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Abstract

When observing a dynamic world, the size of image structures may vary
over time. This article emphasizes the need for including explicit mecha-
nisms for automatic scale selection in feature tracking algorithms in order
to: (i) adapt the local scale of processing to the local image structure, and
(ii) adapt to the size variations that may occur over time.

The problems of corner detection and blob detection are treated in de-
tail, and a combined framework for feature tracking is presented in which
the image features at every time moment are detected at locally deter-
mined and automatically selected scales. A useful property of the scale
selection method is that the scale levels selected in the feature detection
step re
ect the spatial extent of the image structures. Thereby, the in-
tegrated tracking algorithm has the ability to adapt to spatial as well as
temporal size variations, and can in this way overcome some of the inherent
limitations of exposing �xed-scale tracking methods to image sequences in
which the size variations are large.

In the composed tracking procedure, the scale information is used for
two additional major purposes: (i) for de�ning local regions of interest for
searching for matching candidates as well as setting the window size for
correlation when evaluating matching candidates, and (ii) stability over
time of the scale and signi�cance descriptors produced by the scale selec-
tion procedure are used for formulating a multi-cue similarity measure for
matching.

Experiments on real-world sequences are presented showing the perfor-
mance of the algorithm when applied to (individual) tracking of corners
and blobs. Speci�cally, comparisons with �xed-scale tracking methods are
included as well as illustrations of the increase in performance obtained
by using multiple cues in the feature matching step.

Keywords: feature, tracking, motion, blob, corner, scale, scale-space, scale
selection, similarity, computer vision
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1 Introduction

Being able to track image structures over time is a useful and sometimes nec-
essary capability for vision systems intended to interact with a dynamic world.
There are several computer vision algorithms in which tracking arises as an
important subproblem. Some situations are:

� Fixation means maintaining a relationship between a physical point or
region in the world and some (usually central) region in a camera system.
To maintain such a relationship over time, we have to relate some char-
acteristic properties of the physical point to entities that are measurable
from the available image data.

� Object recognition in a dynamically varying environment gives rise to the
same type of problem, including the case when the visual agent is active
and moves relative to the scene. Examples of the latter are navigation
as well as active scene exploration. When objects move relative to the
observer, feature tracking is a useful processing step for preserving the
identity of image features over time.

� The identity problem is also essential in algorithms for motion segmen-
tation and structure from motion. To compute structural properties or
invariant descriptors which depend on the temporal variation of a geomet-
ric con�guration, some mechanism is needed for matching corresponding
image features over time.

There is an extensive literature on tracking methods operating without speci�c
a priori knowledge about the world, such as object models or highly restricted
domains. Without any aim of giving an extensive survey, the work in this di-
rection can be classi�ed into three main categories:

Correlation based tracking The presumably earliest approach to image match-
ing is the correlation technique based on the similarity between corresponding
grey-level patches over time. Given a window of some size, which covers an im-
age detail at a certain time moment, the corresponding detail at the next time
moment is de�ned as the position of the window (of the same size) that gives
the highest correlation score when compared to the previous patch.

Optical 
ow based tracking The de�nition of an optic 
ow �eld gives rise to
a motion �eld in the image domain, which can be interpreted as the result of
tracking all image points simultaneously. With respect to the tracking problem,
the motion of coherently moving (and possibly segmented) regions computed
from optic 
ow algorithms can be used for guiding tracking procedures, as
shown by [Thompson et al., 1993] and [Meyer and Bouthemy, 1994].

Feature tracking Over the years a large number of approaches have been devel-
oped for tracking image features such as edges and corners over time. Essentially,
what characterizes a feature tracking method is that image features are �rst ex-
tracted in a bottom-up processing step and then these features are used as the
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main primitives for the tracking and matching procedures. Concerning corner
tracking, [Shapiro et al., 1992b] detect and track corners individually in an al-
gorithm originally aimed at applications such as videoconferencing. [Smith and
Brady, 1995] track a large set of corners and use the results in a 
ow-based seg-
mentation algorithm. [Zheng and Chellappa, 1995] have studied feature tracking
when compensating for camera motion, and [Gee and Cipolla, 1995] track lo-
cally darkest points with applications to pose estimation. In contour tracking,
[Blake et al., 1993, Curwen et al., 1991] use snakes to track moving, deforming
image features. [Cipolla and Blake, 1992] apply such an approach to estimate
time-to-contact, and [Koller et al., 1994] track combined motion and grey-level
boundaries in traÆc surveillance. An overview of di�erent approaches to edge
tracking can be found in the recent book by [Faugeras, 1993].

The subject of this article is to consider the domain of feature tracking and
to complement previous works on this subject by addressing the problem of
scale and scale selection in the spatial domain and by introducing new simi-
larity measures in the matching step. In most previous works, the analysis is
performed at a single predetermined scale. Here, we will emphasize and show
by examples why it is useful to include an explicit mechanism for automatic
scale selection to be able to handle situations in which the size variations are
large. Besides avoiding explicit setting of scale levels for feature detection, and
thus overcoming some of the fundamental limitations of processing image se-
quences at a single scale, it will be demonstrated how scale levels selected by
a scale selection procedure can constitute a useful source of information when
de�ning a similarity measure over time, as well as for adapting the window size
for correlation to the local image structure.

Moreover, since the resulting matching algorithm we will arrive at is based
on a similarity measure de�ned as the combination of di�erent discriminative
properties, and with small modi�cations can be applied to tracking of both
corners and blobs, we will emphasize this multi-cue aspect as an important
component for increasing the robustness of feature tracking algorithms.

The presentation is organized as follows: Section 2 illustrates the need for
adaptive scale selection in feature tracking. It gives a hands-on demonstration
of the improvement in performance that can be obtained by including a scale
selection mechanism when tracking features in image sequences in which the size
variations over time are large. Section 3 describes the feature detection step and
reviews the basic components in a general principle for scale selection. Sections
4 and 5 explain how the scale information obtained from these processing
modules can be used in the prediction step and in the evaluation of matching
candidates. Section 6 summarizes how these components can be combined with
a classical feature tracking scheme with prediction followed by detection and
matching. Section 7 shows the performance of the algorithm when applied to
real-world data. Feature tracking using adaptive scales is compared to tracking
at one, �xed scale. Comparisons are also made between single-cue and multi-
cue similarity measures. Finally, we conclude in section 8 by summarizing the
main properties of the method and by outlining natural extensions.
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2 The need for automatic scale selection in feature tracking

To extract features from an image, we have to apply some operators to the
data. The type of features that can be extracted are largely determined by
the spatial extent of these operators. When dealing with real-world data about
which no or very little information is available, we can hardly expect to know
in advance what scales are relevant for processing a given image. Therefore, a
reasonable approach is to consider a large number of scales simultaneously, and
this is one of the major motivations for using a multi-scale representation when
automatically processing measurement data such as images.

Despite this now rather well-spread insight, most work on feature track-
ing still performs the analysis at one scale only. For correlation based tracking
methods, this corresponds to using a �xed-size window over time, and concern-
ing feature tracking to detecting image features at the same scale at all time
moments. Such an approach will, however, su�er from inherent limitations when
applied to real-life image sequences in which the size variations are large. This
basic property constitutes one illustration of why a mechanism for automatic
scale selection is an essential complement to traditional multi-scale processing
in general, and to feature detection and feature tracking in particular.

In an image sequence, the size of image structures may change over time
due to expansions or contractions. A typical example of the former is when the
observer approaches an object as shown in �gure 1. The left column in this
�gure shows a few snapshots from a tracker which follows a corner on the object
over time using a standard feature tracking technique with a �xed scale for cor-
ner detection and a �xed window size for hypothesis evaluation by correlation.
After a number of frames, the algorithm fails to detect the right feature and
the corner is lost. The reason why this occurs, is simply the fact that the corner
no longer exists at the predetermined scale. As a comparison, the right column
shows the result of incorporating a mechanism for adaptation of the scale levels
to the local image structure (details will be given in later sections). As can be
seen, the corner is correctly tracked over the whole sequence. (The same initial
scale was used in both experiments.)

Another motivation to this work originates from the fact that all feature de-
tectors su�er from localization errors due to e.g noise and motion blur. When
detecting rigid body motion or recovering 3D structure from feature point cor-
respondences in an image sequence, it is important that the motion in the scene
is large compared to the localization errors of the feature detector. If the inter-
frame motion is small, we therefore have to track features over a large number
of frames to obtain accurate results. This requirement constitutes a key motiva-
tion for including a scale selection mechanism in the feature tracker, to obtain
longer trajectories of corresponding features as input to algorithms for motion
estimation and recovery of 3D structure.

Concerning the common use of �xed scale levels in tracking methods, it is
worth pointing out that in situations where the image features are distinct (e.g.
sharp corners on a smooth background), traditional methods using �xed scales
might be suÆcient. The main advantages of having a mechanism for automatic
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scale selection in such situations are that: (i) the actual tuning of the scale
parameter can be avoided, (ii) as will be illustrated later, stability over time
of the selected scale levels turns out to be a useful discriminative constraint to
include in a matching criterion.

3 Feature detection with automatic scale selection

A natural framework to use when extracting features from image data is to
de�ne the image features from multi-scale di�erential invariants expressed in
terms of Gaussian derivative operators [Koenderink and van Doorn, 1992, Flo-
rack et al., 1992], or more speci�cally, as maxima or zero-crossings of such
entities [Lindeberg, 1994c]. In this way, image features such as corners, blobs,
edges and ridges can be computed at any level of scale.

A basic problem that arises for any such feature detector concerns how to
determine at what scales the image features should be extracted, or if the feature
detection is performed at several scales simultaneously, what image features
should be regarded as signi�cant. A framework addressing this problem has
been developed in [Lindeberg, 1993, Lindeberg, 1994c]. In summary, one of the
main results from this work is a general principle for scale selection, which states
that scale levels for feature detection can be selected from the scales at which
normalized di�erential invariants assume maxima over scales. In this section,
we shall give a brief review of how this methodology applies to the detection
of features such as blobs and corners. The image features so obtained, with
their associated attributes resulting from the scale selection method, will then
be used as basic primitives for the tracking procedure.

3.1 Normalized derivatives

The scale-space representation [Witkin, 1983, Koenderink, 1984] of a signal f
is de�ned as the result of convolving f

L(:; t) = g(:; t) � f (1)

with Gaussian kernels having di�erent values of the scale parameter t

g(x; t) =
1

2�t
e�(x

2+y2)=(2t) (2)

In this representation, 
-normalized derivatives [Lindeberg, 1996a] are de�ned
by

@� = t
=2 @x (3)

where t is the variance of the Gaussian kernel. From this construction, a normal-
ized di�erential invariant is then obtained by replacing all spatial derivatives
by corresponding normalized derivatives according to (3).



Feature Tracking with Automatic Selection of Spatial Scales 5

3.2 Corner detection with automatic scale selection

A common way to de�ne a corner in a grey-level image in di�erential geometric
terms is as a point at which both the curvature of a level curve

� =
� �LyyL

2
x + LxxL

2
y � 2LxLyLxy

�
�
L2
x + L2

y

�3=2 (4)

and the gradient magnitude

jrLj =
q
L2
x + L2

y (5)

are high [Kitchen and Rosenfeld, 1982, Koenderink and Richards, 1988, Deriche
and Giraudon, 1990, Blom, 1992]. If we consider the product of � and the
gradient magnitude raised to some power, and choose the power equal to three,
we obtain the essentially aÆne invariant expression

~� = LyyL
2
x + LxxL

2
y � 2LxLyLxy (6)

with its corresponding 
-normalized di�erential invariant

~�
�norm = t2
~� (7)

In [Lindeberg, 1994a] it is shown how a junction detector with automatic scale
selection can be formulated in terms of the detection of scale-space maxima of
~�2
�norm, i.e., by detecting points in scale-space where ~�2
�norm assumes max-
ima with respect to both scale and space. When detecting image features at
coarse scales it turns out that the localization can be poor. Therefore, this de-
tection step is complemented by a second localization stage, in which a modi�ed
F�orstner operator [F�orstner and G�ulch, 1987], is used for iteratively computing
new localization estimates using scale information from the initial detection
step (see the references for details).

A useful property of this corner detection method is that it leads to selection
of coarser scales for corners having large spatial extent. Figure 2 illustrates this
property by showing the result of applying the corner detection method to
two di�erent images, and graphically illustrating each detected and localized
corner by a circle with the radius proportional to the detection scale. Notably,
the support regions of these blobs serve as natural regions of interest around
the detected corners. As we shall demonstrate later, such regions of interest
and context information turn out to be highly useful for a feature tracking
procedure.

3.3 Blob detection with automatic scale selection

As shown in the abovementioned references, a straightforward method for blob
detection can be formulated in an analogous manner by detecting scale-space
maxima of the square of the normalized Laplacian

r2
normL = t (Lxx + Lyy) (8)
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This operator gives a strong response for blobs that are brighter or darker than
their background, and in analogy with the corner detection method, the selected
scale levels provide information about the characteristic size of the blob.

Figure 3 shows the result of applying this blob detection method to the same
images as used in �gure 2. As can be seen, a representative set of blob features
at di�erent scales is extracted. Moreover, it can be noted how well the blob
circles re
ect the size variations, in particular, considering how simple opera-
tions the blob detection algorithm is based on (Gaussian smoothing, derivative
computation, and detection of scale-space maxima).

4 Tracking and prediction in a multi-scale context

When tracking features over time, both the position of the feature and the
appearance of its surrounding grey-level pattern can be expected to change.
To relate features over time, we shall throughout this work make use of the
common assumption about small motions between successive frames.

There are several ways to predict the position of a feature in the next frame
based on its positions in previous frames. Whereas the Kalman �ltering method-
ology has been commonly used in the computer vision literature, this approach
su�ers from a fundamental limitation if the motion direction suddenly changes.
If a feature moving in a certain direction has been tracked over a long period
of time, then the built-in temporal smoothing of the feature trajectory in the
Kalman �lter, implies that the predictions will continue to be in essentially the
same direction, although the actual direction of the motion changes. If the co-
variance matrices in the Kalman �lter have been adapted to small oscillations
around the previously smooth trajectory, it will hence be likely that the feature
is lost at the discontinuity.1

For this reason, we shall make use of simpler �rst-order prediction, which
uses the motion between the previous two successive frames as a prediction to
the next frame.2

Within a neighbourhood of each predicted feature position, we detect new
features using the corner (or blob) detection procedure with automatic scale
selection. The support regions associated with the features serve as natural
regions of interest when searching for new corresponding features in the next
frame. In this way, we can avoid the problem of setting a global threshold
on the distance between matching candidates. There is, of course, a certain
scaling factor between the detection scale and the size of the support region.
The important property of this method, however, is that it will automatically
select smaller regions of interest for small-size image structures, and larger
search regions for larger size structures. Here, we shall make use of this scale
information for three main purposes:

1As will be shown in the experiments in section 7, the resulting feature trajectories may be

quite irregular. Enforced temporal smoothing of the image positions of the features, leading

to smoother trajectories, would not be appropriate for such data.
2Both constant acceleration and constant velocity models have been used, but the latter

has given better performance in most cases.
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� Setting the search region for possible matching candidates.

� Setting the window size for correlation matching.

� Using the stability of the detection scale as a matching condition.

We set the size of the search region to the spatial extent of the previous image
feature, multiplied by a safety factor. Within this window, a certain number of
candidate matches are selected. Then, an evaluation of these matching candi-
dates is made based on a combined similarity measure to be de�ned in the next
section.

5 Matching on multi-cue similarity

Based on the assumption of small inter-frame image motions, we use a multi-
ple cue approach to the feature matching problem. Instead of evaluating the
matching candidates using a correlation measure on a local grey-level patch
only, as done in most feature tracking algorithms, we combine the correlation
measure with signi�cance stability, scale stability and proximity measures as
de�ned below.

Patch similarity. This measure is a normalized Gaussian-weighted intensity
cross-correlation between two image patches. Here, we compute this measure
over a square centered at the feature and with its size set from the detection
scale. The measure is derived from the cross-correlation of the image patches,
see [Shapiro et al., 1992a], computed using a Gaussian weight function centered
at the feature. The motivation for using a Gaussian weight function is that
image structures near the feature center should be regarded as more signi�cant
than peripheral structures. Given two brightness functions IA and IB, and two
image regions DA � R and DB � R of the same size jDj = jDAj = jDB j
centered at pA and pB respectively, the weighted cross-correlation between the
patches is de�ned as:

C(A;B) =
1

jDj
X
x2DA

e�(x�pA)
2

IA(x) IB(x� pA + pB)�

1

jDj2
X

xA2DA

e�(x�pA)
2

IA(xA)
X

xB2DB

e�(x�pB)
2

IB(xB) (9)

and the normalized weighted cross-correlation is

Spatch(A;B) =
C(A;B)p

C(A;A)C(B;B)
(10)

where

C(A;A) =
1

jDj
X
x2DA

(e�(x�pA)
2

IA(x))
2 � 1

jDj2 (
X
x2DA

e�(x�pA)
2

IA(x))
2

(11)

and C(B;B) is de�ned analogously. As is well-known, this similarity measure
is invariant to superimposed linear illumination gradients. Hence, �rst-order
e�ects of scene lightning do not a�ect this measure, and the measure only
accounts for changes in the structure of the patches.
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Signi�cance stability. A straightforward signi�cance measure of a feature de-
tected according to the method described in section 3 is the normalized response
at the local scale-space maximum. For corners, this measure is the normalized
level curve curvature according to (7) and for blobs it is the normalized Lapla-
cian according to (8). To compare signi�cance values over time, we measure
similarity by relative di�erences instead of absolute, and de�ne this measure as

Ssign = j log RB

RA
j (12)

where RA and RB are the signi�cance measures of the corresponding features
A and B.

Scale stability. Since the features are detected at di�erent scales, the ratio
between the detection scales of two features constitutes a measure of stability
over scales. To measure relative scale variations, we use the absolute value of
the logarithm of this ratio, de�ned as

Sscale = j log tB
tA
j (13)

where tA and tB are the detection scales of A and B.

Proximity We measure how well the position xA of feature A corresponds to
the position xpred predicted from feature B

Spos =
kxA � xpredkp

tB
(14)

where tB is the detection scale feature B.

Combined similarity measure. In summary, the similarity measure we make
use of a weighted sum of (10), (12) and (13),

Scomb = cpatchSpatch + csignSsign + cscaleSscale + cposSpos (15)

where cpatch, csing, cscale and cpos are tuning parameters to be determined.

6 Combined tracking algorithm

By combining the components described in the previous sections, we obtain a
feature tracking scheme based on a traditional predict-detect-update loop. In
addition, the following processing steps are added:

� Quality measure. Each feature is assigned a quality measure indicating
how stable it is over time.

� Bidirectional matching. To provide additional information to later pro-
cessing stages about the reliability of the matches, the matching can be
done bidirectionally. Given a feature F1 from the feature set, we �rst com-
pute its winning matching candidate F2 in the current image. If then F1
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is the winning candidate of F2 in the backward matching direction, the
match between F1 and F2 is registered as safe. This processing step is
useful for signalling possible matching errors.

During the tracking procedure each feature is associated with the following
attributes:

{ its detection scale tdet,

{ its estimated size D = ksize �
p
tdet bounded from below to Dmin,

{ its position,

{ its quality value.

An overview of the tracking algorithm is given in �gure 4. At a more detailed
level, each individual module operates as follows:

Prediction The prediction is performed as described in section 4. For each
feature in the feature set, a linear prediction of the position in the current
frame is computed based on the positions of the corresponding feature in the
two previous frames. The size of the search window is computed as kw1 � D
(with the size D bounded from below). When a trajectory is initiated, there is
no feature history to base the prediction on, so we use a larger search window of
size kw2 �D (kw2 > kw1) and use the original feature position as the predicted
position.

Detection In each frame, image features are detected as described in section 3.
The window obtained from the prediction step is searched for the same kind of
features over a locally adapted range of scales [tmin; tmax], where tmax = krange�
tdet and tmin = tdet=krange. The number n of detected candidates depends on
which feature extraction method we use in the detection step.

Matching The matching is based on the similarity measures described in sec-
tion 5. The original feature is matched to the candidates obtained from the
detection step and the winner is the feature having the highest combined simi-
larity value above a �xed threshold Tcomb and a patch correlation value above a
threshold Tpatch. These thresholds are necessary to suppress false matches when
features disappear due to e.g occlusion.

If a feature is matched, the quality value is increased by dqi and its position,
its scale descriptor, its signi�cance value and its grey-level patch are updated.

If no match is found, the feature is considered unmatched, its quality value
is decreased by dqd and its position is set to the predicted position.

Finally for each frame, the feature set is parsed to detect feature merges and
to remove features having quality values below a threshold Tq. When two fea-
tures merge, their trajectories are terminated and a new trajectory is initiated.
In this way, we obtain more reliable feature trajectories for further processing.
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7 Experimental results

7.1 Corner tracking

Let us �rst demonstrate the performance of the algorithm when applied to an
image sequence consisting of 60 frames. In this sequence, the camera moves in
a fairly complex way relative to a static scene. The objects of interest on which
the features (here corners) are detected are a telephone and a package on a
table. From the junctions detected in the initial frame, a subset of 14 features
were selected manually as shown in �gure 5.

Figure 6 shows the situation after 30, 50 and 60 frames. In the illustrations,
black segments on the trajectories indicate matched positions, while white seg-
ments show unmatched (predicted) positions. The matching is based on the
combined similarity measure incorporating patch correlation, scale stability,
signi�cance stability and proximity. The detection scales of the features are il-
lustrated by the size of the circles in the images, and we see how all corners
are detected at �ne scales in the initial frame. As time evolves, the detection
scales adapt to the size changes of the image structures; tracked sharp corners
are still detected at �ne scales while blunt corners are detected at coarser scales
when the camera approaches the scene.

Figure 7 shows the result of an attempt to track the same corners at �xed
scales, using the automatically determined detection scales from the initial im-
age. As can be seen, the sharpest corners are correctly tracked but the blunt
corners are inevitably lost. This e�ect is similar to the initial illustration in
section 2.

Figure 8 shows another example for a camera tracking a toy train on a
table. In the initial frame, 29 corners were selected manually; 25 on the train
and 4 on an object in the background. Some of these corners are enumerated
and will be referred to when discussing the performance below.

Corner no Patch similarity only Combined similarity measure

1 lost in frame 29 lost in frame 29

2 mismatched in 18 mismatched in 18

3 mismatched in 16 mismatched in 16

4 lost in 83 |

5 mismatched in 63 |

6 lost in 81 lost in 75

7 lost in 33 |

8 lost in 46 lost in 46

Table 1: Table showing when eight of the enumerated corners in the train sequence

are lost. Note that out of the corners which are lost when matching on patch similarity

only, three corners are tracked during the whole sequence when using the combined

similarity measure.

Figure 9 shows the situation after 60, 100 and 140 frames, using the com-
bined similarity measure in the matching step. The white parts of the tracks
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show when the algorithm failed to match the corners (stressing the importance
of keeping unmatched features over a certain number of frames). Noisy image
data and motion blur will increase the number of matching failures. Corners
no 2, 3, 6 and 8 are lost due to moving structures in the background causing
accidental views. In the last frames of the sequence, corner no 9 has poor lo-
calization, since the corner edges are aligned causing the corner to disappear.
The importance of using the combined similarity measure in the matching step
is illustrated in the train sequence in �gure 10, showing the result of matching
on patch correlation only. We see that corners no 4, 5, and 7, which were all
tracked using the combined similarity measure, now are lost. Table 1 shows,
for both experiments, when the enumerated corners in the train sequence are
lost.
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7.2 Blob tracking

Let us now apply the same framework for blob tracking. In the train sequence,
we manually selected 11 blobs on the train and 2 blobs in the background in
the initial frame shown in �gure 11. Figure 12 shows the situation after 30,
90 and 150 frames. The size of the circles in the �gures correspond to the
detection scales of the blobs. Note how the detection scale adapts to the local
image structure when the blobs undergo expansion followed by contraction. All
visible blobs except one are tracked during the whole sequence.

Referring to the need for automatic scale selection in feature tracking, as
advocated in section 2, it is illustrative to show the results of attempting blob
tracking with feature detection at a �xed scale. The scale level for detecting
each blob was automatically selected in the �rst frame and was then kept �xed
throughout the sequence. Figure 13 shows the result after 30 and 150 frames.
Clearly, the tracker has severe problems due to the expansion and contraction
in the sequence.

As a further illustration of the capability of the algorithm to track blobs
under large size changes we applied it to a sequence of 87 images where a
person, dressed in a spotted shirt, approaches the camera. In a rectangular area
in the initial frame, the 20 most signi�cant blobs were automatically detected,
as shown in �gure 14. Figure 15 shows the results after 25, 50 and 87 frames
when matching on the combined similarity measure. All blobs except one are
correctly tracked over the entire sequence.

Figure 16 shows the situation after 25 frames when matching on patch
similarity only. Compared to �gure 15, three more blobs are now lost, and one
blob is mismatched. In scenes like this one, with repetitive, similar structures,
the rate of mismatches is considerably higher if we match on patch correlation
only instead of using the combined similarity measure.

When trying to track the blobs at a �xed scale, as can be seen in �gure 17,
most of the blobs are lost already after 25 frames. The last correctly tracked
blob is lost after about 50 frames.

In summary, these experiments show that similar qualitative properties hold
for blob tracking and for junction tracking: (i) By including the signi�cance val-
ues and the selected scale levels in the matching criterion, we obtain a better
performance than when matching on grey-level correlation only. (ii) The per-
formance of tracking at adaptively determined scale levels is superior compared
to similar tracking at a �xed scale.
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Let us �nally illustrate how feature tracking with automatic scale selection
over a large number of frames is likely to give us trajectories which correspond
to reliable and stable physical scene points or regions of interest on objects.
By explicitly registering the features that are stable over time, we are able
to suppress spurious feature responses due to noise, temporary occlusions etc.
Figure 18 shows the initial frame of a sequence in which the 10 most signi�cant
blobs have been tracked in a region around the face of the subject. The subject
�rst approaches the camera and then moves back to the initial position. Figure
19 shows the situation after 20, 45 and 90 frames. We can see that after a while
only four features remain in the feature set and these are the stable features
corresponding to the nostrils and the eyes. This ability to register stable image
structures over time is clearly a desirable quality in many computer vision
applications. Notably, for general scenes with large expansions or contractions,
a scale selection mechanism is essential to allow for such registrations.
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8 Summary and Discussion

We have presented a framework for feature tracking in which a mechanism for
automatic scale selection has been built into the feature detection stage and
the additional attributes of the image features obtained from the scale selection
module are used for guiding the other processing steps in the tracking procedure.

We have argued that such a mechanism is essential for any feature tracking
procedure intended to operate in a complex environment, in order to adapt the
scale of processing to the size variations that may occur in the image data as
well as over time. If we attempt to track features by processing the image data
at one single scale only, we can hardly expect to be able to follow the features
over large size variations. This property is a basic consequence of the inherent
multi-scale nature of image structures, which means that a given object may
appear in di�erent ways depending on the scale of observation.

Speci�cally, based on a previously developed feature detection framework
with automatic scale selection, we have presented a scheme for tracking corners
and blobs over time in which:

� the image features at any time moment are detected using a feature de-
tection method with automatic scale selection, and

� this information is used for

{ guiding the detection and selection of new feature candidates,

{ providing context information for the matching procedure,

{ formulating a similarity measure for matching features over time.

Besides avoiding explicit selection of scale levels for feature detection, the fea-
ture detection procedure with automatic scale selection allows us to track image
features over large size variations. As demonstrated in the introductory exam-
ple in section 2, we can in this way obtain a substantial improvement in the
performance relative to a �xed-scale feature tracker.

Since the scale levels obtained from the scale selection procedure re
ect the
spatial extent of the image structures, we can also use this context information
for avoiding explicit settings of distance thresholds and prede�ned window sizes
for matching. Moreover, by including the scale and signi�cance information
associated with the image features from the scale selection procedure into a
multi-cue similarity measure, we showed how we in this way can improve the
reliability of the low-level matching procedure.

Of course, there are inherent limitations in tracking each feature individually
as done in this work, and as can be seen from the examples, there are a number
of situations where the tracking algorithm fails. Typically, this occurs because
of rapid changes in the local grey-level pattern around the corner, corresponding
to violations of the assumption about small inter-frame motions.

A notable conclusion that can be made in this context, is that despite these
limitations, we have shown by examples that the resulting tracking procedure
is able to track most of the visible features that can be followed over time
in the sequences presented in this article. By this we argue that the type of
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framework presented here provides an important step towards overcoming some
of the limitations in previous feature tracking algorithms.

8.1 Spatial consistency and statistical evaluation.

In the scheme presented so far, each feature is tracked individually , without any
explicit notion of coherently moving clusters. It is obvious that the performance
of a tracking method can be improved if the latter notion can be introduced, and
the overall motion of the clusters can be used for generating better predictions,
as well as more re�ned evaluation criteria of matching candidates. To investigate
if the motions of the tracked features possibly correspond to the same rigid
body motion, we might compute descriptors such as aÆne 3-D coordinates.
Interesting work in this direction have been presented by [Reid and Murray,
1993, Wiles and Brady, 1995, Shapiro, 1995].

It is also natural to include a statistical evaluation of the reliability of
matches as well as their possible agreement with di�erent clusters, as done in
[Shapiro, 1995]. Whereas such an approach has not been explored in this work,
this should not be interpreted as implying that the scale selection method ex-
cludes the usefulness of a statistical evaluation. The main intention behind this
work has been to explore how far it is possible to reach by using a bottom-up
construction of feature trajectories and by including a mechanism for automatic
scale selection in the feature detection step. Then, the intention is that these
two approaches should be applied in a complementary manner, where the scale
selection method serves as a pre-conditioner for generating more reliable hy-
potheses with more reliable input data. The scale selection method can also
provide context information over what domains statistical evaluations should
be made.

8.2 Multi-cue tracking

A tracking method based on a single visual cue, like those reviewed in section
1 may have a rather good performance under certain conditions but may fail
in more complex scenes. In this context, a multi-cue approach to the tracking
problem is natural, i.e a system in which several types of algorithms operate
simultaneously and the algorithm most suitable to a given situation dominates.
This means that the vision system must have the ability to evaluate the re-
liability of the various tracking methods and to switch between them in an
appropriate way.

Initial work in this direction, combining disparity cues with optical 
ow
based object segmentation, has been performed by [Uhlin et al., 1995]. The ap-
proach developed here lends itself naturally to integration with such techniques,
in which such cues can be used for evaluating candidate feature clusters, and
the feature tracking module in turn can be used as a more re�ned processing
mechanism for maintaining object hypotheses over time. Of course, this leads to
basic problems of feature selection. One possible approach for addressing such
problems has been presented by [Shi and Tomasi, 1994].
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8.3 Temporal consistency

As a �nal remark it is worth pointing out that in this work, the image features
in each frame have been extracted independently from each other and without
any other explicit use of temporal consistency than the heuristic condition that
a feature hypothesis is allowed to survive over a few frames. To make more
explicit use of temporal consistency, it is natural to incorporate the notion of
a temporal scale-space representation [Lindeberg and Fagerstr�om, 1996] and
to include scale selection over the temporal scale domain as well [Lindeberg,
1996b].

In this context, it is also natural to combine the feature tracking approach
with a simultaneous calculation of optical 
ow estimates and to integrate these
two approaches so as to make use of their relative advantages. These subjects,
including the integration of multiple tracking techniques into a multi-cue frame-
work, constitute major goals of our continued research.
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A Algorithmic details

This appendix gives a detailed listing of the parameters that in
uence the algorithm
as well as the parameter settings that have been used for generating the experiments.

A.1 Prediction

The parameters determining the size of the search window (see section 6) were

ksize = 5

kw1 = 1:5

kw2 = 2 � kw1

Dmin = 16

A.2 Feature detection

When detecting features with automatic scale selection, the following scale ranges were
used in the initial frame:

Junction detection Blob detection

tmin = 4:0 tmin = 4:0
tmax = 256:0 tmax = 512:0

and the parameter 
 in the normalized derivative concept (see section 3) was set to:

Junction detection Blob detection


 = 0:875 
 = 1

When searching for new image features, the search for matching candidates to a feature
detected at scale tdet was performed in the interval [tdet=k1; tdetk1], where krange = 3.

In all experiments, the sampling density in the scale direction was set to correspond
to a minimum of 5 scale levels per octave. In all other aspects, the feature detection
algorithms followed the default implementation of junction and blob detection with
automatic scale selection described in [Lindeberg, 1994b]. The maximum number of
matching candidates evaluated for each feature was:

Junction detection Blob detection

n = 8 n = 20

A.3 Matching

The following thresholds were used in the matching step

Junction detection Blob detection

Tpatch = 0:75 Tpatch = 0:6
Tcomb = 0:65 Tcomb = 0:5

and the parameters for controlling the quality measure over time (see section 6)

dqi = 0:2

dqd = 0:1

Tq = 0
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Similarity measures: Relative weights In the experiments presented here, the fol-
lowing relative weights (see section 5) were used in the combined signi�cance measure
(15):

Junction detection Blob detection

cpatch = 1:0 cpatch = 1:0
csign = �0:08 csign = �0:25
cscale = �0:08 cscale = �0:08
cpos = �0:1 cpos = �0:1

To give a qualitative motivation for using these orders of magnitude for the relative
weights, let us �rst estimate the ranges in which these descriptors will vary:

� For the cross-correlation measure, it trivially holds that jSpatchj < 1. By the
thresholding operation on this value, jTpatchj = 0:7, the variation of this entity
is con�ned to the interval jSpatchj 2 [0:7; 1:0]. In practice, the relative variations
are usually in the interval jSpatchj 2 [0:8; 1:0].

� Concerning the signi�cance measure, the signi�cance values of corners computed
from an image with grey-level values in the range [0; 255] typically vary in the
interval logR < 25. Empirically, the relative variations are usually of the order
of � logR < 3. For blob features, the corresponding values are logR < 8 and
� logR < 1.

� Concerning the stability of the scale values, the restricted search range given by
krange, implies that the relative variation of this descriptor will always be less
than � log t � 1.

� For the proximity measure the maximum value is
p
2 � 0:5 � krange � kw1 � 5.

With smooth scene motions the value is normally considerably smaller.

Motivated by the fact that the relative variation in Spatch is about a factor of ten
smaller than the other entities, the relative weights of the components in Scomb were
set according to the table above.

Note that the correlation measure is the dominant component, and the relative
in
uence of the other components corresponds to about half that variation.

The reason why csign is increased in blob detection, is that the dimension of the
signi�cance measures are di�erent:

[~�2
�norm] = [brightness]6

[(r2

normL)
2] = [brightness]2

Hence, it is natural to increase the coeÆcient of Ssign = j log RB
RA

j by a factor of three in
blob detection compared to junction detection. As a general rule, we have not performed
any �ne-tuning of the parameters, and all parameter values have been the same in all
experiments.
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Initial frame

Fixed scale tracking Adaptive scale tracking

Figure 1: Illustration of the importance of automatic scale selection when tracking

image structures over time. The corner is lost using detection at a �xed scale (left

column), whereas it is correctly tracked using adaptive scale selection (right column).

The size of the circles correspond to the detection scales of the corner features.
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Figure 2: The result of applying the corner detection algorithm with automatic
scale selection to two di�erent grey-level images. (top row) Original grey-level
images. (bottom row) The 100 most signi�cant corners superimposed onto a
bright copy of the original image. Graphically, each corner is illustrated by
circle with the radius re
ecting the detection scale. Observe that a reasonable
set of junction candidates is obtained, and that the circles serve as natural
regions of interest around the corners to be used in further processing.

Figure 3: The result of applying the blob detection algorithm with automatic
scale selection to the same images as used for corner detection in �gure 2. The
100 most signi�cant blobs have been graphically illustrated by circles with their
radius proportional to the detection scale.
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Algorithm:

For each frame:

For each feature F in the feature set:

1. Prediction

1.1 Predict the position of the feature F in the current frame based on
information from the previous frames.

1.2 Compute the search region in the current frame based on information
from the previous frames and the scale of the feature.

2. Detection

Detect n candidates Ck over a reduced set of scales in the region of
interest in the current frame.

3. Matching

3.1 Match every candidate Ck to the feature F and �nd the best match
using the combined similarity measure.

3.2 Optionally, perform bidirectional matching to register safe matches.

3.3 Compare the similarity value to a predetermined threshold:
If above: consider the feature as matched; update its position, its
scale descriptor, its signi�cance value, its grey-level patch and in-
crease its quality value.
If below: consider the feature as unmatched; update its position to
the predicted position and decrease its quality value.

Parse the feature set to detect feature merges and remove features having
quality values below a certain threshold.

Figure 4: Overview of the feature tracking algorithm.
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Figure 5: The phone sequence: The initial frame with 14 detected corners.
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Figure 6: Corner tracking with adaptive scale selection and matching on combined

similarity: the tracked corners in the phone sequence after 30 frames (top), 50 (middle)

and 60 frames (bottom). As can be seen, all corners are correctly tracked.



Feature Tracking with Automatic Selection of Spatial Scales 27

Figure 7: Corner tracking with �xed scales over time: the tracked corners in phone

sequence after 30 frames (top), 50 (middle) and 60 frames (bottom). Note that the

blunt corners are lost compared to the adaptive scale tracking in �gure 6.
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Figure 8: The train sequence: The initial frame with 29 detected corners.
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Figure 9: Corner tracking with adaptive scale selection and matching on combined

similarity: the tracked corners in the train sequence after 60 frames (top), 100 (middle)

and 140 frames (bottom).
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Figure 10: Matching candidates on patch correlation only: the tracked corners in the

train sequence after 60 frames (top) and 100 frames (bottom). Three more corners are

lost as compared to �gure 9.
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Figure 11: The train sequence: The initial frame with 13 detected blobs. (The size of

the circles correspond to the detection scales of the blob features.
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Figure 12: Blob tracking with adaptive scale selection and matching on combined

similarity: the tracked blobs in the train sequence after 30 frames (top), 90 (middle)

and 150 frames (bottom). All blobs are correctly tracked.
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Figure 13: Blob tracking using �xed scales in the detection procedure: the tracked

blobs in train sequence after 30 frames (top), 90 (middle) and 150 frames (bottom).

Only one blob is correctly tracked over the whole sequence.
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Figure 14: The initial frame of the shirt sequence with the 20 strongest blobs detected

in a rectangular window. The size of the circles correspond to the detection scales of

the blob features.)
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Figure 15: Blob matching using the combined similarity measure: the tracked blobs in

the shirt sequence after 25 frames (top), 50 frames (middle) and 87 frames (bottom).

Note how the scales, illustrated by the size of the circles, adapt to the size changes of

the image structures.
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Figure 16: Matching the candidates on patch similarity only: the tracked blobs in the

shirt sequence after 25 frames. Compared to the top image in �gure 15, three more

blobs are lost and one is mismatched.

Figure 17: Blob tracking using �xed scales in the detection procedure: the tracked

blobs in the shirt sequence after 25 frames. Most blobs are already lost because they

no longer exist at the initially chosen scale.
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Figure 18: The initial frame of the face sequence with the 10 most signi�cant blobs

detected in a region around the face of the subject.
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Figure 19: Tracking the blobs in the face sequence with automatic scale selection; the

situation after 20, 45 and 90 frames. After about 60 frames only the 4 most stable blobs

remain in the feature set.


