Closed-Loop Stabilization Over Gaussian Interference Channel*

Ali A. Zaidi, Tobias J. Oechtering and Mikael Skoglund

School of Electrical Engineering and the ACCESS Linnaeus Center, Royal Institute of Technology (KTH), Stockholm, Sweden. Emails: {zaidi, oech, skoglund}@ee.kth.se.

Abstract: The problem of closed-loop stabilization of two scalar linear time invariant systems over symmetric white Gaussian interference channel with correlated noise components and arbitrarily distributed initial states is addressed. We propose to use linear and memoryless communication and control scheme based on the coding schemes introduced for interference networks which are an extension of the Schalkwijk-Kailath coding scheme. By employing the proposed communication and control scheme over the Gaussian interference channel, we derive sufficient conditions for mean square stability of the two linearly controlled LTI systems.

1. INTRODUCTION

The problem of remotely controlling dynamical systems over communication channels has gained significant attention in recent years. Such problems ask for interaction between stochastic control theory and information theory [Bansal and Basar (1989); Elia (2004)]. The minimum data rate below which the stability of an LTI system is impossible has been derived in stochastic and deterministic settings in [Nair and Evans (2002); Elia (2004); Yüksel (2010)], where they considered quantization errors and noise-free rate-limited channels. In [Tatikonda and Mitter (2004); Matveev and Savkin (2007)] are necessary rate conditions required to stabilize an LTI plant almost surely. However, from [Sahai and Mitter (2006)] we know that the characterization by Shannon capacity in general is not enough for sufficient conditions for moment stability in closed-loop control. In [Silva et al. (2008)], a simple coding scheme is proposed to mean square stabilize an LTI plant over noise-free rate-limited channels. The mean square stability of discrete plant over signal-to-noise ratio constraint channels is addressed in [Freudenberg et al. (2010)]. In [Yüksel and Basar (2011)], the authors considered noisy communication links between both observer-controller and controller-plant. In [Minero et al. (2009)], the necessary and sufficient conditions are derived for mean square stability of an LTI system over time varying feedback channels.

We formulate the general problem of controlling two scalar linear time invariant systems over the white Gaussian interference channel. The two user interference channel is a fundamental communication channel where two sources wish to communicate their messages to two different destinations and the signals transmitted from the sources interfere with each other [Carleial (1978)]. By the control over the interference we mean that there exist two separate sensors to sense the states of the two plants, and there exist two separate remote controllers to separately stabilize the two plants i.e., a multi-sensor multi-controller setup. The capacity of the general interference channel is still an open problem, however the capacity region is known for some special cases. However in the context of closed-loop control, the interference channel with feedback is more relevant. In [Kramer (2002); Gastpar et al. (Submitted 2010)], the authors provided achievable rate regions over memoryless interference channel with noiseless and noisy feedback which is highly relevant to our problem. The coding schemes proposed by Kramer and Gastpar et al. in [Kramer (2002); Gastpar et al. (Submitted 2010)] for the memoryless Gaussian interference channels with noiseless feedback are adaptations of the well-known Schalkwijk-Kailath coding scheme for memoryless Gaussian point-to-point communication channel with noiseless feedback [Schalkwijk and Kailath (1966)].

We used the Schalkwijk-Kailath type scheme for deriving rate sufficient conditions for closed-loop stabilization of a scalar LTI system over white Gaussian relay channels in [Zaidi et al. (2010a, 2011)]. In [Zaidi et al. (2010b)], we used the Schalkwijk-Kailath based scheme to obtain stability regions for control over multiple-access and broadcast channels. In this paper we extend our previous work to the interference channel. We consider two scalar LTI plants with arbitrary distributed initial states which have to be remotely stabilized over a symmetric white Gaussian interference channel with correlated noise components. We use linear and memoryless communication and control policies based on Kramer’s coding scheme to derive regions which are sufficient for mean square stability of the two plants in the absence of process and measurement noises.

2. PROBLEM SETUP

We consider two scalar discrete-time LTI systems whose state equations are given by

\[X_{i,t+1} = \lambda_i X_i,t + U_i,t + W_{i,t}, \quad i = 1, 2, \]

where \(\{X_{i,t}\} \subseteq \mathbb{R}, \{U_{i,t}\} \subseteq \mathbb{R}, \) and \(\{W_{i,t}\} \subseteq \mathbb{R}, \) are state, control, and noise processes of the plant \(i. \) We assume that

* This work was supported in part by the European Commission through the FP7 project FeedNetBack (co-design for networked control systems).
with a fixed cross-correlation coefficient \(\rho_0 \) and the observer

The setup for control over symmetric white Gaussian interference channel is depicted in Fig. 1. There are two sensors to separately sense the states and two remotely located control units to separately control the two plants.

We assume that the process noise \(W_{i,t} \) in (1) is zero, and focus on mean square stability [Nair and Evans (2002, 2004); Sahai and Mitter (2006); Freudenberg et al. (2006); Silva et al. (2008)] of the two plants. For a noise-free plant, we define mean square stability as follows.

Definition 1. A noise-free system is said to be mean square stable if and only if \(\lim_{t \to \infty} \mathbb{E}[X_i^2] = 0 \), regardless of the initial state \(X_0 \).

3. MAIN RESULTS

We will first present our results in a comprehensive fashion and then provide the proofs in the next section.

Theorem 2. The two scalar LTI systems in (1) with \(W_{i,t} = 0 \) can be mean square stabilized over the memoryless white Gaussian interference channel if the systems’ parameters \(\{\lambda_1, \lambda_2\} \) satisfy the following inequalities

\[
\log(\lambda_i) < \frac{1}{2} \log \left(\frac{P(1 + h^2 + 2h\rho^* + N)}{P(h^2(1 - \rho^*)^2 + N)} \right),
\]

where \(\rho^* \) is the largest among all the roots in the interval \([0, 1]\) of the following two fourth order polynomials

\[
f_1(\rho) := \rho^4 + a_3 \rho^2 + a_2 \rho + a_1 \rho + a_0,
\]

\[
f_2(\rho) := \rho^4 + b_3 \rho^2 + b_2 \rho + b_1 \rho + b_0,
\]

where

\[
a_3 = \frac{N}{2h^2P}, \quad a_2 = -2 - \frac{N(4 + 2h\rho_a)}{2h^2P},
\]

\[
a_1 = -\frac{N(1 + 2h^2 + 2h\rho_a)}{2h^2P} - \frac{N^2}{h^2P},
\]

\[
a_0 = 1 + \frac{N(2h - \rho_a)}{2h^2P}, \quad b_3 = \frac{2h^2P + 2P + N}{2hP},
\]

\[
b_2 = \frac{N\rho_a}{2hP} + \frac{1 - (1 + h^2)}{h}, \quad b_1 = \frac{N(1 + 2h - 2h^2)}{2h^3P} + \frac{N(1 + 2h - 2h^2)}{2h^3P} - \frac{N(1 + 2h - 2h^2)}{2h^3P} - \frac{N^2}{h^2P},
\]

\[
b_0 = -1 - \frac{N(2h - \rho_a)}{2h^2P}.
\]

Proof. The proof is given in Sec. 4.

Remark 3. For fully correlated initial states, i.e., \(\rho_0 = 1 \), and fully correlated or anti-correlated noise components i.e., \(\rho_a = \pm 1 \), the initial transmissions in the proposed scheme in Sec. 4 can be modified such that \(\rho^* = 1 \). Accordingly the stability conditions are then given by

\[
\log(\lambda_i) < \frac{1}{2} \log \left(\frac{P(1 + h^2)}{N} \right), \quad i = 1, 2.
\]

Remark 4. It is shown in Appendix A that if the two noise components are fully correlated i.e., \(\rho_a = 1 \), and further \(2h(1 + h^2 + 2h\rho_a) < 1 \), then the largest root \(\rho^* \) of the polynomial \(f_2(\rho) \) is equal to one. Therefore the stability conditions are then given by

\[
\log(\lambda_i) < \frac{1}{2} \log \left(\frac{P(1 + h)^2}{N} \right), \quad i = 1, 2.
\]

Remark 5. The term on the right hand side in (2) corresponds to an achievable rate pair for the two sources over the white Gaussian interference channel with noiseless feedback [Gastpar et al. (Submitted 2010)].

4. PROOF

In order to prove Theorem 2 we propose a linear and memoryless communication and control scheme. This scheme is based on the well-known Schalkwijk-Kailath coding scheme [Schalkwijk and Kailath (1966); Kramer (2002); Gastpar et al. (Submitted 2010)]. By employing the proposed linear scheme over the given interference channel, we then find conditions on the system parameters \(\{\lambda_1, \lambda_2\} \) which are sufficient to mean square stabilize the system in (1). The control and communication scheme for the interference channel works as follows.
Initial time steps, \(t = 0, 1 \) Initially the two encoders transmit the observed state values in alternate time slots to the respective controllers. The first two disjoint transmissions in time make the plant states Gaussian distributed regardless of the distribution of their initial states, which will be explained shortly. However if the initial states are already Gaussian, then the following disjoint initial transmissions are not needed.

At time step \(t = 0 \), the encoder \(\mathcal{E}_1 \) observes \(X_{1,0} \) and transmits \(S_{1,0} = \sqrt{\frac{P}{\alpha_{1,0}}} X_{1,0} \). The encoder \(\mathcal{E}_2 \) does not transmit, i.e., \(S_{2,0} = 0 \). The decoder \(\mathcal{D}_1 \) receives \(R_{1,0} = S_{1,0} + Z_{1,0} \). It then estimates \(X_{1,0} \) as

\[
\hat{X}_{1,0} = \sqrt{\frac{P}{\alpha_{1,0}}} R_{1,0} = X_{1,0} + \sqrt{\frac{P}{\alpha_{1,0}}} Z_{1,0}.
\]

The controller \(\mathcal{C}_1 \) then takes an action \(U_{1,0} = -\lambda_1 \hat{X}_{1,0} \) for the plant 1, which results in \(X_{1,1} \sim \mathcal{N}(0, \alpha_{1,1}) \) with \(\alpha_{1,1} = \lambda_1^2 \alpha_{1,0}^2 \). The controller does not take any action for the plant 2, therefore \(X_{2,1} = \lambda_2 X_{2,0} \) with \(\alpha_{2,1} = \lambda_2^2 \alpha_{2,0} \).

At time step \(t = 1 \), the encoder \(\mathcal{E}_1 \) does not transmit any signal. The encoder \(\mathcal{E}_2 \) observes \(X_{2,1} \) and transmits \(S_{2,1} = \sqrt{\frac{P}{\alpha_{2,1}}} X_{2,1} \). The decoder \(\mathcal{D}_2 \) receives \(R_{2,1} = S_{2,1} + Z_{2,1} \). It then estimates \(X_{2,1} \) as

\[
\hat{X}_{2,1} = \sqrt{\frac{P}{\alpha_{2,1}}} R_{2,1} = X_{2,1} + \sqrt{\frac{P}{\alpha_{2,1}}} Z_{2,1}.
\]

The controller \(\mathcal{C}_2 \) then takes an action \(U_{2,1} = -\lambda_2 \hat{X}_{2,1} \) for the plant 2, which results in \(X_{2,2} \sim \mathcal{N}(0, \alpha_{2,2}) \). The state \(X_{1,2} \sim \mathcal{N}(0, \alpha_{1,2}) \). For the plant 1, the controller does not take any action \(U_{1,1} = 0 \), therefore \(X_{1,2} = \lambda_1 X_{1,1} \) and \(X_{1,2} \sim \mathcal{N}(0, \alpha_{1,2}) \).

It is noteworthy that due to non-overlapping initial transmissions by the two encoders, the states \(X_{1,2} \) and \(X_{2,2} \) are now zero mean Gaussian variables with correlation coefficient \(\rho_2 = \frac{\lambda_2 \sqrt{\alpha_{1,2}}}{\sqrt{\alpha_{2,2}}} \) equal to zero. Henceforth the two encoders will transmit their signals simultaneously.

Further time steps \(t \geq 2 \) The two encoders \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) observe \(X_{1,t} \) and \(X_{2,t} \), and they respectively transmit

\[
S_{1,t} = \sqrt{\frac{P}{\alpha_{1,t}}} X_{1,t}, \quad S_{2,t} = \sqrt{\frac{P}{\alpha_{2,t}}} X_{2,t} \text{sgn}(\rho_t),
\]

where \(\rho_t = \frac{E[X_{1,t} - E[X_{1,t}]](X_{2,t} - E[X_{2,t}])]^{\sqrt{\alpha_{1,t}}}} \) and \(\text{sgn}(\rho_t) = 1 \) if \(\rho_t \geq 0 \) and \(\text{sgn}(\rho_t) = -1 \) if \(\rho_t < 0 \). In accordance, the decoder \(\mathcal{D}_1 \) receives \(R_{1,t} = S_{1,t} + h S_{2,t} + Z_{1,t} \) and the decoder \(\mathcal{D}_2 \) receives \(R_{2,t} = S_{2,t} + h S_{1,t} + Z_{2,t} \). The decoder \(\mathcal{D}_1 \) then computes a memoryless \(^2\) MMSE estimate of the state of the plant \(i \) as

\[
\hat{X}_{i,t} = E[X_{i,t} R_{i,t}] \frac{\nu}{E[R_{i,t}^2]} R_{i,t},
\]

where \(\nu \) follows from the fact that the optimum MMSE of the Gaussian variable is linear [Hayes (1996)]; and we have

\[
E[X_{1,t} R_{1,t}] = \sqrt{P \alpha_{1,t}} (1 + h |\rho_t|),
\]

\[
E[X_{2,t} R_{2,t}] = \sqrt{P \alpha_{2,t}} (1 + h |\rho_t|) \text{sgn}(\rho_t),
\]

\[
E[R_{i,t}^2] = P (1 + h^2 + 2h |\rho_t|) + N.
\]

The controller \(\mathcal{C}_i \) takes an action \(U_{i,t} = -\lambda_i \hat{X}_{i,t} \) for the plant \(i \), which results in \(X_{i,t+1} = \lambda_i (X_{i,t} - \hat{X}_{i,t}) \). The mean values of the states are

\[
E[X_{i,t+1}] = \lambda_i E[X_{i,t} - \hat{X}_{i,t}] = 0 \quad \text{(5)}
\]

Proof. The proof can be found in Appendix A.

1\footnote{The states in the second time step become uncorrelated irrespective of the value of the correlation between the initial states. This scheme does not exploit correlation between the initial states and thus the stability region obtained is independent of the correlation of the initial states.} The states in the second time step become uncorrelated irrespective of the value of the correlation between the initial states. This scheme does not exploit correlation between the initial states and thus the stability region obtained is independent of the correlation of the initial states.

2\footnote{The memoryless estimator is not optimal since the channel outputs are correlated. Therefore we expect that an improvement might be possible if we use full memory in the estimator. However the analysis becomes complicated by considering full LMMSE estimation.} The memoryless estimator is not optimal since the channel outputs are correlated. Therefore we expect that an improvement might be possible if we use full memory in the estimator.
\[\rho_{t+1} = \frac{\mathbb{E}[X_{t+1}, X_{2t+1}]}{\sqrt{\alpha_{t+1} + X_{2t+1}}} = \frac{1}{\sqrt{\alpha_{t+1} + X_{2t+1}}} \mathbb{E} \left[\lambda_1 \left(X_{1,t} - \bar{X}_{1,t} \right) \lambda_2 \left(X_{2,t} - \bar{X}_{2,t} \right) \right] \]

\[= \frac{\lambda_1 \lambda_2}{\sqrt{\alpha_{t+1} + X_{2t+1}}} \times \left(\frac{\mathbb{E}[X_{1,t}, X_{2,t}]}{\mathbb{E}[X_{1,t} X_{2,t}]} - \frac{\mathbb{E}[X_{1,t} R_{1,t}]}{\mathbb{E}[R_{1,t}]} \frac{\mathbb{E}[X_{2,t} R_{1,t}]}{\mathbb{E}[R_{2,t}]} \right) \]

\[= \frac{\lambda_1 \lambda_2}{\sqrt{\alpha_{t+1} + X_{2t+1}}} \left(\rho_t - 2 \text{sgn}(\rho_t) (h + |\rho_t| (1 + |\rho_t|)) + \frac{\mathbb{E}[X_{1,t} R_{1,t}]}{\mathbb{E}[R_{1,t}]} \frac{\mathbb{E}[X_{2,t} R_{1,t}]}{\mathbb{E}[R_{2,t}]} \right) \]

\[\leq \text{sgn}(\rho_t) g(\rho_t), \quad \forall t \geq 2. \] (9)

If we modify our encoding scheme such that \(\rho_2 \) becomes equal to \(\rho^* \) instead of zero, then \(|\rho_t| \) will be equal to \(\rho^* \) for all \(t \geq 2 \). This modification in the encoding scheme can be done as follows. Suppose in the initial transmissions (i.e., \(t = 0, 1 \)) the two encoders transmit \(S_{1,0} = \sqrt{\frac{P}{\alpha_1}} X_{1,0} + m \) and \(S_{2,1} = \sqrt{\frac{P}{\alpha_2}} X_{2,1} + m \), where \(m \) is a Gaussian variable with zero mean and variance \(\sigma_m^2 \). In this way \(\rho_2 \) can take on any value between zero and one by varying \(\sigma_m^2 \). Thus by choosing \(\sigma_m^2 \) such that \(\rho_2 = \rho^* \), we can rewrite (8) as

\[\alpha_{t+1} = \alpha_{t+2} \alpha_{t}^2 \left(\frac{\rho t}{\rho_{t}^* + N} \right) \leq 0 \quad \text{as} \quad t \to \infty \text{ if} \]

\[\left(\frac{\mathbb{E}[X_{1,t}^2]}{\mathbb{E}[X_{2,t}^2]} \right) < \frac{2h P/ N + 2h |\rho_t|^2 + N}{2h P/ N + 2h |\rho_t|^2 + N} < 1 \]

\[\Rightarrow \log(\lambda_t) < \frac{1}{2} \log \left(\frac{P (1 + h^2 + 2h \rho^*) + N}{P (1 + h^2 + 2h \rho^*) + N} \right), \] (12)

for \(i \in \{1, 2\} \). The term on the right-hand side in (12) is a monotonically increasing function of \(\rho^* \), therefore we choose \(\rho^* \) to be the largest among all roots in \([0, 1] \) of the two polynomials \(\{f_1(\rho), f_2(\rho)\} \). The condition on \(\lambda_t \) in (12) guarantees mean square stability of the ith open loop system if it is unstable i.e., \(\lambda_t > 1 \). For \(\lambda_t < 1 \) (i.e., \(\log(\lambda_t) < 0 \)), the open loop system is self stable and the variance of the state process will converge to zero without any control actions in closed-loop. Therefore the sufficient conditions for mean square stability are given by (2). This completes the proof of Theorem 2.

5. NUMERICAL RESULTS AND DISCUSSION

According to Theorem 2, the stabilizability of the two first order LTI systems depends on the given interference channel parameters such as average transmit power \(P \), noise power \(N \), noise cross-correlation \(\rho_z \), and cross channel gain \(h \). Therefore it is interesting to study the effect of these channel parameters on the behavior of the two systems under our proposed communication and control scheme. In this section we investigate the stabilizability of the two systems under our proposed scheme for different values of noise cross-correlation and cross channel gain with fixed transmit and noise powers.

In Fig. 2 we fix \(P = 20, N = 1 \), and plot the boundary of the stability region for the two plants as a function of \(\rho_z \) for different values of \(h \), according to Theorem 2. Therefore the ith plant will be mean square stable under our proposed scheme for the given channel parameters if \(\log(\lambda_i) \) is in the region below the corresponding stability boundary curve. In Fig. 2 we have shown some examples for different levels of interference parameter, i.e., \(h = \{0, 0.15, 1, 100\} \). In most cases stability region reduces by increasing \(\rho_z \) from \(-1\) to \(1\), except for the case when the interference is very weak, i.e. \(h = 0.15 \). For this case, it is given in Remark 4 that the best performance is achieved when \(\rho_z = 1 \). For the sake of comparison we have also plotted no interference case (\(h = 0 \), i.e., there exist two parallel channels from the two plants to the two remote controllers. For this setup the stability conditions are given by \(\log(\lambda_i) < 0.5 \log(1 + P/N) \). In Fig. 2 we have also shown an example of very strong interference scenario (\(h = 100 \)). This example suggests that the stability region significantly expands in the presence of a very strong interference. In order to investigate this further, we now fix \(P = 20, N = 1 \), and plot the boundary of the stability region as a function of \(\rho_z \) for different values of \(h \) in Fig. 3. For \(\rho_z = \{-1, -0.95\} \) the stability increases monotonically with increasing cross channel gain \(h \). Interestingly we observe a boost in the stability of the systems for \(\rho_z = -1 \) compared to \(\rho_z = -0.95 \) in the high interference regime. For \(\rho_z = \{0, 1\} \) the worst performance happens when the interference is moderate (i.e., neither weak nor strong). However in these examples too the stability improves monotonically with increase in cross channel gain beyond certain threshold. Further we observe that in the low
interference regime (i.e. for very small values of h) the best performance is achieved when the noise components are fully correlated ($\rho_z = 1$), which is in accordance with Remark 4.

In the given setup of control over interference channel, the two systems are driven by the actions of the two controllers. These control actions are influenced by the cross channel interference, therefore it is also interesting to study cross-correlation between the state processes of the two systems for different values of cross channel gain. Under our proposed scheme, the magnitude of the cross-correlation coefficient between the two state processes remains constant in the steady state, however it might alternate in phase in successive time steps as shown in Sec. 4. In Fig. 4 we fix $P = 20, N = 1$, and plot magnitude of the state cross-correlation coefficient ρ^* as a function of cross channel gain h for different values of noise correlation $\rho_z = \{-1, -0.5, 0, 1\}$. In these examples, we observe a general trend that cross correlation increases in magnitude as cross channel gain increases. The state processes of the two systems become almost fully correlated as cross channel interference gets very strong. This happens because the two systems are driven control actions which are highly influenced by cross talk.

In summary, the above numerical examples suggest that the stability region of the two systems over Gaussian interference channel reduces with the increase of noise cross-correlation from -1 to $+1$. That is negative correlation helps and positive correlation hurts except for the case when interference is very weak (see also Remark 4). Further for anti-correlated ($\rho_z = -1$) noises there is a dramatic boost in the stabilizability especially in the presence of strong interference. A similar behavior was observed in [Gastpar et al. (Submitted 2010)], where the authors showed that the sum-rate capacity over symmetric Gaussian interference channel can be doubled with feedback in high SNR when the noise components are anti-correlated. Furthermore we have observed that in general stabilizability under the proposed scheme improves as the interference gets significantly stronger. This result is in line with already known results in information theory, where it has been shown that the transmission rates over interfering channel can be significantly improved in presence of very strong interference [Sato (1981)]. Further we have observed that the state processes of the two systems become highly correlated in magnitude in strong interference scenarios under our proposed scheme.

The stability results provided in this paper can be extended for non-symmetric interference channel using the proposed scheme with some tedious computations. We can also extend our results for the setup where the links from the controllers to the plants are also white Gaussian communication channels. For this setup we can have an encoder at each control unit to encode the control action and a MMSE decoder at each plant to decode the transmitted value of the control action. As long as the encoders, the decoders, and the controllers are linear, the nature of the problem does not change and the stability results can be easily obtained cf. [Yüksel and Basar (2011)].

REFERENCES

