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Abstract

This paper shows how the performance of feature trackers can be improved by

building a hierarchical view-based object representation consisting of qualita-

tive relations between image structures at di�erent scales. The idea is to track

all image features individually, and to use the qualitative feature relations for

avoiding mismatches, resolving ambiguous matches and for introducing feature

hypotheses whenever image features are lost. Compared to more traditional

work on view-based object tracking, this methodology has the ability to handle

semi-rigid objects and partial occlusions. Compared to trackers based on three-

dimensional object models, this approach is much simpler and of a more generic

nature. A hands-on example is presented showing how an integrated application

system can be constructed from conceptually very simple operations.
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1 Introduction

To maintain a stable representation of a dynamic world, it is necessary to relate image

data from di�erent time moments. When analysing image sequences frame by frame,

as is commonly done in computer vision applications, it is therefore useful to include

an explicit tracking mechanisms into the vision system.

When constructing such a tracking mechanism, there is a large freedom in design,

concerning how much a priori information should be included into and be used by

the tracker. If the goal is to track a single object of known shape, then it may be

natural to build a three-dimensional object model, and to relate computed views of

this internal model to the image data that occur. An alternative approach is store

a large number of actual views in a database, and subsequently match these to the

image sequence.

Depending on what type of object representation we choose, we can expect di�er-

ent trade-o�s between the complexity of constructing the object representation and

the complexity in matching the object representation to image data.1 In particular,

di�erent design strategies will imply di�erent amounts of additional work when the

database is extended with new objects.

The subject of this article is to advocate the use of qualitative multi-scale object

models in this context, as opposed to more detailed models. The idea is to represent

only dominant image features of the object, and relations between those that are

reasonably stable under view variations. In this way, a new object model can be

constructed with only minor additional work, and it will be demonstrated that such

a weaker approach to object representation is powerful enough to give a signi�cant

improvement in the robustness of feature trackers.

A main rationale for the proposed approach is that if we track individual features

over long time periods in scenes with changing conditions (e.g., object pose and

illumination), the likelihood that features will be mismatched or lost will increase

with time. Major aims of the proposed hierarchical representation are to handle

such problems, and also to assist in the initialization stage of the feature tracker.

When a feature is lost, the relations of the qualitative feature hierarchy model will be

used for de�ning search regions in the which the lost feature can be detected. When

mismatches occur, relational constraints in the feature hierarchy will be helpful for

detecting and rejecting outliers.

The usefulness of such a hierarchical object representation for feature tracking will

be demonstrated by experiments on real-world image sequences. Speci�cally, it will be

shown how an integrated non-trivial application to human-computer interaction can

be constructed in a straightforward and conceptually very simple way, by combination

with a set of elementary scale-space operations.

The presentation is organized as follows: Section 2 presents the general motiva-

tions behind the proposed approach, with an overview of related works. In section 3,

we �rst briey review the multi-scale framework we use for detecting image features,

and describe how hierarchical and qualitative feature relations can be de�ned between

these multi-scales image features. Section 4 outlines how such a view-based object

1With the term \complexity", we here refer to both the computational complexity in matching

algorithms and the degree of structural complexity that is required when designing the software.
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representation can be used in the context of feature tracking, and shows experimen-

tal results for two sample applications to hand gesture analysis and face tracking,

respectively. Finally, section 5 concludes with a summary and discussion concerning

other possible applications and generalizations of the proposed ideas.

2 Choice of Image Representation for Feature Tracking

The framework we consider is one in which image features are detected at multiple

scales. Each feature is associated with a region in space as well as a range of scales, and

relations between features at di�erent scales impose hierarchical links across scales.

Speci�cally, we assume that the image features are detected with a mechanism for

automatic scale selection (Lindeberg 1998b). In earlier work (Bretzner & Lindeberg

1998a), we have demonstrated how such a scale selection mechanism is essential to

obtain a robust behaviour of the feature tracker if the image features undergo large

size variations in the image domain.

The rationale for using a hierarchical multi-scale image representation for feature

tracking originates from the well-known fact that real-world objects consist of di�erent

types of structures at di�erent scales. An internal object representation should reect

this fact. One aspect of this, which we shall make particular use of, is that certain

hierarchical relations over scales tend to remain reasonably stable when the viewing

conditions are varied. Thus, even if some features are lost during tracking (e.g. due

to occlusions, illumination variations, or spurious errors by the feature detector or

the feature matching algorithm), it is rather likely that a suÆcient number of image

features will remain to support the tracking of the other features. Thereby, the feature

tracker will have higher robustness2 with respect to occlusions, viewing variations and

spurious errors in the lower-level modules. As we shall see, the qualitative nature of

these feature relations will also make it possible to handle semi-rigid objects within

the same framework.

In this way, the approach we will propose is closely related to the notion of ob-

ject representation. Compared to the more traditional problem of object recognition,

however, the requirements are di�erent, since the primary goal is to maintain a stable

image representation over time, and we do not need to support indexing and recog-

nition functionalities into large databases. For these reasons, a qualitative image

representation can be suÆcient in many cases, and o�er a higher exibility by being

more generic than detailed object models.

Related works. The topic of this paper touches on both the subjects of feature

tracking and object representation. The literature on tracking is large and impossible

to review here. Hence, we focus on the most closely related works.

Image representations involving linking across scales have been presented by sev-

eral authors. (Crowley & Parker 1984, Crowley & Sanderson 1987) detected peaks

and ridges in a pyramid representation. In retrospect, a main reason why stability

problems were encountered is that the pyramids involved a rather coarse sampling in

2According to the terminology proposed by (Toyama & Hager 1999), the automatic scale selec-

tion mechanism is essential for the pre-failure robustness of the feature tracker, while the proposed

qualitative multi-scale feature hierarchy improves the post-failure robustness.
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the scale direction. (Koenderink 1984) de�ned links across scales using iso-intensity

paths in scale-space, and this idea was made operational for medical image segmen-

tation by (Lifshitz & Pizer 1990) and (Vincken et al. 1997). (Lindeberg 1993) con-

structed a scale-space primal sketch, in which a morphological support region was

associated with each extremum point and paths of critical points over scales were

computed delimited by bifurcations. (Olsen 1997) applied a similar approach to wa-

tershed minima in the gradient magnitude. (GriÆn et al. 1992) developed a closely

related approach based on maximum gradient paths, however, at a single scale. In the

scale-space primal sketch, scale selection was performed, by maximizing measures of

blob strength over scales, and signi�cance was measured by the volumes that image

structures occupy in scale-space, involving the stability over scales as a major com-

ponent. A generalization of this scale selection idea to more general classes of image

structures was presented in (Lindeberg 1994, Lindeberg 1998b, Lindeberg 1998a), by

detecting scale-space maxima, i.e. points in scale-space at which normalized di�eren-

tial measures of feature strength assume local maxima with respect to scale. (Pizer

et al. 1994) and his co-workers (Gauch & Pizer 1993) have proposed closely related

descriptors, focusing on multi-scale ridge representations for medical image analy-

sis. Psychophysical results by (Burbeck & Pizer 1995) support the belief that such

hierarchical multi-scale representations are relevant for object representation.

With respect to the problem of object recognition, (Shokoufandeh et al. 1998) de-

tect extrema in a wavelet transform in a way closely related to the detection of scale-

space maxima, and de�ne a graph structure from these image features. This graph

structure is then matched to corresponding descriptors for other objects, based on

topological and geometric similarity. Earlier graph-like object representations include

the classical model-based approach by (Lowe 1985), used in conjunction with percep-

tual grouping, as well as the distributed aspect hierarchy proposed by (Dickinson

et al. 1992). In relation to the large number of works on model based tracking, there

are similar aims between our approach and the following works: (Koller et al. 1993)

used car models to support the tracking of vehicles in long sequences with occlusions

and illumination variations. (Smith & Brady 1995) de�ned clusters of coherently

moving corner features as to support the tracking of cars in a qualitative manner.

(Black & Jepson 1998b) constructed a view-based object representation using an

eigenimage approach to compactly represent and support the tracking of an object

seen from a large number of di�erent views. The recently developed condensation

algorithm (Isard & Blake 1998, Black & Jepson 1998a) is of particular interest, by

explicitly constructing statistical distributions to capture relations between image

features. Concerning the speci�c application to qualitative hand tracking that will

be addressed in this paper, more detailed hand models have been presented by (Kuch

& Huang 1995, Heap & Hogg 1996, Yasumuro et al. 1999). Related graph-like rep-

resentations for hand tracking and face tracking have been presented by (Triesch &

von der Malsburg 1996, Mauerer & von der Malsburg 1996).

3 Image Features and Qualitative Feature Relations

We are interested in representing objects which can give rise to a rich variety of image

features of di�erent types and at di�erent scales. Generically, these image features
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can be (i) zero-dimensional (junctions), (ii) one-dimensional (edges and ridges), or

(iii) two-dimensional (blobs), and we assume that each image feature is associated

with a region in space as well as a range of scales.

3.1 Computation of Image Features

When computing a hierarchical view-based object representation, one may at �rst

desire to compute a detailed representation of the multi-scale image structure, as

done by the scale-space primal sketch or some of the closely related representations

reviewed in section 2. Since we are interested in processing temporal image data,

however, and the construction of such a representation from image data requires a

rather large amount of computations, we shall here follow a computationally more

eÆcient approach.

We focus on image features expressed in terms of scale-space maxima, i.e. points

in scale-space at which di�erential geometric entities assume local maxima with re-

spect to space and scale (Lindeberg 1998b). Formally, such points are de�ned by

(r (DnormL(x; s)) = 0) ^ (@s (DnormL(x; s)) = 0) (1)

where L(�; s) denotes the scale-space representation of the image f constructed by

convolution with a Gaussian kernel g(�; s) with scale parameter (variance) s andDnorm

is a di�erential invariant normalized by the replacement of all spatial derivatives @xi

by -normalized derivatives @�i = s=2@xi
:

Two examples of such di�erential descriptors, which we shall make particular use

of here, include the normalized Laplacian (with  = 1) for blob detection

r
2

normL = s (Lxx + Lyy) (2)

and the square di�erence between the eigenvalues Lpp and Lqq of the Hessian matrix

(with  = 3=4) for ridge detection

AL�norm = s2 jLpp � Lqqj
2 = s2 ((Lxx � Lyy)

2 + 4L2

xy) (3)

see (Lindeberg 1998a) for a more general description. A computationally very attrac-

tive property of this construction is that the scale-space maxima can be computed by

architecturally very simple and computationally highly eÆcient operations involving:

(i) scale-space smoothing, (ii) pointwise computation of di�erential invariants, and

(iii) detection of local maxima of scalar entities in scale-space.

Furthermore, to simplify the geometric analysis of image features, we shall reduce

the spatial representation of image descriptors to ellipses, by evaluating a second

moment matrix

� =

Z
�2R2

�
L2

x LxLy

LxLy L2

y

�
g(�; sint) d� (4)

at integration scale sint proportional to the detection scale of the scale-space maxi-

mum (equation (1)). Thereby, each image feature will we represented by a point (x; s)

in scale-space and a covariance matrix � describing the shape, graphically illustrated

by an ellipse. For one-dimensional features, the corresponding ellipses will be highly
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elongated, while for zero-dimensional and two-dimensional features, the ellipse de-

scriptors of the second moment matrices will be rather circular. Attributes derived

from the covariance matrix include its anisotropy derived from the ratio �max=�min

between its eigenvalues, and its orientation de�ned as the orientation of its main

eigenvector.

Figure 4 shows an example of such image descriptors computed from a grey-

level image, after ranking on a signi�cance measure de�ned as the magnitude of

the response of the di�erential operator at the scale-space maximum. A trivial but

nevertheless very useful e�ect of this ranking is that it substantially reduces the

number of image features for further processing, thus improving the computational

eÆciency. In a more detailed representation of the multi-scale deep structure of a

real-world image, it will often be the case that a large number of the image features

and their hierarchical relations correspond to image structures that will be regarded

as insigni�cant by later processing stages.

3.2 Qualitative Feature Relations

Between the abovementioned features, various types of relations can be de�ned in the

image plane. Here, we consider the following types of qualitative relations:

Spatial coincidence (inclusion): We say that a region A at position xA and scale

sA is in spatial coincidence relation to a region B at position xB and at a

(coarser) scale sB > sA if

(xA � xB)
T��1

B (xA � xB) 2 [D1;D2] (5)

where D1 and D2 are distance thresholds and �B is a covariance matrix asso-

ciated with region B. By using a Mahalanobis distance measure, we introduce

a directional preference which is highly useful for expressing spatial relations

between elongated image features. While the special case D1 = 0 corresponds

to an inclusion relation, there are also cases where one may want to explicitly

represent distant features, using D1 > 0

Stability of scale relations: For two image features at times tk and tk0, we assume

that the ratio between their scale values should be approximately the same. This

is motivated by the physical requirement of scale invariance under zooming

sA(tk)

sB(tk)
�

sA(tk0)

sB(tk0)
: (6)

To accept small variations due to changes in view direction and spurious vari-

ations from the scale selection mechanism of the feature tracker, we measure

relative distances in the scale direction and implement the \�" operation by

q � q0 () j log q
q0
j < log T , where T > 1 is a threshold in the scale direction.

Directional relation (bearing): For a feature A related to a one-dimensional fea-

ture B, the angle is measured between the main eigenvector of �B and the

vector xA � xB from the center xB of B to the center xA of A (see Figure 1) .
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Figure 1: The direction relation (bearing) between two features A and B is the angle �

between the main eigenvector of �B (illustrated by the ellipse) and the vector xA � xB .

Trivially, these relations are invariant to translations and rotations in the image plane.

The scale invariance of these relations follows from corresponding scale invariance

properties of image descriptors computed from scale-space maxima | if the size of

an image structure is scaled by a factor c in the image domain, then the corresponding

scale levels are transformed by a factor c2.

3.3 Qualitative Multi-Scale Feature Hierarchy

Let us now consider a speci�c example with images of a hand. From our knowledge

that a hand consists of �ve �ngers, we construct a model consisting of: (i) the palm,

(ii) the �ve �ngers, (iii) a �nger tip for each �nger, (see �gure 2).

Each �nger is in a spatial coincidence relation to the palm, as well as a directional

relation. Moreover, each �ngertip is in a spatial relationship to its �nger, and satis�es

a directional relation to this feature. In a similar manner, each �nger is in a scale

stability relation with respect to the palm, and each �ngertip is in a corresponding

scale stability relation relative to its �nger.

Such a representation will be referred to as a qualitative multi-scale feature hi-

erarchy . Figure 3 shows the relations this representation is built from, using UML

notation (Fowler & Scott 1997). An attractive property of this view-based object

representation is that it only focuses on qualitative object features. There is no

assumption of rigidity, only that the qualitative shape is preserved.

The idea behind this construction is of course that the palm and the �ngertips

should give rise to blob responses (equation (2)) and that the �ngers give rise to

ridge responses (equation (3)). Figure 4 shows an example of how this model can be

initialized and matched to image data with associated image descriptors.

To exclude responses from the background, we have here required that all image

features should correspond to bright blobs or bright ridges. Alternatively, one could

de�ne spatial inclusion relations with respect to other segmentation cues relative to

the background, e.g. chromaticity or depth.

Here, we have constructed the graph with feature relations manually, using qual-

itative knowledge about the shape of the object and its primitives. In a more general

setting, however, one can also consider the learning of stable feature relations in an

actual setting, based on a richer set of image features as well as a richer vocabulary of
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Figure 2: A qualitative multi-scale feature hierarchy constructed for a hand model.

top−hand:Relation handconstraint:Constraint

hand:Objfeature

hand−finger:Relation fingerconstraint:Constraint

finger[1]:Objfeature finger[2]:Objfeature

finger−tip[1]:Relation finger−tip[2]:Relation

tipconstraint:Constraint

tip[1]:Objfeature tip[2]:Objfeature

......

......

......

Figure 3: Instance diagram for the feature hierarchy of a hand (�gure 2).

20 strongest blobs and ridges Initialized hand model All hand features captured

Figure 4: Illustration of the initialization stage of the object tracker. Once the coarse-scale

feature is found (here the palm of the hand), the qualitative feature hierarchy guides the

top-down search for the remaining features of the representation. (The left image shows the

20 most signi�cant blob responses (in red) and ridge responses (in blue).)
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qualitative feature relations. Of particular interest may be to learn probability distri-

butions of the relations between image features, in a similar spirit as the condensation

algorithm (Isard & Blake 1998, Black & Jepson 1998a).

Moreover, the list of feature relations in section 3.2 should by no means be re-

garded as exhaustive. Additional feature relations can be introduced whenever mo-

tivated by their e�ectiveness in speci�c applications. For example, in several cases it

is natural to introduce a richer set of inter-feature relations between the primitives

that are the ancestors of a coarser scale image feature.

4 Feature Tracking with Hierarchical Support

One idea that we are going to make explicit use of in this paper is to let features

at di�erent scales support each other during feature tracking. If �ne-scale features

are lost, then the coarse scale features combined with the other �ne-scale features

should provide suÆcient information so as to generate hypotheses for recapturing the

lost feature. Similarly, if a coarse scale feature is lost, e.g. due to occlusion or a

too large three-dimensional rotation, then the �ne-scale features should support the

model based tracking. While this behaviour can be easily achieved with a three-

dimensional object model, we are here interested in generic feature trackers which

operate without detailed quantitative geometric information.

Figure 5 gives an overview of the composed object tracking scheme. The feature

tracking module underlying this scheme is described in (Bretzner & Lindeberg 1998a),

and consists of the evaluation of a multi-cue similarity measure involving patch corre-

lation, and stability of scale descriptors and signi�cance measures for image features

detected according to section 3.1.

Scheme for object tracking using qualitative feature hierarchies:

Initialization:

Find and match top-level feature using initial position and top-level parent-children con-

straints.

Tracking:

For each frame:

For each feature in the hierarchy (top-down):

Track image features (see separate description)

If a feature is lost (or not found)

If parent matched

Find feature using parent position and parent-feature relation constraints

else if child(ren) matched

Find feature using child(ren) position and feature-children relation con-

straints.

Parse feature hierarchy, verify relations and reject mismatches.

Figure 5: Overview of the scheme for object tracking with hierarchical support.

9



4.1 Sample Application I | The 3-D Hand Mouse

From the a set of trajectories of image features extracted from an object, we can

compute the motion of the object, assuming that a suÆcient number of image features

is available and that the object is kept rigid. One application that we are particularly

interested in is to use such motions as mediated by hand gestures for controlling other

computerized equipment (Lindeberg & Bretzner 1998). Examples of applications of

this idea include:

� interaction with visualization systems and virtual environments,

� control of mechanical systems, and

� immaterial remote control functionality for consumer electronics.

Related works in this direction have been presented by (Cipolla et al. 1993, Freeman

& Weissman 1995, Cipolla & Hollinghurst 1996, Maggioni & K�ammerer 1998).

The mathematical foundation underlying this \3-D hand mouse" was presented

in (Bretzner & Lindeberg 1998b), in the form of a general framework for computing

three-dimensional structure and motion from a set of sparse point and line features

in multiple aÆne views. (Here, the point features correspond to blob responses from

the �nger tips, while the line features capture the orientations of ridge descriptors

extracted from the �ngers.) Our previous experimental work, however, was done

with image sequences where an individual feature tracker with automatic scale se-

lection (Bretzner & Lindeberg 1998a) was suÆcient to obtain the extended feature

trajectories needed for structure and motion computations.

The qualitative feature hierarchy provides a useful tool for extending this func-

tionality, by making the system less sensitive to spurious errors when tracking image

features individually. First of all, �gure 6 demonstrates the ability of the qualitative

feature hierarchy to handle non-rigid motions. Since the relations between the im-

age features are of a qualitiative nature, it follows that these feature relations will

remain valid under moderate perturbations of positions of the image features. Then,

�gures 7{8 show two examples of how this view-based object representation supports

the recapturing of lost image features. In the �rst sequence, one �nger is �rst lost

due to occlusion and later recaptured. In the next sequence, the hand is turning and

almost all features are lost except the top level feature (the blob corresponding to

the palm). When the features are no longer occluded, the tracker captures them in a

coarse-to-�ne manner according to the scheme in �gure 5.

While the object representation underlying these computations is a view-based

representation, it should be remarked that the step is not far to a three-dimensional

object model. If the hand is kept rigid over a suÆciently large three-dimensional

rotation, we can use the motion information in the feature trajectories of the �ngers

and the �nger tips for computing the structure and the motion of the object (see

(Bretzner & Lindeberg 1998b) for algorithmic details). Figure 9 shows an illustration

of this 3-D hand mouse in operation. The left column shows four di�erent snapshots

from a sequence of a moving hand, while the right column shows corresponding motion

estimates visualized by subjecting a cube to the estimated three-dimensional rotation.

Figure 10 gives an overview of the components involved in our current implemen-

tation of this computer vision based interface for human-computer interaction. With

10



The behaviour of the qualitative feature hierarchy tracker under semi-rigid motion

Figure 6: Due to the qualitative nature of the feature relations, the proposed framework allows

objects to be tracked under semi-rigid motion.

Steady-state model One feature disappears Feature recaptured

Figure 7: The proposed qualitative representation makes it possible to maintain tracking even

if parts of the object are occluded. Later in the sequence, the occluded part (in this case

the �nger), can be captured again using the feature hierarchy. (Here, all image features are

illustrated by red, while the feature trajectories are green.)

Steady-state model Fine scale features occluded All features captured

Figure 8: Illustration of how the qualitative feature hierarchy makes it possible to maintain

object tracking under view variations. The images show how most �nger features are lost

due to occlusion when the hand turns, and how the qualitative feature hierarchy guides the

search to �nd these features again.
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Controlling motion Controlled motion

Figure 9: Illustration of the idea of a 3-D hand mouse. Here, 3-D orientation is measured

from the gestures of a human hand, and is used for controlling the visualization of a cube.
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regard to this application, the qualitative multi-scale feature hierarchy is a key tool

for obtaining the extended feature trajectories that are needed for the subsequent

structure and motion estimation.

Feature tracking with automatic scale selection Qualitative feature hierarchy

Motion estimation

Image sequence

Object tracking

+ scale information

+ line orientations

Point and line feature trajectories

3D rotation parameters

Visualisation, Robot control etc.

Figure 10: The components of the proposed computer vision based interface for human-

computer interaction.

4.2 Sample Application II | View-Based Face Model

Figure 11 shows an example of how a qualitative feature hierarchy can support the

tracking of blob features and ridge features extracted from images of a face. Again

a main purpose is to recapture lost features after occlusions. Some of the detected

facial features can normally be expected to change appearance over time due to e.g.

blinking or mouth movements. This may cause the tracker to lose those features,

but they would be recaptured as soon as the facial expression resembles the original

appearance.

Steady-state model Occlusion by rotation Features recaptured

Figure 11: Results of building a qualitative feature hierarchy for a face model consisting of

blob features and ridge features at multiple scales and applying this representation to the

tracking of facial features over time.
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5 Summary and Discussion

We have presented a view-based object representation, called the qualitative multi-

scale feature hierarchy, and shown how this representation can be used for improving

the performance of a feature tracker, by de�ning search regions in which lost features

can be detected again.

Besides making explicit use of the hierarchical relations that are induced by dif-

ferent features in a multi-scale representation, the philosophy behind this approach

is to build an internal representation that supports the processing of those image

descriptors we can expect to extract from image data. This knowledge is represented

in a qualitative manner, without need for constructing geometrically detailed object

models.

In relation to other graph-like object representations, the discriminative power of

the qualitative feature hierarchy may of course be lower than for geometrically more

accurate three-dimensional object models or more detailed view-based representations

involving quantitative information. Therefore, the qualitative feature hierarchies may

be less suitable for object recognition, but still enough for pre-segmentation of com-

plex scenes, or as a complement to �lling in missing information given partial in-

formation from other modules (here the individual feature trackers). Notably, the

application of this concept does not su�er from similar complexity problems as ap-

proaches involving explicit graph matching.

It should be pointed out that we do not claim that the proposed framework

should be regarded as excluding more traditional object representations, such as three-

dimensional object models or view-based representations. Rather di�erent types of

representations could be used in a complementary manner, exploiting their respective

advantages. To handle the tracking of complex objects having a large number of

features at the same scale level in the hierarchy, we can see several advantages in

extend the proposed feature hierarchy by also de�ning such inter-feature relations

at the same level. Such relations could be inspired by the works on labeled feature

graphs by (Triesch & von der Malsburg 1996).

Concerning the determination of the qualitative relations between the features

in the hierarchy, it would be interesting to explore a framework for learning the

relations from training examples. In such a framework and under the assumption

that our scheme for feature tracking can register features on the object that are

stable over time and thereby suitable for the proposed object representation, we could

consider tracking a large number of di�erent features detected at di�erent scales on

the moving object and build up the representation either over time or a posteriori.

The proposed representation is view-dependent and the result from such training

sequences might indicate if more than one representation would be necessary to cover

the view directions present in the sequences.

From the discussion it is evident that the proposed multi-scale feature hierarchy

gives rise to a multitude of open research issues and we strongly believe that the idea

should be explored further for tracking and recognition purposes.

Moreover, regarding our application to the 3-D hand mouse, it is worth point-

ing out that the qualitative feature hierarchy is used as a major tool in a system

for computing three-dimensional structure and motion, thus at the end deriving a
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quantitative three-dimensional object model from image data.

The main advantages of the proposed approach are that it is very simple to imple-

ment in practice, and that it allows us to handle semi-rigid objects, occlusions, as well

as variations in view direction and illumination conditions. Speci�cally, with respect

to the topic of scale-space theory, we have demonstrated how an integrated com-

puter vision application with non-trivial functionally can be constructed essentially

just from the following components: (i) basic scale-space operations (see section 3.1),

(ii) a straightforward graph representation, and (iii) a generic framework for multi-

view geometry (described elsewhere).
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