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Abstract

The Best Quadratic Unbiased Estimation (BQUE) of variance components in the Gauss-
Helmert model is used to combine adjustment of GPS/levelling and geoid to determine
the individual variance components for each of the three height types. Through the
research, different reasons for achievement of the negative variance components were
discussed and a new modified version of the Best Quadratic Unbiased Non-negative
Estimator (MBQUNE) was successfully developed and applied. This estimation could be
useful for estimating the absolute accuracy level which can be achieved using the
GPS/levelling method. A general MATLAB function is presented for numerical
estimation of variance components by using the different parametric models. The
modified BQUNE and developed software was successfully applied for estimating the
variance components through the sample GPS/levelling network in Iran. In the following
research, we used the 75 outlier free and well distributed GPS/levelling data. Three
corrective surface models based on the 4, 5 and 7 parameter models were used through
the combined adjustment of the GPS/levelling and geoidal heights. Using the 7-parameter
model, the standard deviation indexes of the geoidal, geodetic and orthometric heights in
Iran were estimated to be about 27, 39 and 35 cm, respectively.

Key words: Variance component estimation, Geoid, Levelling, GPS, BQUE, BQUNE,
Iran
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1 INTRODUCTION

The method of variance component estimation Minimum Norm Quadratic Unbiased Estimation-
(VCE) used in geodesy is essentially Rao’'s MINQUE (Rao, 1970, 1971, Rao and Kleffe,
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1988). In the geodetic literature, the problem has
been solved independently by Helmert (1907) and
in recent times by Sjéberg (1983a, 1983b, 1984
and 1985). A review with further references to the
literature can be found in Grafarend (1985).

The VCE can be applied to both homogeneous
and heterogeneous sets of observables to
determine the relative uncertainties of the various
components that make up the total stochastic
model. In the case of heterogeneous observations,
each observational group may be assigned its own
error characteristics. The VCE method uses an
iterative numerical procedure starting with
reasonable a priori estimates of the variance
components. It relies on the assumption that all
significant errors are randomly represented in the
data set, and that a single scale factor is sufficient
to account for the errors in one observation type,
particularly where observations may seem
consistent and yet still be affected by undetected
systematic errors. This is usualy true when
dealing with the propagation of errors into new
observation types such as the case in combination
of the GPSlevelling and geoidal heights.
Therefore, it is recommended that methods such
as VCE be accompanied by attempts to evaluate
the effects of systematic errors. However, there
are different motivations for applying VCE
techniques in  combined adjustment of
heterogeneous height data such as: It facilitates
studies on the calibration of the geoid error
model, the assessment of the noise in the heights
derived from GPS measurements, for the
evaluation of the levelling precision and provides
an independent test of the error values associated
with various orders of conventiona spirit
levelling (Fotopoulos, 2003 and Fotopoulos et al.
2003).

An interesting and advantageous property of
the combined height adjustment problem is the
inherent relatively high degree of freedom in
solution. Although the distribution and number of
GPSl/levelling benchmarks vary, the number of
unknown variance components (three in this case)
remains the same (Fotopoulos, 2003). Thus,
unlike many other VCE related applications,
where the main obstacle encountered is the high
computational load, the problem here lies in
reliable variance estimates for each height type.

Basically, the empirical covariance matrices of
the ellipsoidal, orthometric and geoidal heights

(Q,,Q, and Q) can be computed from a

priori information about the accuracy of the three
height types and used asinitia input into the VCE
algorithm. These a priori covariance matrices

were successively ‘updated’ by the corresponding
estimated variance components

o’ = [Gﬁ,c:,ci:l in an iterative procedure. The

iterations stop and the final estimated factors are
computed once a pre-specified convergence
criterion is met.

However, variance components may come out
negative in some cases which have basically
important meanings such as the presence of
outliers, systematic error and modeling problems
which need detailed investigations (So6berg,
1984).

One way to escape this problem is to use non-
negative methods of variance components
estimation. There exist some non-negative
methods to estimate the variance components.
One of these methods is Best Quadratic Unbiased
Non-negative Estimation. This method has a
shortcoming when it is used for condition or
Gauss-Helmert model. In this article, it is shown
how to face with this problem and modify it.

Also estimation of the variance components
through the GPS/levelling networks was
investigated in detail by Fotopoulos (2003) and
Fotopoulos et a. (2003), but here we use an
independent approach by utilizing the MATLAB
function which always gives positive values for
VC.

The article starts with a quick review of the
application of Best Quadratic Unbiased
Estimation of VC through the combined least-
squares adjustment of Gauss-Helmert model.
Then, the negative VC problem is discussed and
the Modified Best Quadratic Unbiased Non-
negative Estimator is introduced. Finaly, a
gener  MATLAB function is utilized for
resolution of the problem in the positive and
negative cases within a sample GPS/levelling
network in Iran.

2 COMBINED LEAST SQUARES
ADJUSTMENT OF THE GAUSS-
HELMERT MODEL

Consider the following Gauss-Helmert model,
AX +Be=W Q)

where, A and B are the first and second design
matrices, X is the unknown vectors and ¢ is the
residual vector and W is the misclosure vector.
For a solution of the Gauss-Helmert model we
can referee to Sjoberg (1993) as:

X =(AT(BQB")*A)*AT(BQB")'W 2
and the residual vector will be
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£=QBT(BQB") (I -AY)W A3)

where, A°=AA" and A is the generalized
inverse of the A according to §joberg (1993).

2-1 BEST QUADRATIC UNBIASED
ESTIMATION OF VARIANCE
COMPONENTS IN THE GAUSS-
HELMERT MODEL

The model (1) can be converted to the classical
condition adjustment model by multiplying both

sides of the equations by (I —A°), namely
(1-A%Be = (1-A")W, 4

The above model can be re-written as a condition
model

Be=W, )

For the conditional adjustment, the best quadratic
unbiased estimation of variance components can
be written as:

6=Sq, (6)
where, S is the generaized inverse of S. It is
obvious that it becomes S* when the S has full

rank and G is the variance-covariance
components estimated in the Gauss-Helmert
model (Sjéberg, 1993).

S, = trace(K, 'K, K, 'K,) , (7)
a = WK'KK'W ©)
K,=BQ,B" =(1-A%)BQ,B"(1-A°%", 9)
K, =BQB"=(1-A%)BQB"(I-A°)", (10)

2-2 MODIFIED BEST QUADRATIC

UNBIASED NON-NEGATIVE
ESTIMATION OF VARIANCE
COMPONENTS

Estimation of the negative values for variance
components is one of the main problemsin VCE.
It can be happened because of incomplete
mathematical model or wrong stochastic model.
Further, it can be cased by unsuitable a priori
VCs, afew number of observations. In a problem
with few numbers of variance components and a
high degree of freedom, negative components
seldom occur (Persson, 1980). But it is possible to
use the non-negative methods too; one of these

methods proposed by Sjoberg (1984) is the Best
Quadratic Unbiased Non-negative Estimation of
variance components. This method is briefly
presented as follow:

In order to obtain the non-negative variance

components we should transform the W to the

1 =FW, (12)
where we have chosen

F=1-C,C,,and C,=C-c?C,, (13)
where,

C=BQB'",and C, =BQB", (14)

then vy, isnormally distributed with expectation O
and

E{vy'}=olFSF, (15)
where
S=C(-A%", (16)

Hence, if P =FSF =0, then BQUNE of o’
among the estimators y My, is given by (Sjoberg,
2003a)

& =, Ry, / rank(P), (17)

where, P is any generalized inverse of P. As

we know, the Gauss-Helmert Modd will be
transformed to the famous Gauss-Markov moddl,
when B=I, and it will be a condition modd if
A=0. Let us start our discussion with the Gauss-
Markov model. If in the above relations we put
B=I, al of the relations appear in the Gauss-
Markov modd as

AX=W+g=L+¢, (18)
subsequently, we have
1, =F(I-A°)W =Fe, (19)

where, W plays the role of L vector of
observations. In the Gauss-Markov model C=Q,
and C, =Q,, so F can easily bewritten as

F=1-Q,Q, , where Q, =Q-c°Q,, (20)
and also
§=QU-A, (21)

Inthis case, F plays the role of a separator. It
separates the vector of residuals corresponding to
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each group of observations and puts it in vy, .

Finally the non-negative variance components can
easily be computed using the Equation (8).

Now let us consider the condition model, if in
the Gauss-Helmert model we suppose A=0, so the
model becomes a condition model:

Be=W, (22)
In a similar manner, we can obtain the

relations for computing the non-negative variance
components as

i =FW, (23)
where

F =1-C,C,, where C,=C-c’C, (24)
and also

S=C,C=BQB" and C, =BQB", (25)

In the case where C, becomes regular, F =0

and no solution exists. This problem occurs in
calibration of precision of GPS/levelling and
Geoid. Most of persons working on such a
problem suggest using the BQUNE method when
negative values come out, but we must mention
that this method is not appropriate for use in the
error calibration of GPS/levelling and Geoid,
because in this case F=0 and the BQUNE method
does not solve our problem. In order to avoid this
problem, this method should be modified so that
the F matrix exists. In order to modify this
method the following technique suggested
recently by Eshagh (2006) is introduced.

First of al, the transformation from the W to
the residual vector should be created, namely,

. =FOQB'C'W =Fg, (26)
YI I I

All of the parameters have been introduced
before. We mean we can separate the residual
vector instead; like the one we did in Gauss
Markov model. In this case, the F, is defined like

the one used in the Gauss-Markov model
Equation (8). Now the v, is normally distributed

with zero mean and variance of

E{yv | = o/FQB'C'BQF, 27)
we dencte
R = FQB'C'BQF, (28)

In this method, F has the role of a separator,
that separates the residuals of the corresponding

group of observations, and produces a P for each

group, which plays the role of variance
covariance matrix corresponding to the group.
The variance components can easily be computed
by this method too (Equation 8). A similar
argument can be put forward for the Gauss
Helmert model. It suffices to convert the model
by using a projection to the condition model.

3 SPECIALIZATION OF PROBLEM TO
GPS/LEVELLING AND GEOID

In the calibration of GPS/levelling and Geoid
precision the first design matrix can be introduced
in different ways. One may choose 4, 5 and 7-
parameter models in order to remove the biases
and title of the geoid. These models may have the
following first design matrices

al X =X, + X, COS¢, COSA, + 29
X,C0S@ SinA +X,Sng,

and rarely its five-parameter extension

a' X =X, +X,C0S@ COSA +
X,C0S¢ SINA +X,Sng +  (30)
X,sin’ ¢,

COS®, COSA,
cosg, SN,
sing,

a; =| cosg, sing, cosh; / K, and
cosg, sing, sink, / K,
sno, /K,

1

=

N

w

(31)

a1

(22}

x
Il
><><><J>><><><><

7

where @ and A are the horizontal geodetic
coordinates of the network or baseline points and
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K; =(1-€sin’q, )1/2, (32)

where e is the first eccentricity of the reference
élipsoid. The second design matrix in this cases
is defined asfollows

B=[1, -1, -1,] (33)

where, n is the number of GPS/levelling points.
The stochastic model of the variance components
can be written as

Q, 0 0 0 0 0
Q=c,/ 0 0 0|+c,|0 Q, O+
0 00 0 0 0
o0 0] [6Q, O 0
500 0=l 0 6Q, O
0 0 Q, 0 0 ,Q,

(34
therefore, we can write
BQB' =6,Q, +6,Q,,, +5,Qy =Qu, (35)

In this case, the Equation (2) will be converted

t; =(ATQ,A)TATQ, W, (36)
and theresidual vector will be (Equation 3)
e=QB'Q;}(1-A%)W, (37)
where

A =AA- =AATQA)TATQ, (38)

The Equation (9) can be re-written as
Ko=(-A%Q,(I-A")" =Q,(I-A")",  (39)
And its inverse becomes

Ko =(Q,(I-A")")"=Q,, (40)

Finally the variance components can be
computed by the BQUE method as Equation (7)
and (8) will be transformed to

S, = trace(Q,'K,Q,K,), (41)
g =W'Q/KQ;W, i=hH,N (42)

The variance components can easily be
computed using Equation (6). For the Modified

Best Quadratic  Unbiased  Non-negative
Estimation we have
v = FQB'Q,W =Fe, (43)

where F is defined as before. The Equation (28)

can bereformulated as
P =FQB'Q, BQF, (44)

Having computed these parameters, the Equation
(17) can be used for computing the variance
components.

3-1 NEGATIVITY NUMBER

Negativity number of variance components
estimation procedure is defined as the sguare
roots of summation of square values of negative
components. The negativity number is zero if all
of the components come out positive. It ranges
from zero to infinity.

N = /Zn:(ci )? , where o, (0 (45)

The negativity number is used in our
computations as a control criterion, so that
whenever even one component comes out
negative it gets a non-zero value and immediately
the non-negative method of MBQUNE is used for
the solution.

4 MATLAB FUNCTION ESTIMATING
VC

For computing the variance components a
MATLAB function has been programmed, so that
its input argument is the name of the datafile, the
parametric model which the user prefers to use as
the corrective surface, for example, one can
choosg, 4, 5, or 7-parameter corrective surfaces.
The output of the function is the mean values of
the ellipsoidal, orthometric, and geoidal height
accuracies, and the number of iteration needed to
converge the variance components. If negative
values are obtained the program informs the user
to obtain the negative values using the usua
BQUE methods and presents the negativity
number. Having obtained the negative values, the
program is switched to the method of Modified
Best Quadratic  Unbiased  Non-negative
Estimation and the variance components will be
solved positively. The function also presents the
behaviour of the variance components during
iterations. Figure 1 shows the flowchart of the VC
program.

The data file includes 7 columns, where the
first and second columns consist of the latitude
and longitude of the GPS/levelling points, third,
fourth and fifth columns are the ellipsoidal,
orthometric and geoidal heights, respectively.
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Sixth, seventh, and eighth columns are the
diagonal values of the precison for the
dlipsoidal, orthometric, and geoida heights,
respectively. In  practice, fully-populated
covariance matrices for each group of heights are
usualy not made available to the users or they are

Enter the input file and
choose the model type

F

Selecting the initial values
[ 2 X 2
fora, ,o;, and o,

L 4
BOQUE
and estimating

2 2 d 2
0., 0, and o,

No

difficult to obtain. So, by ignoring the correlation
between data, the diagonal matrix was used in
modelling. However, the results in this case may
be dightly optimistic compared the full CV
matrix results (Fotopoulos, 2003).

Selecting initial values for

¥

2 2 'Li 2
a, ., oy, and o,

MBOQUNE
and estimating

2 2 2
o,,opand oy,

24 2 2
0,Q,0,0,and 0,0, |

Plotting the graphs
and printing
2 2 2
g,.0,and @,

values

Figure 1a. The flowchart of the MTALAB variance component analysis program.
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INPUT Data

Data file should have the following format:
phi lambda h H N dh dH dN

where,

Latitude/Longitude (in degrees)
h= Ellipsoidal height (in meters)
H= Orthometric height (in meters)
N= Geoidal height (in meters)
dh= Ellipsoidal height error (in meters)
dH= Orthometric height error (in meters)
dN= Geoidal height error (in meters)

The name of the file including the above information is the first input argument

The number of parameters of the corrective surface to be used is the second argument
For example if the name of the data file is GPSLEVELING.txt and 5 parameters
corrective surface model isused we should type

VC (‘GPSLEVELING.txt", 5)
OUTPUT

Sigma h=mean error of the ellipsoidal heights after VCE process (in meters)
Sigma H=mean error of the orthometric height after VCE process (in meters)
Sigma N=mean error of the geoidal height after VCE process (in meters)
and their plots.

Figure 1b. A sample input and output data which are used in VC software.

4-1 NUMERICAL INVESTIONS Iran was used for the VCE in this research. As
. . seen in figure 2, distribution of vertical control is
The vertical test network consisting of 73

ixed and t i St parts.
GPSl/levelling benchmarks distributed throughout VEry mixed and too sparse i most parts

Figure 2. Location of the GPS/levelling points.
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The diagonal weight matrix for the three-
dimensional GPS coordinates was obtained from
the recent output of the adjustment of the Iranian
GPS network (Nankali, Personal communication).
The overal average standard deviation is
approximately 12.5 cm.

Also, we used the IRG04 precise gravimetric
geoid model in this research. The IRG04
gravimetric geoid model was computed by using
the least squares modification of Stokes formula
based on the recent published GRACE based
global geopotential model, the high-resolution
Shuttle SRTM global digital terrain model, and a
new Iranian gravity anomaly database (Kiamehr,
2006a and 2006b).

The apriori error CV matrix, Q,, for the

geoidal undulations was obtained through error
propagation of an error grid. The variance values
corresponding to the 73 stations of interest were

Journal of the Earth & Space Physics. VVol. 34, No. 3, 2008

obtained through bilinear interpolation of the
error grid. The overall average standard deviation
is approximately 9.3 cm.

The initial diagona covariance matrix for the

orthometric heights, Q,, comes directly from the

rigorous national adjustment of the first and
second order levelling measurements (Hamesh,
1991 and NCC, 2003). The overall average
standard deviation is approximately 7 cm. Table 1
shows statistical analysis of height values in the
study area.

Three different parametric models were
selected for the investigations in this case study,
namely the classic 4, 5 and 7 parameter models.
Tables (2) and (3) and figure 3 show the result of
variance components anaysis and error
estimation for three parameters (h, H and N) by
using the various parametric models.

Table 1. Statistical analysis of the height valuesin the study area. Unit: m.

Parameter Max. Min. Mean SD G,
N -25.695 18.799 -3.940 9.079 | 0.093
h 0.138 | 2517.352 | 1431.995 | 585.932 | 0.125
H -0.9 2515.991 | 1428.022 | 588.614 | 0.070

Table 2. Estimated variance components using various parametric models. Unit: m.

Model type Solution | Iteration | o c o,
4-parameter Negative 13 3.72 0.36 197
5-parameter Positive 18 4.24 0.72 1.06
7-parameter Positive 20 4.59 0.93 0.57

Table 3. Estimated error for h, H and N using the various parametric models, Unit: meter.

Model type o c’ N
4-parameter 0.137 | 0.075 | 0.132
5-parameter 0.146 | 0.107 | 0.097
7-parameter 0.152 | 0.121 | 0.071
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Figure 3. Iterations and estimated variance components using the different models. X and Y axes show the variance components and iteration numbers, respectively.
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Table (2) shows the solution of the variance
components for ellipsoidal, orthometric and
geoidal heights. The results clearly show that the
type of parametric model used in the combined
least-squares adjustment affects the estimated
values for the variance components. In both
networks, the variance factor for the orthometric
heights was influenced the most by the change in
corrector surface, resulting in differences of
several centimeters in the estimated variance
factors from the use of a constant bias and the
other parametric models.

The variance components come out negative
when the 4-parameter model is used. In this case
the variance components of the orthometric height
come out negative and the rest are positive. This
may indicate that an inadequate model was used
for the systematic effects resulting in 'residual’
biases that corrupt the performance of the VCE
method. Another possibility is numerical
instabilities caused by over-parameterization,
which occurred when a complete fourth-order
model was used in the test network. In any case,
these first results are revealing as they suggest a
means for identifying the inappropriateness of the
tested corrector surface. The 4-parameter model
gives negative VC so the MBQUNE method
should be used for resolution of the problem and
the solution comes to convergence after 13
iterations.

An estimated negativity number for the 4-
parameter model is too small and about 0.076.
The magnitude of the negativity number is related
to the number and magnitude of negative variance
components. According to the numerical studiesif
the negativity number comes to a very smal
value, the estimated variance components by
MBQUNE are closer to the well-known BQUE
method.

The 5 and 7-parameter models, give positive
VC, and convergences with the 18 and 20
iterations were required, respectively. However,
based on the result of combined adjustment
(Kiamehr, 20063), the 7-parameter model gave a
better standard deviation for fitting, compared to
the two models mentioned. So, the estimated VC
from the 7-parameter solution can be used as final
values for any practical investigation about
accuracies of orthometric, geoidal and ellipsoidal
heights in future. Also, by comparing the
statistical analysis of the mean standard deviation

values (G, ) in table (1) and their estimated VC in
table (3), it is clear that the primary chosen

accuracies for all height values are very optimistic
(specialy for the orthometric height) and could be

considered in any future investigations.

Figure 3 shows the ratio of the variance
components during iteration. This ratio changes
by using the different model. As can be seen, for
the ellipsoidal height parameter, the ratio of initial
and the variance components computed at the first
iteration is large for al models but they are
different in magnitude. Larger oscillations can be
seen in the ratio of VCs for orthometric heights
and this variation becomes larger when the 4-
parameter model has been used. As mentioned
before, it may be because of choosing too
pessimistic initial accuracies for orthometric
heights. The VC ratio of the geoida height
oscillates is larger when the 5 and 7-parameters
models are used compared to the 4-parameter
model.

In genera, the higher order parameter models
need more iteration for convergence of the
solution (See, Table 2). In these studies we have
considered £=0.00001 as a criterion for
convergence, so that if the difference between the
two estimated last variance components becomes
smaller than & the solution is stopped and
accepted.

Another interesting point in Figure 2 is the
reverse behaviour of this ratio in orthometric
height. The ratio increases at the first iteration
when 5 or 7-parameter models are used while it
decreases for the 4-parameter model; this
behaviour depends on the type of estimators.
However, the behaviour of the other VC ratios is
more or less similar. Also, the VCs of the
ellipsoidal and geoidal heights converge faster
when MBQUNE is used.

5 CONCLUSIONS

A modified version of the Best Quadratic
Unbiased Non-negetive Estimator (MBQUNE)
was successfully applied for estimation of the
variance  components  through  combined
adjustment of the GPS/levelling and geoidal
heights in Iran. A general MATLAB function is
presented which can apply for estimation of the
VC based on the three different corrective
parametric models. The user should check
different models to see the effect of using
different corrective surfaces in the estimation of
the VC and finding the best fitting model. Based
on the numerical results by the MBQUNE
approach, the absolute accuracy of the Iranian
gravimetric geoid IRG04 is estimated to be about
27 cm through the combined adjustment of the 73
GPS/levelling and geoidal data Also, the
estimated accuracies for the geodetic and
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orthometric heights come up to 39 and 35 cm,
based on the 7-parameter model, respectively.
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