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Abstract

Current robotics research is largely driven by the vision of creating an
intelligent being that can perform dangerous, difficult or unpopular tasks.
These can for example be exploring the surface of planet mars or the bottom
of the ocean, maintaining a furnace or assembling a car. They can also be
more mundane such as cleaning an apartment or fetching groceries.

This vision has been pursued since the 1960s when the first robots were
built. Some of the tasks mentioned above, especially those in industrial man-
ufacturing, are already frequently performed by robots. Others are still com-
pletely out of reach. Especially, household robots are far away from being de-
ployable as general purpose devices. Although advancements have been made
in this research area, robots are not yet able to perform household chores ro-
bustly in unstructured and open-ended environments given unexpected events
and uncertainty in perception and execution.

In this thesis, we are analyzing which perceptual and motor capabilities
are necessary for the robot to perform common tasks in a household scenario.
In that context, an essential capability is to understand the scene that the
robot has to interact with. This involves separating objects from the back-
ground but also from each other. Once this is achieved, many other tasks
become much easier. Configuration of objects can be determined; they can
be identified or categorized; their pose can be estimated; free and occupied
space in the environment can be outlined. This kind of scene model can then
inform grasp planning algorithms to finally pick up objects. However, scene
understanding is not a trivial problem and even state-of-the-art methods may
fail. Given an incomplete, noisy and potentially erroneously segmented scene
model, the questions remain how suitable grasps can be planned and how
they can be executed robustly.

In this thesis, we propose to equip the robot with a set of prediction
mechanisms that allow it to hypothesize about parts of the scene it has not
yet observed. Additionally, the robot can also quantify how uncertain it
is about this prediction allowing it to plan actions for exploring the scene
at specifically uncertain places. We consider multiple modalities including
monocular and stereo vision, haptic sensing and information obtained through
a human-robot dialog system. We also study several scene representations of
different complexity and their applicability to a grasping scenario.

Given an improved scene model from this multi-modal exploration, grasps
can be inferred for each object hypothesis. Dependent on whether the objects
are known, familiar or unknown, different methodologies for grasp inference
apply. In this thesis, we propose novel methods for each of these cases. Fur-
thermore, we demonstrate the execution of these grasp both in a closed and
open-loop manner showing the effectiveness of the proposed methods in real-
world scenarios.
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Notation

Throughout this thesis, the following notational conventions are used.

Scalars are denoted by italic symbols, e.g., a, b, c.

Vectors, regardless of dimension, are denoted in bold lower-case symbols,
x = (z,y)".

Sets are indicated by calligraphic symbols, e.g., P, Q,R. The cardinality
of these sets is denoted by capital letters such as N, M, K. As a compact
notation for a set X’ containing N vectors x;, we will use {x;}n.

In this thesis, we frequently deal with estimates of vectors. They are indicated
by a hat superscript, e.g., X. They also can be referred to as a posteriori
estimates in contrast to a priori estimates. The latter are denoted by an
additional superscript. This can either be a minus, e.g., X~ for estimates in
time, or a plus, e.g., X for estimates in space.

Functions are denoted by italic symbols followed by their arguments in paren-
theses, e.g., f(-),g(:),k(-,). An exception is the normal distribution where
we adopt the standard notation of N (u, 3).

Matrices, regardless of dimension, are denoted as bold-face capital letters,
eg., A B, C.

Frames of reference or coordinate frames are denoted by sans-serif capital
letters, e.g., W, C. In this thesis, we convert coordinates mostly between the
following three reference frames: the world reference frame W, the camera
coordinate frame C and the image coordinate frame |. Vectors that are related

to a specific reference frame are annotated with the according superscript, e.g.,
w
x",

Sometimes in this thesis, we have to distinguish between the left and right
image of a stereo camera. We label vectors referring to the left camera system
with a subscript [ and analogous with r for the right camera system, e.g.,
X1y Xy
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e A finger on our robotic hand is padded with a tactile sensor matrices. One
is on the distal and one on the prorimal phalanx. Measurements from these
sensors are either labeled with subscript d or p.

e The subscript t refers to a specific point in time.

e In this thesis, we develop prediction mechanism that enable the robot to make
predictions about unobserved space in its environment. We label the set of
locations that has already been observed with subscript k& for known. The
part that is yet unknown is labeled with subscript u.




Introduction

The idea of creating an artificial being is quite old. Even before the word robot
got coined by Karel Capek in 1920, the concept appeared frequently in litera-
ture and other artwork. The idea can already be observed in preserved records of
ancient automated mechanical artifacts [206]. In the beginning of the 20th cen-
tury, advancements in technology led to the birth of the science fiction genre.
Among other topics, the robot became a central figure of stories told in books and
movies [217, 82]. The first physical robots had to await the development of the
necessary underlying technology in the 1960s. Interestingly, already in 1964 Nam
June Paik in collaboration with Shuya Abe built the first robot to appear in the
field of new media arts: Robot K456 [61, pg. 73].

The fascination of humans with robots stems from a dichotomy in how we per-
ceive them. One the one hand, we strive for replicating our consciousness, intelli-
gence and physical being but with characteristics that we associate with technology:
regularity, efficiency, stability and power. Such an artificial being could then exist
beyond human limitations, constraints and even responsibility [217]. In a way, this
striving reflects the ancient search for immortal life. On the other hand, there is
the fear that once such a robot exists we may loose control over our own creation.
In fact, we would have created our own replacement [82].

Exactly this conflict is subject of most of the robot stories reaching from the
classic ones like R.U.R. (Rossum’s Universal Robots) by Karel Capek and Fritz
Lang’s Metropolis to the newer ones such as James Cameron’s Terminator and
Alex Proyas’ I, Robot. Geduld [86] divided the corpus of stories into material about
'god-sanctioned” and "sacrilegious creation" to reflect the simultaneous attraction
and recoil. He places the history of real automata completely aside from this.

In current robotics research, the striving for replicating human intelligence is
completely embraced. Robots are celebrated as accomplishments that demonstrate
human artifice. When reading the introductions of many recent books, PhD theses
and articles on robotics research, the arrival of service robots in our everyday life is
predicted to happen in the near future [192, 174, 121], already "tomorrow” [206] or
is claimed to have already happened [177]. Rusu [192] and Prats [174] emphasize the
necessity of service robotics with regard to the aging population of Europe, Japan
and the USA. Machines equipped with ideal physical and cognitive capabilities
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are thought to care for people who became physically and cognitively limited or
disabled. Although robotics celebrated its 50th birthday this year, only recently
the topic of roboethics has been coined and a roadmap published by Veruggio [226].
In that sense, the art community is somewhat ahead of the robotics community in
discussing implications of technological advancement.

The question why robotics research shows only little interest in these topics
remains. We argue that this is because robots are not perceived by roboticists
to have even remotely achieved the level of intelligence that we believe to be nec-
essary to replace us. In reality, we are far away from having a general purpose
robot as envisioned in many science fiction stories. Instead we are at the stage of
the specific purpose robot. Especially in industrial manufacturing, robots are om-
nipresent in assembling specific products. Other robots have shown to be capable of
autonomous driving in environments of different complexities and constraints. Re-
garding household scenarios, robots already vacuum-clean apartments [105]. Other
tasks like folding towels [141], preparing pancakes [24] or clear a table as in the
thesis at hand have been demonstrated on research platforms. However, to let
robots perform these task robustly in unstructured and open-ended environments
given unexpected events and uncertainty in perception and execution is an ongoing
research effort.

1.1 An Example Scenario

Robots are good at many things that are hard for us. This involves the aspects
mentioned before like regularity, efficiency, stability and power but also games like
chess and jeopardy in which, although not robots in the strict sense, supercomputers
have recently beaten human masters. However, robots appear to be not very good
in many things that we perform effortlessly. Examples are grasping and dexterous
manipulation of everyday objects or learning about new objects for recognizing
them later on. In the following, we want to exemplify this with the help of a simple
scenario.

Figure 1.1 shows an office desk. Imagine that you ordered a brand-new robotic
butler and you want it to clean that desk for you. What kind of capabilities does
it need for fulfilling this task? In the following, we list a few of them.

Recognition of Human Action and Speech Just like with a real butler who
is new to your place, you need to give the robot a tour. This involves showing
it all the rooms and explaining what function they have. Besides that, you may
also want to point out places like cupboards in the kitchen or shoe cabinets in
the corridor so that it knows where to store certain objects. For the robot to
extract information from this tour, it needs to be able to understand human speech
but also human actions like walking behavior or pointing gestures. Only then, it
can generate the appropriate behavior by itself like for example following, asking
questions or pointing at things.
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Figure 1.1: Left) Cluttered Office Desk to be Cleaned. Right Top) Gloves. Right
Middle) Objects in a Pile. Right Bottom) Mate.

Navigation: Self-Localisation, Mapping and Path Planning During this
tour, the robot needs to build a map of the new environment and localise itself in it.
It has to store this map in its memory so that it can use it later for path planning
or potential further exploration.

Semantic Perception and Scene Understanding You would expect this robot
to already have some general knowledge about the world. It should for example
know what a kitchen and a bath room is. It should know what shoes or different
groceries are and where they usually can be found in an apartment. During your
tour, this kind of semantic information should be linked to the map that the robot
is simultaneously building of your place. For this, the robots needs to possess the
ability to recognize and categorize rooms, furniture and objects using its different
sensors.
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Learning When the robot leaves its factory, it is probably equipped with a lot of
knowledge about the world it is going to encounter. However, the probability that
it is confronted with rooms of an ambiguous function and objects it has never seen
before is quite high. The robot needs to detect these gaps in its world knowledge
and attempt to close them. This may involve asking you to elaborate on something
or to build a representation of an unknown object grounded in the sensory data.

Higher-Level Reasoning and Planning After the tour, the robot then may
be expected to finally clean this desk shown in Figure 1.1. If we assume that it
recognized the objects on the table, it now needs to plan what to do with them. It
can for example leave them there, bring them to a designated place or throw them
into the trash. To make these decisions, it has to consult its world knowledge in
conjunction with the semantic map it has just built of you apartment. The cup
for example may pose a conflict between its world knowledge (in which cups are
usually in the kitchen) and the current map it has of the world. To resolve this
conflict, it needs to form a plan to align these two. A plan may involve any kind of
interaction with the world be it asking your for assistance, grasping something or
keep exploring the environment.

Grasping and Manipulation Once the robot decided to pick up something to
bring it somewhere else, it needs to execute this plan. Grasping and manipulation
of objects demands the formation of low level motion plans that are robust on the
one hand and flexible on the other. They need to be executed while facing noise,
uncertainty and potentially unforeseen dynamic changes in the environment.

All of these capabilities in itself are the subject of ongoing research efforts in
mostly separate communities. As the title of this thesis suggest, we are mainly con-
cerned with scene understanding for robotic grasping and manipulation. Especially
for scenes as depicted in Figure 1.1, this poses a challenging problem to the robot.
Although a child would be able to accomplish to grasp the shown objects without
any problem, it has yet not been shown that a robot could perform equally well
without introducing strong assumptions.

1.2 Towards Intelligent Machines - A Historical Perspective

Since the beginning of robotics, pick and place problems from a table top have been
studied [77]. Although the goal remained the same over the years, the different
approaches were rooted in the paradigms on Artificial Intelligence (Al) of their
time. One of the most challenging problems that has been approached over and
over again, is to define what intelligence actually means. Recently, Pfeifer and
Bongard [171] even refuse to define this concept given what they claim to be the
mere absence of a good definition. In this section, we will briefly summarize some
of the major views on intelligence.
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Central
Processor

Figure 1.2: Traditional Model of an Intelligent System.

The traditional view is dominated by the physical symbol system hypothesis. It
states that any system exhibiting intelligence can be proven to be a physical sym-
bol system and any physical symbol system of sufficient size will exhibit intelligent
behavior [160, 207]. Figure 1.2 shows a schematic of the traditional model of in-
telligence exhibited by humans or machines. The central component is a symbolic
information processor that is able to manipulate a set of symbols potentially part of
whole expressions. It can create, modify, reproduce or delete symbols. Essentially,
such a symbol system can be modelled as a Turing machine. Therefore it follows
that intelligent behavior can be exhibited by todays computers. The symbols are
thought to be amodal, i.e., completely independent of the kind of sensors and ac-
tuators available to the system. The input to the central processor is provided
by perceptual modules that convert sensory input into amodal symbols. The out-
put is generated though action modules that use amodal symbolic descriptions of
commands.

Turing [221] proposed an imitation game to re-frame the question “Can machines
think?” that is now known as the famous Turing Test. The proposed machines are
capable of reading, writing and manipulating text without the need to understand
its meaning. The problem of converting between real world percepts and amodal
symbols is thereby circumvented as well as conversion between symbolic commands
and real world motor commands. The hope was that this will be solved at some
later point. In the early days of Al research, a lot of progress was made in for
example theorem proofers, blocks world scenarios or artificial systems that could
trick humans to believe that they were humans as well. However, early approaches
could not be shown to translate to more complex scenarios [191]. In [171], Brooks
noted that “Turing modeled what a person does, not what a person thinks”. Also
the behavioral studies on which Simon’s thesis [207] of physical symbol systems rest,
can be seen in that light: humans solving cryptarithmetic problems, memorizing or
performing tasks that use natural language.

The view of physical symbol system has been challenged on several grounds. In
the 1980s connectionist models became largely popular [191]. The most prominent
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World

Figure 1.3: Model of an Intelligent System from the Viewpoint of Behavioral
Robotics.

representative is the artificial neural network that is seen as a simple model of
the human brain. Instead of a central processor, a neural network consists of a
number of simple interconnected units. Intelligence is seen as emergent within this
network. Connectionist models have been shown to be far less domain specific and
more robust to noise. However according to Simon [207], it has yet to be shown
that complex thinking and problem solving can be modelled with connectionist
approaches. Nowadays, symbol systems and connectionist approaches are seen as
complementary [191].

A different case has been argued by the supporters of the Physical Symbol
Grounding Hypothesis. Instead of criticizing the structure of the proposed intel-
ligent system, it re-considers the assumed amodality of the symbols. Its claim is
that to build a system that is truly intelligent, it has to have its symbols grounded
in the physical world. In other words, it has to understand the meaning of the
symbols [96]. However, no perception system has yet been build that robustly
outputs a general purpose symbolic representation of the perceived environment.
Furthermore, perception has been claimed to be active and task dependent. Given
different tasks, different parts of the scene or different aspects of it may be rel-
evant [22]. The the same percept can be interpreted differently. Therefore, no
objective truth exists [159].

Brooks [46, 47] has carried this view to its extreme and asks whether intelligence
needs any representations at all. Figure 1.3 shows the model of an intelligent
machine that completely abondons the need for representations. Brooks coined the
sentence: The world is its own best model. The more details of the world you store,
the more you need to keep up-to-date. He proposes to dismiss any intermediate
representation that interfaces between the world and computational modules as well
as in between computational modules. Instead, the system should be decomposed
into subsystem by activities that describe patterns of interactions with the world.
As outlined in Figure 1.3, each subsystems tightly connects sensing to actions, and
senses whatever necessary and often enough to accomodate for dynamic changes
in the world. No information is transferred between submodules. Instead, they
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World

Figure 1.4: Model of an Intelligent System from the Viewpoint of Grounded Cog-
nition

compete for control of the robot through a central system. People have challenged
this view as being only suitable for creating insect-like robots without a proof that
higher cognitive functions are possible to achieve [51]. This approach is somehow
similar to the Turing test in that it is claimed that if the behavior of the machine
is intelligent in the eye of the beholder, then it is intelligent. Parallels can also be
drawn to Simon [207] in which an intelligent system is seen as essentially a very
simple mechanism. Its complexity is a mere reflection of the complexity of the
environment.

Figure 1.4 shows the schematic of an intelligent agent as envisioned for example
in psychology and neurophysiology. The field of Grounded Cognition focuses on
the role of simulation as exhibited by humans in behavioral studies [23]. The
notion of amodal symbols that reside in semantic memory separate from the brain’s
modal system for perception, action and introspection is rejected. Symbols are
seen as to be grounded and stored in a multi-modal way. Simulation is a re-
enactment of perceptual, motor and introspective states acquired during a specific
experience with the world, body and mind. It is triggered when knowledge is
needed to represent a specific object, category, action or situation. In that sense it
is compatible with other theories as for example the simulation theory [84] or the
common-coding theory of action and perception [176]. Through the discovery of the
so-called Mirror neurons (MNs), these models gained momentum [185]. MNs have
first been discovered in the F5 area of a monkey brain. During the first experiments,
this area has been monitored during grasping actions. It was discovered that there
are neurons that fire both, when a grasping action is performed by the recorded
monkey and when this monkey observes the same action performed by another
individual. Interestingly, this action has to be goal directed which is in accordance
with the common-coding theory. Its main claim is that perception and action share
a common representational domain. Evidence from behavioral studies on humans
showed that actions are planned and controlled in terms of their effect [176]. There
is also strong evidence that MNs exist in the human brain. Etzel et al. [74] tested
the simulation theory through standard machine learning techniques. The authors
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trained a classifier on functional magnetic resonance imaging (fMRI) recorded from
humans while hearing either of two actions. They showed that the same classifier
can also distinguish between these actions when provided fMRI data that is recorded
from the same person performing them.

Up till now, no agreement has been reached on whether a central representa-
tional system is used or a distributed one. Also no computational model has yet
been proposed in the field of psychology or neurophysiology [23]. However, there
are some examples in the field of robotics following the general concept of grounded
cognition. Ballard [22] introduces the concept of Animate Vision that aims at un-
derstanding visual processing in the context of the tasks and behaviors the vision
system is currently engaged in. In this paradigm, the need for maintaining a detail
model of the world is avoided. Instead, real-time computation of a set of sim-
ple visual features is emphasized such that task relevant representations can be
rapidly computed on demand. Christensen et al. [51] present a system for keeping
multi-modal representations of an entity in memory and refining them in parallel.
Instead of one monolithic memory system, representations are shared among sub-
systems. A binder is proposed for connecting each representation to one entity in
memory. This can be related to the Prediction box in Figure 1.4. Through this
binding, perception of one modality corresponding to an entity could predict the
other modalities associated with the same entity in memory. Another example is
presented by Kjellstrom et al. [116]. The authors show that the simultaneous ob-
servation of two separate modalities (action and object features) helps to categorize
both of them.

1.3 This Thesis

We are specifically concerned with perception for grasping and manipulation. The
previously mentioned theories stemming from psychology and neurophysiology are
studying the tight link between perception and action. They place the concept of
prediction through simulation into their focus. In this thesis, we will equip a robot
with mechanisms to predict unobserved parts of the environment and the effects of
its actions. We will show how this helps to efficiently explore the environment but
also how it improves perception and manipulation.

We will study this approach in a table top scenario populated with either known,
unknown or familiar objects. As already outlined in the example scenario in Sec-
tion 1.1, scene understanding is one important capability of a robot. In specific this
involves segmentation of objects from each other and from the background. Once
this is achieved, many other tasks become much easier. Configuration of objects on
the table can be determined; they can be identified or categorized; their pose can
be determined; free and occupied space in the environment can be outlined. This
kind of scene model can then inform grasp inference mechanisms to finally grasps
objects from the table top.

In Figure 1.1, we can observe why scene understanding is challenging. On the
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Simulated World

Real World

Figure 1.5: Schematic of this thesis. Given some observations of the real world,
the state of the world can be estimated. This can be used to predict unobserved
parts of the scene (Prediction box) as formalized in Equation 1.1. It can be used to
predict action outcomes (Action box) as formalized in Equation 1.2 and to predict
what certain sensors should perceive (Perception box) as in Equation 1.3 and 1.4.

depicted office desk, there are piles of clutter for which even humans have problems
to separate them visually into single objects. Deformable objects like gloves are
shown that come in very many different shapes and styles. Still we are able to
recognize them correctly even though we might not have seen this specific pair ever
before. And there are objects that are completely unknown to us. Independent of
this, we would be able to grasp them.

Figure 1.5 is related to Figure 1.4 by adopting the notion of prediction into the
perception-action loop. On the left side, you see the real world. It can be perceived
through the sensors the robot is equipped with. This is an active process in which
the robot can choose what to perceive by moving through the environment or by
changing it using its different actuators. On the left, you see a visualisation of the
current model the robot has of its environment.

This model makes simulation explicit in that perception feeds into memory to
update a multi-modal representation of the current scene of interest. This scene is
estimated at discrete points in time ¢ to be in a specific state X;. This estimate is
then used to implement prediction in three different ways.
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o Based on earlier observations, we have a partial estimate of the state of the
scene X;. Given this estimate and some prior knowledge, we can predict
unobserved parts of it to obtain an a priori state estimate:

% =g(%) (1.1)

e Given the current state estimate, some action u and a process model, we can
predict how the scene model will change over time to obtain a different a
priori state estimate:

X1 = f(u, %) (1.2)

o Given an a priori state estimate of the scene, we can predict what different
sensor modalities should perceive

20 = h(%;) (13)

or
Ze1 = h(Xpyy) (1.4)

These functions can be associated with the boxes positioned around the simulated
environment on the right hand side of Figure 1.5. While the Prediction box refers
to prediction in space and is related to Equation 1.1, the Action box stands for
prediction in time and the implementation of Equation 1.2. The Perception box
represents the prediction of sensor measurements as in Equation 1.3 and 1.4. The
scene model serves as a container representation that integrates multi-modal sensory
information as well as predictions. In this thesis, we study different kinds of scene
representations and their applicability for grasping and manipulation.

Independent of the specific representation, we are not only interested in a point
estimate of the state. Instead, we consider the world state as a random variable
that follows a distribution x; ~ N (%X, 3;) with the state estimate as the mean
and a variance X;. This variance is estimated based on the assumed divergence
between the output of the functions g(-), f(-) and h(-) and the unknown real value.
It quantifies the uncertainty of the current state estimate.

In this thesis, we are proposing approaches that implement the function g(-)
in Equation 1.1 to make predictions about space. We will demonstrate that the
resulting a priori state estimate %;” and the associated variance ;" can be used for
either (i) guiding ezploratory actions to confirm particularly uncertain areas in the
current scene model, (ii) comparing predicted observations 2; or actions outcomes
with the real observations z; and update the state estimate and variance accordingly
to obtain an a posteriori estimate or (iii) for ezploiting the prediction in using it
for executing an action to achieve a given goal.

1.4 OQutline and Contributions

This thesis is structured as follows:
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Chapter 2 — Foundations

Chapter 2 introduces the hardware and software foundation of this thesis. The
applied vision systems have been developed and published prior to this thesis and
are only briefly introduced here.

Chapter 3 — Active Scene Understanding

The chapter introduces the problem of scene understanding and motivates the ap-
proach followed in this thesis.

Chapter 4 — Predicting and Exploring a Scene

Chapter 4 is the first of the three chapters that propose different prediction mecha-
nisms. Here, we study a classical occupancy grid and a height map as a representa-
tion for a table top scene. We propose a method for multi-modal scene exploration
where initial object hypotheses formed by active visual segmentation are confirmed
and augmented through haptic exploration with a robotic arm. We update the
current belief about the state of the map with the detection results and predict yet
unknown parts of the map with a Gaussian Process. We show that through the
integration of different sensor modalities, we achieve a more complete scene model.
We also show that the prediction of the scene structure leads to a valid scene repre-
sentation even if the map is not fully traversed. Furthermore, we propose different
exploration strategies and evaluate them both in simulation and on our robotic
platform.

Chapter 5 — Enhanced Scene Understanding through Human-Robot
Dialog

While Chapter 4 is more focussed on the prediction of occupied and empty space
in the scene, this chapter proposes a method for improving the segmentation of
objects from each other. Our approach builds on top of state-of-the-art computer
vision segmenting stereo reconstructed point clouds into object hypotheses. In col-
laboration with Matthew Johnson-Roberson and Gabriel Skantze this process is
combined with a natural dialog system. By putting a ‘human in the loop’ and ex-
ploiting the natural conversation of an advanced dialogue system, the robot gains
knowledge about ambiguous situations beyond its own resolution. Specifically, we
are introducing an entropy-based system allowing the robot to predict which ob-
ject hypotheses might be wrong and query the user for arbitration. Based on the
information obtained from the human-to-robot dialog, the scene segmentation can
be re-seeded and thereby improved. We analyse quantitatively what features are
reliable indicators of segmentation quality. We present experimental results on real
data that show an improved segmentation performance compared to segmentation
without interaction and compared to interaction with a mouse pointer.
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Chapter 6 — Predicting Unknown Object Shape

The purpose of scene understanding is to plan successful grasps on the object hy-
potheses. Even if these hypotheses are correctly corresponding only to one object,
we commonly do not know the geometry of their backside. The approach to object
shape prediction proposed in this chapter aims at closing the knowledge gaps in
the robot’s understanding of the world. It is based on the observation that many
objects in a service robotic scenario possess symmetries. We search for the optimal
parameters of these symmetries given visibility constraints. Once found, the point
cloud is completed and a surface mesh reconstructed. This can then be provided
to a simulator in which stable grasps and collision-free movements are planned.
We present quantitative experiments showing that the object shape predictions are
valid approximations of the real object shape.

Chapter 7 — Generation of Grasp Hypotheses

In this chapter, we will show how the object hypotheses that have been formed
through different methods can be used to infer grasps. In the first section, we
review existing approaches divided into three categories: grasping known, unknown
or familiar objects. Given these different kinds of prior knowledge, the problem of
grasp inference reduces to either object recognition and pose estimation, finding
similarity metric between functionally similar objects or developing heuristics for
mapping grasps to object representations. For each case, we propose our own
methods that extend the existing state of the art.

Chapter 8 — Grasp Execution

Once grasp hypotheses have been inferred, they need to be executed. We demon-
strate the approaches proposed in Chapter 7 in an open-loop fashion. In collab-
oration with Beatriz Léon and Javier Felip, experiments on different platform are
performed. This is followed by a review of the existing closed-loop approaches
towards grasp execution. Although there are a few exceptions, they are usually
focussed on either the reaching trajectory or the grasp itself. We will demonstrate
in collaboration with Xavi Gratal and Javier Romero visual and virtual visual ser-
voing to execute grasping of known or unknown objects. This helps in controlling
the reaching trajectory such that the end effector is accurately aligned with the
object prior to grasping.

1.5 Publications

Parts of this thesis have previously been published as listed in the following.
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Foundations

In this thesis, we present methods to incrementally build a scene model suitable
for object grasping and manipulation. This chapter introduces the foundations of
this thesis. We first present the hardware platform that was used to collect data
as well as to evaluate and demonstrate the proposed methods. This is followed by
a brief summary of the real-time active vision system that is employed to visually
explore a scene. Two different segmentation approaches using the output of the
vision system are presented.

2.1 Hardware

The main components of the robotic platform used throughout this thesis are the
Karlsruhe active head [17] and a Kuka arm [126] equipped with a Schunk Dexterous
Hand 2.0 (SDH) [203] as shown in Figure 2.1. This embodiment enables the robot
to perform a number of actions like saccading, fixating, tactile exploration and

grasping.

2.1.1 Karlsruhe Active Head

We are using a robotic head [17] that has been developed as part of the Armar
IIT humanoid robot as described in Asfour et al. [16]. It actively explore the en-
vironment through gaze shifts and fixation on objects. The head has 7 DoF. For
performing gaze shift, the lower pitch, yaw, roll as well as the eye pitch are used.
The upper pitch is kept static. To fixate, the right and left eye yaw are actuated
in a coupled manner. Therefore, only 5DoF are effectively used.

The head is equipped with two stereo camera pairs. One has a focal length
of 4mm and therefore a wide field of view. The other one has a focal length of
12mm providing the vision system with a close up view of objects in the scene. For
example images, see Figure 2.2.

To model the scene accurately from stereo measurements, the relation between
the two camera systems as well as between the cameras and the head origin needs
to be determined after each head movement. This is different from stereo cam-
eras with a static epipolar geometry that need to be calibrated only once. In the
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(a) Karlsruhe Active (b) Kuka Arm with Schunk Hand. (c) Schunk Hand.
Head.

Figure 2.1: Hardware Components of the Robotic Platform

case of the active head, these transformations should ideally be obtainable from
the known kinematic chain and the readings from the motor encoders. In reality
however, these readings are affected by random and systematic errors. The latter
are due to inaccuracies in the kinematic model and random errors are induced by
noise in the motor movements. In our previous work [10], we describe how through
controlled movements of the robotic arm and of the head the whole kinematic chain
is calibrated. The arm essentially describes a pattern that is uniformly distributed
in image space as well as in the depth of field. We use an LED rigidly attached
to the hand for tracking the positions of the arm relative to the camera. Through
this procedure, we obtain a set of 3D positions relative to the robot arm and the
corresponding projections of these point on the image plane. From these correspon-
dences, we use standard approaches as implemented in [43] to solve for the intrinsic
and extrinsic stereo camera parameters. This process is repeated for different joint
angles of the head to calibrate the kinematic chain. Thereby, systematic errors are
significantly reduced.

Regarding random error, the last five joints in the kinematic chain achieve a
repeatability in the range of £0.025 degrees [17]. The neck pitch and neck roll joints
achieve a repeatability in the range of +0.13 and £0.075 degrees respectively. How
we cope with this noise will be described in more detail in Section 2.2.

2.1.2 Kuka Arm

The Kuka arm has 6 DoF and is the most reliable component of the system. It has
a repeatability of less than 0.03 mm [126].
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Figure 2.2: Overview of the Input and Output of the Visual Front End. Left) Foveal
and Peripheral Images of a Scene. Middle Left) Karlsruhe Active Head. Middle
Right) Visual Front End. Right) Segmented 3D Point Cloud.

2.1.3 Schunk Dexterous Hand

The SDH has three fingers each with two joints. An additional degree of freedom
executes a coupled rotation of two fingers around their roll axis. Each finger is
padded with two tactile sensor arrays: one on the distal phalanges with 6 x 13 — 10
cells and one on the proximal phalanges with 6 x 14 cells [203].

2.2 Vision Components

As input to all the methods that are proposed in this thesis, we expect a 3D point
cloud of the scene. To produce such a representation, we use a real-time active
vision system running on the Karlsruhe active head. In the following, we will
introduce this system and present two different ways in which this representation
is segmented into background and several object hypotheses.

2.2.1 Real-Time Vision System

In Figure 2.2, we show the structure of the real-time vision system that is capable
of gaze shifts and fixation. Segmentation is tightly embedded into this system.
In the following, we will briefly explain all the components. For a more detailed
description, we refer to Rasolzadeh et al. [182], Bjérkman and Kragic [35], Bjorkman
and Eklundh [33].
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2.2.1.1 Attention

As mentioned in Section 2.1.1, our vision system consists of two stereo camera
pairs, a peripheral and a foveal one. Scene search is performed in the wide-field
camera by computing a saliency map on it. This map is computed based on the
Itti & Koch model [106] and predicts the conspicuity of every position in the visual
input. An example for such a map is given in Figure 2.3a. Peaks in this saliency
map are used to trigger a saccade of the robot head such that the foveal cameras
are centered on this peak.

2.2.1.2 Fixation

When a rapid gaze shift to a salient point in the wide-field is completed, the fixation
process is immediately started. The foveal images are initially rectified using the
vergence angle read from the calibrated left and right eye yaw joint. This rectifica-
tion is then refined online by matching Harris’ corner features extracted from both
views and computing an affine essential matrix. The resulting rectified images are
then used for stereo matching [43]. A disparity map on the foveal image in Fig-
ure 2.2 is given in Figure 2.3c. The vergence angle of the cameras is controlled such
that the highest density of points close to the center of the views are placed at zero
disparity.

2.2.1.3 Segmentation

For 3D object segmentation we use a recent approach by Bjorkman and Kragic [35].
It relies on three possible hypotheses: figure, ground and a flat surface. It is assumed
that most objects are placed on flat surfaces thereby simplifying segregation of the
object from its supporting plane.

The segmentation approach is an iterative two-stage method that first performs
pixel-wise labeling using a set of model parameters and then updates these param-
eters in the second stage. This is similar to Expectation-Maximization with the
distinction that instead of enumerating over all combinations of labelings, model
evidence is summed up on a per-pixel basis using marginal distributions of labels
obtained using belief propagation.

The model parameters consists of the following three parts, corresponding to
the foreground, background and flat surface hypothesis:

ef = {pfazfvcf}v
Op = {dlhzbacb}a
05 = {O‘svﬁs;(ssazsvcs}-

pys denotes the mean 3D position of the foreground. dy is the mean disparity of the
background, with the spatial coordinates assumed to be uniformly distributed. The
surface disparities are assumed to be linearly dependent on the image coordinates,
ie. d = asx + Bsy + ds. All these spatial parameters are modeled as normal
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distributions, with 3¢, ¥; and X, being the corresponding covariances. The last
three parameters, cy, ¢, and cg, are represented by color histograms expressed in
hue and saturation space.

For initialization, there has to be some prior assumption of what is likely to
belong to the foreground. In this thesis, we have a fixating system and assume that
points close to the center of fixation are most likely to be part of the foreground.
An imaginary 3D ball is placed around this fixation point and everything within the
ball is initially labeled as foreground. For the flat surface hypothesis, RANSAC [80]
is applied to find the most likely plane. The remaining points are initially labeled
as background points.

Other approaches to initializing new foreground hypotheses for example through
human-robot dialogue or motion of objects induced bei either a person or the robot
itself are presented in [28, 29, 140]. Furthermore, these articles present the exten-
sion of the segmentation framework to keep multiple object hypotheses segmented
simultaneously.

2.2.1.4 Re-Centering

The attention points that are peaks in the saliency map on wide-field images, tend to
be on the border of objects rather than on their center. Therefore, when performing
a gaze shift, the center of the foveal images does not necessarily correspond to the
center of the objects. We perform a re-centering operation to maximize the amount
of an object visible in the foveal cameras. This is done by letting the iterative
segmentation process stabilize for a specific gaze direction of the head. Then the
center of mass of the segmentation mask is computed. A control signal is sent to the
head to correct its gaze direction such that the center of the foveal images is aligned
with the center of segmentation. After this small gaze-shift has been performed,
the fixation and segmentation process are re-started. This process is repeated until
the center of the segmentation mask is sufficiently aligned with the center of the
images.

An example for the resulting segmentation is given in Figure 2.3b, in which
the object boundaries are drawn on the overlayed left and right rectified images of
the foveal cameras. Examples for the point clouds calculated from the segmented
disparity map are depicted in Figure 2.4. A complete labeled scene is shown on the
right of Figure 2.2.

2.2.2 Attention-based Segmentation of 3D Point Clouds

In this section, we present an alternative approach to the segmentation of point
clouds into object hypotheses as described in the previous section. It uses a Markov
Random Field (MRF) graphical model framework. This paradigm allows for the
identification of multiple object hypotheses simultaneously and is described in full
detail in [5]. Here, we will only give a brief overview.
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(a) Saliency Map of Wide (b) Segmentation on Overlayed (c) Disparity Map.
Field Image. Fixated Rectified Left and
Right Images.
Figure 2.3: Example Output for Visual Processes run on Wide-Field and Foveal
Images shown in Figure 2.2

(a) Point Cloud of a Toy Tiger (b) Point Cloud of Mango Can

Figure 2.4: Example 3D Point Cloud (from two Viewpoints) generated from Dis-
parity Map and Segmentation as shown in Figure 2.3c and 2.3b.

The active humanoid head uses saliency to direct its gaze. By fully reconstruct-
ing each stereo view after each gaze shift and merging these resulting partial point
clouds into one, we obtain scene reconstructions as shown in Figure 2.5. The fixa-
tion points serve as seed points that we project into the point cloud to create initial
clusters for the generation of object hypotheses.

For full segmentation we perform energy minimization in a multi-label MRF.
We use the multi-way cut framework as proposed in Boykov et al. [41]. In our
application, the MRF is modelled as a graph with two sets of costs for assigning a
specific label to a node in that graph: unary costs and pairwise costs.

In our case, the unary cost describes the likelihood of membership to an object
hypothesis’ color distribution. This distribution is modelled by Gaussian Mixture
Models (GMMSs) as utilized in GrabCuts by Rother et al. [188]. For each salient
region one GMM is created to model the color properties of that object hypothesis.

Pairwise costs enforce smoothness between adjacent labels. The pairwise struc-
ture of the graph is derived from a KD-tree neighborhood search directly on the
point cloud. The 3D structure provides the links between points and enforces neigh-
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Figure 2.5: Iterative scene modeling through a similar visual front end as shown
in Figure 2.2. Segmentation is applied to the point cloud of the whole scene by
simultaneously assuming several object hypotheses. Seed points are the fixation

points.
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bor consistency. Once the pairwise and unary costs are computed, the energy min-
imization can be performed using standard methods. The a-expansion algorithm
with available implementation [42, 119, 40] efficiently computes an approximate
solution that approaches the NP-hard global solution.

There are several differences of this approach from the one presented in Sec-
tion 2.2.1.3. First of all, no flat surface hypothesis is explicitly introduced. This
approach is therefore independent of the presence of a table plane. Secondly, object
hypotheses are represented by GMMs instead of color histograms and distributions
of disparities. And thirdly, several object hypotheses are segmented simultaneously.
This has been shown in [5] to be beneficial for segmentation accuracy over just keep-
ing one object hypothesis especially in complex scenes. However, the approach is
not real-time. Recently, the previous approach to segmentation has been extended
to simultaneously keep several object hypotheses segmented by Bergstrom et al.
[29].

2.3 Discussion

In this chapter, we presented the hardware and software foundations used in this
thesis. They enable the robot to visually explore a scene and segment objects from
the background as well as from each other. Furthermore, the robot can interact
with the scene with its arm and hand.

Given these capabilities, what are the remaining factors that render the problem
of robust grasping and manipulation in the scene difficult? First of all, the scene
model that is the result of the vision components is only a partial representation
of the real scene. As can be observed in Figure 2.5, it has gaps and contains noise.
The segmentation of objects might also be erroneous if objects of similar appearance
are placed very close to each other. Secondly, given such an uncertain scene model
it is not clear how to infer the optimal grasp pose of the arm and hand such that
segmented objects can be grasped successfully. And lastly, the execution of a grasp
is subject to random and systematic error originating from noise in the motors or
an imprecise model of the hardware kinematics and relation between cameras and
actuators.

In the following, we will propose different methods to (i) improve scene under-
standing, (ii) infer grasp poses under significant uncertainty and (iii) demonstrate
robust grasping through closed-loop execution.




Active Scene Understanding

The term scene understanding is very general and means different things dependent
on the scale of the scene, the kind of sensory data, the current task of the intelligent
agent and the available prior knowledge. In the computer vision community, it
refers to the ultimate goal of being able to parse an image (usually monocular),
outline the different objects or parts in it and finally label them semantically. A
few recent examples for approaches towards this goal are presented by Liu et al.
[137], Malisiewicz and Efros [143] and Li et al. [134]. Their common denominator
is the reliance on labeled image databases on which for example similarity metrics
or category models are learnt.

In the robotics community the goal of scene understanding is similar, however,
the prerequisites for achieving it are different. First, a robot is an embodied system
that cannot only move in the environment but also interact with it and thereby
change it. And second, robotic platforms are usually equipped with a whole sensor
suite delivering multi-modal observations of the environment, e.g., laser range data,
monocular or stereo images and tactile sensor readings. Depending on the research
area, the task of scene understanding changes. In mobile robotics, the scene can
be an office floor or even a whole city. The aim is to acquire maps suitable for
navigation, obstacle avoidance and planning. This map can be metric as for example
in O’Callaghan et al. [162] and Gallup et al. [85]; it can use topological structures
for navigation as in Pronobis and Jensfelt [178] and Ekvall et al. [71] or it can
contain semantic information as for example in Wojek et al. [232] and Topp [220].
Pronobis and Jensfelt [178], Ekvall et al. [71] and Topp [220] combine these different
representations into a layered architecture. The metric map constitutes the most
detailed and therefore bottommost layer. The higher up a layer in this architecture,
the more abstracted it is from the metric map.

If the goal is mobile manipulation, the requirements for the maps change. More
emphasis has to be placed on the objects in the scene that have to be manipulated.
These objects can be doors as for example in Rusu et al. [196], Klingbeil et al. [117]
and Petersson et al. [170] but also items we commonly find in our offices and homes
like cups, books or toys as shown for example in Kragic et al. [122], Ciocarlie et al.
[52], Grundmann et al. [95] and Marton et al. [148]. Approaches towards mobile
manipulation mostly differ in what kind of prior knowledge is assumed. This ranges
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from full CAD models of objects to very low level heuristics for grouping 3D points
into clusters. A more detailed review on these will be presented in Chapter 7.

Other approaches towards scene understanding exploit the capability of a robot
to interact with the scene. Bergstrom et al. [28] and Katz et al. [110] use motion
induced by a robot to segment objects from each other or to learn kinematic model
of articulated objects. Luo et al. [140] and Papadourakis and Argyros [164] segment
different objects from each other by observing a person interacting with them.

An insight that can be derived from these very different approaches towards
scene understanding is that there is yet no representation that has been widely
adopted across different areas in robotics. The choice is usually made dependent
on task, available sensor data and scale of the scene.

A common situation in robotics is that the scene cannot be captured completely
in one view. Instead, several subsequent observations are merged. The task of the
robot usually determines what parts of the environment are currently interesting
and what parts are irrelevant. Hence, it is desirable for the robot to adopt an
exploration strategy that accelerates the understanding of the task-relevant details
of the scene as opposed to exhaustively examining its whole surroundings.

The research field of active perception as defined by Bajesy [20] is concerned
with planning a sequence of control strategies that minimise a loss function while
at the same time maximise the amount of obtained information. Especially in
the field of active vision, this paradigm has led to the development of head-eye
systems as in Ballard [22] and Pahlavan and Eklundh [163]. They could shift their
gaze and fixate on task-relevant details of the scene It was shown that through
this approach, visual computation of task-relevant representations could be made
significantly more efficient. The active vision system utilized in this thesis is based
on the findings in Rasolzadeh et al. [182]. As described in Section 2.2.1, it explores
a scene guided by an attention system. The resulting high resolution detail of the
scene is then used to grasp objects. Other examples for active vision systems are
those concerned with view planning for object recognition like for example Roy
[190] or reconstruction like Wenhardt et al. [230]. Aydemir et al. [18] applied active
sensing strategies for efficiently searching for objects in large scale environments.

Problem Formulation In the following three chapters of this thesis, we study
the problem of scene understanding for grasping and manipulation in the presence
of multiple instances of unknown objects. The scenes considered here will be the
very common case of table-top environments. We are considering different sources
of information that will help us with this task. These can be sensors such as the
vision system and tactile arrays described in Section 2.1 or they can be humans
that the robot is interacting with through a dialog system.

Requirements The proposed methods have to be able to integrate multi-modal
information into a unified scene representation. They have to be robust to noise to
estimate an accurate model of the scene suitable for grasping and manipulation.
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Assumptions Throughout most of this thesis, we make the common assumption
that the dominant plane in the scene can be detected. As already noted by Ballard
[22], this kind of context information allows to constrain different optimisation
problems or allow for an efficient scene representation. However, we will discuss
how the proposed methods are affected when no dominant plane can be detected
and how they could be generalized to this case.

We bootstrap the scene understanding process through obtaining an initially
segmented scene model from the active vision system. First object hypotheses will
be already segmented from the background as visualized in Figure 2.2.

Throughout most of these next three chapters of the thesis, we are assuming that
we do not have any prior knowledge on specific object instances or object categories.
Instead, we start from assumptions about objectness, i.e., general characteristics of
what an object constitutes. A commonly used assumption is that objects tend to
be homogeneous in their attribute space. The segmentation methods described in
Section 2.2.1.3 use color and disparity as these attributes to group specific locations
in the visual input to object hypotheses. Other characteristics can be general object
shape as for example symmetry.

Approach As emphasized by Bajcsy [20], prediction is essential in active percep-
tion. Without being able to predict the outcome of specific actions, neither their
cost nor their benefit can be computed. Hence, the information for choosing the
best sequence of actions is missing.

To enable prediction, sensors and actuators as well as their interaction has to
be modelled with minimum error. Consider for example, the control of the active
stereo head in Figure 2.1a. If we had no model of its forward kinematics, we would
not be able to predict the direction in which the robot is going to look after sending
commands to the motors.

Modeling the noise profiles of the system components also gives us an idea about
the uncertainty of the prediction. For example, we are using the haptic sensors of
our robotic hand for contact detection. By modeling the noise profile of the sensor
pads, we can quantify the uncertainty in each contact detection.

In the following chapters, we will propose different implementations of the func-
tion g(-) in Equation 1.1 to make predictions about parts of the scene that have
not been observed so far:

in which the current estimate %; of the state of the scene is predicted to be % .
Additionally we are also interested in quantifying how uncertain we are about this
prediction, i.e., in the associated variance X;". We will study different models of the
scene state x but also different kinds of assumptions and priors about objectness.
These will have different implications on what can be predicted and how accurate.
The resulting predictions will help to guide active exploration of the scene, to
update the current scene model and to interact with it in a robust manner.
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In Chapter 4, we will use the framework of Gaussian Processes (GP) to predict
the geometric structure of a whole table top scene and guide haptic exploration.
The state x is modelled as a set of 2D locations x; = (u;,v;)” on the table. In this
chapter, we are studying two different scene representations and their applicability
to the task of grasping and manipulation. In an occupancy grid, each location has a
value indicating its probability p(x; = occ|{z};) to be occupied by an object given
the set of observations {z};. In a height map, each location has a value that is
equal to the height h; of the object standing on it. Using the GP framework, we
approximate the function g(-) by a distribution g(%;) ~ N (u, £) where &, = ;1 and
3 = X. As will be detailed in Chapter 4, this distribution is computed given a
set of sample observations and a chosen covariance function. This choice imposes
a prior on the kind of structure that can be estimated.

In Chapter 5, we explore how a person interacting through a dialogue system
can help a robot in improving its understanding of the scene. We assume that
an initial scene segmentation is given by the vision system in Section 2.2. The
state of the scene x is modelled as a set of 3D points x; = (z;, yi, zi)T. These are
carrying labels /; which indicate whether they belong to the background (I; = 0)
or to one of N object hypotheses (I; = j with j € 1...N). In this chapter,
we are specifically dealing with the case of an under-segmentation of objects that
commonly happens when applying a bottom-up segmentation technique to objects
of similar appearance standing very close to each other. We utilise the observation
that single objects tend to be more uniform in certain attributes than two objects
that are grouped together. Given this prior, a set of points {x}; that are assumed
to belong to an object hypothesis j and a feature vector z;, we can estimate the
probability p({x}; = j|z,) of the set to belong to one object hypothesis j. If this
estimate falls below a certain threshold, disambiguation is triggered with the help
of a human operator. Based on this information, the function g(-) improves the
current segmentation of the scene by re-estimating the labels of each scene point.

In Chapter 6, we focus on single object hypotheses rather than on whole scene
structures. We show how we can predict the complete geometry of unknown objects
to improve grasp inference. As in the previous chapter, the state of the scene is
modelled as a set of 3D points x; = (7,%;,2)7 and we want to estimate which
ones belong to a specific object hypothesis. Different to the previous section, our
goal is not to re-estimate the labels of observed points. Instead, the function g(-)
has to add points to the scene that are assumed to belong to an object hypothesis.
As a prior, we assume that especially man-made objects are commonly symmetric.
The problem of modeling the unobserved object part can then be formulated as an
optimisation of the parameters of the symmetry plane. The uncertainty about each
added point is computed based on visibility constraints.




Predicting and Exploring Scenes

The ability to interpret the environment, detect and manipulate objects is at the
heart of many autonomous robotic systems as for example in Petersson et al. [170]
and Ekvall et al. [71]. These systems need to represent objects for generating task-
relevant actions. In this chapter, we present strategies for autonomously exploring
a table-top scene. Our robotic setup consists of the vision system presented in
Section 2.2 that generates initial object hypotheses using active visual segmentation.
Thereby, large parts of the scene are explored in a few glances. However, without
significantly changing the viewpoint, areas behind objects are occluded. For finding
suitable grasp or for deciding where to place an object once it is picked up, a
detailed representation of the scene in the current radius of interaction is essential.
To achieve this, parts of the scene that are not visible to the vision system are
actively explored by the robot using its hand with tactile sensors. Compared to a
gaze shift, moving the arm is expensive in terms of time and gain in information.
Therefore, the next best measurement has to be determined to explore the unknown
space efficiently.

In this chapter, we study different aspects of this problem. First of all, we
need to find an accurate and efficient scene representation that can accomodate
multi-modal information. In Section 4.1 and 4.2, we analyse the feasibility of an
occupancy grid and a height map for grasping and manipulation.

Second, we need to find efficient exploration strategies that provide maximum
information at minimum cost. We compare two approaches from the area of mobile
robotics. First, we use Spanning Tree Covering (STC) as proposed by Gabriely and
Rimon [83]. It is optimal in the sense that every place in the scene is explored just
once. Secondly, we extend the approach presented in O’Callaghan et al. [162] where
unexplored areas are predicted from sparse sensor measurements by a Gaussian
Process (GP). Exploration then aims at confirming this prediction and reducing its
uncertainty with as few sensing actions as possible.

The resulting scene model is multi-modal in the sense that it i) generates object
hypotheses emerging from the integration of several visual cues, and ii) fuses visual
and haptic information.

29
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Algorithm 1: Pseudo Code for Scene Exploration

Data: Segmented point cloud S from active segmentation
Result: Fully explored P
begin
t=0, j=0
P = project(S)
while |Py| > 0 do
P = predict(P) p; = planNextMeasurements(P, P)
repeat
t++
z¢ = observe(P, pj)
P = update(P, 2¢)
until z; # occ
Jj++
end

end

4.1 Occupancy Grid Maps for Grasping and Manipulation

In this section, we analyse the suitability of a the traditional 2D occupancy grid
(OG) as a scene representation. It was originally proposed by Elfes [73] and is
nowadays widely used for mobile robotics. One of the assets of this representation
is that it is well suited for integrating measurements from different sources.

4.1.1 Scene Representation

The grid which is aligned with the table top, uniformly subdivides the scene into N
cells ¢; with coordinates (w;, v;). Each cell has a specific state s(c;). For simplicity,
we will refer to it as s;. It is defined as a binary random variable with two possible
values: occupied (occ) or empty (emp). It holds that p(s; = oce)+p(s; = emp) = 1.
We define the set P = {c; | 0 <i < N}, as the whole grid. Our goal is to estimate
p(s; = occ | {z}+), the probability for each cell ¢; to be occupied given a set of
sensor measurements {z}; up to point ¢ in time. Let P = Py U P, where Py, is the
set of cells whose state has already been estimated based on observations. P, is
the set of cells that has not been observed yet. Each cell is initialized with a prior
probability p(s; = occ) = 0.5. Our approach for scene exploration is summarized
in Algorithm 1.

Initially, we project the stereo reconstructed point cloud S of the scene on the
grid as follows. Disparity maps are gathered from several views of the robot head
on the scene. They are converted into 3D points and projected into a common
reference frame for all observations. Once aggregated, the whole point cloud is
cleaned to remove outliers. The labeling from the 3D object segmentation (dis-
cussed in Section 2.2.1) is applied to the remaining points identifying objects from
the background. These object points are placed into a voxel grid. This voxelized
representation is projected down into a 2D occupancy grid P for planning. Fig-
ure 4.1 displays this process and the resulting 2D map.
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Figure 4.1: Generation of an occupancy grid from individual views. (a) ARMAR
robot head that (b) gathers several views. (c) Views are projected into a common
reference frame and (d) cleaned to remove noise. (e) Points are labeled according
to the 3D object segmentation (Section 2.2). (f) Scene is voxelized. The voxels that
belong to objects are projected down into the map (g). Blue labels are unseen cells
and gray levels correspond to occupancy probability.

The initial P contains a large amount of unknown space that needs to be ex-
plored with the hand. The single steps in the main loop of Algorithm 1 will be
explained in the following sections.

4.1.2 Scene Observation

For visual exploration of the scene, we use the active vision system as presented
in Section 2.2.1. It produces an initial scene model segmented in background and
several object hypotheses. An example for such a model can be seen in Figure 4.1.

For haptic exploration we use the prozimal and the distal sensor matrices H),
and H, of one of the fingers of the Schunk hand. Our goal is to distinguish between
the cases when this finger is in contact with an object and when it is not. For
this purpose, we compute a noise profile of the sensor matrices. Let h, be the
vector of measurements formed through flattening H,, and similarly, hy be the
measurement vector corresponding to Hy. We model the distribution of these
random variables as multivariate normal distributions h,, ~ N (u,,3,) and hy ~
N (g, 34), respectively. The means and covariance matrices are computed from a
number of measurements recorded while the two sensor matrices were in a known
non-contact situation. A contact with an object can then be seen as a multivariate
outlier. For outlier detection, we compute the Mahalanobis distance between the
current measurement ht\p,d and the respective mean p,, 4.

d(hy) = \/(h, — )= (b, — ) (4.1)
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Note that the subscripts p and d are skipped in this equation for simplicity. If d(h;)
is greater than a threshold ¢, then we know that this haptic sensor matrix is in
contact and z; = contact. Otherwise, z; = —contact.

4.1.3 Map Update

For each movement of the haptic sensors along the planned path, we are receiving
a measurement z,41. Based on this and the current estimate p(s; = occ | {z}) of
the state of each cell s; in the occupancy grid, we want to estimate

- =occ | {z — (241 | 8i = oce) p(s; = oce | {z}4)
p(sz - | { }t+1) Zsi p(Zt+1 | Si)p(si | {Z}t)

(4.2)

In this recursive formulation, the resulting new estimate p(s, = occ | {z}¢41) is
stored in the occupancy grid. p(zi+1 | s;) constitutes the haptic sensor model. To
compute p(z:41 | 55 = emp), the current measurement hy ), 4 and Equation 4.1 is
used as follows

p(zt+1 | 5; = emp) = eXP(*% d(hiy1)) (4.3)
= ep(—g /(s — TS U ) (44)

For the case s; = occ, we empirically determined the following discrete proba-
bility values

occ) = 0.9 (4.5)

p(zt41 = —contact | s; = occ) = 1 — p(zp41 = contact | s; = occ). (4.6)

p(ze4+1 = contact | s;

An alternative to this way of modeling the sensor response (when in contact with
an object) is to collect a set of measurements. From this set a distribution could
be estimated similar to what is described in Section 4.1.2. However, given the
many different shapes of objects and the resulting variety of haptic sensor patterns,
modeling the opposite case of a non-contact is the simpler but still effective solution.

4.1.4 Map Prediction

In the traditional occupancy grid, cells that have not been observed yet will have a
probability p(s; = occ | {z}+) = 0.5, i.e. there is no information available about the
state of these cells. However, we know that cells in the grid that are close to occupied
spaces but are due to occlusions not directly observable, are likely to be part of the
occluding object. By modeling this spatial correlation, we can predict unobserved
places from observed ones. Instead of exploring the whole environment exhaustively,
we want to confirm the predicted map at specifically uncertain places. Recently,
O’Callaghan et al. [162] proposed that the spatial correlation in a 2D occupancy
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grid can be modeled with a Gaussian Process. The assumption of independence of
neighboring cells in traditional occupancy grids is removed.

A GP is used to fit a likelihood function to training data. In our case this is the
set of cells ¢, € Py and their estimated state s, of occupancy. Given the estimated
continuous function over the occupancy grid, we can then estimate the state s; of
the cells c; € P, that have not been observed yet. We will briefly introduce GPs
first for the simpler case of regression and then for the problem of classifying a cell
to be either occupied or empty which is the core of this section. For a more detailed
explanation, we refer to Rasmussen and Williams [181].

4.1.4.1 Gaussian Process Regression

A GP is defined as a collection of a finite number of random variables with a joint
Gaussian distribution. A GP can be seen as a distribution over functions with a
mean p and covariance . Given a set of input values x and corresponding target
values y, the goal in GP regression is to estimate the underlying latent function g(-)
that generated these samples. We will also refer to the set {x;, y; }ar as the training
set with cardinality M. Expressed as a linear regression model with Gaussian noise
€, the relation between input and target values can be modelled as follows:

9(xi) = o(x))"w, y;i=g(x;) +e (4.7)

with the noise
e~ N(0,0%)) (4.8)

following an independently and identically distributed Gaussian with zero mean
and variance o3,. w is a vector of weight parameters of the linear model. ¢(x;)
is a function that maps D-dimensional input data into an N-dimensional feature
space. Under this formulation, the likelihood of the training data given the model
is computed as a factored distribution over all training samples:

p(ylx, w) Hp Yilxi, w (4.9)
7l = o) "w)
= :1\/7 exp( T) (4.10)
= N(¢(x)"w, o31). (4.11)

If we use a zero-mean Gaussian prior on the weights w ~ N(0,%), then the
posterior likelihood p(w|x,y) is proportional to the product of the likelihood and
the prior
p(wlx,y) o p(ylx, w)p(w) (4.12)
which is again Gaussian.
We are primarily interested in predicting the target value 3’ for new input
values x’. The predictive distribution p(g(x’)|x’,x,y) is computed by averaging
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the outputs of all possible linear models weighted with the posterior distribution of
the model given the training set:

Plg(x') %, x,y) = / plg(x) |, W)p(wlx, y)dw. (4.13)

Since all the factors over which we want to integrate follow a Gaussian distri-
bution, we can evaluate the integral in Equation 4.13 analytically. The predictive
distribution is then Gaussian again and defined as g(x’) ~ A (p, 2) where

(x',x)T[K(x,x) + o3, 1] 'y (4.14)
X', x

w==kK
Y=k, x) -k, x)T[K(x,x)+ 03,1 k(x',x). (4.15)

The entries of the Gram matrix K(x,x), at row a and column b are defined
based on a covariance function k(x,,Xp) with some hyperparameters 6 and with
a,b € {1...M}. This covariance function is related to the function ¢(-) from
Equation 4.7 as follows:

I{/’(meb) = (b(xa)TEw ¢(Xb)' (416)
The most widely used covariance function is the squared exponential (SE)
k(xa,%p) = 07 exp(—((xa — xp) T L7 (%0 — %3))/2) (4.17)

where the hyperparameters are o;, the signal variance, and L, the identity matrix
multiplied with the length scale [. There is a large set of other covariance functions
proposed in the literature. More details about those applied in this thesis can be
found in Appendix A. As will be shown later in Section 4.1.6, the simple SE kernel
achieves the best results for scene prediction during exploration.

The kind of covariance function as well as its hyperparameters have to be chosen
such that g(-) optimally models the underlying process. As suggested in [181],
this model selection problem can be treated in a Bayesian way. In this thesis,
we want to choose the hyperparameters of a given covariance function such that
the marginal likelihood p(y|x, @) of the data given the model is maximised. This
marginal likelihood is defined as follows:

plylx, 0) = / p(ylx. £, 0)p(E|x)dE (4.18)

where f = g(x). A desirable property of p(y|x, ) is that it automatically trades
off model fit against model complexity. This can be observed when writing out the
logarithm of the marginal likelihood. The integral can be computed analytically
since both, the prior and the likelihood in Equation 4.18 are Gaussian:

1 _ 1 M
log p(y|x,0) = finK ly — 3 log | K| — - log 27 (4.19)
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where K is short hand for K (x,x)+03%,1. The first part of the sum in Equation 4.19
reflects how well the data fits the model. The second part penalizes model com-
plexity and is only dependent on the covariance function and its input. The last
part is a normalisation term. By equating the partial derivatives of the log marginal
likelihood with respect to the hyperparameters to zero, we can solve for the optimal
hyperparameters of a given covariance function and training set.

4.1.4.2 Gaussian Process Classification

Predicting the binary state of a cell in an occupancy grid is a classification rather
than a regression problem. Our training set consists of the coordinates (w,v), of
all the cells ¢, € Py, as x and their observed state s, as y. This state is binary and
can be either occupied or empty. Our goal is to compute p(s; = occ | {z}+), the
probability that the state s; of a cell ¢; € P, is occupied. Note, that this cell has
not been observed yet.

The basic idea behind Gaussian Process classification is very simple. Let x’ = ¢;
and y' = s;, then we can compute p(y’ = occ | {z}+) by squashing the predictive
distribution g(x’) through the cumulative Gaussian function:

Py = oce | {z}) = 1/2- (1 +exf(g(x')/V2)). (4.20)

However, the distribution g(x’) cannot be computed analytically as in the case of
regression where the posterior p(w|x,y) is Gaussian. For classification where the
target values are either +1 (occupied) or —1 (empty), the likelihood p(y;|x;, w) of
a data point given the model is a sigmoid function

p(yi|xi, W) = U(yix?W). (4.21)

The likelihood p(y|x, w) of the whole training data will therefore be non-Gaussian.
Even if we use the same prior on the weights w, the posterior as in Equation 4.12
will be non-Gaussian. Therefore, calculating the predictive distribution g(x’) as in
Equation 4.13, requires evaluating an integral over a non-Gaussian posterior. Dif-
ferent approximations for this problem have been proposed. We follow the Laplace
approach in which the posterior p(w|y,x) is approximated as a Gaussian.

An example for this prediction given a 2D map of partially explored scene is
given in Figure 4.2. In Section 4.1.6, we will show quantitatively on synthetic data
that a GP predicted map is a reasonable estimate of the ground truth.

4.1.5 Action Selection for Exploration

Given a partial map of the environment, we want to efficiently explore the remain-
ing unknown parts with haptic sensors, i.e., we want to minimize the amount of
measurement actions needed to reach a sufficient scene understanding. We will
present two algorithms for planning a measurement path in the given map. First,
we will use Spanning Tree Covering [83]. Second, we propose an active learning
scheme based on the predicted map.




36 CHAPTER 4. PREDICTING AND EXPLORING SCENES

(a) Ground truth 2D (b) Occupancy grid (c) Probability of (d) Predictive mean and

occupancy grid after camera occupancy for each variance for 50th row of
Measurements cell predicted by occupancy grid along
taken from the left GP. 50th row with training points.
side. labeled.

Figure 4.2: Example for the prediction of a 2D map from camera measurements
using GPs.

4.1.5.1 Spanning Tree Covering

STC tackles the covering problem that can be formulated as follows. Given the
haptic sensor of size d and a planar work-area P,, the sensor has to be moved along
a path such that every point in P, is covered by it only once.

STC first defines a graph G(V, £) on P, with cells of size 2d, the double tool size.
In our case where G(V, £) has uniform edge weights, Prim’s algorithm [175] can be
used to construct a Minimum Spanning Tree (MST) that covers every vertex V in
G at minimum cost regarding the edges £. The haptic measurement path is defined
on the original grid with cells of size d such that the MST is circumnavigated in
counterclockwise direction. This circular path starts and ends at the current arm
position. In case an obstacle is detected along the path, a new spanning tree has
to be computed based on the updated grid. An example for such a path is shown
in Figure 4.3a and 4.3b

4.1.5.2 Active Learning

Our goal is to estimate the scene structure early in the whole exploration process
without exhaustive observation. Thus, we want to support the map prediction by
selecting most informative observations. Let us consider a set of measurements
made along an MST as described above. These measurements will tend to be
very close to each other without leaving any unobserved holes in the map. The
GP prediction of the map based on these measurements will not be significantly
different from the prediction based on only half of it. By using a GP and thereby
exploiting spatial correlation in a map, the probability for a cell to be occupied can
be inferred from its neighbors without explicitly observing it.

We will present exploration strategies that follow an active-learning paradigm of
selecting new measurement points that maximize the expected information gain. As
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(a) Initial Prim STC (b) Updated scene and (c) First measurement (d) Updated scene and

path. weighted STC path path along PRM. measurement path
after 250 after 250
measurements. measurements.

Figure 4.3: Examples for potential measurement paths generated with different
exploration strategies. Red stars label current and previous traversed arm positions,
respectively.

it has been shown by Chaloner and Verdinelli [49], this is equivalent to minimizing
the predictive variance ¥ from Equation 4.15.

¢’ = arg max Ui(ci) (4.22)

u

It can occur that the hand is detecting an obstacle along the chosen measurement
path. It then has to re-plan and would potentially never reach the initially selected
optimal observation point. Instead of considering the predictive variance only, the
expected gain in information of the whole measurement path has to be taken into
consideration. Different to Uy, the following utility functions take this path into
account additionally to the predictive variance. The first one is

Us(c;) = a¥; — (1 — a) d(cs, ¢;) (4.24)

where ¥; is the predictive variance of the cell ¢; and d(cs, ¢;) is any distance function
of the current position of the arm c, and cell ¢;. The parameter 0 < a < 1 is user
determined. The closer it is to 1 the more important becomes the value of the
predictive variance.

The second utility function uses a discount factor 4.

R
Us(ci) = Y 6"Sy() (4.25)
r=1

where R is the number of measurement that are needed to reach the final cell c;
along the path p = [cs41 ... ¢;]. Not just the final cell ¢; is considered. Instead, the
predictive variance of all the cells along the path contributes to the utility value of
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[ [[ STC [ PRM |
oG Occupancy grid explored through Span- | Occypancy grid explored through Proba-
ning Tree Covering. bilistic Roadmap approach.
GP Gaussian Process-based map explored | Gaussian Process-based map explored
through Spanning Tree Covering through Probabilistic Roadmap approach

Table 4.1: Summary of scene models and exploration strategies evaluated in this
section.

c;. The parameter § has to be chosen by the user. It steers how steep the decrease
of influence of the cells in the path are dependent on their distance from the current
arm position.

To find the global maxima of Equation 4.22 we have to maximize over all cells
c; in P, and over all the paths through which a cell can be reached from c,. Since
this is a prohibitive number of possibilities to compute, we use sampling techniques
to find a local maxima of the utility functions. We are building a probabilistic road
map (PRM) in the two dimensional C-space of the occupancy grid [111].

A set T of cells from P is sampled according to their predictive variance and
connected to the PRM. The Dijkstra algorithm is used to compute the shortest
path from the current arm position to each cell in T through the PRM. The result
is used to compute the utility of each cell in 7. An example for the PRM and
therefore the possible paths to traverse is shown in Figure 4.3c and 4.3d.

4.1.6 Experiments

In this section, we evaluate the proposed scene models and exploration strategies.
We are specifically interested in how accurate the scene estimates are when using
an occupancy grid map or a Gaussian Process based prediction. Furthermore, we
want to compare the different exploration strategies in terms of how fast an accurate
scene estimate is achieved. The different combinations of scene representations and
exploration methods are summarized in Table 4.1.

4.1.6.1 Synthetic Data Set

Data Set and Measure of Comparison We generated 100 different 2D occu-
pancy grids (70 x 70 cells) of which an example appears in Figure 4.2a. Every scene
contains ten objects that can either be of circular, elliptical or rectangular shape
with a random size, aspect ratio, orientation and position. Overlapping is allowed
so that fewer than ten connected components can occur as well as more complex
contours.

For every scene, we simulated three camera observations made from a fixed
position on their left side with a random direction. As a sensor model, we used
a beam model with a Gaussian profile [73]. Given a measurement, the occupancy
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grid gets updated according to Equation 4.2. An example for the result of this
simulation is shown in Figure 4.2b.

We posed the validation problem of occupancy grid estimation as a binary clas-
sification into empty or occupied cells. For each estimated grid at any time in the
exploration process, the number of false and true positives can be computed for
different thresholds resulting in an ROC curve. For evaluating the development of
this curve over time, we choose the area under the ROC curve (AUC) as a measure.
It corresponds to the probability that the state of a cell is correctly classified.

Covariance Functions Compared O’Callaghan et al. [162] claim that the
neural network covariance function is especially suitable for predicting the non-
stationary behavior of a typical map data set. That data is recorded from indoor
and outdoor environments either with hallways, rooms, walls or streets bounded by
buildings. However, evaluations on our experimental data showed superior perfor-
mance when using the squared exponential covariance function. It poses a better
prior for scenes in which blob-like objects are spread on a table.

We predicted each of the 100 occupancy grids with a GP by sampling differ-
ent numbers of training points from the space observed by the camera and then
querying p(s; = occ | {z}+) for ¢; € P,. We compared seven different covariance
functions with each other. Among these are the already discussed neural network
covariance function (NN), the squared exponential function with and without au-
tomatic relevance detection (SE or SEARD), the Métern covariance function with
different parameters v (Mat) and the rational quadratic (RQ). A more detailed
explanation of these kernels can be found in Appendix A. While the SE covariance
function is determined by only one length scale, the others expose more flexibility.
For example SEARD can be parameterized in terms of its hyperparameters and
adapt the length scale of each input dimension according to its detected relevancy.
An RQ kernel can be seen as a scale mixture of SE kernels of different length scales.
And a Mat kernel is characterized by varying degrees of smoothness.

Table 4.4 lists the classification accuracy given different kernels and number of
samples from the free space. Since the occupied space is significantly smaller than
the free space, we keep the number of samples from there fixed to a maximum of
200 points. Points are sampled according to their confidence.

SEARD always outperforms the other kernels. For visualisation, the corre-
sponding ROC curves of all kernels for 400 samples are shown in Figure 4.5a. They
show that the neural network kernel is clearly outperformed by all the other kernels.
The difference between the remaining kernels is not large. Furthermore, Figure 4.5b
shows that the number of samples from the free space does not have a significant
influence on the classification performance.

Prediction vs Occupancy Grid An important question is whether the GP
makes a valid prediction of the scene map and how this compares to the traditional
occupancy grid. In an OG, only those estimates for p(s; = occ | {z};) are different
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‘ Samples ‘ Matl  Mat3  Math NN RQ SEARD SE

200 0.9119 0.9167 0.9176 0.9041 0.9158 0.9191 0.9192
400 0.9152  0.9207 0.9220 0.9035 0.9198 0.9226 0.9218
600 0.9156 0.9207 0.9223 0.9023 0.9171 0.9242 0.9234
800 0.9162 0.9230 0.9243 0.9082 0.9206 0.9265 0.9256

Figure 4.4: Evaluation of classification accuracy for different kernels and number
of samples. Mat: Matern Class. NN: Neural Network. RQ: Rational Quadratic.
SEARD: Squared Exponential with Automatic Relevance Detection. SE: Squared
Exponential.

1 : N
§ —— Matl §
k> — Mat3 2 8
Q? —— Math ﬁcj
2 NN E — 200
& ~ RQ = —— 400
2 i —_  SE — 600
. f | | SEARD | | 800
0 0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1
False Positives False Positives

(a) ROC Curves for different covariance functions (b) ROC Curves for SEARD covariance function
and sample size 400. and different sample sizes.

Figure 4.5: Visualisation of classification accuracy through ROC curves for different

covariance functions and sample sizes. While the choice of covariance function can

make a significant difference in classification accuracy, the number of samples does

not.

from the initial value of 0.5 for which at least one measurement has been obtained.
However, the GP predicts occupancy probability for all cells. To confirm that this
inference is valid, we calculated the mean AUC for all occupancy grids after they
have been observed by the camera and compared it to the mean AUC of the GP
predicted maps. While for the unpredicted occupancy grid this value is 0.765205,
it is 0.90705 for the predicted maps; a clear increase of 18%. Therefore we conclude
in agreement with O’Callaghan et al. [162] that a GP prediction provides a valid
inference about regions of the scene in which no measurements are available.
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[ Variance

[

Trade-Off

| Discount

Scene explored through PRM
approach with utility func-
tion based on variance of goal
point (Equation 4.22).

Scene explored through PRM
approach with utility func-
tion based on variance of goal
point traded-off with dis-
tance to travel there (Equa-

Scene explored with a PRM
using a utility function that
includes variance of all posi-
tions along the path to the
goal (Equation 4.25)

41

tion 4.24).

Table 4.2: Summary of the three PRM-based exploration strategies differing in
utility function. These are evaluated on the scene estimate modelled as OG or GP.

Exploration Strategies Compared We compare the different exploration strate-
gies based on the mean and variance of the AUC measure over time and all synthetic
scenes. We start from the scenes partially explored with the camera. As a kernel,
we use SEARD.

Utility Functions Compared Three functions were proposed in Section 4.1.5.2 that
incorporate uncertainty in the map prediction and/or distance to traverse. They
are summarized in Table 4.2. Figure 4.6 show the results for the OGs and for the
GP predicted maps. There is a clear difference between the utility functions. The
discounted version (Equation 4.25) performs best both in terms of mean and vari-
ance in the OGs and GP predicted maps. This is due to the explicit consideration
of the whole exploration path instead of just a high predictive variance goal point
that might never be reached.

However when compared to our previous results in [3] that were derived on
a smaller dataset, the difference between the utility functions especially for the
GP maps is not as pronounced. In [3], we used the simple squared exponential
covariance function that has a fixed length scale. Figure 4.7 shows the development
of the map accuracy when using this kernel instead of SEARD. They confirm the
results in [3] by also showing a more significant difference between the three utility
functions.

The reason for the superior performance of the simple kernel over SEARD lies
in how we learn the hyperparameters. Only once in the beginning they are learnt
through maximizing the log marginal likelihood given the GP prior and the training
data as described in Section 4.1.4.1. During the exploration process, only the Gram
matrix K is updated with new data. Since the SEARD kernel is more flexible, the
point estimate of its hyperparameters leads to an overfitting to the initial map data.
This effect is less pronounced when using the simpler SE kernel.

A solution to this problem would be to iteratively learn also the hyperparam-
eters in an online GP approach or to assume an additional prior over the hyper-
parameters. Instead of computing a maximum likelihood point estimate through
Equation 4.19, one could then compute the maximum a posteriori estimate, i.e., a
distribution over hyperparameters.




42 CHAPTER 4. PREDICTING AND EXPLORING SCENES

1 1
iegapp S
&) 0.9 \msmabweﬁtd*“““‘U = o
o) : o)
= = 0.95
— —
[9) 9]
S S
E | £
= 0.8 3 00
2 £ o
< <
0.75 : : 0.85 : :
0 20 40 60 0 20 40 60
Measurement steps /50 Measurement steps /50
- - - Variance Mean —#— Variance STD - - - - Trade Off Mean
Trade Off STD —— Discount Mean Discount STD

Figure 4.6: Mean and standard deviation of area under ROC curve (AUC) using
different utility-based exploration strategies and SEARD kernel. Left) Classifica-
tion performance averaged over 100 occupancy grids (OG) and shown over time.
Right) Classification performance averaged over 100 Gaussian Process (GP) based
predicted grids. Discounted predictive variance outperforms pure variance and
trading off as utility values both in the OG and GP case.

STC versus PRM We also compared STC based exploration with the one based
on PRM. Measurement paths are planned such that each c; € P, is traversed only
once. Figure 4.8 directly compares the results for the occupancy grids and for the
GP predicted maps. The estimation of the occupancy grid converges relatively fast
towards ground truth when traversed using STC.

Furthermore, Figure 4.8 shows a comparison of the development of the predictive
variance during haptic exploration. Intuitively, this is a measure of uncertainty over
the map estimate. We can see that on average the PRM-based approach decreases
uncertainty about the scene structure faster.

Summary Figure 4.8 contains the results for the discounted utility function for
direct comparison with the STC-based exploration. GP predicted maps traversed
based on the discounted utility are more accurate early in the exploration process.
This is an expected result since here points of high variance are chosen to be mea-
sured first. They will therefore have a high positive influence on the quality of the
prediction. However, the occupancy grid does not converge as fast towards ground
truth as in the STC-based exploration. This is because the PRM-based exploration
might traverse a number of cells more than once.

We conclude that if a good map estimate is needed quickly, active learning based
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Figure 4.7: Mean and standard deviation of area under ROC curve (AUC) using
different utility-based exploration strategies and SE kernel. Left) Classification per-
formance averaged over 100 occupancy grids (OG) and shown over time. Right)
Classification performance averaged over 100 Gaussian Process (GP) based pre-
dicted grids. Discounted predictive variance outperforms pure variance and trading
off as utility values both in the OG and GP case.

exploration is advantageous over systematically traversing the space. If there is time
for an exhaustive exploration, STC-based measurement paths are more beneficial.

4.1.6.2 Demonstration in the Real World

In this section, we demonstrate our approach for the scenario of table-top explo-
ration populated with several unknown objects using both, point clouds recon-
structed from a stereo camera and haptic data from a robotic hand. As exploration
strategy we consider STC and a PRM based scheme with the discounted utility
function defined in Equation 4.25.

The real world scene contains three objects. For visual exploration, we manually
select the initial fixation point for two of them. This could be replaced by using an
attention system. The objects are segmented and stereo reconstructed as described
in Section 2.2.1. The resulting point cloud is projected onto an occupancy grid
aligned with the table. By excluding the third object from visual observation, we
can demonstrate the map update upon finger contact. Examples for the occupancy
grid are given in Figure 4.9b and 4.10b.

In this stereo based grid, we can now detect locations that were not observed
with the vision system. The reachable unexplored spaces are explored with the
haptic sensors on the hand. For doing so, we are using one of the three fingers
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Figure 4.8: Comparison between Spanning Tree Covering (STC) based exploration
method and discounted utility based method. Left) Mean and variance of area un-
der ROC curve (AUC) for occupancy grids (OG) as well as Gaussian Process (GP)
based prediction. Discounted utility based exploration achieves a more accurate
GP prediction early in the process and keeps this accuracy over time as visible in
the low standard deviation. STC explores the unknown space in the OG faster.
Right) Mean and variance of sum of predictive variance. Discounted utility-based
exploration decreases the overall uncertainty about the scene structure faster.

pointing downwards as shown in Figure 4.9c. The hand is moved at a constant
height over the table. The haptic sensor arrays on the finger are always pointing in
the direction of movement. Planning is done in a slice of the robot task space that is
aligned with the table top. This is a reasonable simplification since all the points on
the table within a radius of 780mm are reachable with a valid joint configuration.
For more complex environments planning has to be done in the six-dimensional
C-space of the arm. To this end, other stochastic planning methods besides PRM
have been proposed as for example Rapidly-exploring Random Trees (RRTS) [125].
To adapt the proposed exploration strategies accordingly is considered as future
work.

The fingers of the Schunk Hand are approximately 30 x 30mm thick. Therefore,
one cell in the planning grid has to have the same measures to allow for a rotation
around the axis of the finger without entering a neighboring cell. Compared to the
stereo based grid with a resolution of approximately 5 x 5mm this is quite coarse.
However, this also reduces the planning space. For every measurement, both grids
are updated in parallel: one cell in the planning grid, a set of 6 x 6 cells in the
stereo grid.
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(a) Initial STC based plan. (b) Initial OG from stereo.

(d) STC based plan after 73  (e) Stereo OG after 73 steps. (f) Scene fter 73 steps.
steps.

Figure 4.9: Snapshots from an exploration using an STC based plan (covers only

reachable workspace). Left Column) Coarse planning grid for the finger. Middle

Column) Fine grid for stereo data.

In Figure 4.9, the STC based measurement path planned on the initial occu-
pancy grid is shown as well as the updated grid after 73 measurement steps. As
expected from the results on the synthetic data, the area close to the starting po-
sition of the hand at the top left corner is explored systematically without leaving
holes. In Figure 4.10, the first PRM based measurement path is shown as well as
the updated grids after 68 measurements. The area close to the start position is
not yet fully explored, but the next measurement path leads towards the lower left
of the grid that has a high uncertainty.

Opposed to the synthetic experiments, in the real world, objects can move upon
contact with the hand. This situation can be observed when comparing Figure 4.9¢
and 4.9f or 4.10d and 4.10h. To avoid the map becoming inconsistent one could
employ visual tracking.
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(a) Initial PRM based (b) Initial OG from (c) Initial Prediction of (d) Initial Scene.
plan. stereo. OG.

(e) PRM based plan (f) Stereo OG after 68 (g) Prediction after 68 (h) Scene after 68 steps.
after 68 steps. steps. steps..

Figure 4.10: Snapshots from an exploration using an PRM based plan (covers only

reachable workspace). Left Column) Coarse planning grid for the finger. Middle

Left Column) Fine grid for stereo data. Middle Right Column) GP Predicted Grid

using fine scale.

4.2 Height Map for Grasping and Manipulation

In the previous section, we have proposed a method for multi-modal scene explo-
ration. Initial object hypotheses formed by active visual segmentation are confirmed
and augmented through haptic exploration. The current belief about the state of
the map is updated with measurements and yet unknown parts of the map are
predicted with a Gaussian Process. Through the integration of different sensor
modalities, a more complete scene model can be acquired by the robot. We showed
that the prediction of the scene structure leads to a valid scene representation even
if the map is not fully traversed. Furthermore, different exploration strategies were
proposed and evaluated quantitatively on synthetic data. Finally, we showed the
feasibility of our scene representation and exploration strategies in a real world
scenario.

The proposed method has been studied using the classical occupancy grid as a
scene representation. Although this representation is useful for tasks like collision
avoidance or detection of free space for placing objects, it does not provide accurate
enough information for grasp and manipulation planning.

In this section, we will re-use the previously gained insights and apply them to
the problem of representing a table-top scene as a height map. This 2.5D repre-
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sentation is good compromise between a traditional occupancy grid and a full 3D
reconstruction. It provides a simplified 3D model and is therefore better suited
for manipulation and grasp planning. In [85], the authors showed that a 2.5D
representation provides a good surface model and is more efficient than a full 3D
reconstruction at the expense of some details.

As opposed to the previous approach in which scene understanding was posed
as a classification problem (free or occupied space), here we treat it as a regression
problem. As an exploration strategy, we adopt the PRM method using a discounted
utility function that we showed to work best for rapidly producing a valid scene
prediction. As a covariance function, we use the simple squared exponential kernel
that provides the most suitable prior in our scenario.

Additionally, we will study the performance of different inference methods.
While in the previous section we have used a sampling approach, here we will
also evaluate approximate inference methods.

As an additional virtual sensing modality, we will consider object recognition
and pose estimation.

4.2.1 Scene Representation

The height map, which is aligned with the table top, uniformly subdivides the scene
into N cells ¢; with coordinates (w;,v;). Each cell has a state z; that specifies its
height h;. We model z; as a normally distributed random variable with mean z;
and covariance P;. Our goal is to obtain an estimate Z; for the real state x; given
a sensor measurement z; at the point ¢ in time. We use the Kalman Filter as an
estimator. Since we are assuming a static environment, the process model that
predicts how the state of a cell changes over time becomes trivial:

Tit4+1 = Tit (4.26)

where ¢t and t + 1 indicate subsequent points in time. We are considering three
different sensor modalities s,, all providing a height measurement directly. We
assume that the measurement noise €, ~ N (0, R,;) of each of them is additive and
Gaussian with zero mean and a specific covariance R,.. The details of these models
are explained in further detail in Section 4.2.2. The measurement model that relates
the true state z; of a cell ¢; to a noisy measurement z(; .y is therefore

Z(ir) = Ti T €. (4.27)

We define X = {c; | 0 < i < N}, as the complete map estimate. Let X = A, U X,
where X}, is the set of cells whose height value has already been estimated based
on observations. X, is the set of cells that has not been observed yet.

Additionally to updating the state estimate Z; for each cell ¢; with each observa-
tion, we also update the covariance P;. Intuitively, we can see P; as a representation
of the uncertainty about &;. The smaller it is, the more reliable is the current state
estimate. Equivalent to X', we define P = {P; | 0 < ¢ < N} as the complete
uncertainty map consisting of P = P U P,,.
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Algorithm 2: Pseudo Code for Scene Exploration

Data: Point cloud S segmented into a set of object hypotheses os
Result: Fully explored X
begin
t=0, =0
[X, P] = generateHeightMap(S)
foreach o5 € S do
id = recognize(os)
if id # 0 then
0 = estimatePose(os, id)
[X, P] = update(X,P,id, o)
end
end
while |Xy| > 0 do
X = predict(X)
p; = planNextMeasurements (X, %)
repeat
t++
z¢ = observe(X,p;)
[X, P] = update(X,P, zt)
until 2z: # occ
Jj++

end
end

Our approach to scene understanding is summarized in Algorithm 2. As a first
step, a 3D point cloud & from the scene is gathered. The function generate-
HeightMap uses this as an input to build an initial scene model consisting of X
and P. The next step is to recognize object hypotheses generated through an
active segmentation approach and estimate their pose. If this is successful, the
initial & and P are updated. The remaining unexplored space X, is predicted
and then explored haptically with an active learning scheme. In the following, we
will introduce the three different sensor modalities in more detail and describe the
exploration planning and map update steps.

4.2.2 Sensor Modalities

In this section, we present three different sensing modalities. They provide height
measurements of positions in the scene. The sensor models including measurement
noise are formalized.

4.2.2.1 Stereo Vision

For acquiring an initial point cloud from the scene, we use the active vision system
presented in Section 2.2. An example point cloud can be seen in Figure 4.11a.
For creating a height map from stereo measurements, we are applying a similar
approach as presented in Gallup et al. [85].




4.2. HEIGHT MAP FOR GRASPING AND MANIPULATION 49

From Point Cloud to Height Map The basis of the height map computation
is formed by a probabilistic 3D occupancy grid of the point cloud. We use the
technique proposed in Wurm et al. [233] that computes an octree for an efficient
decomposition of the space. The method employs the occupancy update technique
proposed by Moravec and Elfes [157]. Given a uniform prior (p(v) = 0.5) over the
whole grid, all the stereo observations are incorporated to determine the probability
of each voxel v to be occupied.
In detail, the value of the vote ¢, for each voxel is computed as follows:

By = —1 ifl(v) < lfree,
R S R T 1 A

where [(v) returns the current log occupancy value of voxel v. As threshold, we use
log occupancy values of l,c. = 0.85 and lge. = -0.4, corresponding to probabilities
of 0.7 and 0.4 for free and occupied volumes as proposed by Wurm et al. [233].

Given these votes, our goal is to compute the height of all cells ¢; on the table.
Let {v;}n, refer to the set of voxels that have the same (w,v) coordinates as c;
but whose voxel center is positioned at different heights h;. They can also be seen
as a column on cell ¢;. Then the height value h; 1y of this cell is chosen to be

¢(3,1) = min D= Y b (4.28)

’ V€V>hj VEV<hj

h(i,1) =argy,; cf; 1)- (4.29)

The set V- p; contains all those voxels whose height is bigger than h;. Similarly,
V<n, contains all those voxels whose height is smaller than h;. This minimisation
results in a height estimate h(; ;) in which the majority of voxels below it are
occupied and the majority of voxel above it are empty. An example for the estimated
height map of the point cloud in Figure 4.11a is shown in Figure 4.11b and 4.11c.
An example for a cost map containing Cli) 88 computed in Equation 4.28 is shown
in Figure 4.11d. Given N; voxels with ¢, # 0 in the column on cell c;, C?i,l) can
have values between —N; and 0. We therefore normalise and shift this cost to map
it to a range between 0 and 1.

+1 (4.30)

Measurement Noise Model As discussed above, each measurement modality
r has an individual noise model with €, ~ A(0, R;). The measurement covariance
R for stereo vision and a specific cell ¢; is computed as follows. The normalized
cost value ¢(; 1) of choosing h; 1y will be high for columns that contain many noisy
3D points. For the corresponding cells on the table, we want this uncertainty about
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Figure 4.11: From a 3D point cloud to a height map.

their true height value to be reflected in the measurement covariance. Therefore,
we parameterize Ry with ¢(; 1) as follows

Rl (6(1,1)) = E(i71) * 0'% (431)

where o is a user selected fixed noise variance. This parameterization has the effect,
that height values determined with a higher cost also have a higher measurement
noise variance.

4.2.2.2 Recognition and Pose Estimation of Known Objects

The second measurement modality recognizes objects and estimates their pose.
This gives us information beyond the directly visible parts of the scene like object
height estimates in occluded parts. Different from the other two sensing modali-
ties, object recognition and pose estimation can be considered as a wvirtual sensor.
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Figure 4.12: Wide-field camera view and segmentation results of objects in the
scene.

In Persson et al. [169], this is defined as a collection of several physical sensors
dedicated to a specific recognition task of real world concepts. The weights of the
different data streams can be learned by for example AdaBoost as in [169] or by
soft cue integration using an SVM as proposed by Bjérkman and Eklundh [33].
For simplicity, here we empirically determined values that result in robust object
recognition.

For each visited view point, the object in the center of the image is segmented
from its background using the vision system described in Section 2.2.1. Figure 4.12
shows an example. The identity of the foveated object is sought in a database of 106
known objects. Two complementary cues are used for recognition; scale invariant
features (SIFT) [139] and color co-occurrence histograms (CCH) [88]. The cues
are complementary in the sense that SIFT features rely on objects being textured,
while CCH works best for objects of a few, but distinct, colors. An earlier version
of this system, including a study on the benefits of segmentation for recognition,
can be found in Bjérkman and Eklundh [33].

If an object is identified and it is known to be either rectangular or cylindrical,
the pose is estimated using the cloud of extracted 3D points, with object dimensions
given by a lookup in the database. However, if object identification fails, i.e. if the
object is unknown or the segmented region does not correspond to a real physical
object, the recognition modality is ignored.

The 3D point cloud is initially projected down to the 2D supporting surface,
where fitting of points to object models is done using random sampling (RANSAC)
[80]. For cylinders, pairs of sample points are drawn from the point cloud. For each
such pair, two hypothetical 2D circles are found with the radius provided by the
object identity. These hypotheses are then tested against the full set of points. The
one with the minimum median distance from each point to the corresponding circle
is selected as an initial estimate. The selected hypothesis is then refined as follows.
The full point cloud is moved so as to be aligned with a distance map based on an
ideal circle of the known radius, using sums of distances as fitting criteria.

For rectangular object, the fitting procedure is similar. Pairs of points are drawn
and six hypotheses are given for each pair, assuming that they fit either side of the
known object. Unlike the cylinders, additional to the position also the orientation
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Figure 4.13: Results of the pose estimation approach applied to the segmented
point clouds shown in Figure 4.12. Left) Pose estimation results. Right) Error
probability of the pose estimation.

needs to be estimated. The most likely orientation is defined as the one that leads
to the smallest rectangle that encloses at least 90% of the 2D points in the projected
point set. The position of the rectangle is refined with a distance map similar to the
circle. The combination of random sampling, least median fitting, distance maps
and enclosing distances is chosen to ensure maximum robustness in the presence of
a large amount of outliers.

Once the position and orientation of an object is estimated, a probabilistic height
map is computed. This is done by anisotropic blurring of an ideal height map.
The amount of blur is assumed to be proportional to the errors of the individual
3D points which is dependent on their depth relative to the camera and a given
amount of image noise. Blur is also introduced to account for errors in each object
parameter. This is approximated by the shape of the distance map fitness function,
when each parameter is varied. Example results of the pose estimation and error
modeling are shown in Figure 4.13 and 4.14.

From Pose to Height Map Given a probability map that contains for each grid
cell ¢; the probability p(c; == o0,) of how likely it is occupied by the recognized
object os, we generate a height map as follows. For each cell with p(c; == o05) > 0.5,
we set the corresponding height measurement h; 2y to the known height of the
recognized object 0.

Measurement Noise Model The less likely a cell is to be occupied by an object,
the higher its uncertainty should be to have the corresponding height value. We

compute the measurement noise variance Ry by parameterizing it with p(c; == o)
as follows

C(i,2) = \/p(ci == 05). % (1 — p(c; == o)) (4.32)

Ra(c(i) = ci) * 03 (4.33)

where o3 is again a user chosen fixed noise variance.
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Figure 4.14: Error of the pose estimation shown in the context of the point cloud.

4.2.2.3 Haptic Measurements

As the third sensor modality, we consider haptic measurements that can be actively
acquired by moving the robot hand through the scene. These observations are
complementary to stereo reconstruction and object recognition. They can provide
the robot with height measurements of visually occluded positions in the scene
occupied by unknown objects.

In this section, we will evaluate haptic exploration only in simulation. We
therefore assume that we can directly measure the height h(; 3) of a cell ¢;. The
measurement noise R3 is assumed to be constant for all haptic measurements. For
height measurements with the real system, haptic exploration primitives have to be
developed. These could be based on the method presented before in Section 4.1.2.

4.2.3 Scene Update

As mentioned previously, we model the state of each cell, i.e. its height, as a ran-
dom variable with Gaussian distribution. For estimating its mean and covariance,
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we use the Kalman Filter. Following the process and measurement model from
Equation 4.26 and 4.27, we update the state estimate &; and covariance P; for cell
c; at time t + 1 as follows:

A—

LTity1r = Tt
Pit+1 = Py
P
i,t+1
Kityn = P <R (4.34)
i1 T Ry
Tigy1r = Lyt Ki7t+1(z(i,t+1,r) - xi_,t+1)

Pi,t+1 = (I*Kz‘,t+1)Pi—,t+1

given an observation z(; ;41 ,) made with modality 7.

4.2.4 Scene Prediction

In traditional exploration techniques, no assumptions are made about places in
space that have not been observed yet. In accordance with related work [162, 85],
we have shown in Section 4.1 that we can make use of spatial correlation to predict
the structure of an environment based on already measured parts of it.

Spatial correlation in our case means, we know that cells in the grid that are
close to occupied spaces but are due to occlusions not directly observable, are likely
to be part of the occluding object. By modeling this spatial correlation between
physically close locations in the environment, we can predict unobserved places
from observed ones. Then instead of exploring the whole environment exhaustively
we can select to confirm the predicted map at specifically uncertain places. In
Section 4.1 we have shown the spatial correlation in a 2D occupancy grid can be
modeled with a Gaussian Process. The assumption of independence of neighboring
cells in a traditional occupancy grid is then removed.

In this section, we are using a height map instead of an occupancy grid. We will
show that also in this representation spatial correlation can be similarly modeled
with a GP. Compared to the previous section, scene prediction is conducted through
Gaussian Process Regression instead of Classification of cells into occupied or empty.
Given a set of input values x and the corresponding target values y, the goal of GP
regression is to estimate the latent function g(-) that generated these samples. In
our case, X is constituted by the set of observed cells ¢ € Py. The target values y
are the corresponding noisy height estimates hy. Together they form the training
set {x;,y; }p with cardinality M. As has already been detailed in Section 4.1.4.1,
the relation between the input and target values assuming Gaussian additive noise
can be modelled as

g(xi) = d(xi)"w, yi=g(x;)+e

w is a vector of weight parameters of the linear model. ¢(x;) is a function that
maps D-dimensional input data into an N-dimensional feature space.
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From this formulation, we can derive the posterior likelihood of the weight
parameters given the training data. Primarily, we are interested in predicting the
state y' = h; of an unobserved cell ¢; € P, referred to as x’ in the following.
In Section 4.1.4.1, we have shown that this prediction g(x’) ~ N(u, ) follows a
Gaussian distribution with

(X,> X)T[K(X7 X) + UJQMI]_ly
X’,x

w=kK
Y=k N —k(x,x)T[K(x,x) + 0%, 1] k(x,x).

The Gram matrix K(x,x) is computed based on a covariance function k(-,-). In
Section 4.1, we showed that the squared exponential covariance function is a good
prior for our scenario. Therefore, we are using it for the height map representation
as well. An example for this prediction given a 2D map of a partially explored scene
is given in Figure. In Section 4.2.6, we will show quantitatively on synthetic data
that a GP predicted map is a reasonable estimate of the ground truth.

Inference Methods To predict the height value of an unobserved cell x’ and its
uncertainty, we need to evaluate the mean and variance of g(x’). Especially, the
computation of the variance is expensive since it involves inverting the covariance
matrix K(x,x). If the set Py of previously observed grid cells is of cardinality M,
then K is of dimension M x M. Hence, inverting K is of complexity O(M?3).

Ideally, we would like the robot to be able to represent, predict and explore
a scene of its current radius of action in real-time. Therefore, we not only need
an efficient scene representation that scales well to different resolutions, but also
an efficient inference method for prediction. In this section, we will evaluate and
compare three different inference methods.

Confidence-based Sampling In Section 4.1, we used a sampling approach in which
data points are sampled according to their confidence. In this section, we will use
the uncertainty map Py, containing the covariance values P; of all observed grid cells
c; in Xy. Cells with a smaller covariance, i.e., a smaller uncertainty about their
height estimate, are more likely to be part of the training set x. This set will contain
a fixed number of samples from free and from occupied space. The number of free
samples will be higher than the number of occupied samples, thereby reflecting
structure of the scene.

Uniform Sampling Additionally to the confidence-based sampling, we will also
use uniform sampling to assemble the training set x. The same number of free and
occupied samples are drawn as for the confidence-based case.

Subset of Regressors The aforementioned sampling methods only consider the se-
lected subset of the observed grid cells for constructing the Gram matrix K. A dif-
ferent approximation to the full GP regression problem is proposed in [181] which
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we will briefly summarize here. It also relies on a subset of regressors (SR). How-
ever, it takes the correlation of this subset to the remaining data in the training set
into account.

It has been shown that the mean predictor of g(x’) can be obtained by formu-
lating it as a finite-dimensional generalized linear regression model:

M
g(x') = Zaik(x’,xi) with a ~ N (0, K™1). (4.35)
i=1
If we consider only a subset {x;,y;}n of regressors of cardinality N, then Equa-
tion 4.35 becomes

N
gsr(x') = Zajk(x',xj) with a; ~ N(0, K1) (4.36)

j=1
Given the subset of regressor as xgg, it follows that gsr(x’) ~ N (usgr, Xsr) with

psr = k(x',xsp) KyuKuny + oy, Kyn] ™ty (4.37)
Ysp = 012\/[/€(X/,XSR)T[KN]V[KMN + O'JQMKNN]ilk‘(X/,XSR). (438)

To keep the notation uncluttered, Ky s refers to K(xgr,x), Kyn to K(x,xsR)
and equivalently Ky to K(xsgr,xsr). The matrix computations in Equation 4.37
and 4.38 are then of complexity O(N?M). Evaluating the mean takes time O(M)
and the variance O(M?).

Note that under the SR model, the covariance function of two data points x; and
x; becomes k(x;,%;) = k(x;,xsr)T Kynk(x;,Xsr) and is therefore only dependent
on the correlation with the so called active set. This leaves the question, how this
set is chosen. Many different methods have been proposed in the literature. Here,
we will use the result from the confidence-based sampling as the subset of regressors.

4.2.5 Active Exploration

Given a partial map of the environment, we want to efficiently explore the remain-
ing unknown parts with haptic sensors. Efficiently here means that we want to
minimize the number of measurement actions needed to reach a sufficient under-
standing about the scene as quickly as possible. In Section 4.1, we found that
an active learning scheme based on PRM path planning in combination with a
discounted utility function performs best when the goal is to reach a valid scene
prediction already early on in the exploration process. This scheme supports the
Gaussian Process based map prediction by selecting most informative observations,
i.e., measurements that maximise the expected gain in Shannon information.

4.2.6 Experiments

We evaluate the proposed approach quantitatively on synthetic data. We are specif-
ically interested in analyzing how well a Gaussian Process can predict a height map
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from partial observations compared to different baselines. In that context, we will
also study the three inference methods we proposed.

Furthermore, we will explore how much the different sensor modalities improve
the prediction. Additionally to stereo vision, we consider object recognition in
combination with pose estimation and haptic exploration.

4.2.6.1 Data Set

We generated 50 different synthetic environments (1000 x 1000 mm) of the kind
shown in Figure 4.15g. Every scene contains ten objects that can either be of
cylindrical or box shape and are spread on a table. Their intrinsic attributes like
height, aspect ratio or radius as well as their extrinsic attributes like position and
orientation were chosen randomly within pre-determined ranges. Overlapping of
objects was allowed so that fewer than ten connected components can occur as well
as more complex shapes.

For every scene, we simulated three camera observations such that in each of
them one randomly chosen object is in fixation. This is close to our real active vi-
sion system in which stereo reconstruction is performed once an object is properly
fixated. For each observation, we reconstruct a point cloud using the ray-tracer Ya-
faRay [234]. We model the noise from the stereo system by assuming zero-mean
Gaussian noise of a specific covariance in the image. This results in a point cloud
with stronger noise in locations that are farer away from the camera. An example
for the camera observation as well as the point clouds can be seen in Figures 4.15a
to 4.15f. The height maps corresponding to the observations were computed as
described in Section 4.2.2.1. For obtaining an initial height map estimate X as
well as a corresponding uncertainty map P, the update Equations 4.34 with the
corresponding noise covariance in Equation 4.31 are applied.

We assumed that each of the three fixated objects got segmented and recognized
so that their pose can be estimated from the segmented point cloud as described in
Section 4.2.2.2. Examples for the recognition results on the synthetic data can be
seen in Figure 4.15h to 4.15m. This results in three additional height and cost maps
that can be used to update the current X and P. The same update equations as for
the height maps from stereo measurements are applied with the noise covariance
corresponding to the recognition sensor modality.

The difference between the state estimate and corresponding covariance with
and without the recognition results can be observed in Figure 4.16. The height
map that includes additional recognition results is more complete. The covariance
of this map shows more certainty about height estimates at the center of recognized
objects and more uncertainty at their boundaries.

4.2.6.2 Measure of Comparison

We considered the problem of height map estimation as a regression problem. As
a measure of divergence between ground truth and the estimated scene, we use the
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) First Observation. ) Second Observation. ) Third Observation.
) First Point Cloud. (e) Second Point Cloud. ) Third Point Cloud.

®

1 m
(g) Ground Truth Height Map. @ (m)
Figure 4.15: Example for synthetic dataset. 4.15a-4.15¢ Camera observations.

4.15d-4.15f Corresponding point clouds. 4.15h, 4.15j, 4.151 Object model fitted
to segmented point cloud. 4.15i, 4.15k, 4.15m Probability for each grid cell to
belong to recognized object.
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(a) State Estimate

(c) Covariance over (d) Covariance over
without Recognition. State Estimate State Estimate with
Recognition. without Recognition.
Recognition.

Figure 4.16: 4.16a and 4.16¢c X and P without including results from recognition
and pose estimation. 4.16b and 4.16d X and P after including results from recog-
nition and pose estimation. Unexplored areas are marked in blue. In X the darker
a pixel, the larger its estimated height. In P the darker a pixel, the more uncertain
its height estimate.

standardized mean squared error (SMSE) that is defined as follows

1
e=— E[(y —g(x))’] (4.39)
9y
where 05 is the variance of the target values of all test cases and the remainder is

the expected value of the squared residual between the target value y and mean
prediction g(x) for each cell c € X.

As a baseline for the height map prediction we use three methods. The first is
nearest-neighbor interpolation in which each grid cell that has not been observed
yet will be assigned the value of its nearest observed data point. Second, we apply
natural-neighbor interpolation as proposed in [75] and implemented in Sakov [199].
This method is based a Voronoi tessellation of the space and is claimed to provide
a smoother interpolation than the simpler nearest neighbor interpolation. We only
use interpolation values within the convex hull of the dataset. And third, we use the
trivial model which predicts each unknown data point using the mean height value
of the whole test data. Figure 4.17 shows the resulting predicted height maps of
the reference scene from Figure 4.15g. Different from the proposed approach based
on a Gaussian Process, the baseline methods do not provide information about the
expected quality of the prediction.

4.2.6.3 Predicting Height Maps with a GP

In this section, we will evaluate the accuracy of the predicted height map given
different sensor modalities and using three different inference methods. The per-
formance will be compared to the proposed baselines.
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(a) Predictive mean of a GP as (b) Height map predicted with (c) Height map predicted with
estimate of the complete natural-neighbor nearest-neighbor
height map. interpolation. Interpolation
Figure 4.17: Example results of the different methods for predicting a height map.
Unpredicted areas are marked in blue. Only stereo-vision based map data is used
as input.

Inference Methods Compared In Section 4.2.4, we described three different
approximate inference methods. While the first two form the Gram matrix only
on a subset that is sampled in different ways (uniform or confidence-based), the
third one also takes the correlation between the subset and the rest of the data
into account. In the following, we will refer to them as Confidence, Uniform or
Approzimate.

In Figure 4.18a, we compare the standardized mean squared error (SMSE) be-
tween the observed regions of all 50 synthetic environments and the ground truth
for the three different inference methods. As an orientation, we plot the SMSE
between ground truth and the observations. This shows how high the SMSE is,
induced only by the noise in the observations. Ideally, we would like the GP to
predict the scene structure with a similar or even lower SMSE. Furthermore, we
plotted the SMSE between the predictive mean of the GP and all observations in
Pi.. This visualises how well the GP prediction complies to the observations.

In Figure 4.18a, we see that sampling of the training points according to their
confidence leads to similar results as if uniform sampling is applied. In each of them,
the observations are closer to the ground truth than the GP based prediction. Ap-
plying the approximate method leads to improved performance in predicting the
ground truth. We can also observe a clear difference in the SMSE between pre-
diction and observations for all the three inference methods. For the approximate
method, the mean of this SMSE is less than half of those achieved by the sampling
based methods. It also has a significantly lower variance over the 50 environments.

The reason for this is that the approximate method takes all the data in Py
into account while the sampling based approaches are just using a subset of this to
compute an exact solution.

Furthermore, when comparing Figure 4.18b with Figure 4.18a we can observe
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Figure 4.18: Standardized Mean Squared Error (SMSE) in Py, of the scene between
(i) DB Observation and Ground Truth (reflects the overall noise in the system), (ii) 08
Prediction and Observation and (iii) [0 Prediction and Ground Truth. Sampling
of the training points according to their Confidence leads to similar results as if
Uniform sampling is applied: The actual observations are closer to the ground
truth than the GP based prediction. Applying an Approzimate method to obtain
the GP predictor leads to improved performance in predicting the ground truth.
Furthermore, there is a clear overall improvement in mean and standard deviation
when predicting ground truth including recognition information over the case when
the recognition modality is not available. When increasing the resolution of the
environment, no significant improvement in accuracy of the prediction is achieved.

a clear overall improvement in both mean and standard deviation when predicting
ground truth including recognition information over the case when the recognition
modality is not available.

In Figure 4.18, we also compare the prediction performance when using a scene
resolution of 250 x 250 cells (top row) to a resolution of 500 x 500 (bottom row).
We did not find a significant difference between the two.

Prediction Methods Compared Furthermore, we are interested in the perfor-
mance of the GP in predicting the whole scene, i.e. all cells in P. For this purpose,
we compared it to three baselines, nearest-neighbor interpolation, natural-neighbor
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Figure 4.19: Standardized Mean Squared Error (SMSE) in P between Ground
Truth and (i) 08 Nearest-Neighbor Interpolation, (ii) I8 Natural-Neighbor Inter-
polation, (iii) Trivial Prediction, (iv) 00 Gaussian Process Prediction which
performs always best. As in Figure 4.18, the two sampling methods for select-
ing training points (Confidence and Uniform) perform worse in predicting the
ground truth than when using the Approximate method to obtain a GP predictor.
Confidence based sampling performs slightly better than uniform sampling.

interpolation and trivial prediction. Figure 4.19 shows that the GP based approach
outperforms the three baselines. It also confirms the results, that the approximate
method achieves a higher accuracy than the sampling approaches.

The trivial prediction performs surprisingly well, which indicates that the area of
the scenes covered by objects is relatively small compared to free spaces. It delivers
a significantly better prediction of the scene in the approximate case, because the
mean object height is estimated on all observations not just on a sampled subset.

As opposed to Figure 4.18, there is no clear improvement in the prediction of
the ground truth when including information from the recognition modality. This
is due to the smoothing characteristic of the GP. Although, it has more data points
to model the objects, it has none for the space surrounding their backside. At these
places a false smoothing of the boundary is occurring.
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Figure 4.20: The development of the standardized mean squared error (SMSE)
during exploration time averaged over 50 different synthetic environments.

Prediction Accuracy over Time The previous evaluations have been generated
on the scene observations from stereo vision or recognition and pose estimation. To
increase the accuracy of scene prediction, we want to enhance the current scene
model with haptic data. We adopt the best exploration strategy from Section 4.1:
a PRM based method using a discounted utility function. In Figure 4.20, we eval-
uate the development of the SMSE during this exploration process for all three
prediction methods. For reducing the exploration time, we used the 50 example
scenes with a resolution of 100 x 100 cells. Here, no recognition information is
taken into account. Please note that the exploration actions are chosen based on
the predictive variance of the GP. In general, the GP predictor produces a result
that is much closer to the ground truth than the trivial model or the predictor
based on nearest-neighbor and natural-neighbor interpolation. The error for the
trivial model stays as expected nearly constant at an SMSE = 1 constant with a
decreasing variance. The error achieved through interpolation increases quickly in
the beginning, but then stagnates at a high error level. Natural-neighbors performs
better than nearest-neighbor interpolation.

In Figure 4.21, we compared the SMSE between ground truth and GP prediction
when taking recognition information into account or not. There is no significant
difference between the two error means. When using recognition information, the
error shows a slightly larger variance and higher mean over the 50 environments
during the beginning of the exploration process. Again, this is due to the smoothing
characteristic of the GP in the absence of data suggesting otherwise.
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Figure 4.21: Comparison of the development of the SMSE during exploration time
averaged over 50 different synthetic environments with and without including recog-
nition information. There is no significant gain in including recognition information.

4.2.6.4 Summary

In this section, we have shown that a scene represented by a height map can be
accurately predicted by a Gaussian Process. It consistently outperforms other pre-
diction methods such as nearest and natural neighbor-based interpolation or by
just simply taking the mean of all observations. We also found that approximate
inference in which all the observations are taken into account is preferable over
sampling methods. Additional recognition information does not increase accuracy
of map prediction in the proposed GP framework. For better modeling a scene
containing a mixture of known and unknown objects, clustering methods might be
interesting to study. In that case, object hypotheses have to be taken explicitly
into account. Clustering should be treated in a Bayesian framework to provide
exploration with a measure of uncertainty.

4.3 Discussion

In this chapter, we proposed two approaches to scene representation for grasping
and manipulation. One is based on an occupancy grid and the other on a height
map. Their state x consists of a set of cells on the table indexed by their coordinates
x; = (u;,v;)T on the table. In case of the occupancy grid, each cell has a value
indicating its probability to be occupied. In the case of the height map, the cell




4.3. DISCUSSION 65

value corresponds to the height of the object that is occupying this cell. We have
also demonstrated how multiple modalities such as stereo vision, object recognition
and pose estimation as well as haptic sensor data can be integrated into either of
these representations. Each representation has different utilities in a grasping and
manipulation scenario. The occupancy grid map outlines free and occupied spaces
and is therefore suitable for deciding for example on where to place objects that the
robot has picked up. A height map on the other hand carries additional information
about the object height and therefore facilitates grasp planning.

We have shown that a Gaussian Process can be used as an implementation of
the function g(-) for accurately predicting the value of unobserved cells in the scene.

The remaining challenge is to make this approach capable of real-time pro-
cessing. The map of the scene should be predicted and updated rapidly during
interaction. In this chapter, we have proposed to use knowledge about the table
plane in the scene to reduce the dimensionality of the representation from 3D to
2D. Furthermore, we experimented with approximate inference methods. However,
these approximate techniques still do not scale well enough to allow for real-time
computation in large environments. Furthermore, a table plane may not be de-
tectable in every scene.

An approach inspired by the ideas by Brooks [46, 47] and from the field of
Active Vision [22, 20] would be to restrict the proposed high-resolution prediction
to the task-relevant parts of the scene. Through this limitation, the map could be
computed more often. Changes in the currently interesting part of the scene could
be taken into account more rapidly.

To illustrate this idea, consider the following scenario. The goal is to pick up
an object from a table-top scene. The active head fixates on this object and stereo
reconstructs this part of the scene. The object is segmented from the background.
However, the scene is only partially known due to occlusions.

Using the proposed approach of height map prediction through a Gaussian Pro-
cess, we can predict the whole scene in the current view This information can then
be used to plan a safe grasp. In this case this means, that the grasp is chosen
such that the probability of the hand colliding with any other object on the table
is minimal.

Furthermore, during the grasp, the environment might change due to moving
objects. By having restricted the map to the region in the current viewpoint, a real-
time update of the map that takes these changes into account becomes possible.
This would then allow for online adaptation of the grasp parameters.

Once the object is picked up, we might want to put it down at another free spot
in the environment. Given an approximate position in space, where this object
should be put down, the head can start exploring the environment from there until
a suitable place is found. Instead of using a fixed size of the scene as in this chapter,
it could start from an initial size and extend it on demand.

This application of the scene prediction is in the spirit of active vision and
behavioral robotics in that perception is done rapidly and only on demand in the
context of certain behavior.







Enhanced Scene Understanding through
Human-Robot Dialog

A full segmentation of all objects in a scene is desirable for many tasks such as
recognition [32], grasp planning [8] or learning models for previously unseen objects
that are re-usable for later re-recognition. This is a different subproblem of scene
understanding from what has been proposed in Chapter 4. In the previous chapter,
geometric scene structure was predicted independent of correct object segmentation.

A common problem of vision systems employed for object segmentation is that
they might incorrectly group objects together or split them into several parts. This
is commonly referred to as under- or over-segmentation. The two vision systems
presented in Section 2.2 suffer from this limitation as well. The sensitivity to this
problem depends on how close objects are to each other, how similar they are in
appearance and on whether the correct number of objects in the scene is known in
advance.

Interactive segmentation methods that aim at refining the robot’s current scene
model have recently gained a lot of attention. One approach addressing this prob-
lem, is to let the robot interact with the scene, e.g., through pushing movements and
then use motion cues for verifying or refining object hypotheses [114, 151, 110, 28].
These papers focus on the question of what knowledge can be gained from observing
the outcomes of robotic actions. The majority of them leaves the question open of
how to select the action that provides the greatest amount of information.

In this chapter, we propose to put a “human in the loop” to achieve the objective
of correct scene segmentation. This has the advantage of the robot being capable
of learning new labels or symbols online and ground them in the current sensory
data. We move towards this goal by combining state-of-the-art computer vision
with a natural dialog system allowing a human to rapidly refine the model of a
complex 3D scene. Through that approach, we harness the strengths of ‘bottom
up’ automated processing with the ‘top down’ decision making power of a human
operator. The resulting refined scene model forms the basis for a general symbol
grounding problem [96].

Human input is not a new concept in object segmentation and scene under-
standing. Several previous systems have used it to guide automated processing
or restrict the search space of algorithms both improving efficiency and decreas-
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ing false positives [109, 227, 115]. GrabCut [188] and Lazy Snapping [136] are the
most related works on interactive segmentation. They require the user to operate a
mouse either for selecting a region containing the object in the image or for draw-
ing its rough outline. In this chapter, we aim for human-robot interaction using
only natural dialog and no additional tools. Thereby, we are moving closer to how
humans naturally interact with one another in such situations.

Several unique challenges exist when designing a framework for human robot
interaction using computer vision. One of them is to minimize the iteration time of
the vision component of such a system. This processing must be rapid enough as to
not induce a large lag in the system increasing the mental load on the user [212]. As
most state-of-the-art vision algorithm for scene understanding run in tens of minutes
or hours per scene [215, 143, 134], they would be unacceptable for any “human-in-
the-loop” system. Here, we propose to use the multi-object segmentation algorithm
presented in Section 2.2.2, which is capable of providing acceptable responsiveness
in the proposed algorithm.

Another design challenge is to minimize the necessary interaction between the
autonomous system and the human operator. This means maximizing the value
of each interaction to obtain the greatest discriminatory information. A very com-
mon approach to this kind of problem is to make a decision that maximises the
expected gain in information or, equivalently, minimises the uncertainty in the sys-
tem [109][3]. In this chapter, we propose the concept of entropy to characterize the
quality of any object hypothesis. This helps in guiding the dialog system to resolve
the most challenging and ambiguous segments first.

5.1 System Overview

In the following, we will give a brief system overview. Figure 5.1 visualises the
different modules and their interconnections. As mentioned earlier, we use the
vision system as proposed in Section 2.2.2 to acquire a point cloud of the scene.
An initial segmentation is performed that groups close points with similar color
traits [5]. The dialog system allows a human operator to provide responses to
the robot’s questions in a natural manner. The robot can be interrupted and
corrected in mid-utterance allowing the operator to avoid the latencies associated
with traditional dialog call and response conversation patterns.

The main contributions of this chapter lie in the scene analysis module that seeks
to bridge the vision and dialog module. It fulfills two tasks: (i) determine areas of
the scene that are the poorest object hypotheses and seek human arbitration, (ii)
translate the human input to a re-seeding of the segmentation.

5.2 Dialog System

To facilitate interaction in the proposed system, a dialog system was implemented
as shown in Figure 5.1. It is based on Jindigo — a Java-based open source dialog
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Figure 5.1: Overview of the System. Left) Karlsruhe Head. Middle) Vision System
that actively explores the scene, reconstructs and segmentes a point cloud as also
visualized in Figure 2.5. Right) Architecture of the Jindigo Dialog System. Vision
and Dialog System are communicating through a Scene Analysis Module.
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framework by Skantze [208]. This system overcomes a typical limitation of other
dialog system: strict turn-taking between user and system. The minimal unit of
processing in such systems is the utterance, which is processed in whole by each
module of the system before it is handed on to the next. Contrary to this, Jindigo
processes the dialog incrementally, word by word, allowing the system to respond
more quickly and to give and receive feedback in the middle of utterances [202].
All components of the system are outlined in the right side of Figure 5.1. Here, we
will only briefly describe the parts that are relevant to this thesis. For more details
on Jindigo, we refer to Skantze [208] and [6].

When the user is saying something, the utterance is recognized and interpreted
in the context of the whole dialog history and sent to the Action Manager (AM).
The task of the AM is to decide which step to take next. To make these decisions,
the AM communicates directly with the Scene Analysis (SA) component. If the AM
or SA decides that the robot should say something, the semantic representation of
this utterance is sent to the Vocalizer. In Section 5.3.1, this will be clarified with
the help of an example dialog.

5.3 Refining the Scene Model through Human-Robot
Interaction

From the visual scene segmentation as described in Section 2.2.2, we obtain an
initial bottom-up analysis of the scene resulting in several object hypotheses.

The quality of the initial segmentation can vary due to occlusions, objects that
are very close to each other or when the position and number of seed points does
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Figure 5.2: Graph of the dialog loop showing the messages being passed between
the action manager (AM) and the scene analysis (SA) module.

not correspond to the actual objects. The demonstrated system was configured to
handle the most common configurations and given a corresponding vocabulary for
verbal disambiguation. However, we will show later how our system can easily be
extended to deal with more complex cases.

In the following sections, we will show how user utterances are interpreted and
how natural language is generated using the example dialog shown in Table 5.1.
This dialog is an instantiation of the general dialog loop shown in Figure 5.2. Fur-
thermore in Section 5.3.2 and 5.3.3, we propose a method to (i) rank the object
hypotheses in terms of their uncertainty and (ii) re-segment the incorrect hypothe-
ses.

5.3.1 Contextual Interpretation and Generation of Natural Language

In a natural dialog about the structure of a scene, objects may be referred to in
different ways. One way is to use their properties (e.g, the red object or the leftmost
object). To be able to ground these descriptions into the actual objects that are
being talked about, the dialog system must have a representation of the robot’s
hypothesis of the set of objects. Therefore, the initial segmentation of the scene is
sent from the SA component to the AM, including the properties of objects and
their IDs (see Table 5.1, Row 1).

Another way of referring to objects in dialog is by anaphoric expressions. For
example a speaker may say it or the segment to refer to an object that has just
been mentioned. A dialog system must be able to both understand and generate
such expressions with the help of the dialog context. Another phenomena where
the dialog context needs to be taken into account is elliptical (or fragmentary)
expressions. These are expressions that lack propositional content, such as the red
one or to the left. The dialog system needs to resolve these into full propositions,
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1 | SA— AM Scene(objects: [ Object(id:32
color:Green ...) Object(id:47
color:Yellow ...)])

2 | AM—Voc CheckScene (Scene (nobjects:2))
3 | Voc—User

“I think there are two objects”

4 User—Rec ,
“No there are three objects”

5 Int—Con—AM—SA | AssertScene(Scene(nobjects:3))

6 | SA—>AM RequestResegment ( ob-
ject:0bject(id:32) nobjects:2)
7 AM—Voc RequestResegment ( ob-

ject:0Object (color:Green) nobjects:2)

8 | Voc—User » . -
“So, should I split the green segment?”

9 | User—Rec
“No, the yellow one!”

10 | Int—Cont NegFeedback Object(color:Yellow)

11 | Cont—AM AssertResegment ( ob-
ject:0bject(color:Yellow) nob-
jects:2))

12 | AM—SA AssertResegment ( object:0Object(id:47)
nobjects:2)

13 | SA—AM RequestResegment ( ob-
ject:0bject(id:47) relation:TopOf)

14 | AM—Voc RequestResegment ( ob—

ject:0Object (ref:Anaphora) rela-
tion:Top0f))

15 | Voc—User
“Are the objects on top of each other?”

16 | User—Rec B
“No, next to each other”

17 | Int—Cont NegFeedback NextTo

18 | Cont—AM AssertResegment ( ob-
ject:0Object (ref:Anaphora) rela-
tion:NextTo)

19 | AM—SA AssertResegment ( object:0bject (id:47)
relation:NextTo)
20 | SA—»AM—Voc RequestHold

21 | Voc—User o . . R
“Okay, just wait a moment

22 | SA—AM Scene( ... )
23 | AM—Voc CheckScene
24 | Voc—User

“Is this correct?”

25 | Voc—User

“Yes”
26 | Int—Con PosFeedback
27 | Con—AM—SA ConfirmScene

Table 5.1: Example dialog between human and robot and the information flow
in the system. The second column indicates the currently active system modules.
The third column shows the messages being send between the modules. SA =
Scene Analysis. AM = Action Manager. Voc = Vocalizer. Rec = Recognizer.
Cont=Contextualizer.
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so called ellipsis resolution (e.g., the red one should perhaps be understood as the
red segment should be split into two objects given the dialog context).

When the AM receives the initial scene, it starts to describe the scene, allowing
the user to correct anything that is incorrect. It starts by stating the number of
objects using the CheckScene action (Table 5.1, Row 2). This is transformed into
text and speech by the Vocalizer (Row 3). Since the robot’s hypothesis is incorrect,
the user now corrects the robot. This utterance is unambiguous and therefore sent
as it is all the way to the SA (Row 5). Notice how the semantic representation
in Row 2 and 5 and the textual representation in Row 3 and 4 reflect each other.
This illustrates how large parts of the domain grammars may be used for both
interpretation and generation of utterances.

The SA requests help with refining the segment that is most likely to be in-
correct (see the next section for how this choice is made). As can be seen in the
example, the SA only refers to objects by their IDs. The AM then chooses the best
way of referring to the object. It may for example be by the color (as in Row 7:
the green segment) or by using an anaphoric expression (as in Row 14: the objects)
depending on the current dialog history. The user now replies with an elliptical
(fragmentary) expression (Row 9). Note that this utterance cannot be fully un-
derstood unless the dialog context is taken into account. This is precisely what
the Contextualizer does - it re-interprets the ellipsis into a full proposition (Row
11). Thus, the RequestResegment from the robot combined with the Object from
the user is transformed into an AssertResegment with this Object as argument.
The same principles are applied in the ellipsis resolution in Row 18 (but where the
spatial relation is replaced instead of the object).

As the scene is refined, the SA sends new scene hypotheses to the AM (Row
22). Finally, it will receive a ConfirmScene message from the AM (Row 27).

5.3.2 Identifying Poor Object Hypotheses through Entropy

To bootstrap the process of scene model refinement, the robot should be able to
identify the most ambiguous object hypotheses and query the user about these first.
We propose an entropy-based system to rank the object hypotheses according to
their uncertainty. In general, the entropy H [p(x)] of a distribution over a discrete
random variable x with {x}}Z, is defined as follows:

M
H[P(x)] = =) p(x;) Inp(x;). (5.1)
§=0

and equivalently for a continuous variable with the integral. Intuitively, this means
that sharply peaked distributions will have a low entropy while rather flat distri-
bution will have a relatively high entropy. The maximum entropy is reached with
a uniform distribution and is computed as Hy,q.[p(x)] = In (1/M).

Our observation is that single objects tend to be relatively homogeneous in an
appropriate attribute space. Consider for example a correctly segmented single
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object and a segment in which two objects are contained as in Figure 5.3. The hue
histogram of the correct hypothesis will show a narrower distribution than for the
segment containing two objects. The same holds for the distribution of 3D points
which will vary more in the second segment.

To test the hypothesis of entropy being a good indicator for the quality of
object segmentation, we formalise it as binary classification problem. We compute
the entropy for each initial object hypothesis over a number of different attribute
histograms. Let N be the set of points in a segment and let us define a set of
normalized histograms as follows:

1. 1D histogram p(c) with 30 bins over color hue c.
2. 3D histogram ppp(c) over the voxelized BB.

3. 3D histogram p(v) over a voxelized grid (10mm side length) of fixed size
carrying the number of objects points in each voxel v. The grid is aligned
with the oriented object bounding box BB.

4. One normalized 1D histogram ppg, (s), pBB,(8), pBB.(S) for each axis z,y
and z of BB.

5. And similarly, one normalized 1D histogram p(s),py(s),p:(s) for each axis
xz,y and z of the grid of fixed size counting the number of 3D points falling
into 10mm wide slices s along the respective axis.

For computing the oriented bounding box, we project the segmented point cloud
onto the table as for example shown in Figure 4.13. The axes of the bounding
box will be aligned with the two eigenvectors of this projection where e, refers to
the longer and e, to the shorter one. The fixed size grid that is aligned with this
bounding box can for example be chosen dependent on the visible portion of the
scene in the foveal cameras.

Both 3D histograms, p(v) and ppg(v), will be relatively sparse compared to
the 1D histograms. While p(v) reflects on the size of an object segment relative to
what is visible in the foveal cameras, ppp(Vv) is normalized to the dimensions of the
oriented bounding box and instead measures the complexity of the 3D distribution
of points. The one dimensional histograms break down this complexity to the single
axes of either the bounding box or the grid.

The entropy values of these histograms are normalized with their respective
maximum entropy. We use these values to form a feature vector f; containing for
example the following values:

fi = (H[p(C)], Hlp(v)], Hppp(v)l, Hp:(s)], Hlpy(s)], H[p=(s)l, H[prB, (S)]()5 )

for each object hypothesis i. From a set of initially segmented example scenes, we
can extract labeled data to train an SVM with an RBF kernel for classifying an
object hypothesis as either being correct or not. The probability estimates provided
by [50] are used to rank the object hypotheses according to their uncertainty.
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Figure 5.3: Visualization of the different stages of the scene understanding. Top:
Point cloud from stereo matching with bounding boxes (BBs) around segmented
objects and their hue histograms. Left segment containing two objects has a higher
entropy in hue and 3D point distribution and is therefore considered more uncertain.
Middle: Initial labeling of the segments. Left segment is re-seeded by splitting BB
in two parts based on human dialog input. Bottom: Re-segmented objects. Three
objects are correctly detected.
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5.3.3 Re-Segmentation Based on User Input

Once a possible candidate for refinement has been identified, the algorithm proceeds
to query the user to determine two things: (i) Is the current segmentation correct?
And (ii) if not, what is the relative relationships of the objects in the current
incorrect segment. We limit the user’s options for spatial relationships to two
objects being either next to, in front of or on top of one another. We propose this
limited set of configuration to simplify the interaction. Furthermore, the robustness
of the Markov Random Field (MRF) segmentation algorithm eliminates the need
for tight boundaries. Despite the simplicity of these three rules, quite challenging
scenes can be resolved in practice.

To begin the re-segmentation, the extents of the original segment are calculated
to produce an object aligned bounded box. This bounding box is then divided in
half along one of the three axes based upon the human operator’s input. Once
the bounding box is divided, the initially segmented points are relabeled and new
Gaussian Mixture Models for the region are iteratively calculated as in [188]. A
new graph is constructed based on the probability of membership to these new
models. Energy minimization is performed for the new regions and repeated until
convergence.

In a similar manner, the more rare situations in which two object hypotheses
have to be merged can be dealt with. The 3D points initially labeled with two
different labels would be re-labeled to carry just one.

5.4 Experiments

In this section, we will show that through the interaction of a robot with a human
operator, the resulting segmentation is improved and that this interaction is made
more efficient through the use of an entropy based selection mechanism.

There exist only a few databases containing RGB-D data, e.g. in [129]. They
are targeted at object recognition and pose estimation instead of segmentation
and usually contain scenes with single objects only. Therefore, we created our
own database by recording 19 scenes containing two to four objects in specifically
challenging configurations, see Figure 5.4. Reconstructing the point cloud and
obtaining the seeding for the initial segmentation is done through the active vision
system described in Section 5.1. An example point cloud for the first scene is shown
in Figure 5.3.

In the recorded scenes, objects are hard to separate from each other due to
similar appearance or close positioning. There is one incorrectly segmented pair of
objects in each of the 19 scenes. Each scene is labeled with human ground truth,
thereby separating each object perfectly.
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Figure 5.4: Pictures of the 19 scenes in the data set on which the experiments are
performed. Ordering from left to right and then top to bottom.

5.4.1 Identification of Incorrect Object Hypotheses

We proposed an entropy-based system to select most uncertain object hypotheses
to be confirmed by the user. For evaluation, we captured and labeled 303 examples
128 incorrect (positive) and 175 correct (negative) hypotheses. The latter consists
mainly of the data presented in Chapter 6: 16 different objects each in 8 different
orientations as shown in Figure 6.5 and 6.6. Additionally, we include correct
segments from scenes similar to those shown in Figure 5.4. Thereby we ensure
that the positive examples from the dataset contain objects in a variety of different
orientations or with parts missing due to occlusions.

We were interested in i) which entropy features are important for distinguish-
ing between correct and incorrect segments and ii) how well we can perform this
classification task when using a combination of the best features in a feature vector.

For both experiments, we randomly divided the data into a training and test
set. The training set contains 25 positive and 25 negative examples, the test set
253 examples. The complete set was randomly divided five times and the results
were combined into an average receiver operating characteristic (ROC) curve.

Figure 5.5 Left) shows a comparison of different single or combined entropy fea-
tures in terms of area under the ROC curve (AUC). First of all, we can observe that
the entropy features computed on the fixed size grid provide enough information to
achieve a classification performance of AUC > 0.8. This shows that the size of the
segment relative to the size of the visible portion of the scene in the foveal cameras
is a good indicator of segment quality.

On the other hand, the entropy features computed on the tight oriented bound-
ing box achieve a significantly lower AUC. Especially when looking at the single
dimensions, the classification performance of a feature vector containing H[pgpp, (s)]
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Figure 5.5: Entropy-based Detection of Under-segmentation. Left) Performance
of Single and Subgroups of Features. XYZ Scene and XYZ BB indicate the
three-dimensional feature vectors consisting of H[p,(s)], H[py(s)], H[p.(s)] and
Hlpps.(s)], Hlpsa,(s)], H[ppg.(s)],respectively. Right) ROC Curve for Classi-
fier Using a Combination of the best Features as in Equation 5.2.

or H[ppg,(s)] is essentially random. H[ppg,(s)] however, reaches an AUC of 0.7.
This is due to the way, we compute the oriented bounding box whose y-axis will
always be aligned with e;, the smallest eigenvector of the projection of the point
cloud. That means that the entropy values along the x and z axis for correct and
incorrect segments will be very similar. However, for segments containing two ob-
jects standing in front of one another, the entropy value over the y axis will be
significantly different from segments containing single objects. This case can for
example be observed in Figure 5.3. Also the hue of an object hypothesis reaches
an AUC of 0.7 for separating correct from incorrect object hypotheses.

Figure 5.5 right) shows the ROC curve for a classifier using a feature vector as
in Equation 5.2. This is the combination of the best single features: (i) entropy
over the color hue histogram H[p(c)], (ii) entropy over the point histogram of the
bounding box H[ppp(v)], (iii) entropy over the point histogram of the fixed size
box Hlppp(v)], (iv) entropy over each of the one-dimensional histograms of 3D
points in slices along the three axis H[p;(s)], H[py(s)], H[p.(s)] and (v) entropy
over the histogram of 3D points in the slices along the y-dimension of the bounding
box H|[ppg,(s)]. As can be seen from the plot and the AUC=0.92, the classifier
is easily able to distinguish between correctly and incorrectly labeled examples in
this dataset.
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(a) Left Camera Image (b) Point Cloud (¢) Ground Truth
Segmentation

Figure 5.6: Image of Left Foveal Camera, Point Cloud and Ground Truth Labeling
of Scene 2.

5.4.2 Improvement of Segmentation Quality

To validate the technique, we present experimental results designed to display its
performance on the 19 scenes in the data set as displayed in Figure 5.4. They
contain one incorrect segment for which we have the hand labeled ground truth
segmentation. Figure 5.6 shows scene 2 as an example. We compared the resulting
total segmentation accuracy before and after interaction with the human operator
on the mislabeled segments.

Baseline As a baseline, we use an interactive segmentation method in which
mouse clicks of the user are the seed points of the re-segmentation. In detail, the
user sees an image of the part of the scene that is detected to contain a wrong
object hypothesis. An example for such an image is shown in Figure 5.6a. The
user is then asked to click with a mouse on the center of each object that he or she
can identify. For each click position (u;,v;), we know the corresponding 3D point
(24, 9i, 2;) from prior stereo reconstruction. These points are then used as seeds for
re-initializing segmentation by placing a ball around them with a certain radius.

Results The graph in Figure 5.7a displays three bars for each segment. They
display the total classification rate for all object points in the segment as compared
to ground truth. The first bar in each set shows the performance achieved with the
aid of human dialog input in the proposed framework; the second bar shows the
results based on mouse clicks, while the third is without any human interaction.
The proposed method achieves an increase in performance of 33.25% on average.
This is attributable to the correct labeling of an object initially missing from the
segmentation. A confusion matrix for a typical under-segmentation can be seen
in Figure 5.7d and the resulting correction achieved through dialog interaction in
Figure 5.7b. The mouse based interaction only achieves an increase of 21.26% in
segmentation performance as compared to the initial segmentation.
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(a) Average of approx. 33.25% increase in overall performance when dialog information is used for
re-segmentation. With segmentation seed points from mouse clicks, we achieve only an average
increase of 21.26%. Note that in some cases when there is quite a poor initial segmentation even
with the human input the total accuracy remains low. This suggests interaction is most useful
when the automated technique has at least some understanding of the scene.
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Figure 5.7: The results of a comparison to hand labeled ground truth across an
aggregate set (a) and the confusion matrices (CMs) for scene 2. (b) With dialog in-
teraction. (c) With mouse interaction. (d) Without interaction. Note the superior
performance of the mouse-based over the dialogue-based re-segmentation at the ob-
ject boundaries. This effect is due to the accurate placing of the seed points through
the user as compared to the splitting of a potentially slightly miss-aligned bounding
box. However, the mouse based interaction fails at including whole objects into one
segment.

To clarify this result, Figure 5.7e and 5.7f show the re-segmented point clouds
for Scene 2. For the dialog-based interaction, segmentation errors occur at the
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boundary of the two objects and are due to the inflexible splitting of the bounding
box in the middle. The mouse-based method fails to include the whole objects
into the new segments. This is because in this simple seeding method, the initial
segmentation is not being re-used for the new object models. Other possibilities
for re-seeding would be to group together points from the initial segmentation that
are closest to one of the click positions. We would expect the segmentation quality
of the dialog and mouse based re-segmentation methods to be comparable.

5.5 Discussion

We presented a novel human-robot interaction framework for the purpose of robust
visual scene understanding. A state-of-the-art computer vision method for perform-
ing scene segmentation was combined with a natural dialog system. Experiments
showed that by putting a human in the loop, the robot could gain improved mod-
els of challenging 3D scenes when compared with pure bottom-up segmentation.
The proposed method for dialog-based interaction outperformed the simple mouse-
based interaction. Furthermore, through an entropy-based approach the interaction
between human and robot could be made more efficient.

As future work, one could address the problem of how to represent objects effi-
ciently in the working memory and label them with symbols that are convenient for
a human operator. These could be attributes including positional state, dominant
color and relative size enabling more complex dialogs.

Furthermore, user studies could be conducted with non-expert users to gain
more insight into interaction patterns for this specific task. Specifically, it would
be interesting to analyse how users describe scenes and object relations spatially.
Are these descriptions dependent on viewpoint differences between the user and the
robot? Which object attributes are chosen for reference resolution? Is this choice
dependent on the whole scene structure?

In the scenario used in this chapter, the robot first exhaustively explores the
scenes by shifting its gaze to different salient points in the scene. Then it describes
to the user what it has seen. A more realistic scenario is that the robot describes
the scene already during exploration. Scene understanding could then be performed
iteratively. The model for distinguishing correct from incorrect object hypotheses
could also be extended during interaction with the user.

To improve reference resolution, the robot could point to the parts of the scene
it is currently talking about. In that context, recognition of pointing gestures
performed by the user would also be of use.




Predicting Unknown Object Shape

Many challenging problems addressed by the robotics community are currently
studied in simulation. Examples are motion planning [125, 66, 225] or grasp plan-
ning [53, 90, 153] in which the knowledge of the complete world model or of specific
objects is assumed to be known. However, on a real robotic platform this assump-
tion breaks down due to noisy sensors or occlusions.

Consider for example the point cloud in Figure 6.1 that was reconstructed with
an active stereo head from a table-top scene. Due to occlusions, no information
about the backside of the object or about the region behind it is available from pure
stereo reconstructed data. There are gaps in the scene and object representations.
Additionally, noise causes the observed 3D structure of an object or scene to deviate
from its true shape. Although the previously mentioned planners might be applied
on real robotic platforms, a mismatch between the real world and the world model
is usually not taken into account explicitly.

Exceptions are reactive grasping strategies that adapt their behavior based on
sensor data generated during execution time [78, 98, 99].

In this section, we consider the problem of picking up objects from a table-top
scene containing several objects. We assume that the robot has reconstructed a
point cloud from the scene using the approach from Section 2.2.1. Additionally, we

Figure 6.1: How can a suitable grasp pose be determined based on an incomplete
point cloud? Left and Middle) Example views of a raw stereo reconstructed point
cloud. Right) Model of the Schunk Hand with some of its degrees of freedom.
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assume that this point cloud is correctly segmented which could be ensured through
the additional use of the human-robot dialog framework presented in the previous
chapter.

To accomplish stable grasping executed through collision-free motion, we follow
the idea of filling in the gaps in the scene representation through predicting the
full shape of objects. We make use of the observation that many, especially man-
made objects, possess one or more symmetries. Given this, we can provide the
simulator with an estimated complete world model under which it can plan actions
or predict sensor measurements. Furthermore, we propose a method to quantify the
uncertainty about each point in the completed object model. We study how much
perception and manipulation can be improved by taking uncertainty explicitly into
account.

The contributions presented in this chapter are (i) a quantitative evaluation of
the shape prediction on real-world data containing a set of objects observed from
a number of different viewpoints. This is different from related work by Thrun
and Wegbreit [219] in which only qualitative results in form of point clouds are
presented rather than quantitative results on polygonal meshes. (ii) We propose
to estimate the most general symmetry parameters. This is different from Marton
et al. [147, 145] in which prior to reconstruction, the kind of symmetry an object
possesses has to be detected. It can either be box-shaped, cylindrical or have a
more complex radial symmetry. Our approach is also different to Blodow et al. [36]
in which only rotationally symmetry is considered. (iii) We reduce the search space
for the optimal symmetry parameters through a good initialization. And (iv), we
will demonstrate in Chapter 7 how prediction of object shape helps perception as
well as manipulation.

6.1 Symmetry for Object Shape Prediction

Estimating the occluded and unknown part of an object has applications in many
fields, e.g. 3D shape acquisition, 3D object recognition or classification. In this
chapter, we are looking at this problem from the perspective of service robotics
and are therefore also interested in the advantages of shape completion for collision
detection and grasp planning.

Psychological studies suggest that humans are able to predict the portions of
a scene that are not visible to them through controlled scene continuation [44].
The expected structure of unobserved object parts are governed by two classes
of knowledge: i) Visual evidence and ii) completion rules gained through prior
visual experience. A very strong prior that exists in especially man-made objects is
symmetry. This claim is supported by Marton et al. [149]. The authors analysed five
different databases containing models of objects of daily use. Only around 25% of
these were not describable by simple geometric primitives such as cylinders, boxes
or rotationally symmetric objects. And even this comparably small set contains
objects that posses planar symmetry.
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Thrun and Wegbreit [219] have shown that this symmetry can be detected in
partial point clouds and then exploited for shape completion. The authors devel-
oped a taxonomy of symmetries in which planar reflection symmetry is the most
general one. It is defined as the case in which each surface point P can be uniquely
associated with a second surface point @ by reflection on the opposite side of a
symmetry plane. Furthermore, in a household environment, objects are commonly
placed such that one of their symmetry planes is perpendicular to the supporting
plane. Exceptions exist such as grocery bags, dishwashers or drawers.

Given these observations, for our table-top scenario we can make the assumption
that objects commonly possess one or several planar symmetries of which one is
usually positioned perpendicular to the table from which we are grasping. By
making these simplifications, we can reduce the search space for the pose of this
symmetry plane significantly. As it will be shown in the experimental section, our
method produces valid approximations of the true object shape in very different
viewpoints and for varying levels of symmetry.

6.1.1 Detecting Planar Symmetry

Since we assume the symmetry plane to be perpendicular to the table plane, the
search for its pose is reduced to a search for a line in the 2 1/2D projection of
the partial object point cloud. This line has 3 degrees of freedom (DoF): the 2D
position of its center and its orientation. We follow a generate-and-test scheme in
which we create a number of hypotheses for these three parameters and determine
the plausibility of the resulting mirrored point cloud based on visibility constraints.
Intuitively, the fewer points of a mirrored point cloud are positioned in visible free
space the more plausible is this point cloud. This is visualized in Figure 6.3 and
will be detailed in Section 6.1.1.4.

We bootstrap the parameter search by initializing it with the major or minor
eigenvector e, or e, of the projected point cloud. As will be shown in Section 6.2,
this usually yields a good first approximation. Further symmetry plane hypotheses
are generated from this starting point by varying the orientation and position of
the eigenvectors as outlined in Figure 6.2. We therefore further reduce the search
space to 2 DoF. In the following, we will describe the details of this search.

6.1.1.1 Initial Plane Hypothesis

The first hypothesis for the symmetry axis is either one of the two eigenvectors of the
projected point cloud. Our goal is to predict the unseen object part. We therefore
make the choice dependent on the inverse viewing direction v: the eigenvector that
is most perpendicular to v is used as the symmetry plane s.

(6.1)

e, ife, - v<ep v
e, ife, - v>ep-v
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Figure 6.2: A set of hypotheses for the position and orientation of the symmetry
plane. e, and e, denote the eigenvectors of the projected point cloud. c is its center
of mass. «; denotes one of the variations of line orientation along which the best
pose of the symmetry plane is searched. The blue lines translated about d; to d;42
yield three further candidates with orientation ;.

where e, and e, denote the major and minor eigenvectors of the projected point
cloud, respectively.

6.1.1.2 Generating a Set of Symmetry Hypothesis

Given this initial approximation of the symmetry plane s of the considered point
cloud, we sample n line orientations «; in the range between —20° and 20° relative
to the orientation of s. The 2D position of these n symmetry planes is varied based
on a shift d; in m discrete steps along the normal of the symmetry plane. Together
this yields a set S = {s(1,1)***S(1,j) ** *S(i,j) * * - S(n,m) ; Of n X m hypotheses.

6.1.1.3 Mirroring the Point Cloud

Let us denote the original point cloud as P containing points p. Then given some
symmetry plane parameters s(; jy, the mirrored point cloud Q(; ;) with points q is
determined as follows:

q=R;(-Ro,(p+d;—c)) +c (6.2)

with R,, denoting the rotation matrix corresponding to «;. d; is the translation
vector formed from the shift d; .
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Figure 6.3: Free, occupied and unknown areas. 1. Mirrored point on original cloud.
2. Mirrored point in occluded space. 3. Mirrored point in front of segmented cloud.
4. Mirrored point in free space but not in front of segmented cloud.

6.1.1.4 Computing the Visibility Score

The simplest source of information about visibility constraints are the binary 2D
segmentation masks O that separate an object from the background in combination
with the viewpoint of the camera. The mirroring process aims at adding points q
to the scene that were unseen from the original viewpoints.

Let us assume a mirrored point cloud Q; ;) has been generated, then there are
four cases for where a reflected point q can be positioned. These cases are visualized
in Figure 6.3. i) If it coincides with a point in P (the original point cloud), then
it supports the corresponding symmetry hypothesis. ii) If q falls into previously
occluded space, it provides information about potential surfaces not visible from
the original viewpoint. And finally iii) and iv), if q is positioned into the free
space that has been visible before, then it contradicts the symmetry hypothesis.
For selecting the best mirrored point cloud, we want to maximise the number of
points that support the symmetry hypothesis while minimizing the number of points
contradicting it.

Using visibility contraints, we can compute a score for each point q in a mirrored
point cloud Q; ;) but also for the corresponding symmetry plane hypothesis itself.
We back project each mirrored point cloud Q; ;) into the original image giving us
a set of pixels. For all these pixels ug, we search its nearest neighbor pixel u, that
lies inside the original object segmentation mask O and is a projection of a point
in P. For each pair (u,,u,) we can then compute the absolute value of the depth
difference § between their corresponding 3D points q and p.

Plausibility of a Point As plausibility plaus(q) of a point q, we define its
probability to belong to the original object. This can be computed dependent on
to which case in Figure 6.3 it belongs and how big the depth divergence is to its
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nearest neighbor in P. For all points q falling into the occluded space or coincide
with the segmented object as in case one and two of Figure 6.3, we compute

1) 0.5 —pl
plaus, (q) = 05— P1man) | oy (63)

6max

where plaus,, . refers to the maximum plausibility and e, to the maximum
depth divergence. Each point in the occluded space will have a minimum probability
to belong to the real object of 0.5. The higher the depth divergence ¢ of a point to
its nearest neighbor, the lower will be its plausibility. This relationship is defined
as a linear fall-off.

For all points q falling into previously visible space (case three and four in
Figure 6.3), we similarly compute their plausibility as

—0 x pl
plaus,(q) = —0 7P maz plaus

6mar

max*® (6'4)
In contrast to Equation 6.3, Equation 6.4 can assign 0 as the minimum probability
of a point to belong to the object. All original points p of the point cloud will have
plaus,, . assigned which can be lower than 1 to account for noise.

Plausibility of a whole point cloud The plausibility score p(; ;) for the whole
mirrored point cloud Q; j), i.e., the symmetry plane hypothesis s(; ;) consists of two
parts each reflecting the third or fourth case as visualized in Figure 6.3. Let q ¢ O
refer to all points whose projection does not fall into the original segmentation mask
O. And let q € O refer to the set of points whose projections falls into O. Then
P(i,j) is computed as the sum of expected values of the plausibilities in these two
sets:

P(i,5) = Eqgo [plaus,(q)] + Eqeo[plaus,(q)]. (6.5)

In case the plane parameters are chosen such that there is a large overlap between
the original point cloud P and the mirrored cloud Q; ;), the second part of Equa-
tion 6.5 will be relatively large compared to the first part. The bigger dj, i.e. shift
of the symmetry plane as visualized in Figure 6.2, IEqco [plaus,(q)] will increase
and [Eq¢o[plaus,(q)] decrease. We are searching for symmetry plane parameters
8(i,j) that produce a mirrored point cloud with a global maximum in the space of
the plausibilities scores

S(i,j) = arg mMax p(;,j)- (6.6)
The corresponding Q; ;) will have the smallest amount of points contradicting the
symmetry hypothesis and therefore is of a maximum plausibility.
6.1.2 Surface Approximation of Completed Point Clouds

After the prediction of the backside of an object point cloud, we want to create
a surface mesh approximation to support grasp planning and collision detection.
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We use Poisson surface reconstruction for this purpose proposed by Kazhdan et al.
[113]. This method is a global method considering all data at once. It produces
smooth watertight surfaces that robustly approximate noisy data.

6.1.2.1 Introduction to Poisson Surface Reconstruction

Poisson surface reconstruction approaches the problem by computing an indicator
function X that takes the value 1 at points inside the object and 0 outside of it.
The reconstructed surface then equals an appropriate iso-surface. The key insight
used for formulating surface reconstruction as a poisson problem is that there is a
close relationship between a set of oriented points sampled from the real surface and
X. Specifically, the gradient VX of the indicator function is 0 almost everywhere
except from close to the surface where it equals the inward surface normals. The
set of oriented points S can therefore be seen as samples from VX. Computing
the indicator function can then be formulated as finding X whose gradient best
approximates a vector field V as defined by the points in S.

X :m)inHVX—]_)H (6.7)

To convert this into a standard poisson problem, Kazhdan et al. [113] propose
to find the least-squares approximate solution of the indicator function X whose
second derivative equals the first derivative of the vector field V.

AX =VVX = VY (6.8)

For details on how this is efficiently solved, we refer to [113]. Here, we will concen-
trate on the aspects that are relevant to this thesis.

Given point samples S and a desired tree depth D, an adaptive octree is defined
in which each sample falls into a leaf node at D. A function f,(-) is associated with
each node o in that tree. It maps a sample point q from the set S to a scalar value
such that the indicator function can be precisely and efficiently evaluated near the
sample points. In [113] f, is chosen to be an approximation of a unit-variance
Gaussian centered about the node o and stretched by its size.

To achieve subnode precision in the vector field, trilinear interpolation is used
to distribute a sample across its nearest neighbor nodes at depth D.

V@=> Y ao.fola)n, (6.9)

SES 0€Ngbr, (s)

where a, s are the appropriate weights for interpolation and n, the normal of the
sample s.

To choose the appropriate iso-value v at which the iso-surface O M is extracted,
X is evaluated at all the samples from set S. The average of the resulting values is
then used as the iso-value.

M ={qeR’|X(q) =~} (6.10)
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with
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v = §ZX(S). (6.11)
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dM is then extracted by using marching cubes adapted to octrees as proposed in
Lorensen and Cline [138] and Kazhdan et al. [113].

6.1.2.2 Taking Non-Uniform Sampling into Account

The aforementioned formulation assumes that samples are uniformly distributed.
However, this case seldom applies to real-world situations. In our case, where
point clouds are extracted through stereo vision, sampling is non-uniform due to
for example textureless areas on the real objects.

Kazhdan et al. [113] propose to scale the magnitude as well as the width of the
kernel associated with each sample point according to the local sampling density.
Through that approach, areas of high sampling density will maintain sharp features
in their surface approximation while areas of sparse sampling will be characterized
by smoothly fitting surfaces. The local sampling density wp(q) at a point q is
computed as the sum of the node functions of the nearest neighbor nodes at a
specific depth D < D

wp(@ =D Y assfol@) (6.12)

SES 0eNgbrp (s)

wp(q) is then used to modify Equation 6.9 such that each sample point q con-
tributes proportional to the surface area associated with it. Since the local sampling
density is inversely related to the surface area, then

Va=—— 3 . (6.13)

50D pengiom o)
By interpolating the vector field over the neighbors of s at depth
Depth(s) = min(D, D + log,(wp(s)/W)) (6.14)

not only the magnitude of the smoothing filter is adapted. Also its width is chosen
proportional to the radius of the associated surface patch of point s. W refers to
the average sampling density of all samples.

Similarly, Equation 6.11 is adapted such that points with a higher local sampling
density have a higher influence on the choice of the isovalue:

L Tiesup ()
Yees Up()

(6.15)
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6.1.2.3 Plausibility for Improved Robustness of the Surface Reconstruction

Kazhdan et al. [113] propose to adapt their approach to take confidence value of
the sampling points into account which is implemented in [112]. In this thesis, we
want to show that different prediction mechanisms are useful for improving percep-
tion but also manipulation and grasping. Additionally, we have already shown in
Section 4 that having an idea about the uncertainty in a prediction helps to effi-
ciently explore a scene. In this section, we want to show that using the probability
of a point in the mirrored point cloud to be from the original object improves the
robustness of surface reconstruction. This probability is defined as the plausibility
plaus(q) of a point q according to visibility constraints as in Equation 6.3 and 6.4.

The intuition behind the following adaptation of the poisson equations is that
sample points with low plausibility do not need to be represented with fine detail.
Equation 6.13 is therefore adapted as follows

V@)=Y S anfol@n,.  (6.16)

D(q) ! plauS(q) oENgerepth(S)(s)

where
Depth(s) = min(D, D + log,(wp(s) - plaus(s)/W)) (6.17)

Equation 6.11 is adapted as follows:

= LiscsWp(s) -plaus(s)t(s) (6.18)

ZSES wp (s - plaus(s))

As will be shown in Section 6.2, this is specifically beneficial at the seams of the
completed point cloud where old and new points overlap. These places are prone
to noise and potentially contradictory normal information. New points that tend
to have a lower plausibility than old points should therefore be down-weighted to
achieve smooth boundaries.

6.1.2.4 Computing the Normals of the Completed Point Cloud

The point cloud data, that we use as sample set S is not originally oriented. To
determine the normals, we use a kd-tree as proposed by Hoppe et al. [97]. A local
plane fit is estimated for the k-nearest neighbors of the target point. This plane
is assumed to be a local approximation of the surface at the current point. More
advanced normal estimation techniques as for example by Cole et al. [54] and Mitra
and Nguyen [154] have been proposed which could perhaps increase the performance
of the surface reconstruction at the cost of computation speed. Following normal
estimation, we ensure that the normals of the mirrored points are consistent with
the mirrored viewing direction reflected across the plane of symmetry.

It should be noted while Poisson surface reconstruction is robust to some noise,
it is sensitive to normal direction. We therefore filter outliers from the segmented
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Figure 6.4: From a segmented point cloud to meshes of different resolutions. (i, j)
is the index of a symmetry plane hypothesis with an angle o; and a position d;
as visualized in Figure 6.2. The two different meshes are reconstructed based on
different octree depths.

point cloud prior to the surface reconstruction step. Example results using a mir-
rored point cloud for different depth values D of the octree are shown in Figure 6.4.

6.2 Experiments

In this section, we will present quantitative experiments showing that the comple-
tion of incomplete object point clouds based on symmetry produces valid object
models. Furthermore, we will evaluate how much the robustness of registration
improves when using completed point clouds. Furthermore, we will show how the
estimated complete object model helps when using a simple grasp strategy based
on the center of an object.

6.2.1 Evaluation of the Mesh Reconstruction

In this section, we evaluate quantitatively how accurate the surface of objects is
reconstructed with the proposed method.

6.2.1.1 Dataset

The database we used for evaluating the point cloud mirroring method is shown
in Figure 6.5. For each of the objects in this database, with the exception of the
toy tiger and rubber duck, we have laser scan ground truth!. The test data was
captured with the active vision system (see Section 2.2.1) and contains 12 different
household or toy objects. Four of them are used both, when standing upright or
lying on their side. Thereby, the database contains 16 different data sets. Each set

IThe ground truth object models were obtained from http://i61p109.ira.uka.de/
ObjectModelsWebUI/
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(i) Salt Box (s) (j) Salt Cyl (1) (k) Salt Cyl (s) V (1) Spray

EAY A

(p) White Cup

Figure 6.5: The 12 Objects of the Mesh Reconstruction Database in partially vary-
ing poses yielding 16 Data Sets. Objects are shown in their 0° position, i.e, with
their longest dimension when projected on the table parallel to the image plane.
Ground truth meshes are existing for all objects except the toy tiger and the rubber
duck.

Figure 6.6: One of the Datasets from Figure 6.5 shown in Orientation 0°, 45°, 90°,
135°, 180°, 225°, 270° and 315°.
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Figure 6.7: Left) Ground Truth Mesh. Middle Left) Original Point Cloud. Middle
Right) Mirrored Cloud with Original Points in Blue and Additional Points in Red.
Right) Mirrored Cloud with Plausibility Information Mapped to Gray Scale.

contains 8 stereo images showing the object in one of the following orientations: 0°,
45°,90°, 135°, 180°, 225°, 270° or 315°. An example for the toy tiger is shown in
Figure 6.6. As an orientation reference we used the longest object dimension when
projected down to the table. 0° then means that this reference axis is parallel to
the image plane of the stereo camera. This can be observed in Figure 6.5 in which
all objects are shown in their 0° pose. Therefore, the database contains 128 stereo
images along with their point clouds.

From all point clouds, we reconstructed the complete meshes based on the meth-
ods described in Section 6.1.2 with and without taking plausibility information into
account. As octree depth parameter of the Poisson surface reconstruction we use 5.
In our previous work [4], we also used a tree depth of 7 and did not find a significant
difference in performance. By limiting this parameter, we enable mesh reconstruc-
tion in near real-time. With a tree depth of 5, the meshes are more coarse and
blob-like but less sensitive to noise in the point cloud and normal estimation. With
a depth of 7, the reconstructed surface is closer to the original point set. However,
outliers strongly affect the mesh shape and it is more sensitive to noise.

To obtain the ground truth pose for each item in the database, we applied the
technique proposed in [165]. It allows to register ground truth object meshes to the
incomplete point clouds. We manually inspected the results to ensure correctness.

Figure 6.7 shows an example point from our dataset along with the aligned
ground truth mesh, the completed point cloud and the plausibility values.

6.2.1.2 Baseline

As a baseline, we generated a mesh only based on the original point cloud. To do
this, we applied a Delaunay triangulation as implemented in [43] to the projection
of a uniformly sampled subset of 500 points from the original point cloud. Spurious
edges are filtered based on their length in 2D and 3D. Furthermore, we extract the
outer contour edges of this triangulation and span triangles between them which
produces a watertight mesh. Figure 6.8 shows an example Delaunay graph with
color-coded edges. Figure 6.9 shows example results of this Delaunay-based mesh
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Figure 6.8: Delaunay graph as the basis for the baseline mesh reconstruction. Red
edges belong to the mesh. Green edges are contour edges that are additionally
triangulated separately to create a mesh backside. Blue edges are filtered out
based on length and connectivity to the outer triangle.
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Figure 6.9: Delaunay based Meshes of Toy Tiger. Top: Front View. Bottom: Top
View.

reconstruction.

6.2.1.3 Mesh Deviation Metric

To assess the deviation of the Delaunay meshes and the mirrored meshes from the
ground truth we use MeshDev [189]. As a metric we evaluated geometric deviation,
i.e., the distance between each point on the reference mesh to the nearest neighbor
on the other mesh. We applied the uniform sampling of the surface of the reference
mesh as proposed in [189] to calculate this deviation.

In Figure 6.10, meshes are visualized that were reconstructed using the base-
line approach, the Poisson reconstruction without plausibility and with plausibility
information. Figure 6.11 shows the heat maps of the geometric deviation between
the meshes in Figure 6.10 and the ground truth mesh in Figure 6.7. In [4], we com-
pared the performance of the different mesh reconstruction results using the mean
and variance over the geometric deviation histogram. The resulting Gaussians are
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Figure 6.10: Reconstructed Meshes. Left) Delaunay based. Middle) Poisson recon-
struction on uniformly weighted points. Right) Poisson reconstruction on points
weighted with plausibility.

Figure 6.11: Heat Map of Geometric Deviation to Ground Truth Mesh.
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Figure 6.12: Gaussian distribution fit to histograms of geometric deviation [mm].
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Figure 6.13: Median, First and Third Quartille of Histograms.
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Figure 6.14: Evaluation of the Deviation between the Ground Truth Mesh and
i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring and
Poisson Surface Reconstruction without using plausibility information( WOPlaus)
or iii) with using plausibility information(WPlaus). The red line indicates the
average median deviation over all orientations.

visualized in Figure 6.12. It clearly shows that this model does not sufficiently fit
the data. To better visualise the distribution of the data, we use a boz-and-whiskers
plot as shown in Figure 6.13. The box contains the first, second and third quartile
while the whiskers show the minimum and maximum of the distribution.

6.2.1.4 Results

Geometric Deviation of Reconstructed Meshes Figure 6.14 shows the box-
and-whiskers plots of the mesh deviation between the ground truth mesh and the
reconstructed meshes for all object orientations over all objects. The left and right
graph present results for two different categories of symmetry planes. On the left,
only those with the same orientation as the selected eigenvector were considered.
The planes were translated along the normal of the eigenvector. On the right of
Figure 6.14, additional hypotheses with varying orientation are considered.

On average, the mirrored point clouds are always closer to the ground truth than
the Delaunay-based meshes. Furthermore, when searching over different positions
and orientations of the symmetry plane, the average median deviation is lower
(4.93mm) than when only taking shifts into account (6.64mm).

Figure 6.15 shows the same error measure for each object independently av-
eraged over all its orientations. The deviation measure is not normalized to the
overall object size and shows deviation in millimeters. For bigger objects, like the
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Figure 6.15: Evaluation of the Deviation between the Ground Truth Mesh and
i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring and
Poisson Surface Reconstruction without using plausibility information( WOPlaus)
or iii) with using plausibility information( WPlaus).
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Brandt box or the Burti and Spray bottle, the median geometric deviation be-
tween the Delaunay meshes and the ground truth exceeds 20mm. The mirroring
yields a significant improvement for most objects. The green and white cup pose a
challenging problem to the Poisson surface reconstruction because they are hollow.
Modeling the void is difficult due to viewpoint limitations. On the other hand, holes
in the point clouds due to non-uniform texture are usually closed by the surface
reconstruction. For the Burti bottle, the original point clouds are very sparse due
to this object being only lightly textured. This is reflected by the very high me-
dian of the geometric deviation of these object meshes shown in Figure 6.15. This
indicates that given input of very low quality, the proposed completion algorithm
cannot achieve a significantly better reconstruction of the whole object.

Plausibility for Surface Reconstruction Figure 6.14 and 6.15 also compare
the geometric deviation for meshes being reconstructed with and without taking
the point-wise plausibility information into account. They show that on average
there is no significant difference between them regarding the median of geometric
deviation. However for some example meshes, we can observe a significantly bet-
ter surface reconstruction when using the plausibility information. In Figure 6.16,
show some of these examples and illustrate the differences between the two recon-
struction methods. Details are shown of the seams between the original and the
mirrored point cloud. Figure 6.16a, 6.16b and 6.16d show specifically, how the
lower plausibility values of the mirrored points at these regions lead to stronger
local smoothing of the mesh. Figure 6.16c shows how using plausibility informa-
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(a) Detail of Amicelli box reconstructed with (b) Detail of Amicelli box reconstructed with
octree depth 5. octree depth 7

8

(c) Reconstructed tiger with octree depth 7 (d) Details of reconstructed tiger head.

Figure 6.16: Comparison of Poisson reconstruction results of mirrored point cloud
with and without using plausibility information. Left) Without Plausibility. Right)
With Plausibility. Direct comparison shows that at places where mirrored cloud
consists of contradicting oriented points, including plausibility information results
in coarser meshes at those uncertain places.

tion for the choice of the isovalue can result in a more plausible mesh that does
not comply with potential noise introduced by the point cloud completion. The
details of the meshes suggest that fewer faces should be used for the smoother sur-
faces reconstructed using plausibility information. As shown in Figure 6.17, there is
however no significant difference in the number of faces between the two methods.
This suggests that the meshes differ only marginally at small parts as for example
at the seams between the original and mirrored point clouds.

Plausibility as Quality Indicator Since, we do not have the ground truth
models available for the toy tiger and the rubber duck, we show their reconstructed
meshes with tree depth 7 in Figure 6.18. The overall shape of the quite irregular toy
objects is well reconstructed. However, because of the complexity of the objects if
an incorrect mirroring plane is chosen, we obtain toy animals with either two heads
or two tails. In such cases, there are strong violations of the visibility constraints.
Therefore, these symmetry plane hypotheses will have a low plausibility value as
computed in Equation 6.5. By thresholding this value, we should be able to remove
these erroneous hypotheses.

Figure 6.19 shows a scatterplot of the best mirrored point clouds for each object
and angle combination. Their overall plausibility is plotted against the median
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Figure 6.17: Comparison of the number of faces in a mesh reconstructed with and
without considering plausibility information. Mean and standard deviation are
shown for one object in the dataset averaged over all orientations.
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Figure 6.18: Meshes based on mirroring using only shifts of the symmetry plane.
First Row: Toy Tiger. Second Row: Rubber Duck.

of the normalized geometric deviation from the ground truth meshes. We used
Bayesian line fitting as described in Bishop [31] to reveal the inverse relation of
plausibility to geometric deviation: The lower the plausibility of a mirrored point
cloud, the higher the geometric deviation from the ground truth. This shows, that
thresholding plausibility can be used to reject completions of low quality.

6.3 Discussion

In this chapter, we proposed a method that estimates complete object models from
partial views. No knowledge about the specific objects is assumed for this task.
Instead, we introduce a symmetry prior. We validated the accuracy of the com-
pleted models using laser scan ground truth. The results show effectiveness of the
technique on a variety of household objects in table top environments.
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Figure 6.19: Scatterplot of the best mirrored point clouds for each object and angle
combination showing their plausibility against the median of the normalized geo-
metric deviation from the ground truth meshes. Line fit to this data in a Bayesian
manner reveals the inverse relation of plausibility to geometric deviation: The lower
the plausibility of a mirrored point cloud, the higher the geometric deviation from
the ground truth.

We argue that the proposed object prediction technique is another step towards
bridging the gap between simulation and the real world. This will be further dis-
cussed in Section 7.3 where we show how the predicted meshes can provide grasp
and motion planners with more accurate object models.

As described earlier, we reduced the search space for the optimal symmetry pa-
rameters by making the assumption that objects are standing on a table top with
the symmetry plane perpendicular to the table. This reduces the search for the
position and orientation of a plane to the 3 DoF of a line on the table. By further-
more initializing the search from the eigenvectors of the projection of the object
point cloud, only an orientation and shift of the line has to be considered. These
restrictions limit the possible object poses under which we can estimate their full
shape. However, the generate-and-test scheme can be easily parallelized. There-
fore, search in a space covering more DoF of a symmetry plane can be efficiently
performed.

As mentioned by Breckon and Fisher [44], a symmetry prior can easily fail in
reconstructing a surface when the object is strongly occluded. Also wrong seg-
mentations can lead to erroneous results. The dataset on which we quantitatively
evaluated the proposed method contains only single objects. We assume they are
correctly segmented with only few outliers from the background or table. For this
case, we have shown the effectiveness of our method. In Section 8.1.1, we will
demonstrate the proposed approach in a grasping scenario with several objects on
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a table top. Although minor occlusions occur, the method still succeeds in providing
models on which successful grasps are planned and finally executed.

However, in the presence of strong occlusions the proposed method will most
likely fail to estimate the correct object surface. Among others, this is due to using
the eigenvectors of the point cloud projection as an initialization for the underlying
symmetry plane. This choice has been shown on the dataset to yield reasonable
estimates for the orientation of the symmetry plane. However, if the point cloud
represents only a minor part of the real object, then the eigenvector of this part
will not be close to the optimal symmetry plane of the real object.

We see two possibilities to overcome this limitation. The first one is based on
using plausibility of a symmetry plane hypothesis as an absolute quality indicator.
That this is possible has been shown earlier in this chapter. If only a hypothesis
can be found that strongly violates visibility constraints, i.e., has a low plausibility,
it can be rejected completely by thresholding this value. Then, a different method
for motion and grasp planning has to be used.

A second possibility is to keep the predicted object shape but explicitly take
the uncertainty about the reconstructed surface into account for grasp and motion
planning. This could be done by for example avoiding placements of the hand in
which fingertip positions coincide with points of low plausibility. Another option
is to use the proposed method in combination with haptic exploration such that
especially uncertain parts of the estimated object surface are confirmed with the
hand first.




Generation of Grasp Hypotheses

Autonomous grasping of objects in unstructured environments remains an open
problem in the robotics community. Even if the robot achieves a good under-
standing of the scene with well-segmented objects, the decision on how to grasp or
manipulate them depends on many factors, e.g., the identity and geometry of the
object, the scene context, the embodiment of the robot or its task. The number of
potentially applicable grasps to a single object is immense. In the following, we will
refer to this set as grasp candidates. Two main challenges exist: (i) planning good
grasps. This can be seen as choosing a set of promising grasp hypotheses among the
candidates. And (ii) executing these robustly under uncertainties introduced by
the perception or motor system. In Chapter 8, different approaches towards robust
grasp execution will be discussed. In this chapter, we will propose approaches to
generate good grasp hypotheses given different prior object knowledge. In our case,
one hypothesis is defined by

« the grasping point on the object with which the tool centre point (TCP) should
be aligned !,

o the approach vector [70] which describes the 3D angle that the robot hand
approaches the grasping point with and

o the wrist orientation of the robotic hand.

Although humans master grasping easily, no suitable representations of the
whole process have yet been proposed in the neuro-scientific literature, making
it difficult to develop robotic systems that can mimic human grasping behavior.
However, there is some valuable insight. Goodale [91] proposes that the human
visual system is characterized by a division into the dorsal and ventral pathway.
While the dorsal stream is mainly responsible for the spatial vision targeted at
extracting action-relevant visual features, the ventral stream is engaged in the task
of object identification. This dissociation also suggests two different grasp choice
mechanisms dependent on whether a known or unknown object is to be manipu-
lated. Support for this can be found in behavioral studies by Borghi [38] and Creem

n this thesis, the TCP is at the centre of palm of the robotic gripper.

101
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and Proffitt [57]. The authors claim that in the case of novel objects, our actions
are purely guided by affordances as introduced by Gibson [89]. In the case of known
objects, semantic information (e.g., through grasp experience) is needed to grasp
them appropriately according to their function. However as argued in [91, 48, 228§]
this division of labour is not absolute. In the case of objects that are similar to pre-
viously encountered ones, the ventral system helps the dorsal stream in the action
selection process by providing information about prehensile parts along with their
afforded actions.

Grasp synthesis algorithms have previously been reviewed by Sahbani et al.
[198]. The authors divide the approaches into analytical and empirical methods.
With analytic, they refer to all those methods that find optimal grasps according to
some criteria. This can be based on geometric, kinematic or dynamic formulations
as for example force or form closure. Empirical approaches on the other hand avoid
computing these mathematical or physical models. Instead, a set of example grasps
is sampled from the set of candidates, their quality evaluated and the best subset
is chosen as the final grasp hypotheses. Kamon et al. [108] also refer to this as the
comparative approach. Existing algorithms differ in the source of grasp candidates
and the definition of their quality.

In [198] the division is made dependent on whether the method is based on
object features or observation of humans during grasping. We believe that this
falls short of capturing the diversity of the empirical approaches. In this thesis,
we instead group existing empirical grasp synthesis algorithms according to the
assumed prior knowledge about object hypotheses. The three categories are:

o Known Objects: These approaches consider grasping of a-priori known ob-
jects. Once the object is identified, the goal is to estimate its pose and retrieve
a suitable grasp, e.g., from an experience database.

o Unknown Objects: Approaches that fall into this category commonly represent
the shape of an unknown object and apply heuristics to reduce the number
of potential grasps.

e Familiar Objects: These approaches try to transfer pre-existing grasp expe-
rience from similar objects. Objects can be familiar on different levels. Low
level similarity can for example be defined in terms of shape, color or texture.
Higher level similarity could be defined based on object category. A underly-
ing assumption is that new objects similar to the old ones can be grasped in
a similar way.

This kind of division is inspired by the research in the field of neuropsychol-
ogy. It is suitable because the assumed prior object knowledge determines the
necessary perceptual processing but also what empirical method can be used for
generating grasp candidates. This will be discussed in more detail in Section 7.1.
Following related work, we will propose different grasp inference methods for either
known, familiar or unknown objects. Our requirements on the employed object
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representations are that they have to be rich enough to allow for the inference of
the aforementioned grasp parameters.

7.1 Related Work

Figure 7.1 outlines the different aspects that influence the generation of grasp hy-
potheses for an object. In this section, we focus on the significant body of work
proposing empirical grasp synthesis methods. For an in-depth review of analyti-
cal approaches, we refer to [198]. We use the division proposed in the previous
section to review the related work. Given the kind of prior object knowledge, we
will discuss the different object representations that are partially dependent on the
kind of sensor the robot is equipped with. Furthermore, we are also interested in
which empirical method is employed as outlined in Figure 7.2. There is a number of
methods that learn either from humans, labeled examples or trial and error. Other
methods use heuristics to prune the search space for appropriate grasp hypotheses.

There is relatively little work on task-dependent grasping. Also, embodiment is
usually not in the focus of the approaches discussed here. These two aspects will
therefore be mentioned but not discussed in depth.

7.1.1 Grasping Known Objects

If the robot knows the object that it has to grasp, then the problem of finding a
good grasp reduces to the online estimation of the object’s pose. Given this, a set
of grasp hypotheses can be retrieved from an experience database and filtered by
reachability.

7.1.1.1 Offline Generation of a Grasp Experience Database

In this section, we will look at approaches that set up an experience database. They
differ in how candidate grasps are generated and in how their quality is evaluated.
These two aspects are usually tightly connected and also depend on the object
representation.

3D Mesh Models and Contact-Level Grasping The main problem in the
area of grasp synthesis is the huge search space from which a good grasp has to be
retrieved. Its size is due to the large number of hand configurations that can be
applied to a given object. In the theory of contact-level grasping [161, 204] a good
grasp is defined from the perspective of forces, friction and wrenches. Based on
this, different criteria are defined to rate grasp configurations, e.g., force closure,
dexterity, equilibrium, stability and dynamic behavior.

Several approaches in the area of grasp synthesis exist that apply these criteria
to rank grasp candidates for an object with a given 3D mesh model. They differ in
the heuristics they use to generate the candidates. Some of them approximate the
object’s shape with a constellation of primitives such as spheres, cones, cylinders and
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Figure 7.1: Aspects Influencing the Generation of Grasp Hypotheses.

boxes as in Miller et al. [153], Hiibner and Kragic [101] and Przybylski and Asfour
[179] or superquadrics (SQ) as in Goldfeder et al. [90]. These shape primitives are
then used to limit the amount of candidate grasps and thus prune the search tree
for finding the most stable set of grasp hypotheses. Borst et al. [39] reduce the
number of candidate grasps by randomly generating a number of them dependent
on the object surface and filter them with a simple heuristic. The authors show
that this approach works well if the goal is not to find an optimal grasp but instead
a fairly good grasp that works well for “ everyday tasks”. Diankov [65] proposes
to sample grasp candidates dependent on the objects bounding box in conjunction
with surface normals. Grasp parameters that are varied are the distance between
the palm of the hand and the grasp point as well as the wrist orientation. This
scheme is implemented in the OpenRave Simulator [66]. The authors find that
usually a relatively small amount of 30% from all grasp samples is in force closure.




7.1. RELATED WORK 105

Empirical

Grasp Synthesis

Figure 7.2: Different Approaches towards Empirical Grasp Synthesis.

All these approaches are developed and evaluated in simulation. As also claimed
in [65], the biggest criticism towards ranking grasps based on force closure computed
on point contacts is that relatively fragile grasps might be selected. A common
approach to filter these, is to add noise to the grasp parameters and keep only those
grasps in which a certain percentage of the neighboring candidates also yield force
closure. Balasubramanian et al. [21] question classical grasp metrics in principle.
The authors systematically tested a number of grasps in the real world that were
stable according to classical grasp metrics. Compared to grasps planned by humans
through kinesthetic learning on the same objects, these grasps underperformed
significantly. The authors found that humans optimise a skewness metric, i.e., the
divergence of alignment between hand and principal object axes.

Learning from Humans A different way to generate grasp candidates is to
observe how humans grasp an object. Ciorcarlie et al. [53] exploit results from
neuroscience that showed that human hand control takes place in a much lower
dimension than the actual number of its degrees of freedom. This finding was
applied to directly reduce the configuration space of a robotic hand to find pre-
grasp postures. From these so called eigengrasps the system searches for stable
grasps. Li and Pollard [135] treat the problem of finding a suitable grasp as a
shape matching problem between the human hand and the object. The approach
starts off with a database of human grasp examples. From this database, a suitable
grasp is retrieved when queried with a new object. Shape features of this object
are matched against the shape of the inside of the available hand postures.
Kroemer et al. [124] learn to grasp specific objects through a combination of
a high-level reinforcement learner and a low level reactive grasp controller. The
object is represented by a constellation of local multi-modal contour descriptors.
Four elementary grasping actions are associated to specific constellations of
these features resulting in an abundance of grasp candidates. The learning process
is bootstrapped through imitation learning in which a demonstrated reaching tra-
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jectory recorded with a VICON system is converted into an initial policy. Similar
initialization of an object specific grasping policy is used in Pastor et al. [167] and
Stulp et al. [214] through kinesthetic learning. Detry et al. [62, 64] use the same
sparse object model as Kroemer et al. [124]. The set of associated grasp hypothe-
ses is modelled as a non-parametric density functions in the space of 6D gripper
poses, referred to as a bootstrap density. In [62] human grasp examples are used to
build an object specific empirical grasp density from which grasp hypotheses can
be sampled.

Faria et al. [76] use a multi-modal data acquisition tool to record humans grasp-
ing specific objects. Objects are represented as probabilistic volumetric maps that
integrate multi-modal information such as contact regions, fixation points and tac-
tile forces. This information is then used to annotate object parts as graspable or
not. However, no results are provided on how a robot can transfer this information
to new objects and to its own embodiment. Romero et al. [186] present a system
for observing humans visually while they interact with an object. A grasp type and
pose is recognized and mapped to different robotic hands in a fixed scheme. For
validation of the approach in the simulator, 3D object models are used. Examples
of real-world executions are shown. The object is not explicitly modelled. Instead,
it is assumed that human and robot act on the same object in the same pose.

Learning through Self-Experience Instead of adopting a fixed set of grasp
candidates given for example by a person, the following approaches try to refine
them by trial and error. In [124, 214] reinforcement learning is used to improve
an initial human demonstration. Kroemer et al. [124] uses a low-level reactive
controller to perform the grasp that informs the high level controller with reward
information. Stulp et al. [214] increase the robustness of their non-reactive grasping
strategy by learning shape and goal parameters of the motion primitives that are
used to model a full grasping action. Through this approach, the robot learns reach-
ing trajectories and grasps that are robust against object pose uncertainties. Also
Detry et al. [64], adopt an approach in which the robot learns to grasp specific ob-
jects by experience. Instead of human examples as in [62], successful grasping trials
are used to build the object-specific empirical grasp density. This non-parametric
density can then be used to sample grasp hypotheses.

7.1.1.2 Online Object Pose Estimation

In the previous section, we reviewed different approaches towards grasping known
objects regarding their way to generate candidate grasps and rank them to form
a set of grasp hypotheses. During online execution, an object has to be first rec-
ognized and its pose estimated before the offline trained grasps can be executed.
Furthermore, from the set of hypotheses not all grasps might be applicable in the
current scenario. An appropriate selection has to be made.

Several of the aforementioned grasp generation methods [124, 62, 64] use the
probabilistic approach towards object representation and pose estimation proposed
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by Detry et al. [63]. As described before, grasps are either selected by sampling
from densities [62, 64] or a grasp policy refined from a human demonstration is
applied [124].

The following approaches use offline generated experience databases through
simulation of grasps on 3D models in either Grasplt! [152] or OpenRave [66]. Beren-
son et al. [27] consider this experience database then as one factor in selecting an
appropriate grasp. The second factor in computing the final grasp score is the whole
scene geometry. The approach was demonstrated on a real robot using a motion
capture system to determine the robot and the object position.

In the online stage of the method presented by Ekvall and Kragic [70], a human
demonstrator wearing a magnetic tracking device is observed while manipulating a
specific object. The grasp type is recognized and mapped through a fixed schema
to a set of robotic hands. Given the grasp type and the hand, the best approach
vector is selected from an offline trained experience database. Unlike Detry et al.
[62] and Romero et al. [186], the approach vector used by the demonstrator is not
adopted. Ekvall and Kragic [70] assume that the object pose is known. However,
experiments are conducted in which pose error is simulated. No demonstration
on a real robot is shown. Morales et al. [156] use the method proposed by Azad
et al. [19] to recognize an object and estimate its pose from a monocular image.
Given that information, an appropriate grasp configuration can be selected from
a grasp experience database that has been acquired offline. The whole system is
demonstrated on the robotic platform described in Asfour et al. [16]. Huebner et al.
[102] demonstrate grasping of known objects on the same humanoid platform and
the same method for object recognition and pose estimation. The offline selection
of grasp hypotheses is based on a decomposition into boxes. Ciocarlie et al. [52]
propose a robust grasping pipeline in which known object models are fitted to point
cloud clusters using standard ICP [30]. Knowledge about the table plane and the
assumption that objects are rotationally symmetric and are always standing upright
helps in reducing the search space of potential object poses.

All of the aforementioned methods assume prior knowledge on a rigid 3D object
model. Jared Glover [107] consider known deformable objects. For representing
them, probabilistic models of their 2D shape are learnt. The objects can then
be detected in monocular images of cluttered scenes even when they are partially
occluded. The visible object parts serve as a basis for planning a stable grasp under
consideration of the global object shape. Collet Romea et al. [55] use a combination
of 2D and 3D features as an object model. The authors estimate the object’s pose
in a scene from a single image. The accuracy of their approach is demonstrated
through a number of successful grasps on 4 different objects in somewhat cluttered
scenes. Other robust methods for estimating the pose of single or multiple objects
simultaneously are presented in [95, 68, 165, 166]. Although these approaches are
motivated in a grasping scenario, no actual grasping has been shown.
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7.1.1.3 Learning Object Models

All of the above mentioned approaches are dependent on an a-priori known dense
or detailed object model either in 2D or in 3D that may be difficult to obtain.

Different methods have been proposed to build a model of a new object by
combining a sequence of observations. Foix et al. [81] present a method for merging
partial object point clouds when facing strong noise in the data and uncertainty
in the estimated camera trajectory. The approach is based on standard ICP for
registering point clouds of two consecutive views. The uncertainty in the resulting
camera pose estimates is estimated by propagating the sensor covariance through
the ICP minimization. Collet Romea et al. [55] proposes to acquire object models
offline consisting of an image, a sparse 3D model and a simplified mesh model.
A method towards autonomous learning of object surface models is demonstrated
by Krainin et al. [123]. The robot holds an object in its hand and plans the next
best views to acquire a surface mesh. An alternative way to learn object models
is taken by Tenorth et al. [218]. Here, web-enabled robots are proposed that can
retrieve appearance and 3D models from online databases.

7.1.2 Grasping Unknown Objects

If the currently considered object hypothesis could not be recognized as a known
object and is not similar to one either, then it is considered as unknown. In this
case, the previously listed approaches are not applicable since in practice it is very
difficult to infer object geometry fully and accurately from measurements taken
from sensor devices such as cameras and laser range finders. There are various ways
to deal with this sparse, incomplete and noisy data. We divided the approaches
roughly into methods that try to approximate the shape of an object, methods that
generate grasps based on low-level features and a set of heuristics and methods that
rely mostly on the global shape of the object hypothesis.

7.1.2.1 Approximating Unknown Object Shape

One approach towards generating grasp hypotheses for unknown objects is to ap-
proximate them with shape primitives that provide cues for potential grasps. Dunes
et al. [67] approximate the rough object shape with a quadric whose minor axis is
used to infer the wrist orientation. The object centroid serves as the approach tar-
get and the rough object size helps to determine the hand pre-shape. The quadric
is estimated from multi-view measurements of object shape in monocular images.
Opposed to the above mentioned techniques, Bone et al. [37] make no prior as-
sumption about the shape of the object. They apply shape carving for the purpose
of grasping with a parallel-jaw gripper. After obtaining a model of the object, they
search for a pair of reasonably flat and parallel surfaces that are best suited for this
kind of manipulator.
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7.1.2.2 From Low-Level Features to Grasp Hypotheses

A common approach is to map low-level features to an abundance of grasp hy-
potheses and then rank them dependent on a set criteria. Kraft et al. [120] use
a stereo camera to extract a representation of the scene. Instead of a raw point
cloud, they are processing it further to obtain a sparser model consisting of local
multi-modal contour descriptors already mentioned above in conjunction with the
work by Detry et al. [62, 64] and Kroemer et al. [124]. Four elementary grasping
actions are associated to specific constellations of these features. With the help
of heuristics the huge number of resulting grasp hypothesis is reduced. Popovié¢
et al. [172] present an extension of this system that also uses local surfaces and
their interrelations to propose and filter two and three-fingered grasp hypotheses.
The feasibility of the approach is evaluated in a mixed real-world and simulated
environment.

Hsiao et al. [99] employ several heuristics for generating grasp hypotheses de-
pendent on the shape of the segmented point cloud. These can be grasps from the
top, from the side or applied to high points of the objects. The generated hypothe-
ses are then ranked using a weighted list of features such as for example number
of points within the gripper, distance between the fingertip and the center of the
segment or whether the object fits into the whole hand. This method is integrated
into the grasping pipeline proposed in [52] for the segmented point cloud clusters
that did not get recognized as a specific object.

The main idea presented by Klingbeil et al. [118] is to search for a pattern in
the scene that is similar to the 2D cross section of the robotic gripper interior. A
depth image serves as the input to the method and is sampled to find a set of grasp
hypotheses. These are ranked according to an objective functions that takes pairs
of these grasp hypotheses and their local structure into account.

7.1.2.3 From Global Shape to Grasp Hypothesis

Other approaches use the global shape of an object to infer one good grasp hypoth-
esis. Richtsfeld and Vincze [184] use a segmented point cloud from a stereo camera.
They are searching for a suitable grasp with a simple gripper based on the shift of
the top plane of an object into its centre of mass. A set of heuristics is used for
selecting promising fingertip positions. Maldonado et al. [142] model the object as
a 3D Gaussian. For choosing a grasp configuration, it optimises a criterion in which
the distance between palm and object is minimised while the distance between fin-
gertips and the object is maximised. Stiickler et al. [213] generate grasp hypotheses
based on eigenvectors of the object’s footprints on the table. With footprints, we
refer to the 3D object point cloud projected onto the supporting surface. A similar
approach has been taken in our previous work [10]. This approach is related to
[21] in which it is shown that people are optimizing the aforementioned skewness
measure.
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7.1.2.4 Assuming Symmetry

Many of the man-made objects surrounding us possess one or more symmetries.
Exploiting this, allows us to predict unobserved parts of an object hypothesis.
Marton et al. [147] show how grasp selection can be performed based on such an
approximation of unobserved object shape. Using footprint analysis, objects with
a box and a cylinder shape are reconstructed. The remaining object hypotheses
are analysed in terms of more complex rotational symmetry and reconstructed
by fitting a curve to a cross section of the point cloud. For grasp planning, the
reconstructed object is imported to a simulator. Grasp candidates are generated
through randomisation of grasp parameters on which then the force-closure criteria
is evaluated. Rao et al. [180] sample grasp points from the surface of a segmented
object. The normal of the local surface at this point serves as a search direction
for a second contact point. This is chosen to be at the intersection between the
extended normal and the opposite side of the object. By assuming symmetry, this
second contact point is assumed to have a contact normal in the direction opposite
to the normal of the first contact point.

In Chapter 6, we presented a related approach that does not rely on selecting the
kind of symmetry prior to reconstruction. Furthermore, it takes the complete point
cloud for reconstruction into account and not only a local patch. In Section 7.3,
different methods to generate grasp candidate on the resulting completed object
models are presented.

7.1.3 Grasping Familiar Objects

A promising direction in the area of grasp planning is to re-use experience to grasp
familiar objects. Many of the objects surrounding us can be grouped together into
categories of common characteristics. There are different possibilities what these
commonalities can be. In the computer vision community, objects within one cat-
egory usually share characteristic visual properties. These can be, e.g., a common
texture [205] or shape [79, 26], the occurrence of specific local features [60, 127] or
their specific spatial constellation [133, 131]. These categories are usually referred
to as basic level categories and emerged from the area of cognitive psychology [187].

In robotics however, and specifically in the area of manipulation, the goal is to
enable an embodied, cognitive agent to interact with these objects. In this case,
objects in one category should share common affordances [211]. More specifically,
this means that they should also be graspable in a similar way. The difficulty then is
to find a representation that can encode this common affordance and is grounded in
the embodiment and cognitive capabilities of the agent. Given this representation,
a similarity metric has to be found under which different objects can be compared
to each other.

The following approaches try to learn from experience how objects can be
grasped. This is different from the aforementioned systems in which objects are
assumed to be unknown, i.e, dissimilar to any object encountered previously. There
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the difficulty lies in finding appropriate rules and heuristics. In the following, we will
present related work that tackles the grasping of familiar objects and specifically
focus on the applied representations.

7.1.3.1 Based on 3D Data

First of all, there are approaches that rely on 3D data only. For example, El-Khoury
and Sahbani [72] segment a given point cloud into parts and approximate each part
by a SQ. An artificial neural network (ANN) is used to classify whether or not the
part is prehensile. The ANN has been trained beforehand on labeled SQs. If one
of the object parts is classified as prehensile, an n-fingered force-closure grasp is
computed on this object part. Pelossof et al. [168] use a single SQ to find a suitable
grasp configuration for a Barrett hand consisting of the approach vector, wrist ori-
entation and finger spread. An SVM is trained on data consisting of feature vectors
containing the parameters of the SQ and of the grasp configuration. They were la-
belled with a scalar estimating the grasp quality. When feeding the SVM only with
the shape parameters of the SQ, their algorithm searches efficiently through the
grasp configuration space for parameters that maximise the grasp quality. Curtis
and Xiao [59] build upon a database of 3D objects annotated with the best grasps
that can be applied to them. To infer a good grasp for a new object, very basic
shape features, e.g., the aspect ratio of the object’s bounding box, are extracted to
classify it as similar to an object in the database. The assumption made in this
approach is that similarly shaped objects can be grasped in a similar way. Song
et al. [209] learn a Bayesian Network from labeled training data to model the joint
distribution between different variables describing a grasp. These variables can be
object or action related (object size and class as well as grasp position and final
hand configuration); they can describe constraints or be the task label. Given the
learnt joint distribution, different information can be inferred as for example the
task after having observed the object and the action features.

All these approaches were performed and evaluated in simulation where the
central assumption is that accurate and detailed 3D models are available in a known
pose. There are only very few approaches, that only use 3D data from real-world
sensors to infer suitable grasps. One of them has been presented by Hiibner and
Kragic [101]. A point cloud from a stereo camera is decomposed into a constellation
of boxes. The simple geometry of a box reduces the number of potential grasps
significantly. To decide which of the sides of the boxes provides a good grasp,
an ANN is trained offline. The projection of the point cloud inside a box to its
sides provides the input to the ANN. The training data consists of a set of these
projections from different objects labeled with the grasp quality metrics. These
are computed by the Grasplt! Simulator while performing the according grasps.
Although, grasp selection is demonstrated on one objects, it remains unclear how
well the ANN can generalize from the synthetic training set to real-world data.
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3D Descriptors of Objects for Categorization Recently, we have seen an
increasing amount of new approaches towards pure 3D descriptors of objects for
categorization. Although, the following methods look promising, it has not ben
shown yet that they provide a suitable base for generalizing grasps over an object
category. Rusu et al. [197, 195] provide extensions of [194] for either recognizing
or categorizing objects and estimating their pose relative to the viewpoint. While
in [195] quantitative results on real data are presented, [197] uses simulated object
point clouds only. Wohlkinger and Vincze [231] use a combination of different shape
descriptors of partial object views to retrieve matching objects of a specific category
from a large database. The retrieval problem is formulated as a nearest-neighbor
approach. Robustness is achieved by exploiting intra class view similarities.
Although 3D descriptor of object hypotheses are used in Marton et al. [148] and
Marton et al. [146], they are combined with 2D features to increase the robust-
ness of detection. These approaches will therefore be discussed in more detail in
Section 7.1.3.3 together with other methods integrating several sensor modalities.

7.1.3.2 Based on 2D Data

As mentioned previously, the assumption of having a detailed and accurate 3D ob-
ject model available for learning to generalize grasps may not always be valid. This
is particularly the case with real-world data gathered from sensors like laser-range
finders, the kinect, stereo or time-of-flight cameras. However, there are experience-
based approaches that avoid this difficulty by relying mainly on 2D data.

Kamon et al. [108] propose one of the first approaches towards generalizing
grasp experience to novel objects. The aim is to learn a function f : @ — G that
maps object- and grasp-candidate-dependent quality parameters @ to a grade G
of the grasp. An object is represented by its 2D silhouette, its center of mass and
main axis. The grasp is represented by two parameters f; and fy from which in
combination with the object features the fingertip positions can be computed. The
authors found that the normals of the object surface at the contact points and the
distance of the line connecting the contact points to the object’s center of mass
are highly reliable quality features for predicting the grade of a grasp. Learning is
bootstrapped by the offline generation of a knowledge database containing grasp
parameters along with their grade. This knowledge database is then updated while
the robot collects experience by grasping new objects. The system is restricted to
planar grasps and visual processing of top-down views on objects. It is therefore
questionable how robust this approach is to more cluttered environments and strong
pose variations of the object.

Saxena et al. [200] proposed a system that infers a point at where to grasp an
object directly as a function of its image. The authors apply machine learning to
train a grasping point model on labelled synthetic images of a number of different
objects. The classification is based on a feature vector containing local appearance
cues regarding color, texture and edges of an image patch in several scales and
of its 24 neighboring patches in the lowest scale. The system was used success-
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fully to pick up objects from a dishwasher after it has been specifically trained for
this scenario. However, if more complex goals are considered that require subse-
quent actions, e.g., pouring something from one container into another, semantic
knowledge about the object and about suitable grasps regarding their functionality
becomes necessary [38, 57, 94]. Then, to only represent graspable points without
the conception of objectness [120][9] is not sufficient.

Another example of a system involving 2D data and grasp experience is pre-
sented by Stark et al. [211]. Here, an object is represented by a composition of
prehensile parts. These so called affordance cues are obtained by observing the
interaction of a person with a specific object. Grasp hypotheses for new stim-
uli are inferred by matching features of that object against a codebook of learnt
affordance cues that are stored along with relative object position and scale. How-
ever, how exactly to grasp these detected prehensile parts is not yet solved since
hand orientation and finger configuration are not inferred from the affordance cues.
More successful in terms of the inference of full grasp configurations are Morales
et al. [155] who use visual feedback to even predict fingertip positions. The au-
thors also take the hand kinematics into consideration when selecting a number
of planar grasp hypotheses directly from 2D object contours. To predict which of
these grasps is the most stable one, a KNN-approach is applied in connection with
a grasp experience database. The experience database is built through a trial-and-
error approach applied in the real world. Grasp hypotheses are ranked dependent
on their outcome. However, the approach is restricted to planar objects.

7.1.3.3 Integrating 2D and 3D Data

In Figure 7.1, one aspect that influences the selection of grasp hypotheses is the
employed modality of the object representation. We believe that systems in which
both 2D and 3D data are integrated are most promising in terms of dealing with
sensor noise and removing assumptions about object shape or applicable grasps.
In Figure 7.1, this case is represented by the edge connecting 2D and 3D object
representations. In the following, we will review two different kinds of these ap-
proaches. The first ones employ relatively low-level features for grasp knowledge
transfer. The second kind try to generalize over an object category.

Grasping using Low-Level Representations Saxena et al. [201] apply two
depth sensors to obtain a point cloud of a tabletop scene with several objects.
The authors extend their previous work on inferring 2D grasping point hypotheses.
Here, the shape of the point cloud within a sphere centered around a hypothesis is
analysed with respect to hand kinematics. This enhances the prediction of a stable
grasp and also allows for the inference of grasp parameters like approach vector and
finger spread. In earlier work by Saxena et al. [200], only downward or outward
grasp were possible with the manipulators in a fixed pinch grasp configuration.
Speth et al. [210] showed that their earlier 2D based approach [155] is also
applicable when considering 3D objects. The camera is used to explore the object
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to retrieve crucial information like height, 3D position and pose. However, all this
additional information is not applied in the inference and final selection of a suitable
grasp configuration. We introduced the work by Rao et al. [180] already in the
previous section about grasping unknown objects. We referred to their strategy of
choosing fingertip positions given a segmented object hypotheses. Here, we want to
emphasize how the authors distinguish between graspable and non-graspable object
hypotheses in a machine learning framework. Using a combination of 2D and 3D
features, an SVM is trained on labeled data of segmented objects. Interestingly,
among those features are for example the variance in depth and height as well as
variance of the three channels in the Lab color space. This is similar to the entropy
features used in Chapter 5, for classifying object hypotheses as being correct or
not. Rao et al. [180] achieve good classification rates on object hypotheses formed
by segmentation on color and depth cues. Similar to the work in [180], Le et al.
[132] consider grasp hypotheses as consisting of two contact points. They however,
apply a learning approach to rank a sampled set of fingertip positions according
to graspability. The feature vector consists of a combination of 2D and 3D cues
such as gradient angle or depth variation along the line connecting the two grasping
points.

In Section 7.4, we are also proposing an approach that integrates 2D and 3D
information. Similar to [201], we see the result of the 2D based grasp selection as
a way to search in a 3D object representation for a full grasp configuration. Here,
we will focus on the development of the 2D method and demonstrate its applica-
bility for searching in a minimal 3D object representation. The proposed approach
from Section 7.4 was extended to work on a sparse edge based representation of
objects [1]. We showed that by integrating 3D and 2D based methods for grasp
hypotheses generation leads to a sparser set of grasps with a good quality.

Category-based Grasping The previous approaches do not explicitly consider
any high level information about for example the object category. In the following,
we review method that try to categorize objects and are motivated in a grasping
scenario. Marton et al. [146] use different 3D sensors and a thermo camera for
object categorization. Features of the segmented point cloud and the segmented
image region are extracted to train a Bayesian Logic Network for classifying object
hypotheses as either boxes, plates, bottles, glasses, mugs or silverware. In [146] no
grasping results are shown. A modified approach is presented in [149]. A layered 3D
object descriptor is used for categorization and a SIFT-based approach is applied
for view based object recognition. To increase robustness of the categorization,
the examination methods are run iteratively on the object hypotheses. A list of
potential matching objects are kept and re-used for verification in the next iteration.
Objects for which no matching model can be found in the database are labeled as
novel. Given that an object has been recognized, associated grasp hypotheses can
be re-used. These have been generated using the technique presented in [147].
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Lai et al. [128] perform object category and instance recognition. The authors
learn an instance distance using the database presented in [129]. A combination of
3D and 2D features is used. However, the focus of this work is not grasping.

There is one interesting concluding remark that we can make. Recently, an
increasing amount of approaches has been developed that try to recognize or cat-
egorize objects in point clouds. However, none of these approaches have yet been
shown to be a suitable representation for transferring grasping experience between
objects of the same class. Instead this is solved by finding the (best) matching ob-
ject instance on which grasp hypotheses have been generated offline. Generalizing
from already seen objects to familiar objects in the real-world has up till now only
been shown to be possible for low-level object representations.

7.1.4 Hybrid Systems

There are a few empirical grasp synthesis systems that cannot clearly be classified as
using only one kind of prior knowledge. One of these approaches has been proposed
in Brook et al. [45]. Different grasp planners are integrated to reach a consensus
on how to grasp a segmented point cloud. The authors show results using the
planner presented in [99] for unknown objects in combination with grasp hypotheses
generated through fitting known objects to point cloud clusters as described in [52].

Another example for a hybrid approach is the work by Marton et al. [149]. A set
of very simple shape primitives like boxes, cylinders and more general rotational
objects are considered. They are reconstructed from segmented point clouds by
analysis of their footprints. Parameters such as circle radius and the side lengths of
rectangles are varied; curve parameters are estimated to reconstruct more complex
rotationally symmetric objects. Given these reconstructions, a look-up is made in
a database of already encountered objects for re-using successful grasp hypotheses.
In case no similar object is found, new grasp hypotheses are generated using the
technique presented in [147]. For object hypotheses that cannot be represented by
the simple shape primitives mentioned above, a surface is reconstructed through
triangulation. Grasp hypotheses are generated using the planner presented in [99].

7.1.5 Summary

In this section, we reviewed empirical grasp synthesis methods. We subdivided
them according to their assumed prior knowledge about an object hypothesis. In
the following, we propose grasp synthesis methods that go beyond the current state
of the art.

For grasping known objects, we demonstrate object recognition and pose esti-
mation methods as already partially referred to in this section. This is followed by
a study on whether completed point clouds can improve the accuracy and robust-
ness of these approaches. For grasping unknown objects, we present an approach
based on point cloud completion through a symmetry assumption as presented in
Chapter 6. We show different methods for generating grasp hypotheses for these.
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And finally, for grasping familiar objects, we present a method in which global ob-
ject shape in a 2D image is used as feature vector in a learning scheme. Detected
2D grasping points in conjunction with 3D shape cues are used for inferring a full
grasp pose.

7.2 Grasping Known Objects

In this section, we will show four example systems that are based on the active
vision system presented in Section 2.2.1. The objects in front of it are considered
to be known. Their goal is to determine where these objects are in the scene
and in what pose. The first two use a scene model as input in which a 3D point
cloud is segmented into a number of hypotheses. The segments are then further
analysed to obtain the object’s identity and pose. In the third example system, no
prior segmentation of the point cloud into object hypotheses is necessary. Object
recognition and pose estimation is performed simultaneously.

We extend these approaches in the fourth method by considering not only the
sensory data from the scene. Instead, we will also study how a completed point
cloud can help to increase robustness of object recognition and pose estimation.

Given this information, the scene model containing known models can be fed into
a simulator where grasps from an experience database are tested for reachability.
This will be detailed in Chapter 8.

7.2.1 Recognition

The identities of the object hypotheses detected in a scene are sought in a database
of 25 known objects. Two complementary cues are used for recognition; SIFT and
CCH. The cues are complementary in the sense that SIFT features rely on objects
being textured, while CCH works best for objects of a few, but distinct, colors. An
earlier version of this system with experiments in a significantly larger database
and including a study on the benefits of segmentation for recognition, can be found
in [33]. Here, the total recognition score is a weighted sum of the single scores. An
example of the recognition results is shown in Figure 7.3a.

7.2.2 Pose Estimation

Once we know the identity of an object hypotheses, we can use the associated
model to estimate its pose. In the following, we demonstrate a system that uses a
simplified object model and a system that retrieves the full 6D object pose of an
object using a 3D mesh model.

7.2.2.1 Simplified Pose Estimation

If an object is identified and it is known to be either rectangular or cylindrical,
the pose is estimated using the cloud of extracted 3D points projected onto the
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(a) Segmented Image and (b) Estimated Pose of Mango (c) Estimated Pose of Toy
Recognition Result. Five Can in Figure 2.4b. Tiger in Figure 2.4a.
best matching objects are
shown in the table.

Figure 7.3: Example Output for Recognition and Pose Estimation.

2D table plane. Object dimensions are looked up in the database. This means
that instead of searching for the full 6DoF pose, we reduce the search space to
the position (z,y) of either a rectangle or a circle on the table. In case of the
rectangle the additional orientation parameter 6 is sought for. This is done using
the method already described in Section 4.2.2.2. Essentially it is based on RANSAC
in combination with least-median optimisation for either a rectangular or circular
shape. Figure 7.3b and 7.3c show an example for each shape.

There are several drawbacks of this simple method. First of all, it will not be
able to correctly estimate the pose of an object that does not rest on one of its sides.
These kinds of situations occur when objects are lying in a pile or in a grocery bag.
Secondly, this approach can probably not deal very well with the case of strong
occlusions. And lastly, because the object models are very simple, motion planning
for collision avoidance will also not be very accurate. However, as will be shown in
Section 8.2.2.2 this simple approach works well in combination with position-based
visual servoing.

7.2.2.2 Full Pose Estimation

For estimating the full 6 DoF pose of an object given a segmented point cloud and
the object’s identity, we applied the approach presented in Papazov and Burschka
[165]. A 3D mesh model is assumed to be available for each object in the database?.

The problem of pairwise rigid point set registration is approached with a stochas-
tic method for global minimisation of a proposed cost function. The method has
been shown to be robust against noise and outliers. Although it does not rely on
a good initial alignment of the source to the target, prior segmentation of object
hypotheses improves its performance. Figure 7.4 shows an example result of this
method given a segmented point cloud from the real-time vision system described
in Section 2.2.1.

2The models were obtained from http://i61p109.ira.uka.de/0ObjectModelsWebUI/
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(a) Peripheral Image of the Scene (b) Segmented Object in the Foveal (c) Model Point Cloud
Image. (green) Fit to Target
Point Cloud (red).

Figure 7.4: Example Output for 6DoF Pose Estimation.

(a) Peripheral Image of the Scene (b) Point Cloud of the Scene (c) Representation of the
with Fitted Models (red). Scene in OpenRave.

Figure 7.5: Example Output for Simultaneous Object Recognition and Pose Esti-
mation in Point Cloud.

7.2.3 Simultaneous Recognition and Pose Estimation of Several
Targets

We also demonstrated the approach by Papazov and Burschka [166] for simultane-
ous recognition and pose estimation of rigid objects in a 3D point cloud of a scene.
No prior segmentation is necessary.

It relies on the combination of a robust geometric descriptor of oriented 3D
points, a hashing technique and a RANSAC-based sampling technique. It is robust
to noise, outliers and sparsity. Example results of the approach applied to merged
point clouds from the real-time vision system are shown in Figure 7.5.
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7.2.4 Using Completed Point Clouds for Object Recognition and Pose
Estimation

The previous methods towards object recognition and pose estimation use as an
input the raw stereo reconstructed point cloud that is potentially segmented into
object hypotheses. In this section we are going to analyse if a completed point
cloud helps to improve the robustness of registering known object models to it.
This completion will be performed through the method proposed in Chapter 6. The
hidden or occluded part of an object is estimated based on a symmetry assumption.
Visibility constraints are employed to assign a plausibility measure to each point in
the completed point cloud.

In the following, we will pose the registration problem as the classic Orthogonal
Procrustes problem introduced in Hurley and Cartell [103]. We will briefly introduce
the iterative closest point algorithm and its weighted formulation following Besl and
McKay [30] and Maurer et al. [150]. The latter will be useful to explicitly consider
the plausibility information of each point.

7.2.4.1 Orthogonal Procrustes Problem

The registration of an object model to a point cloud can usually be described as a
rigid body transformation
T@a)=R-a+t (7.1)

where R is a 3 x 3 rotation matrix, t a three-dimensional translation vector and a a
three-dimensional point of a point cloud. Let A be a set containing points a; with
j =1...Ng4 to be registered to a different set B with points b; with j =1... Ny
where N = N, = N;. Each point a; corresponds to a point b; with the same
index. The Orthogonal Procrustes Problem is described as finding the rigid-body
transformation 7 that minimises the following cost function:

1 N
dT) = % Z b — T(a;)[[? (7.2)

Aarun et al. [15] have shown that this problem can be solved in closed form using
for example the Singular Value Decomposition (SVD).

7.2.4.2 ICP and Weighted ICP

The problem of registering an object model to a point cloud usually suffers from
the problem of not knowing the correspondences between the two point sets. In
that case, there is no closed-form solution available. The general approach is then
to search iteratively for the rigid-body transformation that minimises

AT) = | 3 D llys = TC@)lP (1.3
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where

y; = e(T(a;). B) (7.4)

is a point in the point set B that corresponds to point a;. This relation is determined
through the correspondence function c(-)

Besl and McKay [30] proposed ICP in which ¢(-) is the closest point operator.
They showed that their method converges to the local minimum of the cost function
in Equation 7.3.

Maurer et al. [150] proposed a weighted extension of the original ICP method.
Let W be a set of weights w; with j = 1... N, associated with the points in A.
The authors show that their weighted ICP formulation minimises the following cost
function:

N,
1 Na
dT)=\| 7 > wlly; = T(ay)l? (7.5)
a ]:1
where the function ¢(-) is defined as in Equation 7.4.

ICP for Completed Point Clouds In this section, we propose to register the
true object model to the completed point cloud instead of to the partial one. Our
hypothesis is that this increases the robustness of fitting because more points that
constrain the pose of the true object are available.

We use ICP as implemented in [193] that iteratively minimises Equation 7.3.
The set B consist of the completed point cloud. A contains point samples from
the surface of the ground truth object. The mesh is sampled using the method
described in Roy et al. [189].

Using Plausibility Information for Registration The quality of the ICP-
based registration of the object model to the completed point cloud depends on the
quality of the symmetry plane estimation. The resulting point cloud might diverge
strongly from the true shape. Therefore, we want to ensure that the registered
model complies more accurately to the original reconstructed points than to the
hypothesized ones.

We approach this, by using a weighted ICP scheme proposed in Maurer et al.
[150] that minimises the cost function in Equation 7.5. B consists of the completed
point cloud and A of the sampled ground truth mesh. As weights w;, we choose the
plausibility plaus(b;) of each point b; in the set B. This is defined in Equation 6.3
and 6.4.

We implemented this approach by adapting ICP from [193] as shown in Algo-
rithm 3.

7.2.4.3 Experiments

In this section, we want to evaluate the proposed approach of using the completed
point clouds as targets for the registration of ground truth object models. Our
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Algorithm 3: One Loop in the Weighted ICP Algorithm
Data: Initial Transformation 7
Subset P = {p;} of A= {a;} (Target Point Cloud)
Subset X = {x;} of B = {b;} (Model Point Cloud) where x; = C(T (ps), B)
Subset V = {v;} of W with v; = plaus(p;)

te{l...N}
Result: New 7 minimizing d(7) in Equation 7.5
begin

// Compute Weighted Centroids
N
S e
D — i=1
DT
j=1

// Translate each point
foreach i € {1... N} do
P, =pi—D
Xl =x; — X
7
end
// 3 X 3 covariance matrix

// Factorization of H through Singular Value Decomposition
UAVT = SVD(H)
// Computation of Rotation Matrix R

R=vVvUT
if det R == —1 then
| R=Vv'UT
end
// Computation of Translation Vector
t=%—Rp
// Whole Transformation
T = [R]t]
end

hypothesis is that this increases the robustness of pose estimation.

For registration, we compare two methods: i) standard ICP in which all points
in the completed point cloud are taken as equally important and ii) weighted ICP
in which the plausibility of each point in the completed cloud is explicitly taken
into account. As a baseline, we use standard ICP in which a ground truth model
is fitted to the original partial point cloud.

For evaluation, we use the same database as in Chapter 6. It consists of 10 dis-
tinct objects in different poses yielding 14 datasets for which a ground truth object
pose is available. Each dataset contains segmented 3D point clouds reconstructed
from the objects in 8 different orientations (see Figure 6.5 and 6.6). The completed
point clouds, that are the result of applying the method proposed in Chapter 6,
form the input to the different registration methods. In the following, we will test
our hypothesis in two different scenarios.
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Figure 7.6: Error Measures after Fitting Object Models to Point Cloud. Left)
Comparison of the mean squared error for the best fit averaged over all objects for
each orientation. The performance for the different methods are not significantly
different. Right) Comparison of the weighted mean squared error for the best fit.
The weighted ICP (withPlaus) optimises this measure and should therefore produce
lower values than the standard ICP (NoPlaus). However, the data does not show
a significant difference between the two approaches.

Pose Estimation In the first scenario, we assume that we know the identity of
the segmented object. The goal is to find its 6 DoF pose.

Since ICP is a method that converges to a local minimum, we need to initialise it
with an object pose that is relatively close to ground truth, i.e., the global minimum.
This could be achieved by methods such as for example proposed by Rusu et al.
[194]. Here, we make use of the fact that in our dataset the object pose with a
—45° difference to the ground truth pose is available.

We compare the three different registration methods in terms of mean squared
error as defined in Equation 7.3. The results are shown in Figure 7.6. They do not
show a significant difference between the proposed methods. This is probably due
to the good segmentation of the object models, the low number of outliers and the
good initial pose.

Recognition through Registration In the second scenario, we want to analyse,
whether using the completed point cloud facilitates a more robust joint recognition
and pose estimation.

Experimental Setup Given a point cloud B, we want to find the object model o*

in pose 7 that minimises
0" = arg Irgn a(T) (7.6)
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Divergence from Ground Truth Original | Unweighted | Weighted
+45° and 0° 50.42% 49.58% 52.08%
0° 55.00% 47.50% 51.25%
+45° 48.12% 50.62 52.50 %

Table 7.1: Summary of total recognition results for joint recognition and pose
estimation. Original: Standard ICP on original partial point clouds. Unweighted:
Standard ICP on completed point clouds. Weighted: Weighted ICP on completed
point clouds with plausibility information.

where the set O of objects is depicted in Figure 6.5.

Dependent on the input, d(T) is defined in two ways. If B is a completed point
cloud with plausibility information, then it is computed as in Equation 7.5. If B
is a completed point cloud without plausibility information or the original point
cloud, d(T) is defined as in Equation 7.3.

As model point cloud A, we again use the sampled meshes in initial poses
of +45° or 0° deviation in orientation from ground truth. As in the previous
experiment, we compare standard ICP using the original point cloud with ICP on
the completed point cloud and weighted ICP on the completed point cloud with
plausibility information.

Results Averaging over all objects, orientations and initial model poses, we achieve
the following total recognition results: Orignal 50.42%. Unweighted 49.58%. Weighted
52.08%. When using the weighted ICP method that takes plausibility information
explicitly into account, we achieve the best recognition results. The standard ICP
on the completed point cloud performs on average even worse than the approach on
partial point clouds. This indicates that inaccuracies in the object shape prediction
through the symmetry assumption affect the registration result negatively.

We can gain more insights, if we split these results into the case when the initial
pose is the same as the ground truth pose and the case when the initial pose has
+45° deviation in orientation. The corresponding full confusion matrices are given
in Figure 7.7 and 7.8. An overview is given in Table 7.1.

For the case where the initial pose is equal to the ground truth, the standard
method on partial point clouds performs clearly superior over the methods using
the completed point clouds. However, when the initial pose of the object models is
different from ground truth, using the completed point clouds in combination with
weighted ICP results in a better recognition accuracy than the standard approach.
This indicates that in the common case of the initial pose being only approximately
known, completed point clouds provide more robustness in the task of joint object
recognition and pose estimation.

The alignment method we used in this section is based on the widely applied
ICP. This method is guaranteed to converge to a local minimum. However, there is
a set of alignment method that aim at finding the global minimum in the space of
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amicelli 0.00 0.00 0.00 0.12 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.00
burti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.12 0.00
greenCup 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mangoLy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mangoStand 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
T rusk 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00
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spray 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00
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tomatoSoupLy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
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tomatoSoupLy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
whiteCup 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Total Recognition Rate: 47.50
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burti 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.38 0.12 0.12 0.00 0.25 0.00 0.00
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Total Recognition Rate: 51.25

Figure 7.7: Confusion matrices for the task of recognition of objects represented by
point clouds. Source point clouds are 0° from ground truth. Total recognition rate
is computed by taking into account object duplicates, e.g., standing or lying mango

(c) Weighted

can. Using the original point cloud as target yields the best recognition rate.
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Figure 7.8: Confusion matrices for the task of simultaneous recognition and pose
estimation of objects represented by point clouds. Source point clouds are +45°
off from ground truth. Total recognition rate is computed by taking into account
object duplicates, e.g., standing or lying mango can. In the very common case of
the object pose being only approximately known, using the plausibility information
leads to increased robustness of the recognition task.
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all object poses [165, 166, 194]. It would be interesting to evaluate whether these
approaches could benefit from predicted object shapes.

7.2.5 Generation of Grasp Hypotheses

In the previous section, we studied different methods towards estimating the iden-
tity and pose of a set of objects in the scene. Given this information, grasp hypothe-
ses can be selected for each of them. For the approaches relying on 3D mesh mod-
els, experience databases can be generated offline using for example OpenRave [66].
Figure 7.5¢ shows an example scene as recognized by the method in [166] visual-
ized in OpenRave. For each of these objects, the best grasps from the database
can be retrieved and tested for reachability using motion planners like for example
Rapidly-exploring random trees (RRTs) [130] in combination with Jacobian-based
gradient descent methods.

For the simplified object models consisting either of a box or a cylinder with a
specific height, we choose to perform top grasps that approach the objects at their
center. The wrist is aligned with the smallest dimension of the box. This approach
is not combined with a motion planner. In Section 8.2.2.2, we will demonstrate
and discuss this approach for table-top scenes in combination with position-based
visual servoing.

7.3 Grasping Unknown Objects

For grasping unknown objects, i.e., objects for which no matching 3D model is
available, no database of good grasps can be set up a priori. Grasp hypotheses
have to be generated online and then tested for reachability.

In Chapter 6, we proposed a method that estimates the full object shape from
a partial point cloud of an unknown object. We showed that the estimated object
shape accurately estimates its true shape. In this section, we want to evaluate how
the prediction of object shape can help grasping and manipulation.

In the first part, we consider a very simple grasp strategy that approaches the
object centroid. Estimating this centroid is difficult when only a partial object
model is known. In the next section, we evaluate quantitatively how much better
the centroid can be estimated when using completed point clouds. In the second
part, we demonstrate approaches that generate a whole set of grasp hypotheses and
rank them based on simulated grasp planning.

7.3.1 Evaluation of Object Centroid

A very simple but effective grasping strategy of unknown objects is to approach
the object at its center. However, estimating the centroid is not a trivial problem
when the object is unknown. Reactive grasping strategies are proposed to cope
with the uncertainty in the object information during the grasp as for example by
Hsiao et al. [99] and Felip and Morales [78]. However, contact between the object
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Figure 7.9: Deviation of Estimated Object Centroid from Ground Truth Centroid.

and the manipulator can move the object and change what kind of grasp is possible
to apply. The more accurate the initial estimate of the object centroid, the fewer
unnecessary contacts with the object occur.

In this section, we therefore evaluated the accuracy of object center estimation
as a simple proxy for grasp quality. We compared the center of mass of the Delaunay
mesh (baseline as described in Section 6.2.1.2) and of the mirrored mesh with the
ground truth center. To render this comparison independent of the distribution
of vertices (especially for the ground truth meshes), we applied the same uniform
sampling of the mesh surface as in [189]. The center of mass is then the average
over all the samples.

Figure 7.9 shows the error between the estimated and real centroid of an object
per viewing direction and averaged over all objects. The deviation is normalized
with the length of the diagonal of the oriented object bounding box. We can observe
that the deviation ranges from approximately 5% to 10% of the total object size.
However, using plausibility information does not improve the estimation of the
centroid significantly.

These results indicate that the simple top-grasp strategy would have a larger
success rate due to a more accurate estimation of the object centroid. In combina-
tion with reactive grasping approaches, we expect that fewer corrective movements
would be necessary.

7.3.2 Generating Grasp Hypotheses

In this section, we want to propose two methods for generating a set of grasp
hypotheses on the estimated surface mesh. In Chapter 8 we will show how these
are used in conjunction with motion planning to select a suitable grasp and a
reaching trajectory for execution by the robot.
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Figure 7.10: Example of the approach vectors generated for a spray bottle by ( Left
) the OpenRAVE grasper plugin, ( Middle ) the UJI proposed algorithm using the
object’s centroid and ( Right ) the KTH proposed algorithm using the grasp points
in blue.

OpenRAVE [66] has a default algorithm to generate a set of approach vectors.
It first creates a bounding box of the object and samples its surface uniformly. For
each sample, a ray is intersected with the object. At each intersection, i.e. the
grasping point, an approach vector is created that is aligned with the normal of
the object’s surface at this point. An example output is shown in Figure 7.10 (
left ). Dependent on the choice of parameters like distance between hand palm and
grasping point, wrist alignment or pre-shape, time to simulate all the corresponding
grasps can vary from few minutes to more than an hour. These execution times
are acceptable for objects that are known beforehand because the set of grasp
candidates can be evaluated off-line. When the objects are unknown, this process
has to be executed on-line and long waiting times are not desirable.

For this reason, we use two methods to reduce the number of approach vectors.
The first one, computes two contact points as described in Richtsfeld and Vincze
[184]. To grasp the object at these points, there are an infinite number of approach
vectors on a circle with the vector between the two contact points as its normal. We
sample a given number, typically between 5 and 10 of these between 0° and 180°
degrees. Figure 7.10 ( Right ) shows the detected grasping points along with the
generated approach vectors. The second method, calculates the approach vectors in
a similar way only that the center of the circle is aligned with the object’s centroid
and the major eigenvector e, of its footprint, i.e., the projection of the point cloud
onto the table. Another circle, perpendicular to the first one, is added in order
to compensate the possible loss of vector quality due to the lack of grasp points.
Figure 7.10 ( middle ) shows an example.

We applied these grasp hypotheses in a real-world scenario on different robotic
platforms. For details on the execution, we refer to Chapter 8. For quantitative
evaluation, one could compare grasp hypotheses generated on the completed point
clouds to those planned on partial point clouds. This would involve executing these
grasps on the corresponding ground truth meshes in simulation and evaluating
common grasp stability measures.
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7.4 Grasping Familiar Objects

As already outlined in Section 7.1, another approach towards grasp inference is to
re-use prior grasping experience on familiar objects. A similarity metric between
already encountered objects and new ones has to be developed that takes grasp-
relevant features into account.

In the approach proposed in this section, a grasping point is detected based
on the global shape of an object in a single image. This object feature serves as
the basis of comparison to previously encountered objects in a machine learning
framework. Research in the area of neuropsychology emphasizes the influence of
global shape when humans choose a grasp [92, 58, 87]. Matching between stereo
views is then used to infer the approach vector and wrist orientation for the robot
hand. We further demonstrate how a supervised learning methodology can be used
for grasping of familiar objects.

The contributions of our approach are:

i) We apply the concept of shape context as described in Belongie et al. [26] to
the task of robotic grasping which to the best of our knowledge has not yet been
applied for that purpose. The approach is different from the one taken in Saxena
et al. [200] or Stark et al. [211] where only local appearance is used instead of global
shape.

ii) We infer grasp configurations for arbitrarily shaped objects from a stereo image
pair. These are the main difference to the work presented in Morales et al. [155]
and Speth et al. [210] where either only planar objects are considered or three views
from an object have to be obtained by moving the camera.

iii) We analyse how stable our algorithm is in realistic scenarios including back-
ground clutter without trained scenario examples as in Saxena et al. [200].

iv) We apply a supervised learning algorithm trained using synthetic labelled images
from the database provided by [200]. We compare the classification performance
when using a linear classifier (logistic regression) and a non-linear classifier (Support
Vector Machines (SVMs)).

In the following, we will first describe the method of applying shape context
to grasping is introduced. We also describe and comment on the database that
we used for training and give some background knowledge on the two different
classification methods. The section concludes with a presentation on how a whole
grasp configuration can be derived. In Section 7.4.2 we evaluate our method both
on simulated and real data.

7.4.1 Using Shape Context for Grasping

A detailed flow chart of the whole system and associated hardware is given in
Figure 7.11. First, scene segmentation is performed based on a stereo input resulting
in several object hypotheses. Shape context is then computed on each of the object
hypotheses and 2D grasping points are extracted. The models of grasping points
are computed beforehand through offline training on an image database. The points
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Full Grasp
Configuration

Object Shape 2D Grasp Point Inference
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Figure 7.11: Flow Chart of Stereo Vision based Grasp Inference System

in the left and in the right image are associated to each other to infer a 3D grasping
point via triangulation. In parallel to the grasping point detection, the segments
are analysed in terms of rough object pose. By integrating the 3D grasping point
with this pose, a full grasp configuration can be determined and then executed.
In the following sections, the individual steps of the system are explained in more
detail.
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Figure 7.12: Segmentation results for: 1st column) One textured object. 2nd col-
umn) Cluttered table scene. 3rd column) Non-textured object. 4th column) Two
similarly colored objects. 5th column) Occlusion.

7.4.1.1 Scene Segmentation

The system starts by performing the figure-ground segmentation. Although the
problem is still unsolved for general scenes, we have demonstrated in our previous
work how simple assumptions about the environment help in segmentation of table-
top scenes, [34, 122, 32]. The segmentation is based on integration of stereo cues
using foveal and peripheral cameras. This system is a predecessor of the real-time
vision system shown presented in Section 2.2.1. In the below, we briefly outline the
different cues used for segmentation and how they influence the result.

Zero-Disparity The advantage of using an active stereo head lies in its capa-
bility to fixate on interesting parts of the scene. A system that implements an
attentional mechanism has been presented by Rasolzadeh et al. [182]. Once the
system is in fixation, zero-disparities are employed as a cue for figure-ground seg-
mentation through different segmentation techniques, e.g., water-shedding , Bjork-
man and Eklundh [32]. The assumption is that neighboring pixels with a similar
reconstructed depth belong to the same objects. However, Figure 7.12 shows that
such a simple assumption results in bad segregation of the object from the plane
on which it is placed.

Planar Surfaces The environment in which service robots perform their tasks
are dominated by planar surfaces. In order to overcome the above segmentation
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problem, we use the assumption of a dominant plane. In our examples, this plane
represents the table top on which objects are placed on. For that purpose, we fit a
planar surface to the disparity image. The probability for each pixel in the disparity
image to belong to that plane depends on its distance to it. In that way, objects
on a plane are well segmented. Problems can arise with non-textured objects when
the disparity image has large hollow regions. When the table plane assumption
is violated through, e.g., clutter, the segmentation of the object is more difficult.
Examples are shown in Figure 7.12.

Uniform Texture and Color An additional assumption can be made on the
constancy of object appearance properties, assuming either uniformly colored or
textured objects. When introducing this cue in conjunction with the table plane
assumption, the quality of the figure-ground segmentation increases. The proba-
bility that a specific hue indicates a foreground object depends on the foreground
probability (including the table plane assumption) of pixels in which it occurs.
This holds equivalently for the background probability of the hue. The color cue
contributes to the overall estimate with the likelihood ratio between foreground
and background probability of the hue. The examples are shown in Figure 7.12.
Judging from the examples and our previous work, we can obtain reasonable hy-
potheses of objects in the scene. In Section 7.4.2 and Section 7.4.2.3 we analyse the
performance of the grasp point detection for varying quality of segmentation.

7.4.1.2 Representing Relative Shape

Once the individual object hypotheses are formed, we continue with the detection
of grasping points. In Section 7.4.1.5 we show how to further infer the approach
vector and wrist orientation. Grasping an object depends to a large extent on its
global shape. Our approach encodes the global property of an object with a local,
image-based representation. Consider for example elongated objects such as pens.
A natural grasp is in its middle, roughly at the centre of mass. The point in the
middle divides the object in two relatively similar shapes. Hence, the shape relative
to this point is approximately symmetric. In contrast to that, the shape relative to
a point at one of the ends of the object is highly asymmetric. Associating a point
on the object with its relative shape and the natural grasp is the central idea of
our work. For this purpose we use the concept of shape context commonly used
for shape matching, object recognition and human body tracking, [93, 69, 158]. In
the following, we briefly summarize the main ideas of shape context. For a more
elaborate description, we refer to [26].

The basis for the computation of shape context is an edge image of the object.
N sample points are taken uniformly from the contours, considering both inner
and outer contours. For each point we compute the vectors that lead to all other
sample points. These vectors relate the global shape of the object to the considered
reference point. We create a compact descriptor comprising this information for
each point by a two dimensional histogram with angle and radius bins. In [26] it is
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(a) e (c) (e)
Figure 7.13: Example of deriving the shape context descriptor for the image of a
pencil. (a) Input image of the pencil. (b) Contour of the pencil derived with the
Canny operator. (c) Sampled points of the contour with gradients. (d) All vectors
from one point to all other sample points. (e) Histogram with four angle and five
log-radius bins comprising the vectors depicted in (d).

proposed to use a log-polar coordinate system in order to emphasize the influence
of nearby samples. An example for the entire process is shown in Figure 7.13.

A big advantage of shape context is that it is invariant to different transfor-
mations. Invariance to translation is intrinsic since both the angle and the radius
values are determined relative to points on the object. To achieve scale invariance,
[26] proposed to normalise all radial distances by the median distance between all
N? point pairs in the shape. Also rotation invariance can be easily achieved by
measuring the angles relative to the gradient of the sample points. In the following,
we will describe how to apply the relative shape representation to form a feature
vector that can later be classified as either graspable or not.

Feature Vector In the segmented image, we compute the contour of the object
by applying the Canny edge detector. This raw output is then filtered to remove
spurious edge segments that are either too short or have a very high curvature. The
result serves as the input for computing shape context as described above. We start
by subdividing the image into rectangular patches of 10 x 10 pixels. A descriptor
for each patch serves as the basis to decide whether it represents a grasping point
or not. This descriptor is simply composed of the accumulated histograms of all
sample points on the object’s contour that lie in that patch. Typically, only a few
sample points will be in a 10 x 10 pixel wide window. Furthermore, comparatively
small shape details that are less relevant for making a grasp decision will be rep-
resented in the edge image. We therefore calculate the accumulated histograms in
three different scales centered at the current patch. The edge image of the low-
est scale then contains only major edges of the object. The three histograms are
concatenated to form the final feature descriptor of dimension 120.

7.4.1.3 Classification

The detection of grasping points applies a supervised classification approach uti-
lizing the feature vector described in the previous section. We examine two differ-
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ent classification methods: a linear one (logistic regression) and a non-linear one
(SVMs), [31]. We describe these briefly below.

Logistic Regression Let g; denote the binary variable for the ith image patch
in the image. It can either carry the value 1 or 0 for being a grasping point or
not. The posterior probability for the former case will be denoted as p(g; = 1|f;)
where f; is the feature descriptor of the ith image patch. For logistic regression, this
probability is modelled as the sigmoid of a linear function of the feature descriptor:

1
plgi = 1|f) = = (7.7)

where w is the weight vector of the linear model. These weights are estimated by
maximum likelihood:

w = argmapr(gi =1|f;,w’) (7.8)
w’ ;

where here g; and f; are the labels and feature descriptors of our training data,
respectively.

Support Vector Machines SVMs produce arbitrary decision functions in fea-
ture space by a linear separation in a space of higher dimension compared to the
feature space. The mapping of the input data into that space is accomplished by a
non-linear kernel function k. In order to obtain the model for the decision function
when applying SVMs, we solve the following optimisation problem:

1
max E o — 3 E a;09:9;k(5, £5) (7.9)
i 4,7

subject to 0 < a; < C and ), a;g; = 0 with the solution w = Ziv a;g:f;. As a
kernel we have chosen a Radial Basis Function (RBF):

1
202
The two parameters C and o are determined by a grid search over parameter space.
In our implementation, we are using the package libsvm [50].

k(f,£) = e ME5I" 55 0and y = (7.10)

Training Database For training the different classifiers we will use the database
developed by Saxena et al. [200] containing ca. 12000 synthetic images of eight
object classes depicted along with their grasp labels in Figure 7.14. One drawback
of the database is that the choice of grasping points is not always consistent with
the object category. As an example, a cup is labelled at two places on its rim
but all the points on the rim are equally well suited for grasping. The eraser is
quite a symmetric object. Neither the local appearance nor the relative shape of
its grasping point are discriminative descriptors. This will be further discussed in
Section 7.4.2 where our method is compared to that of [200].
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Figure 7.14: One example picture for each of the eight object classes used for
training along with their grasp labels (in yellow). Depicted are a book, a cereal
bowl, a white board eraser, a martini glass, a cup, a pencil, a mug and a stapler.
The database is adopted from Saxena et al. [200].

7.4.1.4 Approximating Object Shape

Shape context provides a compact 2D representation of objects in monocular im-
ages. However, grasping is an inherently three-dimensional process. Our goal is
to apply a pinch grasp on the object using a 3D coordinate of the grasping point
and known position and orientation of the wrist of the robot. In order to infer
the 6D grasp configuration, we integrate 2D grasping point detection with the 3D
reconstruction of the object that results from the segmentation process.

We approach the problem by detecting the dominant plane [P : d® = Pz +
bPy + Pd in the disparity space d = IP(x,y). The assumption is that the object
can be represented as a constellation of planes in 3D, i.e. a box-like object has
commonly three sides visible to the camera while for a cylindrical object, the rim
or lid generates the most likely plane. We use RANSAC to estimate the dominant
plane hypothesis [P and we also determine its centroid 1P by calculating the mean
over all the points in the plane {(z,y)|e(z,y) > 6} where

(dD —aPx — bDy)

e(xvy) :ID(:L',y) - D ’ (711)

C

the error between estimated and measured disparity of a point, and 6 a thresh-
old. By using the standard projective equations between image coordinates (z,y),
disparity d, camera coordinates (¢, ¢, 2¢), baseline b and the focal length f

xC ¢ b

we can transform IIP into the camera coordinate frame:
1€ : —Pbf = aP fa¢ + P fy© — aP=C. (7.13)
The normal of this plane is then defined as
n¢ = (a%, 0%, c%) = (aPf,0P f, —dP). (7.14)

Equations 7.12 are also used to convert the plane centroid pP from disparity space
to uC in the camera coordinate frame.
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7.4.1.5 Generation of Grasp Hypotheses

In the following, we describe how the dominant plane provides the structural sup-
port for inferring a full grasp configuration.

3D Grasping Point The output of the classifier are candidate grasping points
in each of the stereo images. These then need to be matched for estimation of
their 3D coordinates. For this purpose we create a set B; = {b(; ;i = 1---M}
of M image patches b(; ;) in the left image representing local maxima of the clas-
sifier p(g; = 1|f;) and whose adjacent patches in the 8-neighborhood carry values
close to that of the centre patch. We apply stereo matching to obtain the corre-
sponding patches B, = {b(;,)|i = 1--- M} in the right image. Let p(b ;) |fi.1))
and p(b(; ) |fi,) be the probability for each image patch in set B; and B, to be
a grasping point given the respective feature descriptors f(; ;) or f(; ). Assuming
naive Bayesian independence between corresponding patches in the left and right
image, the probability p(b;|f(; ), f( ) for a 3D point b; to be a grasping point is
modelled as

(b £, fi.r) = Py fan) p(berfir)- (7.15)

As already mentioned in the previous section, the approach vector and wrist ori-
entation are generated based on the dominant plane. Therefore, the choice of the
best grasping point is also influenced by the detected plane. For this purpose, we
use the error e(b(“)) as defined in Equation 7.11 as a weight w; in the ranking of
the 3D grasping points. The best patch is then

b* = arg mlcfiX wj p(b(i7l)|f(i,l)a f(i,r))' (7.16)
Orientation of the Schunk Hand Given a 3D grasping point b*, the dominant

plane II€ with its centroid 1€ and normal n®, there are two possibilities for the
approach vector a:

1. a = v© where v€ = u© — b™ and b" is the projected grasping point on I¢
along n°
2. a=nC.

This is illustrated in Figure 7.15. Which of them is chosen depends on the mag-
nitude of vC. If [v¢| > ¢, the wrist of the hand is chosen to be aligned with the
normal of the plane. If [v¢| < ¢, such that b is very close to the centroid of
the plane, we chose n¢ as the approach vector, i.e., the hand is approaching the
dominant plane perpendicularly. In this case, we choose the wrist orientation to be
parallel to the ground plane. In Section 8.1.2 we present results of object grasping
on our hardware.
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Figure 7.15: Visualisation of the 6 DoF Grasp Configuration with respect to the
estimated dominant plane [1

7.4.2 Experimental Evaluation

We start by comparing our method to the one presented in [200]. The goal is to
show the performance of the methods on synthetic images. This is followed by an
in-depth analysis of our method. Finally, we investigate the applicability of our
method in real settings.

7.4.2.1 Evaluation on Synthetic Images

In this section, we are especially interested in how well the classifiers generalize over
global shape or local appearance given synthetic test images. For this purpose we
applied four different sets of objects to train the classifiers.

e Pencils are grasped at their centre of mass.

e Mugs & cups are grasped at handles. They only differ slightly in global shape
and local grasping point appearance.

e Pencils, white board erasers & martini glasses are all grasped approximately
at their centre of mass at two parallel straight edges. However, their global
shape and local appearance differ significantly.

e Pencils & mugs are grasped differently and also differ significantly in their
shape.
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We divided each set into a training and test set. On the training sets we trained
four different classifiers.

o Shape context & SVM (SCSVM). We employed twelve angle and five log
radius bins for the shape context histogram. We sample the contour with
300 points. The same parameters were applied by [26] and have proven to
perform well for grasping point detection.

o Local appearance features & logistic regression (OrigLog) is the classifier by [200].

o Local appearance features & SVM (OrigSVM) applies an SVM instead of
logistic regression.

o Shape context, local appearance features € SVM (SCOrigSVM) integrates
shape context features with local appearance cues. The resulting feature
vector is used to train an SVM.

Accuracy Each model was evaluated on the respective test sets. The results are
shown as ROC curves in Figure 7.16 and as accuracy values in Table 7.2. Accuracy
is defined as the sum of true positives and true negatives over the total number of
examples. Table 7.2 presents the maximum accuracy for a varying threshold.

The first general observation is that SVM classification outperforms logistic re-
gression. On average, the classification performance for each set of objects rose
about 4.32% when comparing OrigSVM with OrigLog. A second general observa-
tion is that classifiers that employ global shape (either integrated or not integrated
with appearance cues) have the best classification performance for all training sets.
In the following we will discuss the results for each set.

e Pencils. The local appearance of a pencil does not vary a lot at different
positions along its surface whereas relative shape does. Therefore, local ap-
pearance based features are not discriminative enough. This is confirmed
for the models that are only trained on images of pencils. SCSVM performs
slightly better than OrigSVM. The classification performance grows when
applying an integrated feature vector.

e Mugs & Cups. These objects are grasped at their handle which is character-
ized by a local structure that is rather constant even when the global shape
changes. Thus, OrigSVM outperforms slightly the classifier that applies shape
context only. However, an integration of both features leads to an even better
performance.

e Pencils, white board erasers & martini glasses. For this set of objects the posi-
tion of the grasp is very similar when considering their global shape whereas
the local appearance of the grasping points differs greatly. Also here, the
models based on shape context performs best. Feature integration degrades
the performance.
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e Pencils & mugs. The performance of the different classifiers for the previous
set of objects is a first indication for a weaker generalization capability of
OrigSVM and OrigLog over varying local appearance compared to SCSVM
and SCOrigSVM. This is further confirmed for the last set where not just local
appearance but also global shape changes significantly. SCSVM improves
the performance of OrigSVM about 6.75% even though the grasping points
are very different when related to global object shape. Feature integration
increases the performance only moderately.

Repeatability Our goal is to make a robot grasp arbitrary and novel objects.
Thus, we are also interested in discovering whether the best grasping point hy-
potheses correspond to points that in reality afford stable grasps. Thus, our second
experiment evaluates whether the best hypotheses are located on or close to the la-
belled points. We constructed a set of 80 images from the synthetic image database
with ten randomly selected images of each of the eight object classes (Figure 7.14).
Thus, also novel objects that were not used for training the different classifiers are
considered. On every image we run all the aforementioned models and for each one
picked out the best ten grasping points b;. In the database, a label is not a single
point, but actually covers a certain area. We evaluated the Euclidean distance d;
of each of the ten grasping points measured from the border of this ground truth
label at position p; and normalized with respect to the length /; of its major axis.
This way, the distance is dependent on the scale of the object in the image. In case
there is more than one label in the image, we choose the one with the minimum
distance. If a point b; lies directly on the label, the distance d; = 0. If a point
lies outside of the label, the distance d; gets weighted with a Gaussian function
(0 = 1, = 0) multiplied with v/27. The number of hits h,, of each model m on
the picture set is counted as follows:

K N a2

e 33
k=11i=1
My dist(bg; g, Pi
Wlth d(l,k‘) = mllill 18 ( 2(l’k) p(]vk))
= (G:k)

where K is the number of images in the set, M} is the number of grasp labels in
that picture and Np is the number of detected grasping points. Grasping points
whose distance d; exceed a value of 3 * ¢ are considered as outliers. Figure 7.17
shows the number of hits, that is, the amount of good grasps for each model.
Apart from the model trained on cups and mugs, the SVM trained only on
shape context always performs best. The performance drop for the second object
set can be explained in the same way as in the previous chapter: handles have a
very distinctive local appearance and are therefore easily detected with features that
capture this. In general, this result indicates that classifiers based on shape context
detect grasping points with a better repeatability. This is particularly important
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Figure 7.16: ROC curves for models trained on different objects.

Table 7.2: Accuracy of the models trained on different objects.

| SCOrigSVM | SCSVM | OrigSVM | OrigLog

Pencil 84.45% 82.55% 80.16% 77.07%
Cup & Mug 90.71% 88.01% 88.67% 83.85%
Pencil, Martini
& Eraser 84.38% 85.65% | 80.79% 74.92%
Pencil & Mug 85.71% 84.64% 77.80% 74.32%

for the inference of 3D grasping points in which two 2D grasping points in the left
and right image of a stereo camera have to be matched.

Summary of Results We draw several conclusions regarding experimental re-
sults on synthetic images. First, independent of which feature representation is
chosen, SVM outperforms logistic regression. Secondly, our simple and compact
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Figure 7.17: Evaluation of the best ten grasping points of each model on a pic-
ture test set containing in total 80 pictures of familiar and novel objects (see Fig-
ure 7.14).

feature descriptor that encodes relative object shape improves the detection of
grasping points both in accuracy and repeatability in most cases. In case of very
distinct local features, both representations are comparable. Integration of the
two representations leads only to moderate improvements or even decreases the
classification performance.

7.4.2.2 Opening the Black Box

In the previous section, we presented evidence that the shape-context—based models
detect grasping points more accurately than the models trained on local appearance
features. As argued in Section 7.4.1, we see relative shape as a better cue for
graspability than local appearance. In this section, we would like to confirm this
intuition by analyzing what the different grasping point models encode. We are
especially interested in whether there are prototypical visual features on which
the two different models fire. We conduct this analysis by applying the Trepan
Algorithm by Craven and Shavlik [56] to the learnt classifiers. This algorithm
builds a decision tree that approximates a concept represented by a given black box
classifier. Although originally proposed for neural networks, Martens et al. [144]
showed that it is also applicable for SVMs.

We use the same sets of objects as mentioned in the previous section. The
extracted trees are binary with leafs that are classifying feature vectors as either
graspable or non-graspable. The decisions at the non-leaf nodes are made based
on either one or more components of the feature vector. We consider each positive
leaf node as encoding a prototypical visual feature that indicates graspability. As
previously mentioned, the extracted trees are only approximations of the actual
learnt models. Thus, the feature vectors that end up at a specific leaf of the tree
will be of three different kinds:
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e Ground truth. Features that are graspable according to the ground truth
labels in the database.

e False positives by model. Features that are not graspable according to the
labels but are so according to the classifier.

o Fulse positives by tree. Features that are neither labelled in the database nor
classified by the model to be graspable, but are considered to be so by the
tree.

We will analyse these samples separately and also rate the trees by stating their
fidelity and accuracy. Fidelity is a measure of how well the extracted trees ap-
proximate the considered models. It states the amount of feature vectors whose
classification is compliant with the classification of the approximated model. Accu-
racy measures the classification rate for either the tree or the model when run on
a test set.

The analysis of these samples is conducted using PCA. The resulting eigenvec-
tors form an orthonormal basis with the first eigenvector representing the direction
of the highest variance, the second one the direction with the second largest vari-
ance, etc. In the following sections we visualise only those eigenvectors whose energy
is above a certain threshold and at maximum ten of these. The energy e; of an
eigenvector e; is defined as ,

22:1 Aj

Z?:l Aj
where A; is the eigenvalues of eigenvector e; with K eigenvectors in total. As a
threshold we use 6 = 0.9.

The remainder of this section is structured as follows. In Section 7.4.2.2, we
visualise the prototypical features for the local appearance method by applying
PCA to the samples at positive nodes. In Section 7.4.2.2 we do the same for the
relative shape-based representation.

(7.17)

€; =

Local Appearance Features Saxena et al. [200] applied a filter bank to 10 x 10
pixel patches in three spatial scales. The filter bank contains edge, texture (Law’s
masks) and color filters. In this section, we depict samples of these 10 x 10 pixel
patches in the largest scale. They are taken from every positive node of each tree
trained for a specific object set. All feature vectors that end up at one of these
positive nodes are used as an input to PCA.

The first set we present consists of images of a pencil (see Figure 7.14) labelled
in its centre of mass. The built tree is rather shallow: it has only four leaf nodes
of which one is positive. The decisions on the non-leaf nodes are made based
on the output of the texture filters only. Neither color nor edge information are
considered. This means that this part of the feature vector is not necessary to
achieve a classification performance of 75.41% (see Table 7.3). Ten random samples
from the positive node are shown in Figure 7.18(a)-(c) subdivided dependent on
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Figure 7.18: Pencils:(a)-(c) Ten samples and PCA components of the positive node
of the decision tree. (d) Feature vectors projected into the three-dimensional space
spanned by the three eigenvectors of the sample set of true grasping points with
the highest variance.

whether they are graspable according to the ground truth labels from the database
or only according to the model and tree, respectively.

In order to visualise to which visual cues these grasping point models actually
respond, we run PCA on the set of feature vectors that ended up at that node.
The resulting principal components selected according to Equation 7.17 are also
depicted in Figure 7.18 (a)-(c). Encoded are close-ups of the body of the pencil
and perspective distortions.

However, the majority of the pencil complies with these components. Because of
that, the samples from the set of false positives are very similar to the ground truth
samples. The appearance of the centre of mass is not that different from the rest
of the pencil. This is further clarified by Figure 7.18 where the false positives by
the model and tree are projected into the space spanned by the first three principal
components from the ground truth: they are strongly overlapping. We will show
later that given our relative shape based representation these three first principal
components are already enough to define a space in which graspable points can be
better separated from non-graspable points.

For the other sets of objects we applied the same procedure. The principal
components of the samples at each positive node are shown in Figure 7.19, 7.20
and 7.21. In Table 7.3, the fidelity of the respective trees in relation to the model
and their accuracies are given.

Relative Shape In this section we evaluate the performance of the shape context
in the same manner as the local appearance features were tested in the previous
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Table 7.3: Accuracy of the models trained on different objects given the local
appearance representation.

|| Pencil | Cups | Elongated | Pencil & Mug |

Fidelity 86.78% | 83.97% 87.55% 89.29%
Accuracy Tree || 75.41% | 82.61% | 72.12% 73.30%
Accuracy Model || 77.07% | 83.85% 74.92% 74.32%
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Figure 7.19: Cups: Ten samples and PCA components for each of the positive
nodes of the decision tree.
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Figure 7.20: Elongated Objects: Ten samples and PCA components for each of the
positive nodes of the decision tree.
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Figure 7.21: Pencils and Mugs: Ten samples and PCA components for the positive
node of the decision tree.
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Table 7.4: Accuracy of the models trained on different objects given the relative
shape representation.

H Pencil ‘ Cups ‘Elongated Pencil & Mug

Fidelity 78.97% | 79.66% 78.79% 80.82%
Accuracy Tree || 71.38% | 76.89% | 73.40% 73.41%
Accuracy Model || 82.55% | 88.01% | 85.56% 84.64%

section. The process includes
1. extracting the contour with the Canny edge detector,
filtering out spurious edge segments,

subsampling the contour,

Ll

normalizing the sampled contour with the median distance between contour
points,

5. rotating the whole contour according to the average tangent directions of all
the contour points falling into the patch that is currently considered by the
classifier

6. and finally plotting the resulting contour on a 20 x 20 pixels patch with the
grasping point in the centre.

The output of this procedure forms the input for PCA. The sample feature vectors
for each node are depicted not as patches but as red squared labels located at the
grasping point on the object.

Each of the induced trees in this section is of a slightly worse quality in terms of
fidelity when compared with the trees obtained from the logistic regression method
(see Table 7.3). We reason that this is due to the performance of the Trepan
algorithm when approximating SVMs. Nevertheless, the purpose of this section
is the visualisation of prototypical grasping point features rather than impeccable
classification. This performance is therefore acceptable. The results for the induced
trees are given in Table 7.4.

We start by analyzing the model trained on the set of pencils. The induced
decision tree has one positive node. The samples from this node are depicted in
Figure 7.22 along with the most relevant PCA components to which we will refer
in the remainder of this section as eigencontours. These components do not encode
the local appearance but clearly the symmetric relative shape of the grasping point.

One interesting observation is that the feature vectors projected into the space
spanned by the three best principal components of the ground truth samples are
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Figure 7.22: Pencil: Ten samples and PCA components of the positive node of the
decision tree.
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Figure 7.23: (a)Pencil: Feature vectors projected into the three-dimensional space
spanned by the three eigenvectors of the sample set of true grasping points with
the highest variance. (b) and (c) measure linear separability for models trained on
different training sets and with different classification methods. Dark: OrigLog.
Bright: SCSVM.

quite well separable, even with a linear decision boundary. There is almost no
overlap between false positives produced by the tree and the ground truth features
and little overlap between false positives produced by the models and the true
graspable features. This result is shown in Figure 7.23.

We applied the same procedure to the models trained on the other sets of objects.
The eigencontours for these are shown in 7.24, 7.25 and 7.26. For the sets consisting
of different objects, each positive node in the decision tree is mainly associated with
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Figure 7.24: Cups: Ten samples and PCA components for each of the positive
nodes of the decision tree.
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Figure 7.25: Elongated: Ten samples and PCA components for each of the positive
nodes of the decision tree.

one of the objects and encodes where they are graspable.

Furthermore, we can observe a better separability compared to the models
trained on local appearance. In order to quantify this observation, we analysed
the distribution of the samples in the three-dimensional PCA space in terms of
linear separability. As measures for that we employed Fisher’s discriminant ratio
and the volume of the overlap regions. Figure 7.23 (b) and (c) show a comparative
plot of these two measures for all the models considered in this section.

Summary of Results The evaluation provided a valuable insight into different
feature representations. We observed that our compact feature descriptor based
on relative shape is more discriminative than the feature descriptor that combines
the output of a filter bank. The dimensionality of our descriptor is almost four
times smaller which also has implications for the time needed to train an SVM. The
classification performance achieved with an SVM could even be improved by finding
a decision boundary in the space spanned by the first three principal components
of a set of ground truth prototypical features.
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(c) Third Node

Figure 7.26: Pencils and Mugs: Ten samples and PCA components of the first
positive node of the decision tree.

7.4.2.3 Evaluation on Real Images

In the previous section, we showed that the performance of the relative-shape—
based classifier is better compared to a method that applies local appearance. In
these synthetic images no background clutter was present. However, in a real-world
scenario we need to cope with clutter, occlusions, etc. One example is presented
by Saxena et al. [200] in which a robot is emptying a dishwasher. In order to cope
with the visual clutter occurring in such a scenario, the grasping-point model was
trained on hand-labelled images of the dishwasher. Although the dishwasher was
emptied successfully, for a new scenario the model has to be re-trained to cope with
new backgrounds.

We argue that we need a way to cope with backgrounds based on more general
assumptions. As described earlier in Section 7.4.1.1, our method relies on scene seg-
mentation. In this section, we evaluate how the relative shape based representation
is affected by different levels of segmentation. For that purpose, we collected images
of differently textured and texture-less objects, e.g., boxes, cans, cups, elongated
objects, or toys, composed in scenes of different levels of complexity. The exam-
ple scenes range from single objects on a table to several objects occluding each
other. These scenes were segmented with the three different techniques described
in Section 7.4.1.1.

Ideally, we would like to achieve two things. First is the repeatability: the
grasping points for the same object given different qualities of segmentation have
to match. Second is the robustness: the grasping points should be minimally
affected by the amount of clutter. Regarding the latter point, a quantitative evalu-
ation can only be performed by applying the inferred grasps in practice. Thus, we
demonstrate our system on real hardware in Section 8.1.2 and present here some
representative examples of the grasping point inference methods when applied to
different kinds of objects situated in scenes of varying complexity.

Examples for Grasping Point Detection In Figure 7.27, we show the re-
sults of the grasping point classification for a teapot. The left column shows the
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segmented input of which the first one is always the ground truth segment. The
middle column shows the result of the grasping point classification when applying
the local appearance based descriptor by [200] and the right one the results of the
classification when using the relative shape-based descriptor. The red dots label the
detected grasping points. They are the local maxima in the resulting probability
distribution. Maximally the ten highest valued local maxima are selected.

The figure shows the grasping point classification when the pot is the only
object in the scene and when it is partially occluded. Note that the segmentation
in the case of local appearance-based features is only influencing which patches are
considered for the selection of grasping points. In case of the relative shape-based
descriptor, the segmentation also influences the classification by determining which
edge points are included in the shape context representation. Nevertheless, what we
can observe is that the detection of grasping points for the representation proposed
in this approach is quite robust. For example in Figure 7.27b (last row), even
though there is a second handle now in the segmented region, the rim of the teapot
is still detected as graspable and the general resulting grasping point distribution
looks similar to the cases in which the handle was not yet in the segment. This
means that the object the vision system is currently in fixation on, the one that
dominates the scene, produces the strongest responses of the grasping point model
even in the presence of other graspable objects.

In Figure 7.28a, we applied the models trained on mugs and cups to images of a
can and a cup. The descriptor based on local appearance responds very strongly to
textured areas whereas the relative shape based descriptor does not get distracted
by that since the whole object shape is included in the grasping point inference.
Finally in Figure 7.28b, we show an example of an object that is not similar to any
object that the grasping point models were trained on. In case of the local appear-
ance based descriptor, the grasping point probability is almost uniform and very
high-valued. In the case of shape context there are some peaks in the distribution.
This suggests that the ability of these models to generalize over different shapes is
higher than for local appearance-based models.

Repeatability of the Detection One of the goals of the method is the re-
peatability of grasping point detection. In order to evaluate this, we measured the
difference of the detected grasping points in the differently segmented images. For
real images, we do not have any ground truth labels available as in the case of syn-
thetic data. Thus, we cannot evaluate the grasp quality as done in Section 7.4.2.1.
Instead, we use the detected grasping points in a manually segmented image as a
reference to quantify the repeatability of the grasping point detection.

We have a set B = {b;|li = 1... N} of pictures and three different cues based
on which they are segmented: zero disparity, a dominant plane and hue. If we want
to measure the difference dj, between the set of grasping points Gy, = {g@u, ;) |l7 =
1...M} and the set of reference points Gy, = {g,nllk = 1... R} for a specific
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kind of segmentation of the image b;, then

1 M2
J
dp, = Ejg_le 2" where (7.18)
R
dj = mindist(ga, ) 8:.5) (7.19)

where dist is the Euclidean distance and K the length of the image diagonal3. The
mean and standard deviation of dj, for all images in the set B that are segmented
with a specific cue is then our measure of deviation of the detected from the reference
grasping points.

In Figure 7.29 we show this measure for a representative selection of objects
and models. As already mentioned, ideally we would like to see no difference
between detected grasping points when facing different qualities of segmentation.
In practice, we can observe a flat slope. As expected for both methods, the grasping
points detected in the image segmented with zero-disparity cues are the ones that
are deviating most from the reference points. Although, the selection of points
that are included in our representation is directly influenced by the segmentation,
the difference between detected and reference grasping points is not always bigger
than for the appearance based method. In fact, sometimes it performs even better.
This holds for examples of the models trained on mugs and cups for which both
methods show a similar accuracy on synthetic data (Figure 7.29 (a) and (b)). If
the models are applied to novel objects, as can be observed in Figure 7.29 (c), our
descriptors shows a better repeatability. This suggests again a better capability
of the models to generalize across different relative shapes. In general, we can say
that both methods are comparable in terms of repeatability.

Summary of Results In this section, we evaluated the performance of our ap-
proach on real images. Due to the encoding of global shape, the method is robust
against occlusions and strong texture. Although our representation is strongly de-
pendent on the segmentation, we observe that the repeatability of grasping points
is comparable to the local appearance based method even when facing imperfect
segmentation. The analysis included images of varying qualities of segmentation as
well as occlusion and clutter.

7.5 Discussion

In this chapter, we reviewed approaches towards generating grasp hypotheses given
different kinds of prior object knowledge. Our proposed taxonomy is inspired by
research in neuropsychology and classifies them dependent on whether they assume

3In our case K = 80 since we are evaluating 10 x 10 pixel patches in images of size 640 x 480
pixels
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Figure 7.27: Grasping point model trained on mugs and pencils applied to a tex-
tureless teapot. The darker a pixel, the higher is the probability that it is a grasping
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(a) Grasping point model trained on mugs and (b) Grasping point model trained on pencils,
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applied to a novel object.

Figure 7.28: The darker a pixel, the higher is the probability that it is a grasping
point.
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Trained an Pencil, Martini Glass and Whitehoard Eraser Trained on Pencil and Mug
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Figure 7.29: Comparing the stability of grasp point detection of SCSVM and
OrigLog for different sets of objects and different grasping point models when facing
imperfect segmentation.

known, familiar or unknown objects. For each of these cases, we have proposed our
own methods. As input, most of them rely on a set of segmented object hypotheses.

For the case of known objects, we showed three different methods that fit ob-
ject models to the sensory data. They are presented in the order of decreasing
amount of assumptions. Thereby, they can cope with an increasing scene complex-
ity. Furthermore, we found that using completed object models leads to increased
robustness for joint object recognition and pose estimation.

For unknown objects, we used the results from Chapter 6 in which the 3D model
of an unknown object is estimated from a partial point cloud. Grasp hypotheses are
generated based on the completed object model. For familiar objects, we proposed
an approach that combines 2D and 3D shape cues of an object. A machine learning
approach is used to transfer grasping experience from objects encountered earlier.
In the next chapter, we will show how the inferred grasp hypotheses can be executed
by a real robot.

The majority of the grasp synthesis systems that we reviewed in this chapter
including our own approaches can be easily positioned within the proposed taxon-
omy. In turn this means that given an object hypothesis, a prior assumption is
made that either there is a corresponding object model in the database and just
needs to be found (known objects), that a similar object has been grasped before
and the grasp experience can be transferred (familiar objects) or that the object is
unknown and dissimilar to any of the objects previously encountered. Only a few
systems consider the problem of deciding in a flexible way what kind of method
should be applied here. From the systems that we reviewed in this thesis, these are
developed by Ciocarlie et al. [52] and Marton et al. [149] where a grasp planner for
unknown objects is used for the object hypotheses that do not match previously
encountered objects.




Grasp Execution

Many of the approaches that we reviewed in Section 7.1 for generating grasp hy-
potheses are not demonstrated on a robot. For those who are, most of them employ
an open-loop controller. An open-loop controller computes its actions taking only
the current state into account without observing the outcome of these actions and
whether they reached the desired goal.

However, realistic applications require going beyond open-loop execution to deal
with different types of errors occurring in an integrated robotic system. One kind
of errors are systematic and repeatable, introduced mainly by inaccurate kinematic
models. These can be minimized offline through precise calibration. The second
kind are random errors introduced by a limited repeatability of the motors or
sensor noise. These have to be compensated online through for example closed-
loop controllers. In a grasping system, this can be achieved through for example
visual servoing or reactive grasping approaches using force-torque or tactile sensors.
In these cases, the output of actions is observed during execution and actions are
adapted to achieve the desired goal.

In this chapter, we will first demonstrate open-loop grasping given grasp hy-
potheses from either familiar or unknown objects. This will serve as an example for
motivating techniques for closed-loop execution of grasps. Different methods will
be reviewed. This will be followed by a demonstration of different visual servoing
techniques applied in our grasping pipeline for known and unknown objects.

8.1 Open Loop Grasp Execution

As an open-loop grasp controller, we consider a system that

e uses any of the grasp synthesis systems reviewed in the previous chapter to
compute a set of grasp hypotheses for an object,

e computes a trajectory to reach the desired grasp pose and

o executes this trajectory without any adaptation to, e.g., changes in the envi-
ronment.

We employ such a controller to execute grasps for unknown and familiar objects.

153
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Algorithm 4: Pseudo Code for a Table Top Scenario

Data: Embodiment, Table Plane
Result: Cleaned Table Top
begin
S = GetObjectHypotheses()
// Grasp Cycle per Object Hypothesis
for i = 0;¢ < |S|;¢+ + do
s} = PredictObjectShape(s;)
s7 = ConvexDecomposition(s;)
G = GetGraspCandidates(s})
for j =0;5 < |G|;5+ + do
success = PlanGrasp(g;)
if success then
// Grasp Candidate gives Stable Grasp
t(i,j) = PlanArmTrajectory(g;)
if t(i,j) 75 0 then
// Collision-Free Trajectory Exists
‘ T = InsertTrajectory(T,t(; j): 95)
end

end

end

k=0

repeat

success = ExecuteGrasp(T, k)

k++
until success

end

end

8.1.1 Executing Grasps on Unknown Objects

In this section, we consider the scenario of grasping unknown objects from a table
top. We apply the method of predicting unknown object shape from partial point
clouds as proposed in Chapter 6.

One grasp cycle for this scenario is outlined in Algorithm 4. As a step prior to the
shape analysis of an object and grasping it, the robot needs to segregate potential
objects from the background. The function GetObjectHypotheses to obtain a
segmented point cloud is implemented as explained in Section 2.2.1. The function
PredictObjectShape refers to the shape estimation as described in Chapter 6.
With the complete object shape as an input, GetGraspCandidates implements the
techniques outlined in Section 7.1.2. These grasp candidates are then simulated on
the predicted object shape and a collision-free path for the arm planned.

The simulation platform chosen to perform the experiments is OpenGRASP
[7], a simulation toolkit for grasping and dexterous manipulation. It is based on
OpenRAVE [66], an open architecture targeting a simple integration of simulation,
visualization, planning, scripting and control of robot systems. It enables the user
to easily extend its functionality by developing their own custom plugins.

The simulator is used to perform the grasp before the real robot makes an
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attempt. It allows for testing different alternatives, choosing the one with the
highest probability of success. This will not only take considerably less time than
performing it with the real hardware but also prevents damaging the robot by
avoiding collisions with the environment.

For collision detection necessary for motion planning, the simulator needs com-
plete object models. When known objects are used, an accurate model of the objects
can be created off-line using different technologies, like laser scans. In the case of
unknown objects, an approximate model has to be created on-line. As mentioned
before, in this section we propose to use the approach described in Chapter 6 to
estimate a complete 3D mesh model. The obtained triangular mesh has thousands
of vertices which makes the collision detection process computationally expensive.
To increase efficiency, we pre-process the mesh by ConvexDecomposition, a library
that was originally created by Ratcliff [183] and that is implemented in Open-
RAVE. It approximates a triangular mesh as a collection of convex components.
This process takes only a few seconds and drastically speeds up the grasp and
motion planning.

8.1.1.1 Generation of Grasp Candidates

For selecting an appropriate grasp from the set of grasp hypotheses generated
through GetGraspCandidates, each of them is simulated moving the end-effector
until it collides with the object; then the fingers close around it and finally the
contacts are used to test on force closure. In Algorithm 4, this process is referred
to as PlanGrasp.

Each grasp hypothesis has the following parameters: the approach vector, the
hand pre-shape, the approach distance and the end-effector roll. The number of
different values that these parameters can take has to be chosen considering the time
constraints imposed by the on-line execution of PlanGrasp. As a hand pre-shape,
we defined a pinch grasp for each hand. The approach distance is varied between
0 to 20 cm. The roll is chosen dependent on the two grasping points (such that
the fingers are aligned with them) or on the orientation of the circle on which the
selected approach vector is defined. Compared to the sampling of grasp candidates
based on normal direction, the amount of time taken to generate and save the set
of grasp candidates is reduced significantly to less than a minute.

8.1.1.2 Grasp Execution Using Motion Planners

The next step PlanArmTrajectory in Algorithm 4, consists of selecting a stable
grasp from the set of grasp candidates that can be executed with the current robot
configuration without colliding with obstacles. For each stable grasp, it first moves
the robot to the appropriate grasp pre-shape, then uses RRT and Jacobian-based
gradient descent methods [225] to move the hand close to the target object, closes
the fingers, grabs the object, moves it to the destination while avoiding obstacles
and releases it.
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Figure 8.1: Example of the grasp performed by the simulated robot and the real
one, using Top) KTH platform and Bottom) UJI platform.

If the robot successfully grabs the object and moves it to the destination, the
stable grasp is returned for execution with the real robot. Otherwise, the next
stable grasp from the set is tried. Figure 8.1 shows snapshots of the grasp execution
using the simulator and our robot. This work has been done in collaboration with
the Universitat Jaume I (UJI). How this grasp cycle is implemented on the very
different UJI platform is detailed in [4]. An example for the execution is shown in
Figure 8.1.

8.1.2 Executing Grasps on Familiar Objects

In Section 7.4, we proposed a method for generating grasp hypotheses on familiar
objects in which 2D and 3D shape cues of an object hypothesis were combined. A
machine learning approach was used to transfer grasping experience from objects
encountered previously. 2D grasping points detected in such a way were used to
search for full grasp poses given a minimal 3D representation. Since no mesh model
was built of the object, the simulator was not used for grasp and motion planning.
Instead, we inferred one grasp hypothesis and directly executed it on the robot.
In Figure 8.2, video snapshots from the robot grasping three different objects are
given along with the segmented input image, inferred grasping point distribution




8.2. CLOSED-LOOP GRASP EXECUTION 157

and detected dominant plane . For this demonstration, we rejected grasping points
for which the approach vector would result in a collision with the table.

In general, we can observe that the generated grasp hypotheses are reasonable
selections from the huge amount of potentially applicable grasps. Failed grasps are
due to the fact that there is no closed-loop control implemented either in terms of
visual servoing or hand movements.Grasps also fail due to the slippage or collision.

8.2 Closed-Loop Grasp Execution

Different to an open-loop grasp controller, a closed-loop controller does not execute
the desired trajectory without taking feedback into account. Instead, the outcome of
the execution is monitored constantly and adapted to ensure that the desired goal is
reached. Different closed-loop systems have been employed for executing grasping.
Visual Servoing techniques are mainly used for controlling the reaching trajectory.
Reactive-grasp controllers employ force-torque or haptic sensors to ensure that the
grasp is successful.

After outlining the error sources in our robotic system in more detail, we will
review existing approaches for closed-control in grasping. This is followed by ex-
amples on how we use different visual servoing techniques to grasp known and
unknown objects as described in our previous work [10].

8.2.1 Error Sources in Our Robotic System

The grasp cycle outlined in Algorithm 4 relies on the assumption that all the param-
eters of the system are perfectly known. This includes e.g. internal and external
camera parameters as well as the pose of the head, arm and hand in a globally
consistent coordinate frame.

In reality, however, two different types of errors are inherent to the system.
One contains the systematic errors that are repeatable and arise from inaccurate
calibration or inaccurate kinematic models. The other group comprises random
errors originating from noise in the motor encoders or in the camera. These errors
propagate and deteriorate the relative alignment between hand and object.

The most reliable component in our system is the Kuka arm that has a repeata-
bility of less than 0.03 mm [126].

Our stereo calibration method uses the arm as world reference frame and is
described in more detail in [10]. We achieve an average re-projection error of 0.1
pixels. Since peripheral and foveal cameras of the active head are calibrated simul-
taneously, we also get the transformation between them.

Additionally to the systematic error in the camera parameters, other effects such
as camera noise and specularities lead to random errors in the stereo matching.

LA number of videos can be downloaded from www.csc.kth.se\~bohg.
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Grasping Peint Probabilities robability of Pixels Belonging to Plane

(b) Grasping a Cup - Video Snapshots
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(d) Grasping a Sprayer Bottle - Video Snapshots
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(e) Grasping a Salt Box - Processed Visual Input

(f) Grasping a Salt Box - Video Snapshot

Figure 8.2: Generating grasps for different objects: Left: Grasping Point, Projected
Grasping Point and Plane Centroid. Middle: Grasping Point Probabilities. Right:
Probabilities of Pixels Belonging to the Dominant Plane.
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Since we are using the arm to calibrate the stereo system, the error in the
transformation between the arm and cameras is proportional to the error of the
stereo calibration.

We are using the robot head to actively explore the environment through gaze
shifts and fixation on objects. This involves dynamically changing the epipolar
geometry between the left and right camera system. Also the camera position
relative to the head origin is changed. The internal parameters remain static. Only
the last two joints of the head, the left and right eye yaw, are used for fixation
and thereby affect the stereo calibration. The remaining joints are actuated for
performing gaze shifts.

In order to accurately detect objects with respect to the camera, the relation
between the two camera systems as well as between the cameras and the head
origin needs to be determined after each movement. Ideally, these transformations
should be obtainable just from the known kinematic chain of the robot and the
readings from the encoders. In reality, these readings are erroneous due to noise
and inaccuracies in the kinematic model. To reduce the systematic errors, we are
extending our stereo calibration method to not just calibrate for one head pose,
but for several. This is described in more detail in [10][13].

Regarding random error, the last five joints in the kinematic chain of the active
head achieve a repeatability in the range of £0.025 degrees [17]. The neck pitch
and neck roll joints have a lower repeatability in the range of +£0.13 and +0.075
degrees respectively.

8.2.2 Related Work

The systematic and random errors in the robotic system lead to an erroneous align-
ment of the end effector with an object. A system that executes a grasp in an open
loop fashion without taking any sensory feedback into account is likely to fail. In
the following, we will review existing approaches towards calibrating the robot and
towards closed-loop control.

8.2.2.1 Calibration Methods

In [222], the authors presented a method for calibrating the active stereo head.
The correct depth estimation of the system was demonstrated by letting it grasp
an object held in front of its eyes. No dense stereo reconstruction has been shown
in this work.

Similarly, Welke et al. [229] present a procedure for calibrating the Karlsruhe
robotic head. Our calibration procedure [10] is similar to the one described in those
papers, with a few differences. We extend it to the calibration of all joints, thus
obtaining the whole kinematic chain. Also, the basic calibration method is modified
to use an active pattern instead of a fixed checkerboard.

Pradeep et al. [173] present a system in which a robot moves a checkerboard
pattern in front of its cameras to several different poses. Similar to our approach,
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it can use its arms as kinematic chain sensors and automate the otherwise tedious
calibration process. However, the poses of the robot are hand crafted such that
the checkerboard is guaranteed to be visible to the sensor that is to be calibrated.
In our approach, we use visual servoing to automatically generate a calibration
pattern that is uniformly distributed in camera space.

8.2.2.2 Visual Servoing for Grasp Execution

Some grasping systems make use of visual feedback to correct the wrong alignment
before contact between the manipulator and the object is established. Examples
are proposed by Huebner et al. [102] and Ude et al. [223], who are using a similar
robotic platform to ours including an active head. In [102], the Armar ITT humanoid
robot is enabled to grasp and manipulate known objects in a kitchen environment.
Similar to our system [13], a number of perceptual modules are at play to fulfill
this task. Attention is used for scene search. Objects are recognized and their
pose estimated with the approach originally proposed by Azad et al. [19]. Once
the object identity is known, a suitable grasp configuration can be selected from an
offline constructed database. Visual servoing based on a spherical marker attached
to the wrist is applied to bring the robotic hand to the desired grasp position
as described in Vahrenkamp et al. [224]. Different from our approach, absolute
3D data is estimated by fixing the 3 DoF for the eyes to a position for which a
stereo calibration exists. The remaining degrees of freedom controlling the neck of
the head are used to keep the target and current hand position in view. In our
approach, we reconstruct the 3D scene by keeping the eyes of the robot in constant
fixation on the current object of interest. This ensures that the left and right visual
field overlap as much as possible, thereby maximizing e.g. the amount of 3D data
that can be reconstructed. However, the calibration process becomes much more
complex.

In the work by Ude et al. [223], fixation plays an integral part of the vision
system. Their goal is however somewhat different from ours. Given that an object
has already been placed in the hand of the robot, it moves it in front of its eyes
through closed-loop vision-based control. By doing this, it gathers several views
from the currently unknown object for extracting a view-based representation that
is suitable for recognizing it later on. Different to our work, no absolute 3D in-
formation is extracted for the purpose of object representation. Furthermore, the
problem of aligning the robotic hand with the object is circumvented.

8.2.2.3 Reactive Grasping Approaches

The main problem of open-loop grasping is that uncertainties introduced by the
perception and motor systems are not taken into account during execution. Several
approaches deal with this by either adapting the grasps online, by re-grasping or
by taking uncertainties directly into account during learning appropriate grasps.




8.2. CLOSED-LOOP GRASP EXECUTION 161

In the following, we will review existing approaches divided regarding the assumed
prior knowledge on the object.

Known Objects When the task of the robot is to grasp a known object, the
main source of uncertainty lies in pose estimation. Bekiroglu et al. [25] use a
combination of visual pose tracking and tactile features to assess grasp quality.
The method is solved through supervised learning based on labeled training data
to decide before lifting whether a grasp is going to be successful or not. Hsiao
et al. [100] approach the problem of grasping under pose uncertainty through a
decision theoretic approach. Based on the current belief state, the system decides
between grasping and information-gathering actions using tactile input. Once the
object pose is known with sufficient certainty, grasping is executed. Tegin et al.
[216] develop a reactive grasp controller in simulation in a framework of human-to-
robot mapping of grasps. The approach is shown to be robust against pose errors
introduced by visual pose estimation. Romero et al. [186] present a similar system
based on visual hand pose estimation instead of using a magnetic tracker. Not
only uncertainties in object pose but also inaccuracies in the mapping are taken
into account. Although the object is not explicitly modelled, it is assumed that
the grasp to be imitated by the robot is performed on the same object in the same
pose.

[124, 167] model the whole reaching and grasping movements. Pastor et al.
[167] adjust movement primitives online to take pose uncertainties into account.
Expected sensor readings during grasping an object are recorded from an ideal
demonstration. During autonomous execution, the movement primitive is adapted
online in case of divergences between the expected and actual sensor readings. It
is shown that this approach leads to an increased grasp success rate for different
objects. As an open question remains how the system can select between a potential
set of object-specific expected sensors readings when executing a grasping action.

Kroemer et al. [124] apply a reinforcement learning approach in wich a low-level
reactive controller is applied to provide the high-level learner with rewards depen-
dent on how much the fingers moved during the execution of the grasp. Primitives
modeling the whole reaching movement are also adapted using a sparse visual rep-
resentation of the environment to avoid collisions. This approach has been demon-
strated for different objects in which the learnt policy converges to high rewarding
grasps.

Unknown Objects The challenge in the case of grasping unknown objects is
different from the previous case. Instead of an unknown relative pose between
hand and object, here we have incomplete and noisy information about the object
geometry. The following approaches assume that there is a system that provides
them with an initial grasp hypothesis. This can be any of those presented in
Section 7.1.2. However, these hypotheses are usually inferred on either incomplete
object models or on completed but not necessarily accurate object models.
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Felip and Morales [78] developed so called grasp primitives as indivisible actions
defined by initial hand pre-shape, a sensor based controller and an end condition.
The goal of these primitives is to achieve an alignment between object and hand
that ensures a stable grasp. This is achieved by a sequence of re-grasping actions.
Mainly, force-torque and finger joint readings are used. Hsiao et al. [99] propose
a different reactive controller that uses contact information from tactile sensors.
An adaption of the hand position dependent on the readings follows until contact
with the palm is detected and a compliant grasp is executed. Maldonado et al.
[142] propose a similar approach using contact sensing in the fingertips during
the approach of an object. Sensed obstacles are included in the representation
of the environment and subsequently used to adapt the grasp hypothesis. All
these approaches adapt the initial grasp hypothesis based on force-torque or tactile
sensor readings. One of their disadvantages is that during contact the previous
model of the scene might change. Previously inferred grasp hypothesis can then
be inappropriate or even impossible. A new model of the world has to be acquired
which is an expensive operation.

A different reactive grasping approach is taken by Hsiao et al. [98] in which
optical proximity sensors are used. Contact with the object is avoided while enough
information can be sensed to adapt the initial grasp strategy to something that has
a much higher likelihood to succeed.

8.2.3 Visual Servoing for Grasping Known Objects

In this section, we will demonstrate a simple position based visual servoing approach
to perform grasping of known objects from a table top. We assume that the object to
be grasped has been segmented and reconstructed using the vision system described
in Section 2.2.1. Furthermore, we assume that the object has been recognized and
its pose estimated using the approach described in Section 7.2.2.1. Due to the usage
of a fixating system, we also know that the object is in the center of both, the left
and the right foveal camera.

From this information, we can infer all the parameters for a grasp. As approach
vector we choose the negative gravity vector, i.e. in this scenario we will only
perform simple top grasps. To determine the wrist orientation of the hand, we use
the information from pose estimation. In case of a roughly rectangular shape, the
minor dimension is aligned with the vector between thumb and finger of the Schunk
hand. For a circular shape, the wrist is left oriented in its default pose. As a fixed
grasping point, we choose the intersection between the principal axes of the left and
right foveal camera in the arm base coordinate frame which we know to be lying
on the object.

8.2.3.1 Position-Based Visual Servoing for Alignment

In this scenario, we will use position-based visual servoing to align the hand with the

object prior to the actual grasp. The goal is to align the end effector in position x4,
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with a point )A(? above the grasping point, both defined in the arm base coordinate
frame A. Please note that the goal position is labeled with a hat to indicate that
it is only an estimate of the true position. This is due to remaining errors in the
calibration of the cameras and the kinematic chain of the active head.

The position of the end effector is known with an accuracy of 0.3mm. However,
we want to minimise the distance between current end effector position and goal
position with respect to the camera frame. Therefore, we are using a fiducial
marker, an LED rigidly attached to the Schunk hand, to determine the position of
the end effector relative to the camera coordinate frame. The LED can be seen in
Figure 8.3.

As defined in [104], such a positioning task can be represented by a function
e: T — RY that maps a pose in the robot’s task space T to an N-dimensional
error vector. This function is referred to as kinematic error function. In our simple
scenario 7 = IR® and therefore N = 3 since we will only change the position of
the hand but keep the orientation fixed. In this way, we ensure the visibility of the
LED. We consider the positioning task as fulfilled when e(x4,) = 0.

8.2.3.2 Computing the Goal Point

Let us define X(, ;) and X(g ) as the projection of the goal point )29 on the left and
right image. The parameters of the calibrated stereo camera and robot kinematics
are available through a calibration procedure described in [10]. We refer to the
complete transformation from image space | to arm space A as ’i‘ﬁ Note that
we label this transform with a hat to indicate that it is only an estimate of the
true transform. Using this, the center of both the left and right image can be

transformed into the arm coordinate system yielding
X? = T? (fc(c,l)v fc(c,r))- (81)

Since we are considering grasping of known objects, we shift this point according
to the height of the object and the known length of the fingers. Back-projecting
the result gives us the desired goal positions X4 ;) and X, -y in the stereo image:

(R(g.)sX(g.r)) = TA(RE +(0,0,m)7). (8.2)

8.2.3.3 Control Law

We want to compute the desired translational velocity u to move the end effector
such that the LED at position %4 is aligned with )29. This means in turn that the
projection of these two points have to be aligned in the images.

The position of the LED %X(,,, ;) and Xy, ) projected to the left and right image

is detected with subpixel precision. Given this, we can compute %2, using the same
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transformation Tﬁ Then the translational velocity is computed as

u =~k epp (% TP (X0, X(g:)s T Kimot)» X(mor))) (8.3)
= —k epp(X),; XD, X))
=—k (X, — %)) (8.5)

where the argument left of the semicolon is the parameter to be controlled (the
end effector position), and the arguments right after the semicolon parameterize
the positioning task. k is the gain parameter.

Once the robot hand is hovering over the object, we align the wrist correctly
and perform the actual grasp, lifting and transporting the object in an open-loop
manner. Example snapshots from a grasping action executed on the toy tiger is
shown in Figure 8.3.

8.2.4 \Virtual Visual Servoing for Grasping Unknown Objects

For the accurate control of the robotic manipulator using visual servoing, it is
necessary to know its position and orientation (pose) with respect to the camera.
In the system exemplified in the previous section, the end effector of the robots
is tracked using an LED. These kind of fiducial markers are common solutions to
the tracking problem. In Section 8.2.2.2, we mentioned other approaches using
colored spheres or Augmented Reality tags. A disadvantage of this marker-based
approach is that the mobility of the robot arm is constrained to keep the marker
always in view. Furthermore, the position of the marker with respect to the end
effector has to be known exactly. For these reasons, we propose in [10] to track
the whole manipulator instead of only a marker. Thereby, we alleviate the problem
of constrained arm movement. Additionally, collisions with the object or other
obstacles can be avoided in a more precise way.

8.2.4.1 Image-Based Visual Servoing for Aligning the Virtual with the Real
Arm

Our approach to estimation and track the robot is based on virtual visual servoing
(VVS) where a rendered model of a virtual robot is aligned with the current image
of their real counterparts. Figure 8.4 shows a comparison of the robot localisa-
tion in the image using only calibration with the case when this localisation has
been corrected using VVS. In [10], this is achieved by extracting features from the
rendered image and compare them with the features extracted from the current
camera image. Based on the extracted features, we define an error vector

s(t) = [dy,da, ..., dN]" (8.6)

between the desired values for the features and the current ones. Let § be the rate
of change of these distances given a change in pose of the end effector. This change
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(a) Positioning Arm Above Object.  (b) Moving Arm Down to Pre-Grasp
Position.

(e) Moving Object to Goal Position. (f) Release Object at Goal Position.

Figure 8.3: Example Grasp for the Recognized Tiger.
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Pr .
(a) (b)

Figure 8.4: Comparison of robot localization with (right) and without (left) the
Virtual Visual Servoing correction.

can be described by a translational velocity t = [t5,t,, t.]" and a rotational velocity

W = [Wg,wy, wz]T. Together, they form a velocity screw:
F(t) = [tos by, oy Wy wyrws] (8.7)
We can then define the image Jacobian as J so that:
§= Jr (8.8)

where
8dy  Ody  Ody  Ody  Ody  Ody
Oty Oty ot Owg Owy Ow
Ody  0dy  9dy  Ody  Ody  Odp
ds dt, Oty Ot. Ows Ow, Ow.
—| = (8.9)
or : : : : : :

ddn ddn adn ddy  ddny  9dn
Oty Oty ot Owg Owy Ow

which relates the motion of the (virtual) manipulator to the variation in the features.

Our goal however is to move the robot about 7* such that s becomes equal to 0.
Therefore, we need to compute 7 given §. In our case, the Jacobian is non-square
and therefore not invertible. Therefore, we compute

r=J"s (8.10)

where J7 is the pseudoinverse of J.
Let us denote the pose of the virtual robot as T”, then the kinematic error

function e;,,, can be defined as

eim(Th;5,0)=0—s (8.11)
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which leads to the simple proportional control law
u=-KJ's (8.12)

where K is the gain parameter.
For details on how the Jacobian and the features are computed, we refer to [10].

8.2.4.2 Incorporating Pose Corrections for Grasping Unknown Objects

Given the corrected pose of the robot arm relative to the camera, we have a cor-
rected transformation Tﬁ converting pixel coordinates in the left and right image
to coordinates in the arm base frame. Therefore, given goal positions x(, ;) and
X(g,r) Of the robot’s end effector in the left and right image, we can convert them
to goal positions ng. This position is computed based on an already corrected
pose estimate. We therefore send the end effector to this position in open loop to
correctly align the hand with the object.

Similarly to the previous section, the goal position of the robot arm is above the
object to be grasped. This point can be inferred using any of the methods proposed
in Section 7. However, in [10] we demonstrated grasping without assuming any
knowledge about the object. Given a segmented point cloud, we project it to the
table and use its centre of mass as an approach vector for a top grasp. The wrist
is aligned with the minor eigenvector of the projection.

Example snapshots of one execution can be found in Figure 8.5.

8.3 Discussion

In this section, we have first reviewed different closed-loop control schemes for grasp
execution. We distinguished between vision and tactile-based techniques. Visual
Servoing is usually applied to bring the end effector into an appropriate pre-grasp
position. Reactive grasping approaches usually start at this point and execute
grasping using force-torque or haptic sensors to ensure grasp success.

We then presented open-loop grasping of unknown or familiar objects and
demonstrated their limitations in coping with erroneous calibration or imprecise
kinematic models. Two applications for visual servoing were shown. The first one
was a simplified position-based visual servoing scheme based on tracking a fiducial
marker. Since this approach limits the mobility of the end effector, we also pre-
sented virtual visual servoing based grasping of unknown objects. This method is
advantageous when the goal is to precisely align the fingertips of the robotic hand
with the object.

We have demonstrated this approach for simple top grasps only. As a next step,
more complex grasps in potentially cluttered environments need to be considered.
Furthermore, a reactive grasping approach would be advantageous to cope with the
remaining errors in the relative pose estimate between hand and object.
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(a) Saliency Map of Scene (b) Object Segmentation and Grasp Pose
Calculation

(e) Close hand. (f) Release Object at Goal Position.

Figure 8.5: Example Grasp Using Virtual Visual Servoing




Conclusions

A long-term goal in robotics research is to build an intelligent machine that can
be our companion in everyday life. It is thought to help us with tasks that are
for example difficult, dangerous or bothersome. However for many of these tasks
that we perform effortlessly, current robotic systems still lack the robustness and
flexibility to carry them out equally well.

In this thesis, we considered a household scenario in which one of the key capa-
bilities of a robot is grasping and manipulation of objects. Specifically, we focussed
on the problem of scene understanding for object grasping. We followed the ap-
proach of introducing prediction into the perceive-act loop. We showed how this
helps to efficiently explore a scene but also how it can be exploited to improve
manipulation.

We studied different scene representations as a container for knowledge about
the geometric structure of the environment. They are of varying complexity and
utility, reaching from a classical occupancy grid map, over a height map to a 3D
point cloud. While the occupancy grid map allows to estimate free and occupied
spaces in the scene, a height map provides additional geometric information es-
sential to manipulation. A point cloud can retain scene geometry most accurately
while not providing the efficiency of the other two approaches.

All these representations where studied considering fusion of multi-modal sen-
sory data. Visual sensing through monocular and stereo cameras is the most im-
portant modality used in this thesis. Haptic sensors provided information about
areas in the scene that could not be visually observed. Furthermore, we used ob-
ject recognition and pose estimation as a virtual sensor. Finally, we showed how
information from a human operator enhances object segmentation.

In this thesis, prior knowledge about objectness or common scene structure was
exploited for predicting unexplored, unobserved or uncertain parts of the scene. In
Chapter 4, we used Gaussian Processes to predict scene geometry based on parts
that have already been observed. The prior knowledge is constituted of a kernel
function that reflects common object shape. In Chapter 5, we made use of the
observation that objects are relatively homogenous in their attribute space. This
prior helped the robot to autonomously evaluate segmentation quality. In Chap-
ter 6, we proposed an approach for estimating the backside of unknown objects. It

169
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is based on the prior knowledge that man-made objects are commonly symmetric.

Additionally to estimating the unobserved parts of the scene, we showed how
we can quantify the uncertainty about the prediction. This becomes useful for
choosing the most beneficial exploratory actions. In Chapter 4, these actions were
performed with the robot hand equipped with haptic sensor matrices. In Chapter 5,
a human was questioned to confirm whether an uncertain object hypothesis has to
be corrected or not.

Apart from selecting exploratory actions to refine a scene model, we have also
shown how predictions can improve grasp synthesis. Dependent on whether the
objects are known, familiar or unknown, different methodologies for grasp inference
apply. In Chapter 7, we reviewed related approaches according to this taxonomy.For
each case, we proposed a novel method extending the state of the art. For known
objects, we showed that using a completed point cloud is rendering pose estimation
more robust. For unknown objects, we showed how completed point cloud help to
infer more robust grasps. And finally for familiar objects, we showed that given
an accurate object segmentation, good grasp points can be inferred based on the
object’s global shape. We demonstrated these approaches in real-world scenes of
table-top scenarios thereby proving their feasibility.

In Section 1.1, we showed an example scenario in which a robot is asked to
clean a very messy office desk. We listed several scientific challenges that have to
be solved before a real robot will be able to fulfill such a task satisfactorily. In this
thesis, we made contributions to the subtasks of scene understanding and robotic
grasping. Given different scene representations, sensors and prior knowledge, we
proposed several prediction mechanisms that provide the robot with information
beyond what is has directly observed.

However, many scientific challenges still remain before a robot can autonomously
clean a desk as envisioned in the introduction of this thesis. In the following, we
will outline the parts that we believe have to be solved next.

Independence of Table-Top Detection Almost all of the proposed methods
for scene understanding rely on knowing the dominant plane on which the objects
where arranged. This allowed us to use efficient scene representations and a re-
duction of the search space for object shape prediction. However, extracting the
table-top might not be trivial due to clutter. Hence, the proposed representations
have to be made independent of this knowledge while at the same time remain ef-
ficiently computable. If the dominant plane can however be detected, the resulting
possibility to reduce the search space should be made use of.

Grasp-Oriented Active Perception Considering the tremendous amount of
memory that would be required to store an accurate and detailed 3D point cloud
of a large scale environment, we need to find a more efficient way to represent it.
This representation has to retain the amount of information that makes it possible
for the robot to roughly plan its course of actions. We believe, that the fine detail
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information necessary for example for collision avoidance, opening doors or grasp
planning, should be obtained rapidly and only on demand in the context of specific
behaviors and tasks.

Learning Priors In all chapters, we have used prior assumptions about scene
structure and objectness. This reaches from blob-like kernel functions over homo-
geneity in specific object attributes to symmetric shape of objects. We showed that
these priors are useful in predicting the structure of unknown space. While we
believe that it is adequate to make assumptions about some low-level priors, the
questions remains how additional priors can be learnt autonomously and adapted
iteratively over a much longer time span (potentially life-long).

Transferring Affordances As has been shown in Chapter 7, there is quite a
large body of work on generating grasp hypotheses given an object hypothesis.
One kind of these methods aims at transferring grasp experience from previously
encountered objects to new ones. Many of these methods rely on relatively low-
level features like distribution of edges, color or texture. Only very few make use of
higher-level information like object identity or category. However, we believe that
only given such information allows to link the generated grasp hypotheses to tasks.

Adaptation of Grasp Hypotheses The prediction mechanism that we pro-
posed in this thesis have mainly been used to trigger exploratory actions. This
in turn led to an improved scene model with correct object hypotheses. However
only the result of the method proposed in Chapter 6 was used to improve grasp hy-
pothesis selection. The robustness of grasping could be improved if the remaining
uncertainty in the scene model is explicitly included in the grasp synthesis process.

Multi-Modal Closed-Loop Control In Chapter 8, we showed how Visual Ser-
voing and Virtual Visual Servoing can help to improve grasp execution in a closed-
loop fashion. However, these techniques were so far only used for aligning the robot
hand with the object. The actual grasping, i.e. closing the fingers around the object
and lifting it, were performed open loop only. To enable the robot to grasp objects
robustly and adapt its behavior when facing unexpected sensor reading, we need
to adopt a reactive grasping approach. This should not only involve haptic sensor
data from tactile or force-torque sensors. It should also include visual tracking of
the object that is manipulated. Furthermore, the uncertainty about the geometry
of the object or the scene should influence execution of the grasp as well. It might
for example influence grasp parameters such as pre-shape or velocity of the end
effector.







Covariance Functions

Throughout this thesis, we use different learning techniques to enable a robot to
extrapolate from prior experience. For example in Chapter 4, the robot has to
predict the geometry of a scene from partial visual observations. These observations
can be formally seen as a set of inputs X for which we already know the correct
target values ). For new inputs 2’ that we do not yet know the appropriate target
value of, we use the concept of similarity. New inputs that are close to already
known ones should have similar target values.

In the framework of Gaussian Processes, the similarity is defined through co-
variance functions. In the following, we present the covariance functions used in
Chapter 4 in a bit more detail. Figure A.1 visualises these different functions. For
a more detailed review, we refer to [181].

Squared Exponential Covariance Function Most of the covariance functions
presented here are stationary. They are functions of the difference r = z — '
between input points. These functions are therefore invariant to translations. The
squared exponential covariance function (SE) is defined as

7ﬂ2

577 (A1)

ksg(r) = exp(—
Dependent on the hyperparameter [, the length scale, this function places a more
or less strong smoothing on the input signal. It is visualized for different length
scales in Figure A.la.

Matern Class of Covariance Functions The strong smoothing of the SE ker-
nel has been argued to be unrealistic for most physical processes [181]. The Matern
class is more flexible and allows varying degrees of smoothness. It is dependent
on the two parameters v and [. In this thesis, we only looked at the case where v
is a half-integer and the covariance function can be significantly simplified. With
v = 1/2, the covariance function is equal to the exponential function

knrar1 (r) = exp(—r/1). (A.2)
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We also tested the cases where v = 3/2 and v = 5/2 that are claimed by Bishop
[31] to be the most interesting for machine learning applications:

bavas (1) =(1 + ) exp(- V) (A3)

VBr B2 V5r
Earars(r) =(1 + - + @) eXP(_T

These cases of the Matern class are visualized in Figures A.1b, A.1c and A.1d. With
v — 00, the Matern covariance function becomes the squared exponential function.

). (A4)

Rational Quadratic Covariance Function This covariance function is depen-
dent on the two hyperparameter | and «. It is defined as

T2

20002

Fixing the length scale [ = 1, the RQ kernel is visualized for different « in Fig-
ure A.le. It can be seen as a scale mixture of SE kernels with different characteristic
length scales. With a@ — oo the RQ function becomes an SE function with length
scale [.

kro(r) = (1+ )~ (A.5)

SE with Automatic Relevance Detection Although the previous RQ kernel
is flexible through a mixture of SE kernels of different length scales, it still values
each input value in the set X as equally important. If the dimension of the input
space D > 1, then the SE covariance function can also be written as

1
k'SEARD(I') = O'J2c exp(—§rTMr) (A.6)

where M = diag(1)~2. The vector 1 is of dimension D. Each component equals the
characteristic length scale of each dimension of the input space. Therefore, if one of
the dimensions has a very large length scale, it will become irrelevant for inference.

Neural Network Covariance Function This covariance function is non-stationary,
i.e., it is not invariant to translations. It is derived from a neural network architec-
ture with N units that implement a specific hidden transfer function h(x;u) with
u as input-to-hidden weights. It takes in an input x and combines the outputs of
the units linearly with a bias to evaluate the function f(z). Setting the transfer
function h(x;u) = erf(ugp + Ejpzlujxj), the covariance function is defined as follows

2 2%y %!
knn(z,z") = = arcsin( x =X ) (A7)
77 V(1 +2%TE%) (1 + 28 TE%)
where X = (1,21,--- ,xp) is the augmented input vector. It is visualized in Fig-

ure A.1f for ¥ = diag(o?, 0?) with 02 = 02 = 10.
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Figure A.1: Visualisation of Covariance Functions
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