise this, while maximising ease of access to the platform.

RTL

The root RTL paths contain all of the modules required for the reference design,
and some commonly used peripherals not present in the reference design, such as an
Ethernet MAC, an I2C core, SPI controllers, the debug interface, USB cores, and,
of course, the OR1200. These are modules most commonly used in systems.

Each board may not necessarily need the exact same configuration of the OR1200
or the Ethernet MAC, for instance. So they each have their own RTL subdirectories,
and must provide the Verilog files which are ‘included by any instantiated modules
allowing a board-specific configuration of each module if desired. In this way the
core RTL may remain in a common place, reducing duplication.

A board port may, however, choose to have a copy of an entire core, or its entire
design, within its own RTL path, if configuring it via an include file is not sufficient
to allow it to function on the board. However, there is an emphasis on technology
independent, easily configurable cores to be included in the common, top level RTL
path. This has many benefits, primarily being that if bugs are fixed in the core,
they are they immediately picked up by all of the designs using the core, and don’t
have to be propagated through each version throughout the project.

Core Components

As with any processor-based SoC, there is a set of standard modules required to
implement the basic system. It is not mandatory, but each board port so far has
utilised a set of modules which are customised to suit the board’s needs. These
common components are the bus arbiters and clock and reset generation module.

In each system there are typically 3 Wishbone bus arbiters, and a clock gener-
ation module to support the basic processor system consisting of the CPU core, its
debugging attachments, and a ROM for boot.

Figure 5.4 shows what could be considered the bare-bones of an ORPSoC build.
Shown in the top left is the clkgen module, which usually must be customised
to generate the necessary clocks and resets using the particular FPGA target’s
technology. The three arbiters are in the center of the diagram, and indicate the
connections made between the processor and the memory subsystem. The instruc-
tion bus typically has a simple arbiter that either accesses the bootrom module, or
the main memory. There are two data bus arbiters, one for data widths of up to 32-
bits that is capable of performing Wishbone burst accesses, and one for peripherals
with byte-wide data buses.

This organisation of the modules is common between the ORPSoC builds, and
should hopefully provide an example that is simple and easy enough to modify and
customise to suit a different board. In this way, too, top level files should require
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Figure 5.4. ORPSoC block-level basics

minimal work to apply to another board, with the majority of the work being in
the addition of the board-specific peripherals.

Simulation

There is an emphasis on providing a simulation environment for each system that
can make use of the common set of software tests and drivers. This encourages de-
signers to ensure their system is demonstrably functional, and allows other users an
easy way of checking functionality for themselves. With a relatively thorough test-
bench and stimulus available, it’s easier to ensure any modifications to the system
have not caused a feature to malfunction by checking all of the tests still pass.

Verilator

The scripts included with ORPSoC now provide the capability of generating a cycle-
accurate model from the Verilog HDL RTL description. This feature makes use of
the Verilator tool to generate a cycle-accurate C++ model, which is then compiled
with a SystemC wrapper and peripheral models to create a simulator executable.
The cycle-accurate modeling method reduces the resolution of the simulation to
the system clock’s edges resulting in greatly increased performance. The generated
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models simulate at clock rates in the range of hundreds of kilohertz on modern
desktop machines. This enables high-speed simulation of RTL models, and reduce
the amount of time required to test large suites of software tests such as those in
the GNU GCC regression tests.

Gatelevel with RTL

Some of the board builds’ simulation scripts are capable of simulating against the
gatelevel netlist of the entire design, or just individual models. Checking the func-
tion of the design in its post-synthesis form helps ensure the design’s description is
correct for synthesis, and can help pinpoint any issues arising between RTL simu-
lation and testing on target.

Although whole-system gatelevel simulations are often tricky to run in that they
are difficult to initialise correctly and to stop X values propagating from uninitialised
blocks, the ability to synthesise and run individual modules’ gatelevel netlists in
simulation, instead of their RTL description, helps pinpoint any problems arising
from synthesis. When problems are encountered in the design on target, and if the
entire design’s gatelevel netlist is not running properly in simulation, checking the
suspect module in its post-synthesis form, while the remainder of the design is still
the RTL description, can be very useful.

Testbench

Each board port has their own testbench top level with applicable peripheral models
instantiated. It is a relatively straight forward configuration. Additional useful
modules developed recently have been the UART support modules, VPI JTAG
debug interface stimulus module allowing access from GDB, and ability to have
environment variables, passed at compile time, to control various features of the
simulation, such as logging, VCD creation, and use of gatelevel netlists of individual
modules, or the entire design, if they exist.

The OR1200 processor monitor, implemented in Verilog and used during RTL
simulation, has also been updated to provide better logging, ensure cache coherency
and correct MMU behavior, and a new experimental feature, ensuring execution of
every instruction has the desired effect on the system, has been added. Stimulus
modules and protocol checkers for other simple protocols, including Ethernet, have
also been added.

Software

A set of software is included with ORPSoC that implements a small support C
library, basic drivers and module tests. This is, again, done in such a way that
permits board builds to implement their own version of drivers and tests that will
override any versions available in the root software library.

Each board has configuration C header file, which specifies parameters such
as addresses of peripherals and clock frequency. These are used by the drivers
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and the tests at compile time. There is also a system of converting ORPSoC’s
main Verilog HDL ‘include file, orpsoc-defines.v, and the OR1200’s defines
file or1200-defines.v, into C-compatible include files. In this way, sections of
test software can check if certain features of the OR1200, or whole peripherals, are
enabled in the design and thus enable tests for them.

Alternate OR1K Cores

Although the RTL implementations don’t yet exist, ORPSoC has the facility for
running software appropriate for a different OR1K-compatible CPU core. It can
provide support for a CPU-specific set of start-up and utility functions to assist dur-
ing a different OpenRISC processor’s development and testing. As the OR1200 has
received the criticisms of being resource-heavy when compared with it’s technology
specific counterparts, perhaps alternate implementations for an OR1K processor
with less features, say a small, MMU-less, compact variant specifically for RTOSes.
This facility of ORPSoC, to allow the quick switching of processor software drivers,
could be used to facilitate alternate OR1K core development.

Tests

The software tests for the OpenRISC processor included in ORPSoC have been
expanded to test each new feature added during this work, and the existing tests
have been reviewed and updated. The original ORPSoC library contained about
3,500 lines of test code for the processor. This code has been updated and new tests
added, and now the library consists of 8,500 lines of code to test the processor. These
tests are intended to confirm correct behavior of the architectural features as they
are controlled by the programming interface. This library is still not exhaustive,
and does not test every possible permutation of instruction and control sequence.
However they do ensure proper functionality for a known set of corner cases, and
reasonable set of use cases.



Chapter 6

Critical Analysis of OpenRISC

This chapter will critically examine the OpenRISC project, and OR1K architecture.
The following chapter will contain suggested ways of addressing the issues identified
in this section.

The first aspect discussed here will be the architecture definition, followed by
the two main implementations, or1ksim and the OR1200. The quality and level of
testing of these implementations will be discussed. Following this the issues with
the toolchain and software will be identified. Last, the open source community
development model, and how it has been applied to the OpenRISC project, will be
explored.

6.1 Architecture

The OpenRISC 1000 architecture is closely related to the DLX architecture, which
is similar to the first MIPS (MIPS-I) architecture. No significant changes were made
during specification, resulting in an architecture that is very much from the era of
RISC processors in the late 1980s. As such, OR1K shares the same issues as those
RISC CPU architectures of that era.

Code Density

From an embedded application developer’s perspective, the code density of 32-bit
RISC architectures is about as bad as it gets. Code density relates to the amount of
memory taken up by the instructions required to perform a certain function. This
varies between instruction sets, and is typically better (less instructions per func-
tion) on CISC machines than RISC. This was remedied by later RISC architecture
developments by including 16-bit instructions for the most common instructions.
Vendors such as ARM and MIPS developed such instruction set variants. OR1K
has none of these features, and thus is limited to 32-bit instructions.

77
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Synchronisation Primitives

The provision of features allowing safe inter-process communication is another lack-
ing feature of OR1K. Although MIPS had introduced such a mechanism with its
load-linked and store-conditional instructions, OR1K did not adopt a similar fea-
ture. Although there is an indication the early designers did have some consider-
ation of multi-processor implementation, such as the cache system, the instruction
set lacks the basic atomic operations required for safe inter-process communication.

Power Management

As power budgets have become increasingly constrained, microprocessor architec-
tures have added features to allow more fine-grain control of operating frequency
and core voltage. Providing a software interface for these features allows the abil-
ity to have operating systems schedulers make decisions about what to run, and
with what power footprint. The OpenRISC, despite having most of these features
already, lacks an extensible interface, and actual implementation of such features.
The capabilities are mainly suited only to ASIC technologies and it is not clear how
an FPGA implementation might employ these features.

A trend seen in nominally RISC architectures, over time, has been the inclusion
of non-RISC-like instructions that will otherwise improve the architecture. Exam-
ples of these are the AVR32 architecture which consists of duplicates of instructions,
containing either a reduced number of operands or immediate length, load/store in-
structions with pointer arithmetic included (post- or pre-increment by constant or
immediate) and additional addressing modes. The ARM instruction set has the
feature of making every instruction’s execution conditional, and contains the ability
to perform shifts and rotates on any register manipulation instruction.

Floating Point

The OR1K floating point and vector instructions utilise the same register file for
its operands and results. An increasingly common approach is to provide a register
file specifically for each calculation unit, where the register-to-register instructions
operate only on an arithmetic unit-specific register file, and specific load and store
instructions for those register files are also provided. The advantages are primarily
to do with implementation, as a single computation unit’s resources can be more
easily shared among multiple processors, saving area and reducing complexity within
the CPU. It can also potentially allow for data widths in these computation units
to be wider than the general purpose register file, say 64 or 80-bits for a floating
point register file, compared to thirty-two for the integer register file.

With regard to the floating point instructions, the lack of specification regarding
the rounding mode of floating point to integer conversion instructions has lead to
a sub-optimal compiler implementation. There is also no instruction for converting
between floating point precisions in hardware.
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Arithmetic Flags

Despite the instructions for integer addition being nominally signed, both overflow
and carry flags are set. This raises problems with detecting overflow in systems that
chose to trap on overflow, as additions intended to be unsigned must use the signed
addition instruction, and if they overflow into the sign bit, will cause an unnecessary
overflow exception.

Another curiosity is that the integer divide instruction somehow sets the overflow
bit, but divide by zero sets the carry bit. This is strange in that an integer divide
can probably never cause an overflow, except in one corner case of signed divide
of the largest negative value being divide by negative one, which would cause the
value to be reduced to the largest possible signed integer, which in absolute terms
is one less than the largest negative signed value. But this case aside, there is the
problem that a divide by zero cannot generate an exception if desired, as it only is
supposed to set the carry flag, and not the overflow flag.

Specification Document

The architecture specification document contains a few points of confusion, mainly
regarding what is considered a class I and class II instruction. For example, even
though the integer multiply instructions were listed as class I in the specification, in
the OR1200 and in the GCC port they are optionally enabled. All instruction which
set the flag containing immediates are non-mandatory, but it is inconceivable that
these instructions be omitted from the compiler implementation. There is also no
way to tell, from an SPR or similar, which class II instructions are present or not,
meaning complex methods of testing and catching illegal instructions at runtime
must be performed if it is to be determined.

The software application binary interface defined in the OR1K architecture spec-
ification was left unfinished. It lacked definitions for multi-threading and dynamic
library loading functionality.

6.2 Implementations

This section will look at issues relating to the current implementations of the Open-
RISC 1000 architecture; or1ksim and the OR1200. The reference platform project,
ORPSoC, will also be evaluated.

6.2.1 or1ksim

The OpenRISC 1000 architectural simulator, or1ksim, project has been crucial to
the OpenRISC platform as it has provided a fast model to allow early software
evaluation, and provides a fast model to run large software regression suites on.
The implementation, however, is far from neat and organised, and despite efforts
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by contributors in the last couple of years, some issues with the simulator still
remain.

The source code, as left by the original developers, had many half-implemented
features. These include a dynamic execution model, 16-bit OpenRISC instruction
set experimentation platform, debug interface, interactive prompt, and support for
other architectures (a DLX CPU model remains.) The progress of the development
of these features was never recorded.

The model cannot provide accurate estimates of the number of executed cycles as
there is no accurate pipeline or bus model. Although each peripheral, memory and
CPU unit (caches/MMUs) can have a cycle count for each transaction configured at
runtime, the simulator is let down by the inability to correctly model the pipeline of
the OR1200, or any other potential implementation, resulting in inaccurate overall
cycle counts.

The built-in debug interface, or interactive console, provided by the simulator
is largely ineffective and provides no useful access to the simulator’s internals at
runtime. If this were more fully featured then performing simple debugging directly
on the simulator would be a great deal easier.

6.2.2 OR1200

This section will give an overview of the issues relating to the OR1200 implemen-
tation and testing.

Implementation

The main OR1K RTL implementation at present is the OR1200. Its design is based
on a description of a microprocessor contained in the Hennessy and Patterson book
Computer Organization and Design. This design is rather monolithic in that its
integer pipeline unit is essentially a single, non-partitioned module. Although not
unusual for a single-issue RISC, this makes attempts to replace or modify sections
of the pipeline description difficult. Attempts to add an additional stage to the
pipeline, in an effort to increase the OR1200’s operating frequency, have so far
been unsuccessful due to the heavily interconnected nature of the design. The
main issues have been the lack of documentation regarding the behavior of internal
signals. Attempts to change the behavior in one module, maybe resulting in delaying
a chosen signal by a cycle, will break dependencies on that signal, or a derivative
of it, in other modules. As there is no documentation on the RTL design of the
pipeline, or what signals need to be where and when, any alterations to the pipeline
logic ultimately cause the CPU to exhibit subtle bugs. Despite this, modifications
to the processor’s pipeline description have been made successfully during recent
development, although the pipeline has not received an optional additional stage
to break the critical path, typically in the fetch and decode stage between caches
and MMUs. Outside of the core CPU the modularity of the design is reasonable,
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and allows for the optional inclusion of memory management units, caches, memory
access buffers and bus controllers.

The debug unit, too, is entirely optional and is easily optioned off at synthe-
sis time. However, the debug unit remains in a state of partial implementation.
Hardware watchpoints and breakpoints are not fully functional, and thus not fully
integrated with the OR1K debug system as provided by GDB. The primary method
of implementing breakpoints is via the use of the trap instruction, with the desired
breakpoint address’ instruction replaced with a l.trap opcode. This is a reasonable
method of controlling the program flow while debugging, but has the limitations of
not being able to insert breakpoints to read-only code (when, say, executing from
flash memory) and cannot be used to implement data-related watchpoints. For
these features, hardware watchpoints are required.

Other OR1200 modules which have not been utilised by the various implementa-
tions during recent development are the power management, performance counters,
quickmem and the store buffer. Although the OR1200 does have these modules in
varying states of functionality, they remain largely untested by the main develop-
ment team.

Several bottlenecks to performance for certain applications have been identified.
One being the context switch overhead experienced during exception handling for
operating systems, and the other with floating point arithmetic.

As the CPU is seeing increasing use running complex multi-tasking operating
systems, the OR1K’s shadow register file and fast context switch feature might
provide worthwhile performance improvements as it would eliminate context switch
overhead. Even, perhaps if just two or four shadow register files (out of a possible
sixteen) were implemented, this would improve performance in an operating system
such as Linux or any RTOS.

Testing

One issue, that there has never been a satisfactory solution to since the beginning
the project, is the testing of the core. The original idea of the reference platform
implementation, ORPSoC, was to provide a testbench for the processor. A more
comprehensive approach to testing is required, and the re-write of the ORPSoC test
suite has attempted to go some way to achieving this. However, as was identified
earlier, the degree of testing of the OR1200 still is not at a satisfactory level for
ASIC developers, although with a lack of proved open source verification tools, this
may not be a reality any time soon.

The existing tests, and Verilog HDL testbench for the OR1200, do go some way
to ensuring every feature of the processor is tested in some way. Examples of this
are the assembly source code tests, exercising every OR1K instruction supported by
the OR1200, and more complex tests written in C to exercise the MMU, cache and
exception systems. The Verilog HDL processor monitor, used during event-driven
simulations, can check cache coherency, and log each instruction for comparison with
execution in or1ksim, which is considered to be the golden reference. In addition
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to this, the recent work to enable the cycle accurate model (compiled from the
OR1200 RTL description) to be used by DejaGNU when running the GCC regression
test suite for the OR1K compiler port goes a long way in demonstrating that the
processor behaves correctly for a large set of C code compiled by the GCC port.

The support modules used to test the RTL model generally cannot be used to
test a synthesised netlist of the design. At present there has been no work done
enabling the conversion of a technology-dependent Verilog HDL netlist into a cycle
accurate model with the Verilator tool. Nor can the RTL test monitor modules be
used on these post-synthesis netlists to confirm the functionality of the design.

The degree to which the processor and its auxiliary modules are tested, at both
RTL and gatelevel, needs to be improved. A discussion of ways to move toward
a better solution for the OR1K platform in general will be presented in the next
chapter.

6.2.3 ORPSoC

The OpenRISC reference platform SoC (ORPSoC) improvements have increased
the amount of testing the processor is subject to, and improved access to the plat-
form by providing several push-button synthesis builds for various FPGA vendor
parts and platforms. ORPSoC, however, is still not as simple to use as some FPGA
vendors’ proprietary SoC configuration tools. It lacks detailed documentation of
the internals of the components making up the example systems, and cores either
support Wishbone classic or B3 bursting, with none supporting the latest Wish-
bone B4 pipelined burst architecture. Although several board build examples are
provided with the project, none are fully featured in that they provide support for
all board’s peripherals.

There currently exists no example ASIC flows, for use in industry or academia, to
help rapidly characterize the core’s area, speed and power use during development.

No automated system configuration tool exists and this would help in the cre-
ation of new board ports. Despite the author’s aversion to graphical user interfaces
(GUIs) it would perhaps make it easier for relative beginners to configure and build
OpenRISC-based systems.

The use of the Subversion revision control system by OpenCores.org makes it
cumbersome for users to manage and develop their own additions to ORPSoC. It
has been recommended that a distributed revision control system, such as provided
by git, would make this easier for contributors to develop their additions, and allow
the maintainers to check and merge their work with the mainline project.

On the testing front, the reference design lacks a way to automatically run the
GNU GCC regression test suite against the cycle accurate model generated from
the OR1200 RTL code.
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6.3 Toolchain

The toolchain, consisting of the GNU binutils, GCC and GDB ports implementing
support for the OR1K architecture, have received a great deal of improvement
during the last 12 months. At the time of writing, the C++ compiler using the
uClibc library was the last of the core toolchain and software libraries to be receiving
work to ensure it passed its entire regression test suite. The GDB port still required
some work to ensure its compatibility with recent GCC port improvements. All
GNU tool ports have been updated to the latest versions as of early 2011.

One major feature noticeably lacking from the OR1K toolchain is support for
dynamic library compilation and loading.

The upstream GNU binutils repository contains files that implement support for
OpenRISC 1000, however these files were first committed in the early stages of the
project, and have not continued to be maintained by the contributor. The toolchain
port implementation being used by the development community on OpenCores is
entirely separate from the versions existing upstream. For many reasons it would
be advantageous to have the OR1K toolchain port upstream in the GNU binutils,
GCC and GDB repositories. This would maximise exposure of the architecture,
and with a newly reinvigorated port, would hopefully be easier to keep up to date
with the developments at the head of the repository.

The availability and ease of use of the toolchain has always been a problematic
area for the OpenRISC project. In an effort to make the tools easier to obtain,
a toolchain release program was initiated by the contributors to the project on
OpenCores. However, the releases of the toolchain have been continually delayed
as the small development team worked through the various methods of distribution
and installation on the user machine.

A convenient feature of almost all GNU/Linux operating systems has been their
package management systems, used to ease the distribution and installation of soft-
ware. Examples of these are the Debian Aptitude system, or the Red Hat Yellow
dog Update (Yum) system. OpenRISC project contributors have been working on
getting the toolchain distributed via these channels, too, but due to the intricate
nature of a cross compiling toolchain supporting two C libraries, and the limited
time of those contributing to the project, despite best efforts this work has not yet
been completed. The use of these channels to distribute the toolchain would provide
the toolchain greater exposure, and hopefully, increased uptake.

The testing of the toolchain has been the greatest area of improvement recently,
and has helped prove the GCC port is mature and shown that the simulators behave
correctly. However there is still no mechanism in the DejaGNU testing suite allowing
tests that require execution, to run on physical targets. This would allow rapid
validation of all generated code on real systems and help provide a more complete
testing platform. This would also allow designers to be confident their processor
implementation on the hardware functions as expected.
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6.4 Software

This software section will focus on three main areas; libraries, operating systems
and applications.

6.4.1 Libraries

The two main C libraries which have received work recently are the newlib and
uClibc C libraries. The newlib library is being used to provide the capability of
compiling simple C programs to run on the “bare metal”, or without an operating
system, and the uClibc library is providing the capability to compile code to run
on the Linux operating system.

There is no port for the GNU C library, or glibc, planned or expected to be
needed for the OpenRISC platform any time soon. As OpenRISC implementations
are largely targeted at embedded uses, the small but effective nature of uClibc and
newlib are the right choice of libraries to port.

What is lacking is low-level functionality in the newlib library’s board support
packages, implemented in libgloss. At present the only target “board” for bare metal
applications is the or1ksim simulator. Although additional board support packages
are in the works, a minimal library and API allowing access to the architecture’s
basic features should be implemented to extend the capability of these bare-metal
programs.

However any additional functionality should be implemented at the operating
system level, and as will be discussed next, additional RTOS ports for OpenRISC
should be a goal, as these are ultimately more appropriate for the kind of perfor-
mance and implementation options the platform provides. The newlib library can
provide support for the RTEMS RTOS, of which there is already an OpenRISC port
of in the project’s OpenCores repository. Without the newlib operating system in-
terface to RTEMS, however, or a guide on how to customise and build a targeted
compiler with RTEMS support, this capability will go unused.

6.4.2 Operating Systems

At present the only well-tested operating system ported for OpenRISC available
from the public project repositories is the Linux kernel. The OR1200 implementa-
tion can be used to run this port. However as this implementation largely targets
FPGAs for the time being, it makes sense for more embedded-oriented operating
systems to be ported for use on the platform.

The Linux kernel typically requires at least 16MB of main memory to run,
takes up at least a megabyte or two itself, but has almost endless capabilities in
terms of the features it can implement. Many of these features, however, will not
be necessary for an embedded system, and those that are are desirable are largely
supported by other, more light-weight operating systems. Examples of such features
useful for embedded platforms are networking, file system support and the ability
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to interface to various hardware devices (via drivers and an abstraction layer.)
There are a plethora of operating systems with reduced memory demands than the
Linux kernel in terms of compiled kernel size and memory footprint, and that may
provide equivalent functionality for a certain task. Examples of operating systems
that would be suitable to port to OpenRISC will be discussed in the final section.

Some examples of these alternate operating systems for embedded use already
exist in the OpenRISC repository. Ports of eCos and RTEMS are available, however
they only support one board each, were ported several years ago, and appear to not
have had extensive testing.

6.4.3 Applications

The OpenRISC platform has almost no software application packages in its public
repository. It’s likely that the reason for this has been the lack of a thorough
operating system implementation on which to develop applications.

The standout bare-metal application developed for the project is the ORPmon
monitor and bootloader program which assists with board bring-up by providing
diagnostic and benchmark capabilities, and can load other programs from flash or
over network using the TFTP protocol.

The recent improvements to the Linux kernel provide a better platform for
application development, however the obstacle remaining in the way of being able
to implement the vast amount of software available for GNU/Linux platforms is
the lack of support for shared objects in the linker and loader. Until this feature
of the toolchain is implemented, applications must be linked statically, drastically
increasing the size of executables, and rendering a lot of the applications unbuildable
due to their reliance upon shared objects.

6.5 Open Source
The open sourcing of the IP developed for the OpenRISC project, and others on
OpenCores, has been both a hindrance and a help, in that it lays bare the develop-
ment status, but is helpful in that it allows anyone to participate in the continued
development of cores. This section will discuss the pros and cons of the open source
approach.

6.5.1 Unverified and Unpopular

Despite the widespread use and acceptance of software that is developed under open
source licenses, open source RTL projects have not received the same sort of interest
or involvement from larger IP companies. The following points address the question
of why this is the case.

One issue is that for people developing IP destined for implementation in ASIC,
the lack of a formal verification suite in most of the open source IP, and thus inabil-
ity to quickly verify a core’s functionality, is unacceptable given the extreme cost of
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fixing bugs. One might suggest the mandated inclusion of a thorough verification
testbench with a core, however the industry standard verification tools are expen-
sive, proprietary, and can vary from vendor to vendor. It is somewhat surprising no
industry-standard open source verification tools exist yet, but this poses a barrier
to entry into the serious IP developer market as the cost of a suite of EDA tools
capable of performing verification is significant. The lack of open source variants
of verification tools will continue to limit the applications of these cores to lower-
risk implementations, such as in FPGA where RTL changes can usually be made
cheaply.

6.5.2 Who Has The Hardware?

Another barrier to entry for open source hardware development, not faced by those
participating in software development, is the requirement of a specialist prototyping
platform on which to implement designs. These platforms, typically FPGA-based
boards containing multiple peripheral ICs, need to be purchased, as well as de-
bugging and programming hardware. Add this to the usually cumbersome FPGA
vendor programming tools, and the relatively steep learning curve hardware devel-
opment imposes on beginners, and it’s not too surprising that technically minded
individuals wishing to contribute to an open source project would choose a software
project over a hardware project almost always. It is also true that the utility of any
hardware design that could be implemented on FPGA is limited by the fact that it
is done at a very low level of abstraction, and to achieve any “useful” outcome for
a tinkerer or hobbyist, it usually requires a lot of work throughout many levels of
abstraction to achieve something that is easily usable from an interface on a mod-
ern PC. An example might be the development of a core to perform non-standard
I/O transactions with a sensor or other boutique IC, to provide information to
a program assisting with home automation, or controlling a scale model and the
like. This would require the development and testing of the hardware model and
implementation in FPGA. Assuming there was a microprocessor running on that
FPGA providing network services via an RTOS, this new custom module would
then require its software layer developed, which means a driver, and satisfying var-
ious OS-level hooks into the application running on the FPGA’s microprocessor, to
provide the data over the network link. Only then would this sensor’s data then
be available to the higher-level application. This is just one example where, quite
probably the designer might have chosen a solution that uses a standard bus, how-
ever there’s often cases for custom controller or interface cores in FPGAs to provide
access to legacy, or very-new or esoteric bus standards, and highlights the extra
work required beyond writing RTL to provide the physical interface. Considering
the amount of development and testing required to typically implement these solu-
tions, it would be easy to become overwhelmed by the amount of work required to
complete such a seemingly trivial task.

Compare this work with that involved in beginning work on an open source
software project, which would usually consist of downloading a development source
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tree and building (within minutes) the project with development tools already in-
cluded, or easily obtained, on the operating system. The application can then be
run on the host system to check functionality, and the development cycle largely
ends there. The differences are the inherent access to the development platform (the
host machine), the simpler development tools (gcc, make on the host system) and
the shorter and easier development and testing cycle (running on the host machine
via a shell.)

As more open source hardware projects are developed, and more streamlined
systems of development are put in place, it can be expected that these barriers to
entry will become diminished. The early days of open source software development
would have seemed equally challenging and labor intensive. Over time, however,
improvements in the way projects are organised, and the tools used to develop them,
have occurred. The body of available open source software has grown and continues
to do so at an increasing rate. It can be expected that with time and increased
participation, open source hardware will achieve similar success.

6.5.3 Licenses
One issue that remains to be resolved is that of licensing for open source hardware
designs. The OpenRISC project uses the GNU project’s public licenses. These
specifically relate to software, and it’s not known how well these apply to hardware.
The GNU project’s website contains a frequently-asked-questions (FAQ) section
that addresses this query. It states the following.

Any material that can be copyrighted can be licensed under the GPL.
GPLv3 can also be used to license materials covered by other copyright-
like laws, such as semiconductor masks. So, as an example, you can
release a drawing of a hardware design under the GPL. However, if
someone used that information to create physical hardware, they would
have no license obligations when distributing or selling that device: it
falls outside the scope of copyright and thus the GPL itself.

This is not so clear about designs targeted for FPGA, or even RTL code, as it
may end up as a set of masks, or it may end up as a binary bitstream for FPGA
configuration.

One indication of how nascent the open source hardware development idea is
comes from the relatively recent (February 2011) publication of a set of principles
for open source hardware community participants. The following is the Open Source
Hardware (OSHW) Statement of Principles 1.0 from FreedomDefined.org.

Open source hardware is hardware whose design is made publicly avail-
able so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design. The hardware’s source, the de-
sign from which it is made, is available in the preferred format for making
modifications to it. Ideally, open source hardware uses readily-available
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components and materials, standard processes, open infrastructure, un-
restricted content, and open-source design tools to maximize the ability
of individuals to make and use hardware.(65)

These guidelines are provided as a benchmark against which the licenses of de-
signs using the “open source hardware” label should be measured. What follows
the principles on FreedomDefined.org is a list of guidelines dealing with the spe-
cific topics of source and documentation, derived works, and the limitations of the
licenses. It is expected, according to these principles, that all source and documen-
tation material for the design be made available. Any derived or modified works
should be permissible. There is also the acknowledgment that any Open Hardware
license can probably be used to restrict (or, in this case, intentionally un-restrict)
the plans of a design, but not the use of the manufactured device. These are all
concepts found often in open source software licenses, but again, it is not so clear
in every use case of open source hardware designs how these licenses for software
would apply.

What remains, however, is for actual licenses to be written, applied to works
and their validity tested. For now, the first major open source hardware license to
be released is the Tuscon Amateur Packet Radio Open Hardware License (TAPR
OHL.) The TAPR OHL authors identified the problem with existing software li-
censes as being that while copyright protects documentation from unauthorized
copying, modification, and distribution, it has little to do with your right to make,
distribute, or use a product based on that documentation(66). Their license iden-
tifies patents as an issue, but claims those who benefit from the OHL cannot then
bring a lawsuit claiming that the design then infringes their patents or other IP.
How open source hardware licenses and patent law will be compatible with regards
to handling infringement is yet to be seen. Regardless, the TAPR OHL has been
adopted by a handful of hobbyist and commercial interests. It has received criti-
cism from the Open Source Institute (OSI) for adopting a different meaning of the
word “distribution” than is typically used in their licenses, and thus does not have
widespread support among established open source promoters(67). However, it is
likely alternate open source hardware licenses will emerge to suit most needs.

For the OpenRISC project there is a balance to strike between adopting a li-
cense that is either too liberal, and thus less likely to result in contribution back to
the development community, and a license that encourages more open source de-
velopment but is then deemed too restrictive with regard to the use of open source
IP with proprietary IP. On the one hand, there is a desire to increase the par-
ticipation in open source hardware development in general, and in the OpenRISC
project specifically, and to increase the body of available work, which a viral license
along the lines of the GNU GPL (where synthesis is considered equivalent to static
linking) can achieve. On the other hand the use of the work in largely-proprietary
designs by ASIC houses is desirable as it helps prove the IP’s worth, and so a li-
cense permitting the use of open source IP along side proprietary IP is desirable.
For the OpenRISC’s RTL implementation, the OR1200, the non-viral GNU Lesser
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(L)GPL license has been used and, although the instantiation of an RTL IP block
in a “hardware” design is not dealt with specifically in the (L)GPL, it is the latter
(more liberal) licensing approach that has been taken for the OpenRISC project
thus far.

However, perhaps this factor has, too, contributed to the relatively low level
of community participation thus far in the OpenRISC project. Comparatively,
the early stages of the open source software movement saw a lot of code released
under the GPL, which ensured all other code used with it came under a similarly
“restrictive”, viral license, and ensured a large body of code was released into the
public domain. However, not all open source software was released under these viral
licenses, with the BSD and MIT licenses being less restrictive with enforcing the
freedom of the user.

6.5.4 OpenRISC

As stated already in the discussion on open source technology, it is typically not the
case that open source development models are adopted for cutting edge, innovative
work. The bulk of open source projects aim to implement relatively well known
solutions in a way that permits openness and removes restrictions found in other
proprietary implementations. This is the certainly the case for the OpenRISC
project. It is largely taking ideas that are already well known and commoditized
and creating a version with more freedom for the end user. There was very little, if
anything, innovative in the OR1K architectural specification. This does not mean
the results are valueless. Nor does it necessarily preclude any future OpenRISC
architectures or implementations from aiming to innovate.

Making this clear helps answer questions regarding the motivations for most
open source development, and that of microprocessor architectures, at least, in the
early twenty first century. The resulting work can either be a source of pleasure, or
a source of income made by developing and supporting such designs - maybe, even,
both.

The motivations for pursuing open source development might be largely subjec-
tive. Despite varying motivations, though, the goals of these open source projects
are usually aligned. Perhaps one might want to see the ceasing of the continued
reinvention of the technological wheel. For the most ambitious projects, they might
aim to supplant the proprietary alternative. Either way, the goal is to provide
something useful, productive, and open.

For example, consider the success enjoyed by the Linux kernel project, with
thousands of contributors and dozens of commerical enterprises regularly partici-
pating in development. The Linux kernel is clearly competing with the proprietary
variants of UNIX and Microsoft’s server products, and more recently, Microsoft and
Apple’s desktop PC operating systems, and in all cases is experiencing tremendous
success.

For a project like OpenRISC, a goal may be widespread use among vendors who
currently use processors by the industry leader, ARM, for their microprocessor-
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based systems. For the reasons already outlined concerning the verification of open
source IP and the risks involved, this kind of uptake is unlikely to happen in its cur-
rent state, however that is not to say it never could. At the time of the OpenRISC’s
inception, observers indicated that open source IP could become a major player
in the industry, if done right(43). It could be the case that for designs which are
largely re-implementations of well-known technology, the fundamentals of which are
25-years old, open source development is a realistic approach. It could potentially
lead to lower-cost ASICs, and thus lower-cost consumer electronics, as royalties
would be eliminated, and teams of engineers tasked with implementing in-house
controllers or microprocessors, rather than working to implement and support a
a largely superfluous design, could either be tasked with honing specific parts of
the open source processor to achieve greater efficiency for their application, or be
retasked entirely to design more innovative IP.

It is very probably the case, though, that it is a scenario of “build it and they
will come”. It’s unlikely a concerted effort among proprietary IP developers would
spontaneously occur. Even if it were to appear from the likes of universities and
government funded research houses, the likely-hood of developing microprocessor
designs attracting the attention of ASIC houses, then spurring on collaborative de-
velopment, is low. Factors already discussed, such as difficulty of verifying such
designs and high barriers to entry due to cost and expertise are there, but so too
restrictions on the kind of information required to hone ASIC implementations -
technology library specifics from the fabrication plants themselves, which are closely
guarded secrets and unlikely to be released for open source projects to prepare de-
signs for. There is probably a distinction to draw here, too, between ASICs de-
riving their competitive advantage from their microprocessor or from other custom
IP. Potentially those relying on a less-cutting edge processor might be happy to
help contribute to an open source development project for a microprocessor, as-
sisting by contributing engineering hours to verification and perhaps even adding
features, in order to avoid royalty payments which could lower their per-unit cost.
Developers targeting FPGA implementation, where barriers to entry are lower and
implementation technology specifics non-confidential, might be a good fit for such
a collaborative development approach.

6.5.5 Summary
The nascent state of the open source hardware community, and thus the small
amount of IP that is currently open source, on top of the relatively few number of
contributors, means that at present what is being achieved by open source hardware
projects pales in comparison to the achievements of the proprietary IP industry
and, as well, to the achievements of the open source software community. This can
give the impression of a largely ineffectual community if one is not aware of the
constraining factors.



Chapter 7

Future Directions

This chapter will further discuss and suggest solutions to the issues identified during
the analysis of the OpenRISC project. More straight-forward issues, such as not-
yet-implemented features, will be briefly discussed, and more interesting issues will
be discussed in greater detail. This section will serve as both a checklist of tasks
to be completed on the OpenRISC project, and discussion of solutions to broader
issues.

7.1 RTL Testing

This section will discuss the lack of verification of the OR1200 core itself and look
at the broader issue of verification of open source IP in general.

7.1.1 OR1200

A formal verification suite of the OR1200 should be developed. Work to this end has
been implemented (68) and has been submitted to the project’s public repository.
However, this is yet to be made usable by any open source tool and, ideally, should
these tools become available, this testing suite should be evaluated, and perhaps
updated to test both instruction and exception behavior.

A big issue for those wishing to work with, and modify, the OR1200 is the lack
of an internal reference specification detailing how each sub-block functions and
what assumptions this function is based on. Creating some basic documentation of
these blocks which could be used to create testbenches for each (approximately ten
modules within the CPU itself) should probably occur. With this, newcomers to
the processor may find they can get up to speed with the design quicker, and may
find themselves able to make contributions quicker.

It is unlikely a block-level testbench of the or1200_cpu module will ever be
developed. However the testing performed by the GNUGCC regression suite against
the RTL model can give a good indication that at least a large amount of compiler-
generated machine code will execute correctly on the processor. These tests, in
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conjunction with the tests of exception handling and additional architecture modules
in ORPSoC should help indicate the processor’s functionality.

An issue of being able to check the functionality of a gatelevel netlist still re-
mains. However overall the current testing provides a relatively good set for checking
for regressions during development and provides fairly solid assurances about the
execution of compiler-generated code.

7.1.2 Open Source IP Verification

The issue of the lack of verification of open source IP is something that is holding
back open source IP from becoming more widely accepted within the semiconductor
industry. It is not clear how this will be solved, either. It is clear that some method
of verification of the cores should become standard and supported by freely available
tools. However, while the EDA tool vendors have forged on with their respective
verification techniques and tools, very little has occurred in the open source EDA
arena to pursue equally well-implemented verification solutions. Open source IP
developers, currently, would need to purchase licenses for proprietary verification
tools to provide the ability to run a verification on their core to the end user. This
is prohibitive to most who might wish to develop a core.

Verification and testing is typically considered less interesting work than the ac-
tual IP core design implementation. It is usually the case that designers will spend
less time on testing than development if targeting FPGA, where testing can be
performed relatively quickly. This results in an approach where the core is made to
work in one application and then published with incomplete or inaccurate documen-
tation, and no thorough testbench. This unwillingness to implement comprehensive
testbenches or verification suites is something that will make any IP unattractive,
proprietary or not. It is often more time consuming for a designer who downloads a
free IP core to understand how the core works without thorough documentation and
testing than it is for them to implement it from scratch. This is especially true when
bugs in a larger system are tracked back to a poorly-tested and poorly-documented
IP. If a thorough testbench and set of documentation has not been written the core
may as well not exist. This is a major issue that must be understood and addressed
by the community raising the standards of open source IP core development.

What would help is an effort towards an open source set of tools to provide
the ability to thoroughly test IP. The Verilator tool, capable of generating cycle-
accurate C models from Verilog HDL, helps in that it opens up the possibility of
writing testing suites in either C++ or SystemC.

Ultimately industry-grade verification tools will bee needed, which is probably
just a fully-featured open source System Verilog simulator. This could be used to
run verification suites based on the new Universal Verification Methodology libraries
which aims to standardize the verification methods and programming interfaces.
Communities such as OpenCores could look at making a big push toward increas-
ing the standard of verification of cores by adopting UVM as their recommended
verification platform. However the lack of simulators capable of running the test-
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benches is currently holding back any concerted effort at ensuring open source IP
is tested to levels nearing industry standard.

7.2 OR1200 Implementation
This section will look at the OR1200 implementation and discuss the issues con-
cerning it.

7.2.1 Features
As previously mentioned, the core CPU implementation is largely monolithic in
that it is barely modular and is heavily interconnected. This design does not make
it easy to have its constituent components modified or interchanged. There is no
time effective way to alter this and will most likely remain the way it is.

Debug Unit

The debug unit appears to be not entirely complete, and discussions with early
designers indicate that the debug capabilities of the OR1200 were very much im-
plemented very late in the project. This may indicate why things such as hardware
breakpoints and watchpoints don’t appear to be fully functioning. The GDB im-
plementation left by the original OpenRISC developers never made use of hardware
breakpoints or watchpoints, and the lack of implementation in the OR1200 may be
an indication why.

Bus Interfaces

The release of the Wishbone Bus specification revision B4 in 2010 saw the addition of
the ability to stall accesses and pipelining of accesses. The OR1200’s line burst cache
accesses would be helped by adding support for B4 on the OR1200’s Wishbone bus
bridges (interfaces.) At the time of writing very little IP on OpenCores supported
the B4 revision pipelining feature, however if the OR1200 supported it, it would
assist bus and peripheral designers as they would have a master to help test with.

There have been requests for to add support for additional bus standards, such
as ARM’s AMBA. This could easily be done and is a good example of a small
project that could increase the versatility of the processor.

QMEM

Micro-architecture features such as the store buffer and quick-memory (QMEM)
systems have not been fully tested, nor have their performance gains been measured.
To increase determinism of the processor’s exception handling ability, handler code
might be placed in a ROM accessible via QMEM, and would ensure the code is
available in a similar manner to being permanently cached. These features need to
be checked to see that they are working and in the case of QMEM, must have their
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mechanism for accessing a ROM implemented in a versatile way. The comments in
the QMEM top level source file header indicate that optimisation is still required
to reduce the store latency from two clock cycles to one.

Multiple Way Caches

For designs that may be able to make use of large amounts of on-chip memory,
having multi-way caches implemented in OR1200 would enable it take advantage
of the larger amounts. Currently the largest amount of cache the OR1200 can be
configured for is 32KB. This is a line-length of 8 words, and 1024 lines. Instruction
and data cache can be up to 32-way, therefore providing a maximum of 1MB of
total cache for each instruction and data memory.

Multi-way MMUs could potentially provide a worth-while performance benefit
to the performance of the Linux kernel port on OpenRISC. It has been observed
that the MMU TLB cache miss rate is high on a busy system. At present there are
just 64 cached TLB entries in the OR1200, but this could be increased to 128 per
way, and 4 ways for a total of 512 TLB entries, or 8 times more than at present.
One would expect the TLB miss rate to be reduced by even adding just two-ways.

One outstanding issue to do with the invalidation of multi-way caches is how
the invalidation is controlled. For the instruction and data caches it’s not clear
how the invalidate register (ICBIR/DCBIR) should work. The uncertainty lies in
whether only a specific way should be invalidated (determined by match of line tag
with address written to the D/ICBIR) or should all ways be invalidated? Similarly
for the MMU invalidate register. However, in the MMU’s case, with direct access
to each match register (containing a valid bit) it could be easy enough to simply
detect which of the ways has the desired entry to invalidate directly via their SPR
interface. However, issues such as this must be resolved before any implementation
can occur as it is unclear how software would initialize the system. There are no
instances of multi-way implementations or driver code.

Co-processor interface

One additional feature that could be of use to those designing coprocessors for the
OR1200 is the implementation of an interface to attach coprocessors. This interface
would probably need to provide access to the register file, and stall the processor
for multi-cycle instruction sequences. The four OR1K custom instructions could be
used to control the coprocessor, or the immediate value of the NOP instruction.

FPU

Although the CPU now has a single-precision floating point unit, floating point
arithmetic in C code may rely heavily upon the software libraries to perform oper-
ations for double, or greater, precision calculations when used. Double precision is
often used for floating point operations as the GNU GCC compiler has a tendency
to “upgrade” the precision in use from single to double. Although this compiler
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behavior can be controlled to some extent, a lot of software uses the double type
explicitly for any floating point operations, and these instances cannot, and should
not, be reduced to single precision. The benefit of having the floating point unit
is then largely lost as software routines are used to perform the double precision
floating point arithmetic. The compiler, however, places 64-bit values in adjacent
registers, and testing has shown that this could be the basis for implementing a
64-bit datapath unit such as a vector processing unit or double precision floating
point support. All that would be needed is 2 cycles to get the operands out, and
two cycles to write back the result.

The single precision FPU, as it is now, is quite resource intensive. There is likely
to be duplication of sections due to the piecemeal approach of implementation. For
example, the pre- and post-normalisation stages in FPU 100 appears to be repeating
a similar operation for each arithmetic block. Perhaps the synthesis tool is already
aware of this and optimising it, however the module is very large, and it is likely
this normalisation logic is being repeated.

The serial multiplier and divider within the FPU are very similar to the integer
multiplier and divider that is already in the CPU design. Perhaps these could be
implemented more efficiently to save area.

7.2.2 Synthesis

The issues relating to synthesis of the processor are largely to do with performance,
and specifically, the critical path that usually emerges when caching and MMUs are
enabled.

When the OR1200 is synthesized targeting Xilinx Virtex 5 technology the critical
path for the data emerges from the data cache tag RAM, through the cache’s address
hit logic, through the data TLB miss signal, and then into the CPU to trigger a
DTLB-miss exception, which ultimately controls the enables on the register file’s
RAM, which is where the path ends. The path is 16ns long, and therefore constrains
the design to a maximum frequency of 62.5Mhz. Having the data cache hit/miss
logic unregistered is adding 5ns of logic propagation delay and 1ns of routing delay
onto a 16ns path. Without this, this path would have potentially an extra cycle of
latency but could be clocked at 100MHz. Another approach could be to allow the
data address to arrive earlier, potentially increasing a non-critical path elsewhere
and allowing the shortening of this one.

The critical path in the instruction fetch and decode stage is similar (just over
16ns) and originates from the instruction cache’s tag RAM, goes to the cache hit
logic, back to the or1200_genpc module which then appears to be combinatorially
calculating the next address, which is put out through the IMMU, and a TLB hit
comparison, the result of which triggers an exception in the case of a miss, and
flows through various pipeline control logic until its endpoint as an enable signal
on the register file RAM. The solution to this is less obvious, as the path could be
registered at several places. More investigation, into what is actually causing this
path to result from synthesis, is required to adequately solve this problem.
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7.2.3 Documentation

There is no internal documentation about the how the OR1200 operates. Despite
the design being very similar to the Hennessy and Patterson DLX machine, its other
interfaces and assumptions about signal timing, are not explicitly set out.

The OR1200 specification has received some work, however it still requires a
better description of the debug system.

7.3 Test Software

At present, both or1ksim and ORPSoC have their own, separate suites of test soft-
ware. Ideally a unified repository of all OR1K test software should be created, and
should be accessible by all OR1K designs in a way that allows them to automat-
ically test the software against their designs. The or1ksim testsuite does this in
the most optimal way using the DejaGNU test framework, and ORPSoC less so
using its custom testing scripts. A unified, DejaGNU-capable OR1K test software
library would be ideal if it could be run against every model with ease. At present,
OR1K test software development occurs in both or1ksim and ORPSoC as features
are added or fixed. The task of bringing that newly implemented test software to
another project seems like unnecessary duplication, and as more implementations
are created, increasing fragmentation of a great set of test software will occur.

The major work in this amalgamation of libraries will be standardising the
runtime code they rely on, such as initialisation routines and exception or interrupt
handlers. Both have their own custom implementation, and although some work
towards standardising them occured, the lions share remains to be done.

7.3.1 Using libgloss

Part of the solution may be in recent work on the OpenRISC portions of the libgloss
library which has implemented a method of very simply changing the targeted board
of software at compile. Using the -mboard= option, an appropriate set of parameters
is linked into executable at compile time, and ensures the start-up routines are
correctly customised for the board.

In this way, a library of test software could be be compiled with one target in
mind, say or1ksim, and recompiled with just the target redefined to be capable of
running correctly on the ORPSoC reference design.

As each existing test software library was written for their specific targets, they
contain certain assumptions that may not be correct about another model. An
example is ORPSoC’s OR1K tick timer test, which assumes a certain behavior of
the pipeline, and relies on a specific value of the timer after a certain instruction
flow. This exact same value is not the same under or1ksim, which makes no effort
to model the pipeline at all, and thus this section of the test is not appropriate for
all targets. A question of whether to allow defines, based on the targeted board, or
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whether such a test should be removed and replaced by something more portable.
Sorting out the tests, and facing situations such as this, will be an arduous task.

A unified test library, however, will benefit every current model by increasing
the available test cases, increase the usefulness of test writing in the future, and be
of great use to the development of any future OR1K processors, or OR1K-based
systems.

7.4 Platform Access
Given the learning curve faced when dealing with a microprocessor architecture at
the register transfer description level, it is normally desirable to use it first at a
higher level, or deal with it as a system-level block. This allows the processor to
be implemented, and allows first use via higher-level control of it through software
programming in languages such as C.. Once users are more familiar with it at
a higher level they then feel more comfortable when delving down into the inner
workings. This makes providing easy access to the platform important to increase
the number of users, and therefore, the number of potential participants in the open
source development.

The motivation for developing or1ksim and ORPSoC has been along these lines.
They both provide relatively easy access to the platform; or1ksim by allowing users
to instantly simulate software with a rich set of peripherals, and ORPSoC by pro-
viding push-button synthesis builds which, when combined with the ORPmon boot-
loader, provide easy access to the platform in a very tangible form.

Through continued development of ORPSoC’s board support builds, and im-
proving or1ksim’s ease of use and set of peripherals, the platform can become easier
to use by lowering barriers to entry of lack of access to developing on, and using,
the OpenRISC platform.

7.4.1 or1ksim
or1ksim’s existing set of peripherals may not match the needs of those who wish
to prototype an OpenRISC-based system. It would be largely trivial to implement
new peripherals, however a better tutorial or documentation demonstrating how
to implement new peripherals could be created to better explain this process. At
present very little official documentation or examples exist.

The interactive prompt of or1ksim lacks a way of enabling or disabling peripher-
als, and has no simple “run” command that will run until completion or breakpoint.
Although, perhaps the interactive prompt is superfluous when or1ksim can have
GDB attached to it via RSP.

or1ksim has been left in a state by previous developers which sees many part-
implemented features left in the code. There was obviously an effort to increase the
execution rate of the model by using dynamic execution, or dynamic binary transla-
tion where the OR1K instructions are translated more directly than an interpreter
would model them at runtime. There is also models of the DLX CPU and an exper-
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imental 16-bit OR1K CPU. This, and other dormant code, are now of questionable
value, and the project could do with a cleanup. For reasons explored later in the
discussion on QEMU, the execution speedup work may be proved unnecessary.

7.4.2 ORPSoC

Increased Automation

This section will discuss the motivations for increasing the automation and ease of
use of ORPSoC.

It is common for FPGA vendors to provide graphical FPGA-targeted system
configuration tools. These are provided by Xilinx and Altera for their Microblaze
and Nios II platforms, respectively, and appear to lower the level of understanding
required before launching into custom system generation. Currently in ORPSoC
most of the work of implementing a new system would require a non-trivial amount
of hand-coding and connecting the modules seen in figure 5.4, such as the clock
and reset generation module, the top level modules and bus arbiter, and for newly
added peripherals, any I/O and glue-logic required.

For more experienced RTL designers, this work would be simple and the ORP-
SoC project encourages people to develop ports for their board based on existing
examples and to then submit them for others to make use of. This library of boards
should provide push-button implementations that greatly improve the access to the
OpenRISC platform.

However, it’s a realistic goal to think of implementing a largely automated board
porting system, which would create the bare-bones RTL of a board support package,
with customisable bus arbiter and peripheral system, where existing peripherals can
be chosen to be included, and stubs for any user-specified peripherals created and
left for the designer to populate with their board-specific modules.

Further to this idea of automating the generation of systems is the idea of
implementing a standardised way of configuring such SoC designs. A configuration
build system, similar to that used by the Linux kernel, which generates listing of
features to be included in the kernel at compile time, could be used for a board’s SoC
configuration. A generated configuration file, included at simulation and synthesis
time to control which modules, and with what configuration, are used. This could be
done via generating a list of compatible Verilog HDL ‘define and parameter values
for inclusion at synthesis time. This would require common infrastructure, such as
buses and clock management, are suitably parameterisable, and that each conforms
to the agreed standard of configuration. A configuration tool might also need a
method of determining the options available in a design for a user to configure.
Lastly would be a method of generating, or selecting, which constraints files for
timing and pin-placement based on the configuration of the design. Most backend
tools are unforgiving with the specification of constraints. A method of passing
selected portions of pre-written backend scripts might be the best option, and is is
already done this way in some ORPSoC boards already. Despite the adoption of
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TCL, and some common constraints formats such as SDC among EDA tool vendors
as a way of automating commands, each vendor still largely has their own custom
way of specifying constraints to the backend flow, and a one-size-fits-all solution for
this part of a project is bound to be tricky to implement.

At a hardware level, a useful feature would be to define a configuration informa-
tion standard that all of the board ports are compliant with. This would probably
involve specifying a location of some registers that can be read to indicate which
cores are in the system, where, and if cannot be determined from the core itself,
what their capabilities were configured to at synthesis time. This would help with
any automated system assisting with custom board build creation. Standards such
as this do exist already, however most are subject to proprietary licenses and require
membership and fees to be able to use. The development of an open standard in
this regard, if done correctly, might make the job of supporting legacy designs, and
software drivers, much easier.

The script system of ORPSoC needs to be improved to reduce duplication. With
relatively few board builds, it is simple to propagate new simulation script features
to the remainder of the files. Instead, a central set of Makefile fragments should be
employed to increase the reuse of common rules.

Boards in libgloss

Work has commenced to provide support for board ports in the OpenRISC GNU
toolchain port’s newlib libgloss library. Once a board port is created in ORPSoC, a
single file and configuration option can be added to the libgloss library allowing users
to compile bare-bones applications for their board by simply passing an option such
as -mboard=myboardport during compilation with GCC. This would ensure the
board’s bring-up code for the bare-metal application is appropriately configured for
that board and would provide quicker and easier programming access to the board.

7.4.3 QEMU

Although or1ksim is quite fast (up to several MHz on a recent desktop PC) and
its peripheral library has a lot of OpenCores staple modules, there is a popular
and high performance simulator, capable of supporting multiple architectures, that
could have OpenRISC support added. This simulator project is named QEMU and
achieves very high speeds of execution of the simulated architecture as it dynamically
translates blocks of simulated-architecture instructions to, ultimately, the host’s in-
structions. The speed increases due to this would make, arguably, a multi-gigahertz
desktop PC “run” OpenRISC software faster than any existing hardware.

The simulator can do full system simulations, and has an extensive set of periph-
erals, with networking capability via the network interfaces, already implemented.

There is also the ability to add support for running OpenRISC Linux userspace
programs, known as “User mode emulation”. It takes the userspace program’s in-
structions and executes them in the manner described above, and provides the
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kernel services via an endianness translation and a 32/64-bit conversion layer that
ultimately lets the host machine’s kernel act as the kernel layer.

Implementation would require a maintainer to first implement the system level
port, and then the user space mode port. It should be relatively straight forward
with the only issue being handling the highly-specific aspects of the architecture
such as CPU peripheral modules (caches, MMUs, etc.) and exception behavior.

QEMU has great prospects to help OpenRISC development. The GNU toolchain
regression suite could be run in less time both for bare-metal testing or Linux
userspace level. It could also help evaluate the performance of OpenRISC hardware
implementations that do not yet exist. An OpenRISC port in the upstream would
also increase visibility of, interest in and hopefully use of, the platform.

7.4.4 Moving Upstream
The use of the term “upstream” in software development is related to the develop-
ment community and repositories used by the authors of a project. These upstream
repositories are typically the main source from which people obtain their copy of the
project source code. The idea of submitting work upstream, or moving upstream, is
to make your work on the project available from the primary source - the upstream
servers.

In the case of the OpenRISC GNU toolchain ports, this would mean submitting
ports for the binutils, GCC and GDB suites. The other ports to be submitted would
be the newlib and uClibc ports. Last, but not least, would be the Linux kernel port
for the OpenRISC architecture.

This is much easier said than done. The upstream development community must
first check over the submitted architecture, and in each case it is a big deal to be
adding support for a new architecture. Many things must be considered by those
upstream, and every part of the code is reviewed. Large submissions such as a new
architecture port for GCC and the Linux kernel typically require several submission
attempts and also there must be a nominated maintainer.

The advantages of being upstream would be tremendous for the OpenRISC
project. From the beginning of the project, toolchain issues have plagued the Open-
RISC project, and many consider an architecture, if there isn’t a reliable toolchain,
to be a non-starter when considering it for use. Have the GNU projects upstream
would increase the visibility and be a sign that the port has achieved the level of
quality that is required to be accepted upstream. This would also increase the visi-
bility of the project, and hopefully, the use of the OpenRISC platform. This would
be one of the largest missing pieces in place of the truly open source and free to use
microprocessor architecture project.

7.5 Toolchain
In large part, the OpenRISC 1000 GNU toolchain has been thoroughly upgraded
and practically fully passes the regression test suite included with it. Some major
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features still remain to be implemented.

7.5.1 Shared Object Support

Now that the Linux kernel port for OpenRISC has been largely reimplemented,
there is the ability to make use of shared object libraries and dynamic linking.

At present none of this capability of the linker and loader is implemented. This,
on the outset, appears to be a significant amount of work but would enable large
amounts of software for Linux, which rely heavily on shared object support, to
become compilable for the OpenRISC platform.

This work would require the GNU toolchain’s binutils linker has the ability to
link against shared objects implemented, and so too the loader in the C library
providing user-space support for Linux, uClibc. Additionally, some software ABI
choices have to be made regarding a register to use for a global offset table pointer
register. Some discussion to this effect has been had by the development commu-
nity but no solution has been specified or worked on as of yet. This would be an
interesting set of work for an undergraduate thesis or post-graduate project in the
field of operating systems.

7.5.2 Packaging and Releasing

The toolchain release is still yet to occur as of February 2011. It is anticipated
this will happen with the not-too-distant future. Although the comments regarding
moving upstream indicate that the developers aim to make the ports available from
upstream repositories, an automated method of compilation and installation, or
fully-compiled binary versions, will need to be made available for the most conve-
nience. Additionally, as mentioned in the analysis section, the package management
systems in all modern Linux distributions needs to be supported.

At present the toolchain release schedule is expected to begin with the first
release, and hopefully occur each six months thereafter. The package-management
distribution methods may not be implemented immediately, as this is typically a
not-so straight forward process to prepare for, so precompiled binary distribution
will, initially, be provided for download.

It is hoped that, by releasing every six months, fixes and upgrades will flow
regularly and problems or contributed features can be delivered having been tested
by developers in a realistic time frame. It should also indicate that the toolchain,
despite its significantly improved implementation, still receives attention and has
not been abandoned.

7.6 Software

This section will discuss potential areas for development of software for the Open-
RISC 1000.
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7.6.1 Operating Systems

The analysis section indicated the Linux kernel port has received a great deal of
attention, however what was lacking, and what is arguably more appropriate for the
available processor implementation, are real time operating systems (RTOS). Ports
of operating systems such as Contiki and FreeRTOS, and an update of the existing
RTEMS and eCos ports, would provide small embedded systems developers with
the choice of adopting the OpenRISC platform.

A good choice would be the Contiki operating system, developed at the Swedish
Institute of Computer Science (SICS). It is extremely lightweight and provides a
solid networking capability. Alternatively, RTEMS with its BSD TCP/IP stack,
which is already somewhat ported, could also be a good choice. Basic ports of these
RTOSes, if made available, would provide developers with the ability to evaluate
the OpenRISC platform for their embedded applications with greater ease.

7.6.2 Libraries

uClibc

The uClibc port, solely used for providing userspace support for Linux applications,
has its architecture-specific portions of floating point support mostly completed but
lacking testing.

Mentioned earlier in the toolchain section was the lack of shared object support.
The dynamic object loader is required to be implemented in the operating system
support library, in this case it is in the OpenRISC-specific parts of the uClibc port.
This will be required in the event that shared object support is implemented in the
linker and compiler.

EGLIBC

The standard C library, glibc, is typically not suited to use on embedded systems,
as it compiles together all components non-optionally, and thus usually includes
swathes of code that is of no interest which takes up precious memory. uClibc was
forked off glibc to attempt to remedy this by making parts optional. It is not binary
compatible with glibc - that is, programs must be recompiled against glibc to run on
a system providing glibc. EGLIBC aims to be binary compatible with glibc, in so
far as EGLIBC actually includes the required functions. The EGLIBC project also
aims to closely track, or base its source on, the glibc project, providing new features
or fixes as soon as they are included into glibc. It, however, also aims to include a
configuration system for glibc, making it more suitable for embedded platforms.

EGLIBC has been chosen over standard glibc for use in the Debian Linux dis-
tribution, proving its maturity. The OpenRISC community could consider adding
OR1K Linux userspace support to EGLIBC, instead of continuing to use uClibc.
EGLIBC is still fairly new, but its widespread use shows it is already considered to
be worthwhile.
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newlib

As mentioned in the ORPSoC section, board specific builds in ORPSoC should have
the compiler create board-specific executables made for them by simply adding
some system parameters into newlib’s libgloss. This would allow users of those
board ports to generate simple bare-metal programs to help with board bring-up
and development. A method of passing board-specific parameters to the start-up
code has been discussed by the developers and it is expected a solution for this
could be implemented shortly.

7.6.3 Applications

The analysis section made mention of the fact that there were few, if any, soft-
ware applications, beyond library tests and bootloaders, available the OpenRISC
repositories.

Hopefully this will change now the OpenRISC Linux kernel port has been im-
proved, but the lack of shared library support will hinder many who will attempt
to compile common programs for embedded systems that rely on basic shared li-
braries. Embedded Linux distributions, such as OpenWrt, cannot be compiled with-
out shared library support. No sensible distribution deals with static executables
as they would be too large if they were to include every library they needed. This
renders any reasonably-featured Linux installation impractical.

It remains to be seen what interesting applications could be developed for Open-
RISC, be it to run on the bare metal, an RTOS or the Linux kernel. Even an attempt
at an exhaustive list would occupy too much space here. However, all of this work
aims to make the platform usable for people to do exactly this - experiment with
the platform and share their work.

7.7 Consideration of Successor Architecture

The issues with the OR1200 implementation raised earlier in this section caused
the development community to consider a new OR1K implementation. In imple-
mentation terms, it would aim to be more modular and allow for alternate pipeline
implementations, and have better synthesis characteristics, better testing and more
comprehensive documentation. Considering such a development brought into focus
the OR1K architectural issues outlined above. Suggestions of slight changes to the
architecture specification, or extension of the instruction set, were put forward.

Alterations to the OR1K specification, no matter how minimal, will cause a
breakage of all software for any existing implementations. Considering this, it’s
perhaps best to move on and base a new, non-binary compatible, architecture on
OR1K and hope to add to it all of the best improvements embedded microprocessor
architectures have enjoyed over the last twenty years, and perhaps some emerging
features.
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7.8 OpenRISC 2000
The OpenRISC 2000 architecture will be the successor architecture to OpenRISC
1000. It, too, will be an open source microprocessor architecture with at least one
RTL implementations licensed under a non-viral open source license. Although the
OpenRISC 1000 platform is now very solid and should still prove a viable option
for use in development where a single-issue 32-bit RISC is appropriate. The Open-
RISC 2000 project aims to define an updated architecture taking into consideration
trends such as increased emphasis on parallel programming and execution, and the
suitability of such implementations on ever growing FPGAs. With the platform
largely targeting embedded use, it is intended to be able to play a role in systems
requiring a stripped-down implementation, so to this end, and similar to OR1K,
large portions of the OR2K architecture will be optional.

For true scalability, a single, well-written RTL implementation will need to have
multiple pipeline implementations - one for low area, low speed, and one for high
area, high speed uses. The focus on improved implementation should result in
a better tested set of source that has better modularity. A focus on modularity
and better defined interfaces between sections of the processor should also provide
designers with improved accessibility and opportunity to customise sections to suit a
different set of constraints. It is hoped that this approach to the implementation will
make the project more attractive to designers, increasing its uptake and hopefully
the participation in, and contribution to the project.

At present, the OpenRISC 2000 architecture specification is a work in progress
in wiki format on the OpenCores website. Open discussion is occurring, and the de-
velopers are bringing it to the attention of those interested in computer architectures
to comment on the developments so far.

7.8.1 Target
The platform’s implementations will be, initially, FPGA-targeted. As FPGAs are
growing in size, the architecture will aim to make multi-processor implementations
as easy as possible. Although FPGA clock frequencies are staying relatively con-
strained, increases in performance can be achieved through the parallelisation of
processing between CPUs. With this in mind, a suitable set of features of the
architecture will need to be implemented.

7.8.2 Proposed Features
Although this is not a definite list of features that will feature in OR2K, it is what
is up for discussion at present.

Atomic Transaction Primitives

Any multi-processor architecture will no doubt require synchronisation primitives
in software. These are most reliably implemented when instruction-level atomic
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transactions are possible. This is common in most architectures today, and the
load-linked store-conditional pair of instructions are being proposed for OR2K.

Code Density with 16-bit instructions

Complementing the 32-bit instructions proposed for OR2K might be a set of 16-
bit instructions implementing a lot of common functions available in 32-bit format,
but with either limited register operands or immediate values. In order to take the
most advantage of this, very common instructions, and likely streams of instructions
should aim to have 16-bit variants. If chosen correctly, this could potentially make
a lot of instructions map to 16-bit variants, greatly reducing, up to a maximum of
50%, the code size for an equivalent version compiled without 16-bit formats.

Whether to make this mandatory, or optional, between implementations is cur-
rently under discussion. Those arguing for making it optional point out that it will
probably bloat the instruction fetch and decode stages, with extra logic required to
handle non-32-bit word aligned instructions, and a whole additional set of opcodes,
and therefor make the smallest-possible implementation large. On the other hand,
potentially, with 16-bit support always enabled, perhaps the implementation over-
head in transistors is less than those required to store the additional data for larger
instructions.

No Delay Slot

OR1K used a delay slot to maximise use of fetched instructions in a pipeline after a
branch. For ease of more complex implementation, perhaps at the expense of perfor-
mance in some designs, the delay slot will no longer be used on OR2K. Although this
is probably something that doesn’t depend so much on architecture specification,
and more on RTL and compiler implementation, it is a de facto architecture-specific
feature.

Branch against immediate

Code analysis of OR1K indicated that a lot of branches and compares rarely used
the entire immediate space to indicate the target, and as such, it could be possible to
perhaps combine both in such a way as both instructions could usefully be combined
into a single one.

Virtualisation

An easy way to design for virtualisation is to map all I/O to memory, including
controls for CPU, interrupt and cache controls. The memory mapping hardware
can then be used to manage both privileges and virtualisation.
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Shared Co-processors, separate register files

Instead of requiring each co-processor unit, such as floating point units, to re-
side within, and deal with each CPU’s register file directly, they should, instead,
have their own register file, and the ISA should provide instructions from moving
operands between the general purpose registers and the co-processor’s. In this way,
multiprocessor implementations can share the same co-processor hardware.

Core Configuration Register

Although this exists on OR1K, it lacks the ability to determine the precise im-
plementation of the core, as there’s no way to detect which class II instruction is
supported apart from attempting to execute it and catching the trap. There should
be a cleaner way of detecting the precise configuration of the core.

Caching

Multiprocessor implementations require careful cache synchronisation mechanisms,
and must ensure cache snooping is implemented. Additionally, multi-level caching
control interfaces should be included.

7.8.3 Testing and Development
There should be an emphasis on block-level testbenches, where practical. The
development process will no doubt be collaborative, and should focus first on a
clearly defined specification as well as a simulator, maybe QEMU, and compiler port.
Perhaps these stages could occur first, and the final decision on which instructions
should have 16-bit versions, or if any novel instructions can improve code-density
without making implementation overly complex.

RTL implementation

The language of the model should remain as Verilog HDL. This is largely due to the
greater support for the language by open source tools. In particular, the Verilator
tool, which can create a fast cycle-accurate model from the Verilog RTL, can be very
useful as it would make possible developing SystemC-based verification testbenches.

7.8.4 Summary
Although the OR2K project is only in its infancy, the architectural and implemen-
tation choices already on offer indicate that it will most likely be a considerable step
on from OR1K. As work towards finalising the architecture specification continues,
and the simulator and compiler are implemented, the architecture’s final state will
take form. It is hoped that by taking an open source approach to this project it
will allow those with experience to participate and guide what could turn out to be
a highly popular and useful platform.



Appendix A

Data Cache Synthesis Schematic

The following diagram was produced from the OR1200’s RTL using the Synplify Pro
Version E-2010.09A-1 targeted at Actel ProASIC 3 technology. The view is the RTL
view of the or1200_dc_top module with its connections from the processor and to
the bus bridge. It shows the structure of the data cache and its partitioning into the
tag RAM, holding the physically tagged set addresses, the FSM block coordinating
everything, and the actual data RAM.
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