Iterative Source–Channel Coding Approach to Witsenhausen’s Counterexample

Johannes Karlsson, Ather Gattami, Tobias J. Oechtering, Mikael Skoglund

Abstract—In 1968, Witsenhausen introduced his famous counterexample where he showed that even in the simple linear quadratic static team decision problem, complex nonlinear decisions could outperform any given linear decision. This problem has served as a benchmark problem for decades where researchers try to achieve the optimal solution. This paper introduces a systematic iterative source–channel coding approach to solve problems of the Witsenhausen Counterexample-character. The advantage of the presented approach is its simplicity. Also, no assumptions are made about the shape of the space of policies. The minimal cost obtained using the introduced method is 0.16692462, which is the lowest known thus far.

I. INTRODUCTION

The most fundamental problem in control theory, namely the static output feedback problem has been open since the birth of control theory. The question is whether there is an efficient algorithm that can decide existence and find stabilizing controllers, linear or nonlinear, based on imperfect measurements and given memory. The static output feedback problem is just an instance of the problem of control with information structures imposed on the controllers, which has been very challenging for decision theory researchers. In 1968, Witsenhausen [21] introduced his famous counterexample:

\[
\inf_{\gamma_1(\cdot), \gamma_2(\cdot)} \mathbb{E} [k^2 \gamma_1^2(X_0) + X_2^2] \tag{1}
\]

where

\[
X_1 = \gamma_1(X_0) + X_0, \tag{2}
\]

\[
X_2 = X_1 - \gamma_2(Y_2), \tag{3}
\]

\[
Y_1 = X_0, \tag{4}
\]

\[
Y_2 = X_1 + W, \tag{5}
\]

\(X_0 \sim N(0, \sigma^2)\), and \(W \sim N(0, 1)\). Here we have two decision makers, one corresponding to \(\gamma_1\) and the other to \(\gamma_2\). The problem is a two-stage linear quadratic Gaussian control problem, where the cost at the first time-step is \(\mathbb{E}[k^2 \gamma_1^2(X_0)]\) and \(\mathbb{E}X_2^2\) at the second one. At the first time-step, the controller has full state measurement, \(Y_1 = X_0\). At the second time-step, it has imperfect state measurement, \(Y_2 = X_1 + W\). What is different to the classical output feedback problem, is that the controller at the second stage does not have information from the past since it has no information about the output \(Y_1\). Thus, the controller is restricted to be a static output feedback controller. Witsenhausen showed that even in the simple linear quadratic Gaussian control problem above, complex nonlinear decisions could outperform any given linear decision. This problem has served as a benchmark problem for decades where researchers try to achieve the optimal solution. It has been pointed out that the problem is complicated due to a so called “signaling-incentive”, where decisions are not only chosen to minimize a given cost, but also to encode information in the decisions in order to signal information to other decision makers in the team. In the example above, decision maker 2 measures \(Y_2 = X_0 + \gamma_1(X_0) + W\), so its measurement is affected by decision maker 1 through \(\gamma_1\). Hence, decision maker 1 not only tries to optimize the quadratic cost in (1), but also signal information about \(X_0\) to decision maker 2 through its decision, \(\gamma_1(X_0)\).

The problem also has a nice communication theoretic analogue. First, write Witsenhausen’s counterexample as minimizing the cost

\[
\mathbb{E} [k^2 \gamma_1^2(X_0) + (X_0 + \gamma_1(X_0) - \gamma_2(X_0 + \gamma_1(X_0) + W))^2] \tag{11}
\]

with respect to \(\gamma_1(\cdot)\) and \(\gamma_2(\cdot)\). Now consider the slightly modified problem

\[
\text{minimize } \mathbb{E} (X_0 - \gamma_2(\gamma_1(X_0) + W))^2 \tag{12}
\]

subject to \(\mathbb{E} \gamma_2^2 \leq p\)

The modification made is that we removed \(X_0\) term from the measurement of \(\gamma_2\), and removed \(\gamma_1\) from the objective function, and instead added a constraint \(\mathbb{E} \gamma_2^2 \leq p\) to make sure that it has a limited variance (of course we could set an arbitrary power limitation on the variance). The modified problem is exactly the Gaussian channel coding/decoding problem!

Previous work has been pursued on understanding the Witsenhausen Counterexample. Suboptimal solutions where found in [13] studied variations of the problem when the signaling incentive was eliminated. In [14], [12], connections to information theory where studied. An extensive study of the information theoretic connection was made in [3], where it was shown that coupling between decision makers

Fig. 1. Schematic view of the system.
in the cost function introduced the nonlinear behavior of the optimal strategies. An ordinal optimization approach was introduced in [5] and a hierarchical search approach was introduced in [16], where both rely on a given structure of the decisions. The first method that showed that optimal strategies may have “slopes” to the quantizations was given in [2]. Solutions with bounds are studied in [11]. A potential games approach in the paper by [17] found the best known value to the date of its publication, namely 0.1670790.

In this paper, we will introduce a generic method of iterative optimization based on ideas from source–channel coding [9], [8], [20], [15], that could be used to solve problems of the Witsenhausen Counterexample character. The numerical solution we obtain for the benchmark problem is of high accuracy and renders the lowest value known thus far, 0.16692462.

II. Notation

$p(\cdot)$ and $p(\cdot|\cdot)$ denote probability density functions (pdfs) and conditional pdfs, respectively.

III. Iterative Optimization

We will now present an iterative design algorithm, based on person-by-person optimality, for solving the minimization in equation (1). The method we propose is related to the Lloyd–Max algorithm [18], [19], [10] that is successfully used when designing quantizers. A quantizer can be described by its partition cells and their corresponding reproduction value. The partition cells define to which codeword analog values are encoded and the reproduction values define how the analog value is reproduced from the codeword. In general, there is no explicit, closed-form solution to the problem of finding the optimal quantizer [10]. The idea of the Lloyd–Max algorithm is to assume that either the partition cells or the reproduction values are fixed; with one part fixed, it is straightforward to derive an optimal expression for its counterpart. By optimizing one part at a time in an iterative fashion, the quantizer will converge to a local optimum. The Lloyd–Max algorithm has been generalized and used in various joint source–channel coding applications, for example, [6], [22], [7], [8], [20], [15]. The generalization of the Lloyd–Max algorithm that will be used in this paper involves four key elements:

1) Formulation of necessary conditions on γ_1 and γ_2 such that they are individually optimal given that γ_2 and γ_1, respectively, are fixed.
2) Discretization of the “channel” space between γ_1 and γ_2 such that X_1 and the input to γ_2 are restricted to belong to a finite set S_L.
3) Iterative optimization of γ_1 and γ_2 to make sure that they, one at a time, fulfill their corresponding necessary conditions.
4) Use of a technique called noisy “channel” relaxation that makes the solution less sensitive to the initialization.

A. Necessary Conditions on γ_1

Let us first define the function $\tilde{\gamma}_1$ as

$$\tilde{\gamma}_1(x_0) \triangleq \gamma_1(x_0) + x_0 = x_1. \quad (6)$$

Without loss of generality, we will optimize with respect to γ_1. The cost we want to minimize is given by

$$J \triangleq \mathbf{E}[k^2 \gamma_1^2(X_0) + (X_1 - \gamma_2(Y_2))^2]. \quad (7)$$

Using Bayes’ rule, the expected cost function can now be expressed as

$$J = \int p(x_0, y_2|\gamma_1) F(x_0, \tilde{\gamma}_1(x_0), \gamma_2(y_2)) \, dx_0 \, dy_2$$

$$= \int p(x_0)p(y_2|x_0, \tilde{\gamma}_1) F(x_0, \tilde{\gamma}_1(x_0), \gamma_2(y_2)) \, dx_0 \, dy_2$$

$$= \int p(x_0)p(y_2|\gamma_1(x_0)) F(x_0, \tilde{\gamma}_1(x_0), \gamma_2(y_2)) \, dx_0 \, dy_2, \quad (8)$$

where

$$F(x_0, x_1, \gamma_2(y_2)) = \left(k^2(x_1 - x_0)^2 + (x_1 - \gamma_2(y_2))^2\right). \quad (9)$$

Since the integrand in (8) is positive for all values of x_0, it is clear that the optimization of γ_1 (assuming γ_2 is fixed) can be done individually for each x_0. A necessary condition for γ_1 to be optimal is given by

$$\tilde{\gamma}_1(x_0) = \arg \min_{x_1 \in \mathbb{R}} \left(\int p(y_2|x_1) F(x_0, x_1, \gamma_2(y_2)) \, dy_2 \right)$$

$$= \int p(y_2|x_1) F(x_0, x_1, \gamma_2(y_2)) \, dy_2, \quad (10)$$

for all $x_0 \in \mathbb{R}$.

B. Necessary Conditions on γ_2

If we now assume that γ_1 is fixed, we see that the first term in (7) is a constant. The minimization of J with respect to γ_2 is therefore equivalent to

$$\min_{\gamma_2(\cdot)} \mathbf{E}[(X_1 - \gamma_2(Y_2))^2], \quad (11)$$

which is the mean-squared error (MSE). It is well known that the MSE is minimized by the conditional expected value; hence,

$$\gamma_2(y_2) = \mathbf{E}[X_1|y_2] \quad (12)$$

for all $y_2 \in \mathbb{R}$, is a necessary condition for $\gamma_2(y_2)$ to be optimal.

C. Discretization

Although (10) and (12) would be possible to numerically evaluate for a particular x_0 and y_2, respectively, they are impractical since the full representation of the functions is infinite-dimensional. To get around this problem we introduce the set

$$S_L = \left\{ -\Delta L - 1, -\Delta L - 3, \ldots, \Delta L - 3, \Delta L - 1 \right\}. \quad (13)$$
where \(L \in \mathbb{N} \) and \(\Delta \in \mathbb{R}_+ \) are two parameters that determine the number of points and the spacing between the points, respectively. Next, we impose the constraint \(x_1 \in S_L \), that is, the output of \(\tilde{\gamma}_1 \) can only take one out of a finite number of values. In a similar way, the input to \(\tilde{\gamma}_2 \) is discretized such that,

\[
\tilde{\gamma}_2(y_2) = \tilde{\gamma}_2(y_2), \quad \hat{y}_2 = Qs_L(y_2) \in S_L, \quad (14)
\]

where \(Qs_L(y_2) \) maps \(y_2 \) to the closest point in the set \(S_L \). \(\tilde{\gamma}_2 \) can now be stored in the form of a lookup table where each point in \(S_L \) is associated with an output value. The approximation of the real space with \(S_L \) can be made more and more accurate by decreasing \(\Delta \) and increasing \(L \).

Finally, since \(\tilde{\gamma}_1 \) is still infinite-dimensional, we use Monte-Carlo samples of \(X_0 \) to represent the input to \(\tilde{\gamma}_1 \). \(\tilde{\gamma}_1 \) is now specified by evaluating

\[
\tilde{\gamma}_1(x_0) = \arg\min_{x_1 \in S_L} \sum_{y_2 \in S_L} p(y_2|x_1) F(x_0, x_1, \tilde{\gamma}_2(y_2))
\]

for each of the Monte-Carlo samples that represent \(X_0 \). In a similar way, \(\tilde{\gamma}_2 \) can be expressed as

\[
\tilde{\gamma}_2(y_2) = E[X_1|\hat{y}_2], \quad (16)
\]

for all \(\hat{y}_2 \in S_L \), where the expectation with respect to \(X_0 \) is evaluated by using the Monte-Carlo samples.

D. Design Algorithm

Given the above expressions for \(\tilde{\gamma}_1 \) and \(\tilde{\gamma}_2 \) it will be possible to optimize the system iteratively. We do this by keeping one part of the system fixed while we optimize the other part. One common problem with iterative techniques like the one suggested here is that the final solution will depend on the initialization of the algorithm. If the initialization is bad we are likely to end up in a poor local minimum.

In joint source–channel coding, one method that has proven to be helpful in counteracting this is noisy channel relaxation (NCR) [9, 8, 20, 15]. The idea of NCR is to change some parameter and first design a system for a completely different scenario with a simpler solution. The solution that is obtained is then used as initialization when designing for a scenario that is a bit closer to the true scenario. In joint source–channel coding, this is done by first designing a system for a channel with a lower signal-to-noise ratio (SNR) than the target SNR, which explains the name of the method. In the Witsenhausen setup, we have found that the ideas from NCR can be used as follows. Design a system for a high value of \(k \) first and then gradually decrease \(k \) until the desired value of \(k \) is reached. The reason to start with a high value of \(k \) is that the algorithm will find a solution where \(\gamma_1(x_0) \approx x_0 \) in this case (i.e., \(\gamma_1(x_0) \approx 0 \)) independently of \(\gamma_2 \). The design procedure including the NCR part is given in Algorithm 1.

Each update on line 7 and 8 in Algorithm 1 will decrease the cost. Since the cost is lower bounded, it is clear that the algorithm will converge. It may happen that the algorithm converges to a local optimum, however, as will be seen in the following section the local optima we obtain are still better than any previously reported results.

IV. Results

A. Implementation Aspects

For the evaluation of the design algorithm we have initially used \(L = 201 \) levels and chosen \(\Delta(L) = 10\sigma/(L - 1) \). We have used 400000 Monte-Carlo samples in the final optimizations to represent \(X_0 \). Since it is known that the optimal \(\gamma_1 \) is symmetric about origin [21], we have restricted \(\tilde{\gamma}_1 \) to this symmetry by generating only positive Monte-Carlo samples and thereafter reflecting the resulting \(\gamma_1 \) function for negative values of \(x_0 \).

To be able to compare our results to previously reported results, we have set \(\sigma = 5 \) and \(k = 0.2 \). However, since we are using the NCR idea, we have initially used the value \(k' = 3 \) and decreased it according to the series \{3, 2, 1.5, 1, 0.6, 0.4, 0.3, 0.2\}. Before running the design algorithm, we require \(\tilde{\gamma}_2 \) to be initialized. However, due to the NCR this has little impact on the final solution and we have used the initialization \(\tilde{\gamma}_2 \equiv 0 \).

Once we have obtained the solution for \(k' = 0.2 \), we have increased the precision by expanding the number of points in the discrete set from \(L \) to \(L' \) and updated \(\tilde{\gamma}_2 \) according to

\[
\tilde{\gamma}_2(L')(y_2) = \tilde{\gamma}_2(L)(Qs_L(y_2))
\]

for all \(\hat{y}_2 \in S_L \). Thereafter the inner part of the design algorithm, that is, lines 4–10, have been run again to obtain a system optimized for the increased number of points \(L' \). By repeating this refinement, the precision increases and the cost decreases as will be shown later. This method of refining the precision is similar to the one-way multigrid algorithm that is analyzed in [4]. The evaluations of (15) and (16) have been done using an exhaustive search, therefore, the run time is exponential in the number of levels \(L \). An example

Algorithm 1 Design Algorithm

Require: Initial mapping of \(\tilde{\gamma}_2 \), the value \(k \) for which the system should be optimized and the threshold \(\delta \) that determines when to stop the iterations.

Ensure: Locally optimized \(\tilde{\gamma}_1 \) and \(\tilde{\gamma}_2 \).

1: Let \(k' > k \).
2: while \(k' > k \) do
3: Decrease \(k' \) according to some scheme (e.g., linearly).
4: Set the iteration index \(i = 0 \) and \(J^{(i)} = \infty \).
5: repeat
6: Set \(i = i + 1 \).
7: Find the optimal \(\tilde{\gamma}_1 \) by using (15).
8: Find the optimal \(\tilde{\gamma}_2 \) by using (16).
9: Evaluate the cost function \(J^{(i)} \) according to (7).
10: until \((J^{(i-1)} - J^{(i)})/J^{(i-1)} < \delta \)
11: end while

\(^1\)While decreasing \(\Delta \), one has to increase \(L \) to make sure that \(\max(x \in S_L) = \Delta(L - 1)/2 \) does not decrease.
of the number of iterations that are required and the total computation time can be found in Appendix II.

B. Numerical Results

During the first steps of the NCR k' is high. This means that the output of γ_1 should follow the input closely to avoid large costs in the first stage. If continuous outputs were allowed, the output would be identical to the input. However, since we are working with a discretized system, only outputs from the set S_L are possible. As k' reaches 0.4–0.6 the step behavior of the output appears. Depending on the realization of the Monte-Carlo samples we get either a 3.5-step mapping as shown in Figure 2 or a 4-step mapping as shown in Figure 3 (occasionally, a 3-step solution has occurred). The total costs for these solutions are stated in Table I. For ease of comparison, we have also included the costs of previously reported results. As can be seen, all our mappings have similar performance and all of them give lower costs than the previously reported lowest cost — 0.1670790 [17].

In Table II we show how the cost decreases as the number of points L is increased. The method we use to calculate the total cost as well as some notes on the accuracy can be found in Appendix I. The lowest cost we have achieved with our algorithm is 0.16692462. The mapping that achieves this cost is the 4-step mapping shown in Figure 3 with $L = 12801$ points. Although the mapping contains four clear output levels it should be emphasized that each level is slightly sloped; this can be seen in Figure 4, where the first step has been zoomed in. It is reasonable to assume that as the precision (i.e., L) increases further, each step of the mapping will converge to a straight line that is slightly sloped.

V. Comparison to Previous Results

In this section, we will compare the presented method with the previous methods. Besides the fact that the new method improves the optimized cost, there are further advantages compared to previous work:

- No structure is assumed for the decision functions.
- In [5] and [16], monotonicity of the decisions was assumed. The space of decisions is assumed to be a normed linear space in [2].
- A significant analytic/modeling work was performed before posing the optimization problem to be solved.
Appendix I

Calculation of the total cost

In the design algorithm, \(\tilde{\gamma}_1 \) is specified implicitly by, for each Monte-Carlo sample, storing the output symbol to which it is mapped. This representation is used when evaluating the cost during the iterations in the design algorithm. However, to evaluate the final total cost, we need higher numerical accuracy. Therefore, the first step in calculating the total cost is to use the sample-based representation to find an explicit specification of \(\tilde{\gamma}_1 \) given by

\[
\tilde{\gamma}_1(x_0) = \alpha_i \in \mathcal{S}_L \quad \text{if} \quad A_i \leq x_0 < A_{i+1},
\]

for \(i \in \{0, \ldots, M-1\} \), with \(A_0 = -\infty \) and \(A_M = \infty \). That is, we transform the sample-based representation of \(\tilde{\gamma}_1 \), which is explicitly defined only for the Monte-Carlo samples, to a function which is defined for all real numbers. This representation makes it possible to numerically evaluate the integrals that are needed to find the total cost

\[
J = E[k^2 \tilde{\gamma}_1^2(X_0) + (X_1 - \tilde{\gamma}_2(Y_2))^2]
\]

\[
= E[k^2 (\tilde{\gamma}_1(X_0) - X_0)^2] + E((\tilde{\gamma}_1(X_0) - \tilde{\gamma}_2(Y_2))^2),
\]

where

\[
J_1 = \int_{x_0} p(x_0)k^2(\tilde{\gamma}_1(x_0) - x_0)^2dx_0
\]

\[
= k^2 \sum_{i=0}^{M-1} \int_{A_i}^{A_{i+1}} p(x_0)(\alpha_i - x_0)^2dx_0,
\]

\[
J_2 = \int_{x_0} \sum_{\tilde{y}_2 \in \mathcal{S}_L} p(x_0)(\tilde{\gamma}_1(x_0) - \tilde{\gamma}_2(\tilde{y}_2))^2dx_0
\]

\[
= \int_{x_0} \sum_{\tilde{y}_2 \in \mathcal{S}_L} p(x_0)P(\tilde{y}_2|x_0)(\tilde{\gamma}_1(x_0) - \tilde{\gamma}_2(\tilde{y}_2))^2dx_0
\]

\[
= \sum_{i=0}^{M-1} \int_{A_i}^{A_{i+1}} \sum_{\tilde{y}_2 \in \mathcal{S}_L} p(\tilde{y}_2|\alpha_i)(\alpha_i - \tilde{\gamma}_2(\tilde{y}_2))^2dx_0
\]

\[
= \sum_{i=0}^{M-1} \left\{ \sum_{\tilde{y}_2 \in \mathcal{S}_L} P(\tilde{y}_2|\alpha_i)(\alpha_i - \tilde{\gamma}_2(\tilde{y}_2))^2 \right\} \int_{A_i}^{A_{i+1}} p(x_0)dx_0,
\]

and

\[
P(\tilde{y}_2|\alpha_i) = \begin{cases}
\int_{-\infty}^{\tilde{y}_2 - \Delta/2} p(w = y_2 - \alpha_i)dy_2 & \text{if} \quad \tilde{y}_2 = -\Delta \frac{L-1}{2} \\
\int_{\tilde{y}_2 - \Delta/2}^{\tilde{y}_2 + \Delta/2} p(w = y_2 - \alpha_i)dy_2 & \text{if} \quad \tilde{y}_2 = \Delta \frac{L-1}{2} \\
\int_{\tilde{y}_2 - \Delta/2}^{\tilde{y}_2 + \Delta/2} p(w = y_2 - \alpha_i)dy_2 & \text{otherwise}
\end{cases}
\]
Matlab code for our calculations of the total cost, including our decision functions can be found in [1].

APPENDIX II
COMPUTATION TIME

Table III and IV show the computation times for the design algorithm and the refinement process, respectively. The algorithms were implemented in C++ on a computer with an Intel Core2 Quad CPU running at 2.66 GHz.

<table>
<thead>
<tr>
<th>L'</th>
<th># Iterations</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>32 s</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13 s</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>14 s</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>13 s</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>13 s</td>
</tr>
<tr>
<td>0.4</td>
<td>100</td>
<td>11 min</td>
</tr>
<tr>
<td>0.3</td>
<td>30</td>
<td>4 min</td>
</tr>
<tr>
<td>0.2</td>
<td>30</td>
<td>3 min</td>
</tr>
<tr>
<td>Total</td>
<td>178</td>
<td>20 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th># Iterations</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>44</td>
<td>15 min</td>
</tr>
<tr>
<td>801</td>
<td>83</td>
<td>98 min</td>
</tr>
<tr>
<td>1601</td>
<td>12</td>
<td>52 min</td>
</tr>
<tr>
<td>3201</td>
<td>3</td>
<td>49 min</td>
</tr>
<tr>
<td>6401</td>
<td>2</td>
<td>126 min</td>
</tr>
<tr>
<td>12801</td>
<td>2</td>
<td>501 min</td>
</tr>
<tr>
<td>Total</td>
<td>14 h</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES