Stockholm Central 2050

- Prognoser över efterfrågan och kapacitetsbehov

BO-LENNART NELLDAL
OLOV LINDFELDT
OSKAR FRÖIDH

Källa: KTH Järnvägsgrupp
Stockholm Central 2050
- Prognoser över efterfrågan och kapacitetsbehov

Bo-Lennart Nelldal • Olov Lindfeldt • Oskar Fröidh

Kungliga Tekniska Högskolan (KTH)
Avdelningen för Trafik & Logistik
KTH Järnvägsgruppen
2009-12-28
Innehållsförteckning

SAMMANFATTNING .. 5
1. Inledning .. 15
 1.1. Bakgrund och syfte .. 15
 1.2. Metod .. 15
 1.3. Metod för framskrivning av prognoserna till 2050 .. 16
 1.4. Metod för beräkning av behov av tåglägen ... 17
 1.5. Dimensionerande efterfrågan i tågsystemen .. 18
 1.6. Särskilda frågor ... 21
2. Omvärldsförutsättningar ... 22
 2.1. Inledning ... 22
 2.2. Ekonomisk utveckling .. 22
 2.3. Befolkningsutveckling och regional struktur ... 23
 2.4. Energi- och klimatfrågan ... 26
3. Prognoser för persontrafiken .. 27
 3.1. Tillväxt på den framtida persontrafikmarknaden .. 27
 3.2. Utvecklingen av långväga persontrafik i Sverige .. 29
 3.3. Hittillsvarande utvecklingen av de regionala tågtrafiken i Stockholmsregionen 30
 3.4. Trafiksystem för persontrafik .. 32
 3.5. Snabbpendel eller regionpendel? .. 38
4. Prognoser för godstransporterna ... 41
 4.1. Tillväxt på den framtida godstransportmarknaden ... 41
 4.2. Utvecklingen av långväga godstransporter .. 43
 4.3. Utvecklingen av godstransporterna till/från Stockholmsregionen 44
 4.4. Trafiksystem för godstransporter .. 48
 4.5. Terminaler för godstransporter ... 54
 4.6. Förslag till långsiktig terminalstrategi för Stockholmsregionen och Mälardalen 58
5. Efterfrågan på resor till/från Stockholm .. 60
 5.1. Utvecklingen av det totala resandet till/från Stockholm ... 60
 5.2. Utvecklingen på Stockholm Central och Citybanan .. 60
 5.3. Fördelning av passagerare på tågtyper vid Stockholm Central 61
 5.4. Fördelning av passagerare på tågtyper vid Stockholm City ... 61
 5.5. Antal passagerare i olika snitt ... 61
6. Trafikstruktur och kapacitetsbehov på Stockholm C ... 65
 6.1. Kapacitetsbehov söderut .. 65
 6.2. Kapacitetsbehov norrut ... 65
 6.3. Kapacitetsbehov västerut ... 66
 6.4. Linjenätsstruktur och tjänstetåg .. 70
 6.5. Persontågen till/från Stockholm C i maxtimmen ... 73
 6.6. Godstågen ... 73
Förord

KTH Järnvägsgruppen har genomfört ett uppdrag åt Banverket att bedöma behovet av tåglägen vid Stockholm C år 2050. Syftet var att beskriva tågtrafikens framtida marknad och kapacitetsbehov för att kunna fortsätta planeringen av hur Stockholm Central skall utvecklas efter det att Citybanan tagits i trafik.

Projektledare vid KTH var Bo-Lennart Nelldal och Håkan Johansson har varit projektledare för Banverket. Oskar Fröidh (KTH) har medverkat med bearbetning av befolknings- och trafikprognoser och Jakob Wajsman (Banverket) har deltagit i arbetet med godstransportprognoser. Olov Lindfeldt (KTH) har medverkat i uppdraget som expert på kapacitetsfrågor och den fysiska utformningen av framtida anläggningar. KTH har författat denna rapport och svarar också för slutsatserna i rapporten.

Stockholm i december 2009

Bo-Lennart Nelldal
Adjungerad Professor
SAMMANFATTNING
På uppdrag av Banverket har KTH Järnvägsgrupp genomfört en analys av behovet av tåglägen vid Stockholm C år 2050. Syftet var att beskriva tågtrafikens framtid marknad och trafikutveckling för att kunna fortsätta planeringen av hur Stockholm Central skall utvecklas efter det att Citybanan tagits i trafik.

Prognoserna för år 2030 och 2050 ska snarare betraktas som scenarier än som exakta prognoser. Sannolikt kommer det läge som prognoserna visar för tågtrafiken uppträda någon gång i framtiden och det är kanske snarare frågan om när det inträffar.

Utgångspunkten för scenarierna har varit en befolkningsprognos med hög tillväxt och en utbyggnad av tågtrafiken med höghastighetståg mot Göteborg och Malmö och kortare restider i såväl fjärr- och regionaltäg på övriga linjer till Stockholm C. När det gäller trafiken till Stockholm City förutsätts utveckling av pendeltägssystemet med ökad turtäthet och snabbspedeltåg samt en ny pendeltägssgren mot Roslagen.

Befolkningsprognosen utgår från hög tillväxt med en ökning av befolkningen i Sverige från 9,1 miljoner invånare 2005 till 11,2 miljoner invånare 2050. Mälardalen och Öresundsregionen ökar mest med ca 35% och Göteborgsregionen ökar med 23% från år 2007 till år 2050 medan övriga Sverige ökar med 5%. Det innebär att det blir 0,6 miljoner fler invånare år 2030 och 1,1 miljoner fler invånare år 2050 i Mälardalen jämfört med 2007.

Efterfrågan på tågresor till Stockholm
Från år 1990 till 2008 ökade antalet passagerare i dimensionerande snitt från 44 miljoner till knappt 80 miljoner d.v.s. nästan fördubblats. Ökningen beror på förutom på de socioekonomiska faktorerna på utbyggnaden av snabbtägsnätet för fjärrtrafiken, på regionaltägstrafiken i Mälardalen och på pendeltägstrafiken i Stockholmsregionen. Under denna period har fyrspar byggts från Järna till Knivsta, dubbeltspar från Kallhäll till Västerås och på Nynäshamnan till Västerhaninge samtidigt som järnvägsnätet förbättrats i hela Sverige.

Från år 1990 till 2008 gick all trafik på Stockholms Central och antalet passagerare i dimensionerande snitt har nästan fördubblats utan att några stora ombyggnader gjorts av

På Citybanan beräknas resandet öka från 69 miljoner år 2017 till drygt 100 miljoner år 2030 och 150 miljoner eller med 140% till år 2050. Då har således pendeltågsresenärerna blivit nästan tre gånger fler än i dag. Citybanan har fyra plattformspår precis som i dag så kapaciteten på spåren vid plattformarna är ungefär densamma men utrymmena för passagerarna är väsentligt större. Av väsentlig betydelse är emellertid att tillfartskapaciteten fördobblas genom de nya spåren för pendeltågen och att de båda tågsystemen blir helt oberoende av varandra i denna känsla punkt.

Efterfrågan på täglägen

Prognoserna för efterfrågan har gjorts på årsbasis för olika banor och tågtyper. När det gäller antalet täglägen så är det maxtimmen under en vardag som är dimensionerande. Prognoserna har därför brutits ned till maximtiden och omvandlats till antal tåg. Ett preliminärt utbud ligger till grund för prognoserna. Efterfrågan har stämts av mot utbudet genom att beräkna beläggningsgraden. Målsättningen har varit att beläggningsgraden i mest belastade snitt inte ska överstiga 100 %, d.v.s alla ska ha sittplats. Ibland har utbudet måst justeras i första hand genom att sätta in fler vagnar i tägen, i andra hand genom att öka antalet tåg.

De största sammanlagda resbehoven uppstår söderut från/till Stockholm C. Det är dels en följd av ökad regionaltågstrafik längre ut mot Eskilstuna, Katrineholm och Nyköping, dels en följd av utvecklad snabbtågstrafik och utbyggnaden av Götalandsbanan/Europabanan till år 2030, dels en följd av att pendeltågstrafiken ökar både mot Södertälje och Västerhaninge.

Pendeltågen är uppdelade i lokalpendeltåg och snabpendeltåg där båda systemen går i 15-minuterstrafik. Lokalpendeltågen stannar vid alla stationer som i dag medan snabpendeltågen stannar vid de största stationerna och går längre ut i Mälardalen, söderut till Eskilstuna, Nyköping och Katrineholm. I högtrafik går dessutom lokalpendeltåg som instatståg.

Trafiken på pendeltågsspåren ökar från 2017, dels som följd av att Citybanan blir klar och dels som följd av att snabbidstågsystemet etableras. Ökningen på fjärrtågsspåren är större till 2030 som följd av att ett höghastighetsnät etablerats.

Norrut, dvs. mot Arlanda, Märsta, Uppsala, Ostkustbanan och Dalabanan, är resbehoven på fjärrtågsspåren något större än söderut, medan resandet på pendeltågsspåren är lägre. Man kan alternativt betrakta resandet respektive västerut sammantaget vilket är relevant i vissa sammanhang.

För pendeltågstrafiken förutsätts att ett snabbpendelsystem har etablerats till Uppsala och att en ny pendeltågsren byggets ut mot Täby–Arninge till år 2030. På pendeltågsspåren ökar tågbehovet till 18 år 2030 och 22 år 2050.

Till behovet av tåglägen för persontåg kommer behovet av godstågslägen och för lokrundgångar och tomståg samt en marginal i form av ett antal reservlägen. När det gäller Stockholms Central kan man betrakta tägen söderut och det sammantagna behovet norrut och västerut.

Med utgångspunkt från godstransportprognosen, se nästa avsnitt, har det totala antalet godståg under dygnet prognostiserats. Utifrån antalet tåg under ett vardagsdygn har antalet godståg under eftermiddagens högtrafik och under persontrafikens maxtimme beräknats. I dag går endast ett godståg genom Stockholms central i den absoluta maxtimmen på eftermiddagen. Prognosen ger därför också som resultat enstaka tåg i maxtimmen och den största ökningen i antal tåg ligger utanför persontrafikens maxtimme.

Eftersom det uteslutande är motorvagnståg i persontrafikens år 2050, och eventuella insatsståg med lok har ett lok i varje ände eller manövervagn, förväntas det inte behövas några lägen för lokrundgångar. Det kan dock förekomma på nattåg, men dessa går då senare utanför maxtimmen.

En marginal på 10% har slutligen lagts på det totala antalet tåg för reservlägen. Den är i första hand till för att öka återsättningstidsförmågan vid förseningar, men kan också utnyttjas för enstaka tåg eller tillfälliga behov.

Totalt antal passagerare till/från Stockholm

Antal passagerare på Stockholm Central och Stockholm City

Figur: Totalt antal personåg till Stockholm i maxtimmen,

Figur: Totalt antal person- och godståg till Stockholm Central i maxtimmen
Efterfrågan på godstransporter

Till/från Stockholmsregionen transporterades ca 2,2 miljoner ton gods med järnväg år 2002 och har minskat från ca 3 miljoner ton år 1990. Minskningen beror dels på strukturförändringar i näringslivet, dels på minskande marknadsandelar. Tyngre industri har flyttat från Stockholm, viss lagerverksamhet har ”utlokaliserats” till lägen utan järnvägsförbindelser och industriispår har lagts ner bl.a. i samband med exploatering.

Eftersom tillväxten av det högförädlade godset är högre än för övrigt gods ökar godstrafiken till från Stockholm snabbare än för landet som genomsnitt. Med en utvecklad järnvägstrafik bl.a. i form av kombitrafik kan järnvägen öka sin marknadsandel och godsvolymen öka till 5,7 miljoner ton 2030 och till 6,4 miljoner ton år 2050.

I Stockholmsregionen behövs kombiterminaler både norr och söder om staden. Den nuvarande terminalen i Årsta ligger mycket bra till i anslutning till partihallarna och till Essingeleden och södra länken. Om partihallarna skulle flyttas längre ut, skulle matartransportavstånden öka. Ännu större miljöproblem skulle det bli om lokaliseringen sker utan järnvägsanslutning.

Om man vill ha ett långsiktigt hållbart transportsystem bör principen vara att godset skall transporteras så långt in som möjligt i närmsta omgivning med järnväg och sedan distribueras med lastbil så kort avstånd som möjligt. Detta är också ekonomiskt fördelaktigt eftersom matartransporterna med lastbil ofta utgör en stor del av kostnaderna. Ett småskaligt lättkombisystem skulle kunna angöra flera små terminaler i Stockholmsregionen och i Östra Mellansverige.

En del av de nuvarande lastbilsterminalerna ligger inte i anslutning till järnvägen. Det är viktigt att nästa generation lastbilsterminaler lokaliseras så att de fär koppling till järnvägen och därmed större möjligheter att utnyttja kombinerade transporter.

Med hänsyn till att det kommer nya operatörer och nya transportupplägg bör framtidige terminaler kunna utnyttjas av flera trafiksysteem t.ex. bör det vara möjligt att i en kombiterminal även ha en frilastterminal eller att i en lättkombiterminal ansluta ett industriispår. Det viktiga är att reservera mark nära järnväg, industri och lager så att det finns möjlighet att hantera gods på valfritt sätt.
Tillgång till kapacitet

Citybanans kapacitet begränsas vid öppnandet av utformningen av stationerna Odenplan, Södra station och Årstaberg som alla endast har en plattform och ett plattformsspår per riktning. Odenplan torde bli mest kritisk eftersom den näst City har flest passagerare. Den kan byggas ut till fyra spår. Om även de andra stationerna byggs ut till fyra spår torde den maximala kapaciteten uppgå till 32 tåg per timme och riktning.

Den sammanlagda kapaciteten söderut har ökat från 18 tåg per timme och riktning innan nya Årstabron blev klar då den ökade till 24 tåg. Med den ombyggnad som genomförts av Stockholms Central med omgivning och som beräknas vara slutförd år 2011 beräknas kapaciteten öka till 28 tåglägen per timme. Med Citybanan ökar den sammanlagda kapaciteten från 28 till 44 tåglägen per timme. Med de successiva förbättringar av trafikstyrningen skulle man kunna räkna med en sammanlagd kapacitet på 60 tåg per timme och riktning söderut år 2030 och 70 tåg är 2050.

De möjligheter som teoretiskt står till buds att lyssna öka kapaciteten är att köra tåg med högre kapacitet, utnyttja fler ståplatser i pendeltågen, försöka korta ner plattformstiderna, förbättra signalsystemet och införa automatisk tågdrift. Det är dock tveksamt om vad dessa åtgärder kan ge när man redan ligger på kapacitetsgränsen och de kräver också en hårdare styrning av trafiken som kan vara svår att genomföra på en avreglerad marknad.

Tabell: Antal möjliga täglägen som bedöms kunna kan tidtabelläggas per timme och riktning till/från Stockholm Central och Stockholms City.

<table>
<thead>
<tr>
<th>År</th>
<th>Stockholm Central</th>
<th>Ytspåren (F)</th>
<th>Stockholm City</th>
<th>Citybanan (P)</th>
<th>Totalt</th>
<th>Åtgärd</th>
<th>Söderut</th>
<th>Norrut</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>18</td>
<td>28</td>
<td>18</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>24</td>
<td>34</td>
<td>24</td>
<td>34 F:Årstabron invigd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>24</td>
<td>34</td>
<td>24</td>
<td>34 F:Kraftsamlings Mälardalen genomför Förutsätter bättre punktlighet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>20</td>
<td>30</td>
<td>24</td>
<td>24 F:Kraftsamlings Mälardalen genomför Förutsätter bättre punktlighet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>24</td>
<td>34</td>
<td>30</td>
<td>30 F:Endast fjärr- och regionaltåg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>28</td>
<td>38</td>
<td>32</td>
<td>32 P:Signal- och styrsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur: På en dubbelspårig järnväg kan man tidtabelllägga ett tåg varannan minut, 30 tåg per timme och riktning. Med en kapacitet på 1000 sittplatser per tåg kan man transportera 30 000 personer per timme. I en fil på en väg kan man köra en bil var tredje sekund eller 2000 bilar per timme och riktning. Om det i genomsnitt är 2 personer per bil blir kapaciteten 4000 personer per fil och riktning. Ett spår har således nästan 8 gånger så hög kapacitet som en vägfil. Tåget är dessutom säkert och kan köra upp till 350 km/h, då med 20 tåg per timme.
Trafikstrukturer på längre sikt

De prognoser som hittills gjorts av den framtida trafiken i Stockholmsregionen visar på en fortsatt tillväxt av biltrafiken och att kollektivtrafikens marknadsandel skulle minska successivt. Det beror bl.a. på att den största tillväxten av både bostäder och arbetsplatser sker ganska långt ut i regionen, i de yttre förorterna. Därmed ökar också pendlingen mellan perifera förorter och arbetsplatser mest och där har bilen redan idag en starkare ställning än kollektivtrafiken. Denna utveckling förstärks också om förbifart Stockholm byggs vilket prognoserna förutsätter.

Man kan fråga sig om detta är långsiktigt hållbart med tanke på energiförbrukning och klimatkrisen. Om kollektivtrafiken ska få en större andel måste dels lokaliseringen av nya bostäder och arbetsplatser i högre grad anpassas till kollektivtrafiken, dels en större satsning göras på kollektivtrafikens marknadsandel längre ut i regionen. När det gäller kollektivtrafikens marknadsandel är det naturligt. Men det är viktigt att i tid tänka igenom vilket trafiksystem som ska byggas ut för att den alltmer vidsträckta regionen ska fungera så bra som möjligt.

Detta är bara en idé av en möjlig struktur men vi vill med detta snarare peka på behovet av att utarbeta en strategi för framtiden som bygger på en vision av en framtida expanderande region. Olika alternativ bör analyseras noggrant och bör utvärderas med hjälp av utvecklade prognosmodeller och andra analyser. Denna process bör startas snarast då vi vet att det tar lång tid att planera, projektera och finansiera ny infrastruktur.

Figur: Vision över det tredje spårsystemet med kopplingar till nuvarande nät inklusive Citybanan.
1. Inledning

1.1. Bakgrund och syfte

Huvudsyftet med KTH:s arbete är att ta fram en prognos för behovet av täglägen och därmed plattformskapacitet för antalet tåg vid Stockholms Central år 2050. För att göra detta måste efterfrågan på person- och godstransporter beräknas och utbudet definieras för att kunna omräknas till det dimensionerande antalet tåg i den mest belastade timmen.

Detta kräver en hel del indata om befolkningsutveckling och ekonomisk utveckling både i Sverige som helhet och i Stockholmsregionen. Fjärrtrafiken till/från Stockholm central berör ju hela landet.

1.2. Metod
Det har inte funnits tillgång till konsistenta prognoser för all tågtrafik till och från Stockholm och det finns inte heller ett entydigt definierat utbud. Syftet med KTH:s arbete har därför varit att uppdatera och sammanställa olika prognoser för år 2030 och förlänga dessa till år 2050 med en översiktlig metod. Följande steg har genomförts inom ramen för detta projekt:

4. Uppdatera godstransportprognoserna för år 2030 och förlänga dessa till år 2050 i samarbete med Jakob Wajsman på Banverket.

5. En sammanställning av det samlade tågbehovet för fjärrtåg, regionaltåg, lokal- och godståg inklusive reservlägen under den mest belastade timmen. Det är detta behov som dimensionerar kapaciteten vid Stockholm C.

6. En sammanställning av den praktiska och teoretiska kapaciteten vid Stockholm Central och Stockholm City och en analys av vilka åtgärder som kan vidtas för att öka kapacitetsutnyttjandet.

Slutligen följer en diskussion om långsiktiga strukturfrågor med den långsiktiga tillväxten som grund. Frågan är vad man ska göra då både Citybanan och Stockholm C är full och ett tredje bansystem måste till.

Det har varit nödvändigt att studera både Stockholms Central och Citybanan eftersom en det inte är självklart vilken station som ska utnyttjas för vissa regionala resenärer. Det finns ett alternativ
med ett snabbpendelsystem som är integrerat med pendeltågen och som går på lokaltågsspåren som går på Citybanan och ett alternativ med en Regionpendel som går på fjärrtågsspåren och utnyttjar Stockholm Central. Fördelningen av resenärerna mellan de båda stationerna är således inte självklar varför den totala efterfrågan måste bedömas.

1.3. Metod för framskrivning av prognoserna till 2050.

För att få fram prognoser för år 2030 har i regel prognoserna för år 2020 förlängts med procentuella tillväxttal per år för trafiken. För år 2050 har en metod används för persontrafik där vi utnyttjar befolkningsförändringar i olika delar av landet som påverkar efterfrågan för de olika banorna, en allmän trafiktillväxt som funktion av ekonomisk tillväxt och möjliga utbudsförändringar för de olika banorna och trafiksystemen. Vi har i detta fall använt enkla elasticitetstal för de olika faktorerna.

Prognoser till år 2050 är naturligtvis förknippade med stor osäkerhet inte bara som följd av osäkerhet om befolknings- och ekonomisk utveckling utan även på grund av energi- och klimatkrisen och vilka åtgärder som kommer att vidtas för att lösa dessa problem. Vi har därför valt en relativt enkelt metod där resultatet är överblickbart. Sannolikt kommer det läge som prognoserna visar för tågtrafiken uppträda någon gång i framtiden och det är kanske snarare frågan om när det inträffar – någon gång före eller efter år 2050 men sannolikt inte just år 2050.

Figur 1.1: Metod för översiktlig beräkning av tågresande 2030 och 2050.
1.4. Metod för beräkning av behov av tåglägen

Antalet tåg till/från Stockholm bestäms dels utifrån det utbud som utgör utgångspunkt för prognoserna och dels utifrån belastningen i maxtimmen. Kapaciteten kan varieras dels genom att variera antalet vagnar i tågen, dels genom att använda olika typer av tåg. Dessutom kan om detta inte räcker utbudet kompletteras av insatståg som normalt inte ingår i prognosförutsättningarna. På detta sätt kontrolleras att passagerarna ”får plats” i tågen.

Det finns alltid stora variationer i efterfrågan. Vi har så långt möjligt försökt dimensionera tägtrafiken så att beläggningsgraden för en täglinje aldrig är över 100% vilket innebär att i princip alla resenärer skall få sittplats även i pendeltågstrafiken. Detta måste vara en målsättning för en kollektivtrafik som skall kunna konkurrera med bil i ett långsiktigt perspektiv. Även om beläggningsgraden i genomsnitt är mindre än 100% så kan det förekomma ståplatser vissa dagar och i vissa tåg och i vissa vagnar.

Resenärerna har också fördelats på produkter. I viss mån sker detta redan i prognosmodellerna men i vissa fall måste en avstämning göras när flera alternativ finns. Det gäller särskilt fördelningen mellan regionaltåg, snabbpendeltåg och pendeltåg.

Längre ut i systemet, utanför pendeltågsområdet i det inre av Mälardalen kan resenärerna i de flesta scenarier välja mellan att åka regionaltåg och snabbpendeltåg. Snabbpendeltågen används då huvudsakligen av resenärer som skall till Stockholms förortområden eftersom de då slipper byta tåg. De stiger av successivt och lämnar på så sätt plats för påstigande resenärer från pendeltågsområdet mot Stockholm C.

I pendeltågsområdet kan resenärerna på de större stationerna där snabbpendeltågen stannar välja mellan att åka pendeltåg och snabbpendeltåg. Snabbpendeltågen går fortfarande och är bekvämare men stannar inte på alla stationer. Fördelningen mellan pendeltåg och snabbpendeltåg blir i praktiken beroende på uppehållsmönstret, tågens tidtabellslägen och kapaciteten. Snabbpendeltågen måste dimensioneras för kapacitetsbehovet på de mest belastade sträckorna i pendeltågsområdet.

För Stockholm C tillkommer också godståg som skall gå från de olika bangårdarna och terminalerna i Stockholmsområdet genom Stockholm C. Någon konventionell godstrafik kommer inte att kunna förekomma via Stockholm City eftersom lutningarna blir för stora.

När det gäller Stockholm City så är det inte möjligt att vända tåg på denna station. Därför måste kontrolleras att tägantalet är symmetriskt d.v.s. att det går lika många tåg söderut som norrut i maxtimmen, även om det inte behövs för passagerarflödet. Det sker genom att dra ut vissa linjer till närbelägna stationer med vändmöjlighet t.ex. Flemingsberg så att de också får en trafikfunktion.

Även på Stockholm C har en kontroll gjorts att det kommer lika många tåg in som ut i maxtimmen när det gäller det sammanlagda behovet av trafiktåg och tjänstetåg. Detta är emellertid en viss förenkling, det behöver inte vara exakt så, utan vissa tåg kan komma in utanför maxtimmen och gå ut i maxtimmen. I ett långsiktigt perspektiv har dock detta mindre betydelse.

Slutligen har en marginal lagts på i form av ett antal reservlägen. Denna har satts till 10%. Den behövs för att i praktiken kunna parera förseningar och andra störningar i systemet. Om man planerar systemet för den maximala kapaciteten blir systemet mycket känsligt och minsta störning kan få konsekvenser under hela maxtimmen och även efter denna. Denna marginal kan varieras på ett enkelt sätt i kapacitetsanalysen.

När man skall beräkna hur många resenärer som kommer till/från Stockholm C så får man ta hänsyn till att det totala antalet resenärer som dimensionerar systemet är fler än dessa eftersom maxsnittet ligger längre ut. De som belastar plattformar och gångar på Stockholm C utgör ca 90% av det totala antalet resenärer som dimensionerar tågbehovet.

En del av de resenärer som kommer till Stockholm C skall byta tåg. De som kommer till Stockholm C och har målpunkter i Stockholm är alltså färre än de som kommer med tågen. En överlagsmässig beräkning har därför gjorts av antalet resenärer som kommer att belasta utgångarna från Stockholm C genom att räkna bort bytesresenärerna. De utgör ca 85% av de totala antalet resenärerna i de mest belastade snitten.

1.5. Dimensionerande efterfrågan i tågsystemen

I fjärrtrafiken är maxtimmen för ankommande tåg till Stockholm C på morgonen något senare beroende på att tägen inte hinner fram så tidigt om de startar från orter på 40-60 mils avstånd. Det innebär att maxtimmen infaller ungefär 8:40-9:40 d v s ca en timme senare än pendeltågen.

Godstågens maxtimme ligger senare på kvällen och tidigare på morgonen och är inte lika koncentrerad. Det förekommer dock fler godståg i eftermiddagens maxtimme och högtrafikperiod för personståg än i morgonrutningen. Risken att kapacitetsbehoven sammanfaller mellan pendel- och regionaltåg, fjärrståg och godståg är således störst i eftermiddagens maxtimme. Tågöreldrarna är också något mer komplicerade på eftermiddagen än på morgonen med fler vänder tåg och färre tåg som skall gå in till depå.

Även om antalet passagerare i morgonens maxtimme är större och denna är toppigare så tenderar tågutbudet att bli alltmer symmetriskt mellan morgon- och eftermiddagsrusningen. Det gäller särskilt pendeltågstrafiken. Eftersom eftermiddagens maxtimme dessutom är mer utsträckt och egentligen består av två timmar så är det sannolikt denna som kommer att bli mest kapacitetskrävande i framtiden.

När det gäller trafiken på Stockholm C i framtiden så har hår förutsatts att fjärr- och regionaltåg samt godståg trafikerar nuvarande Stockholm C i ytläge medan pendeltåg och snabbdeltåg trafikerar Citybanan och den nya underjordiska stationen Stockholm City. Det stämmer också med utbudet i Banverkets utredning om Citybanan. Även om kapacitetsfrågorna på Citybanan inte ingick i uppdraget så har vi tagit med denna i analysen för att få kontroll över helheten så att den totala efterfrågan stämmer med det totala utbudet. Snabbdeltågen samverkar med regionaltågen längre ut i spårspellet och därfor är det viktigt att ha med alla tåg i analysen.

Det bör dock framhållas att det i viss utsträckning finns möjlighet att välja var snabbdeltågen skall gå. Som de här har lagts upp, då de också fungerar som ”insatståg” för pendeltågen, så är det naturligt att det går på pendeltågsspåren och därmed till Stockholm City. Om de skulle gå på fjärrtågsspåren via Stockholm C skulle de mer fungera som insatståg för regionaltågen och i så fall skulle den totala marknaden för tågtrafiken vara väsentligt mindre eftersom byten skulle krävas i fler relationer och restiderna i pendeltågssystemet skulle bli längre.

Av de passageraruppgifter som vi tagit fram går det således att studera trafiken i Citybanan och på Stockholm C separat, och frågan om maxtimmen sammanfaller blir då mindre intressant eftersom pendeltågen och snabbdeltåg sammanta get dimensionerar Citybanan, och fjärrtåg, regionaltåg och godståg sammanta get dimensionerar nuvarande Stockholm C. Passagerarberäkningarna avser morgonens maxtimme, som är dimensionerande för platförmarna och förbindelsegångar. Tägantalet avser snarare eftermiddagens maxtimme då behovet för fjärrtåg, regionaltåg och godståg sammanfaller och är dimensionerande för spåranläggningen.

Figur 1.2: Prognos för behov av persontåg vid Stockholm C/City

Figur 1.3: Prognos för behov av totalt antal täglägen vid Stockholm C/City

Figur 1.4: Beräkning av antalet passagerare till/från Stockholm C/City
Det är givetvis svårt att prognostisera såväl den totala efterfrågan 2050 som trafiken under maxtimmen om drygt 40 år. Även människors vanor och resmönster är relativt stabila över tiden kan förändringar komma att ske. Ser vi bakåt i tiden 40 år så har vi fått mer flexibla arbetstider genom flextid och högtrafiken har blivit något mer utspridd, särskilt på eftermiddagen.

Ser vi framåt så kan man tänka sig att IT-tekniken gör att arbetet kan bli ännu mer flexibelt med mer arbete i hemmet på distans. Denna utveckling finns redan i dag särskilt för dem som långpendlar, men kan komma att bli alltmer generell i de yrken där det passar. Införandet av trängselavgifter kan innebära att bilresor i högtrafik förs över till kollektivtrafik och kan därmed motverka en utspridning. Det finns således flera faktorer som pekar i olika riktningar och därför har vi valt att använda den fördelning av passagerna som vi har i dag som utgångspunkt för våra analyser. Dessa framgår av nedanstående tabell.

Figur 1.5: Andel av årstrafiken under maxtimmen för olika tågtyper.

<table>
<thead>
<tr>
<th>Maxh-faktorer</th>
<th>Maxh/Arspax</th>
<th>Max last-faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärr</td>
<td>0,00030</td>
<td>80%</td>
</tr>
<tr>
<td>Regional</td>
<td>0,00045</td>
<td>90%</td>
</tr>
<tr>
<td>Lokal</td>
<td>0,00050</td>
<td>100%</td>
</tr>
</tbody>
</table>

1.6. Särskilda frågor
Följande frågor har Banverket begärt att få särskilt belyst i mån av att det underlagsmaterial som kommer fram kan användas till att belysa detta.

- Behov av plattformskapacitet på Stockholm C, många medelstora tåg eller färre långa tåg
- Behov av vändande tåg på Stockholm C
- Behov av furnering på Stockholm C eller andra ställen
- Behov av depåkapacitet och lämpliga platser
- Behov av godstrafik genom Stockholm C
- Maximal kapacitet på Stockholm C
- När slår man i kapacitetstaket med normal tillväxt och med hög tillväxt t.ex. som följd av klimatkrisen?

Någon fullständig genomgång av dessa områden har inte gjorts i detta projekt, men vi har delvis utnyttjat material som tagits fram i andra sammanhang och i den förra utredningen. En kortfattad redogörelse för dessa frågor kommer att redovisas senare.

En särskild utredning om plattformskapacitet med olika spårutformning, liksom en tidigare om behovet av depåkapacitet fram till år 2030 redovisas i särskilda bilagor. I bilaga redovisas också möjliga tidtabellsupplägg för ett snabbpendelsystem samt en idéskiss till en ny regional- och fjärrtågstation Stockholm Nordväst.
2. Omvärldsförutsättningar

2.1. Inledning

De viktigaste omvärldsförutsättningarna för den framtida utvecklingen är:

- Ekonomisk utveckling
- Befolkningsutveckling och regional struktur
- Energi- och klimatfrågans utveckling

Trafikprognoser med avancerade prognosmodeller har genomförts för år 2020 med utgångspunkt från de ekonomiska prognoser och befolkningsprognoser som ingår i åtgärdsplaneringen. Eftersom höghastighetsbanorna förutsätts färdigställda i sin helhet till år 2025 har persontransportprognoserna skrivits fram till 2025. För godstransporter uppnås full effekt ett antal år efter att kapaciteten frigjorts på stambanorna varför dessa skrivits fram till 2030.

Eftersom utbyggnaden av höghastighetsbanorna är en långsiktig investering har en framskrivning gjorts av prognoserna till år 2050. Detta har gjorts på ett enklare sätt utifrån makroekonomiska samband och skall mer ses som ett räkneexempel. Dessa prognoser bygger bl.a. på underlag från ett projekt om Stockholms Central 2050. Tidsperspektivet 2050 används också i samband med klimatanalyser när det gäller att uppnå det s.k. tvågradersmålet.

2.2. Ekonomisk utveckling

Fram till 2020 finns prognoser från Långtidsutredningen mm där det går att få fram försörjningsbalanser som används i godstransportprognoserna. Därefter har försörjningsbalansen tagits fram utifrån antagandet om att tillväxten är densamma i absoluta tal. Detta ger en successivt sjunkande tillväxt mätt i procent per år vilket brukar känneteckna alla utvecklingsförlöp. BNP ökar med i genomsnitt 2,0 % per år 2011-2020 och sjunker successivt till 1,4 % per år mellan 2040 och 2050.

Figur 2.1: Försörjningsbalans 2011-2050 som används för framskrivning av transportarbetet.

<table>
<thead>
<tr>
<th>Tillväxt % per år</th>
<th>2011-2015</th>
<th>2016-2020</th>
<th>2021-2030</th>
<th>2031-2040</th>
<th>2041-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>2,0</td>
<td>2,0</td>
<td>1,8</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Import</td>
<td>4,7</td>
<td>4,8</td>
<td>4,1</td>
<td>2,9</td>
<td>2,3</td>
</tr>
<tr>
<td>Total konsumtion</td>
<td>1,5</td>
<td>1,6</td>
<td>1,5</td>
<td>1,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Privat konsumtion</td>
<td>2,0</td>
<td>2,1</td>
<td>1,9</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Offentlig konsumt.</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Investerings</td>
<td>4,4</td>
<td>4,2</td>
<td>3,6</td>
<td>2,7</td>
<td>2,1</td>
</tr>
<tr>
<td>Export</td>
<td>4,1</td>
<td>4,1</td>
<td>3,5</td>
<td>2,7</td>
<td>2,1</td>
</tr>
</tbody>
</table>
2.3. Befolkningsutveckling och regional struktur

WSP har på uppdrag av Banverket tagit fram befolkningsprognoser för Stockholmregionen med utgångspunkt från SCB:s prognoser för hela Sverige. För att få en utgångspunkt för att dimensionera trafiksystemet har ett alternativ med hög befolkningsställväxt använts. I detta alternativ ökar befolkningen i Sverige från 9,1 miljoner invånare 2005 till 11,2 miljoner invånare 2050.

Enligt huvudalternativet i SCB:s befolkningsprognos beräknas folkmängden att öka med 1,5 miljoner personer från 9,1 miljoner år 2005 till 10,5 miljoner år 2050. Antalet personer i äldern 20–64 år beräknas öka med 370 000 personer och år 2050 och även antalet personer i arbetsföräldrar (20–64 år) ökar med 370 000 personer eller med 7%. Andelen av befolkningen i arbetsföräldrar att kommer att minska trots att antalet ökar, vilket beror på att antalet personer 65 år och äldre ökar mycket mer än andra åldersgrupper.

Scenario Hög kännetecknas genomgående av en mer gynnsam ekonomisk utveckling med högre produktivitet och lägre arbetslöshet. Totalbefolkningen ökar till 11,2 miljoner invånare. Scenario Hög baseras på SCB:s scenario om en mycket hög arbetskraftsinandring särskilt från Norden, EU och andra länder med högt humankapital, medan invandringen i övrigt är på samma nivå som i SCB:s huvudalternativ. En bakomliggande tanke är att en god anpassning till globaliseringens krav stimulerar en ökad arbetskraftsinvandring.

Med NUTEK:s rAps-system har en flerregional modell använts för att fördela rikets befolknings- och sysselsättningsutveckling på bland annat län. Även om för RUSFs del det egentliga intresset är Östra mellansverige så finns data även för övriga län.

Prognosen visar en mycket snabb utveckling av storstadsområdena jämfört med övriga landet. Stockholmregionen och Öresundsregionen ökar mest med ca 35% och Göteborgsregionen ökar med 23% från år 2007 till år 2050, se tabell 2.4. Övriga Sverige ökar med 5%. Det innebär att det blir 1,1 miljoner fler invånare i Stockholmsregionen och 0,5 respektive 0,4 miljoner fler invånare i Öresunds- och Göteborgsregionen fram till 2050 i alternativ Hög. Observera att dessa regioner omfattar stora områden.

Av figur 2.2. framgår också den historiska utvecklingen från 1800 till 2008 och prognosen till 2050. Man ser då att storstadsregionerna har expanderat hela tiden och att den prognostiserade utvecklingen är en fortsättning på denna utveckling. Vad som skiljer prognosen från den tidigare utvecklingen är den svaga utvecklingen av områdena utanför storstadsregionerna. Tidigare har dessa haft en större tillväxt även om den har varit långsammare än i Storstadsregionerna.

Av figur 2.3 framgår utvecklingen i Mälardalen i ett långsiktigt perspektiv. Här ser man att Stockholm stad började växa snabbare efter 1880 och Stockholms län efter 1950. Mellan 1950 och 1990 minskade befolkningen i Stockholms stad för att därefter åter öka. Stockholms län utanför staden är dock det område som ökat mest från ca 0,4 miljoner invånare 1950 till 1,2 miljoner invånare 2008 medan Stockholm stad hade 0,8 miljoner båda åren och övriga Mälardalen inkl Örebro län ökat från 0,8 till 1,1 miljoner invånare.

Prognoserna visar en fortsatt snabb expansion av de yttre förorterna, se figur 2.5. Stockholms län ska öka med 0,9 miljoner invånare varav över hälften i de yttre förorterna och ungefär 0,2 miljoner vardera i regioncentrum och de inre förortsområdena. Enligt denna prognos kommer de övriga länena i Mälardalen växa men inte lika mycket, sammantaget ökar de med ca 0,2 miljoner invånare. Den höga tillväxten i de yttre förortsområdena har stor betydelse eftersom de till stor del försörjs av pendeltågen liksom tillväxten i Mälardalen som försörjs av Regionaltågen. Tillväxten i de övriga storstadsområdena har betydelse för fjärrtågen.
Figur 2.2: Befolkningsutveckling i Sverige 1850-2008 med prognos till 2050 med fördelning på storstadsregioner och övriga landet med prognos enligt alternativ HÖG. Källa: Bearbetning av statistik från SCB och WSP.

Figur 2.3: Befolkningsutveckling i Mälardalen 1850-2008 med prognos till 2050 med fördelning på län och Stockholms stad/tätort med prognos enligt alternativ HÖG. Källa: Bearbetning av statistik från SCB och WSP.
Figur 2.4: Befolkningsprognos 2007-2050 med fördelning på regioner enligt alternativ HÖG. Källa: Bearbetning av prognoser från WSP.

<table>
<thead>
<tr>
<th>Region</th>
<th>2007 Tusentals invånare</th>
<th>2030 Tusentals invånare</th>
<th>2050 Tusentals invånare</th>
<th>Ökning 2007-2030 Tusentals invånare</th>
<th>Ökning 2007-2050 Tusentals invånare</th>
<th>2050 Tusentals invånare</th>
<th>Ökning %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mälardalen</td>
<td>3 063</td>
<td>3 652</td>
<td>4 119</td>
<td>589</td>
<td>1 056</td>
<td>4 119</td>
<td>34%</td>
</tr>
<tr>
<td>Göteborgsregionen</td>
<td>1 693</td>
<td>1 928</td>
<td>2 079</td>
<td>235</td>
<td>386</td>
<td>2 079</td>
<td>23%</td>
</tr>
<tr>
<td>Öresundsregionen</td>
<td>1 345</td>
<td>1 613</td>
<td>1 809</td>
<td>268</td>
<td>464</td>
<td>1 809</td>
<td>35%</td>
</tr>
<tr>
<td>Summa</td>
<td>6 100</td>
<td>7 192</td>
<td>8 006</td>
<td>1 092</td>
<td>1 906</td>
<td>8 006</td>
<td>31%</td>
</tr>
<tr>
<td>Övriga Sverige</td>
<td>3 084</td>
<td>3 176</td>
<td>3 226</td>
<td>92</td>
<td>142</td>
<td>3 226</td>
<td>5%</td>
</tr>
<tr>
<td>Totalt</td>
<td>9 184</td>
<td>10 368</td>
<td>11 232</td>
<td>1 184</td>
<td>2 048</td>
<td>11 232</td>
<td>22%</td>
</tr>
</tbody>
</table>

Mälardalen= Stockholm, Uppsala, Södermanland och Västmanland
Göteborgsregionen= Västra Götaland och halva Halland
Öresundsregionen= Skåne län och halva Halland

Figur 2.5: Befolkningsökning 2005-2050 med fördelning på områden i Mälardalen enligt WSP enligt alternativ Hög.
2.4. Energi- och klimatfrågan

Energi- och klimatfrågan är onekligen av avgörande betydelse för mänsklighetens fortlevnad. Transportsektorn är den som är mest beroende av fossila drivmedel i dag. Forskarna är överens om att vi måste både minska den totala energiförbrukningen, övergå till fossilfria drivsystem och ändra transportmedelsfördelningen för att klara de mål som måste uppnås för att inte klimatkrisen ska förvärras. Åtgärder som diskuteras för att lösa detta är ekonomiska styrmedel, teknisk utveckling och ändrat beteende.

I åtgärdsplaneringen har ett alternativ för energieffektiva transporter definierats det s.k. EET-alternativet. Det innefattar dock inga nämnvärda höjningar av kostnaderna för att resa eller transporter. Som exempel kan nämnas att kostnaden för att köra bil ökar med 0,7 % och kostnaden för att åka med flyg ökar med 1,5 % fram till 2020. Motiveringen är att referensalternativet ”business as usual” skulle ge lägre kostnader och i förhållande till det så skulle EET-alternativet innebära en höjning. Så små kostnadsförändringar som 0,7 – 1,5 % under så lång tidsperiod ligger definitivt inom felmarginalen för alla prognossystem.

I prognoserna har vi därför utgått dagens kostnader för att köra bil och åka kollektivt. Vi kallar det här för en basprognos. Man kan då också se resultatet av prognoserna mer renodlat utifrån dagens situation och få jämförbarhet med prognoser i åtgärdsplaneringen. Om man vill kan man sedan ovanpå detta lägga prognoser över alternativa utvecklingar.
3. Prognoser för persontrafiken

3.1. Tillväxt på den framtida persontrafikmarknaden

Tillväxten för kortväga resor, långväga resor och utrikes resor har varierande utvecklingstakt. Utrikes flygresor är de som ökat snabbast och därnäst kommer långväga inrikesresor. Tillväxten avtar även här successivt samtidigt som de långa resorna också är mer beroende av konjunkturvariationer än de kortväga resorna.

Framskrivningen av det totala transportarbetet bygger på att det totala transportarbetet ökar med den privata konsumtionen med en successivt sjunkande elasticitet. Om den privata konsumtionen ökar med 2 % per år och elasticiteten är 0,6 så ökar transportarbetet med 1,2 % per år. Prognoser med avancerade prognossystem, som Sampers brukar ge ungefär samma resultat, eftersom även här den privata konsumtionen är styrande.

Utvecklingen av det totala transportarbetet 1950-2008 och framskrivning till 2050 framgår av figur 3.2. Det totala transportarbetet beräknas i början av perioden öka med 1,2 % per år och i slutet med 0,5 % per år då det blir 38 % högre än 2008. Utvecklingen är dock osäker bland annat på grund av oljepriset och klimatfrågan.

Vad som kan hända, och det visar den hittillsvarande utvecklingen också, är att tillväxten av transportarbetet bromsas upp p.g.a. ekonomiska faktorer som drastiska höjningar av drivmedelspriser, minskade inkomster och framvingande regleringar som följd av internationella kriser. Det är vad som inträffade 1974 då det både blev höjda drivmedelspriser och ransonering av drivmedel under en kort period, och 1991 då det blev moms på resor samtidigt som realinkomsterna sjönk för första gången sedan andra världskriget. Dessa syns som tydliga avbrott på tillväxten av transportarbetet.

Det är sannolikt att en liknande, och kanske mer permanent situation, kommer att uppstå i framtiden, dels som följd av ökande drivmedelspriser då efterfrågan överstiger utbudet, dels som följd av klimatkrisen som kan leda till att ekonomiska eller andra former av styrmedel måste sättas in för att klara krisen. I båda fallen leder detta sannolikt till kraftigt ökande drivmedelspriser som kan leda till att det totala transportarbetet stagnar eller minskar, och kanske på ett mer bestående sätt än under hittillsvarande tillfälliga energikriser.
Figur 3.1: Tillväxt av personkilometer och privat konsumtion per år med glidande 10-års medelvärden 1950-2008 med prognos till 2050.

3.2. Utvecklingen av långväga persontrafik i Sverige

Om inga större nyinvesteringar sker därefter kan man tänka sig att järnvägen kan bibehålla sin marknadsandel därefter. Om en utbyggnad av stambanorna sker till 250 km/h för snabbtåg kortas restiderna och marknadsandelen ökar ytterligare till en högre nivå efter 2025 som sannolikt kan upprätthållas men inte öka nämnvärt därefter. Om investeringar sker i höghastighetsbanor ökar marknadsandelen radikalt efter 2025 och det är också sannolikt att den kan öka ytterligare något därefter eftersom systemet är mycket konkurrenskraftigt. I slutändan kan det innebära att det långväga tägresandet är ungefär dubbelt så stort med höghastighetståg som utan år 2050.

Det finns naturligtvis mycket som kan hända i ett så långsiktigt perspektiv som vi inte kan förutsäga i dag. Till de osäkerheter som i dag är kända bör klimatfrågans utveckling och hur den påverkar konkurrenserande färdmedel samt effekterna av avregleringen av persontrafiken. Klimatfrågan tillsammans med energitillgången kan dock innebära att efterfrågan på järnvägstransporter ökar mycket snabbare än vad vi kan förutse i dag.

Figur 3.3: Utveckling av transportarbetet för långväga persontransporter 1950-2008 med fördelning på transportmedel och prognoser för alternativa utvecklingsmöjligheter framåt 2050.
3.3. Hittillsvarande utvecklingen av de regionala tågtrafiken i Stockholmsregionen

Pendeltågsystemet utgör tillsammans med tunnelbanan ryggraden i kollektivtrafiken i Stockholms län. Behovet av ett kapacitetsstarkt pendeltågsystem uppstod under 1950- och 60-talet då kranskommunerna kring Stockholm började exploateras kraftigt. 1950 bodde ännu knappt 70 % av länets invånare i Stockholms kommun, vilket 1970 hade sjunkit till 50 % och år 2008 till 40 %. Samtidigt hade den totala folkmängden ökat från 1,1 miljoner invånare år 1950 till 1,5 miljoner 1970 och 2,0 miljoner år 2008.

I Hörjelöverenskommelsen ingick en utbyggnad av infrastrukturen för pendeltågen samt anskaffning av nya tåg och ett avtal med SJ om en mer omfattande trafik. Trafiken med nya tåg startade 1968 och byggdes successivt ut på de olika pendeltågsgrenarna till halvtimmestrafik med styv tidtabell kompletterad med insatståg i högtrafik.

Problemen med tägen uppstod då de nya tåg som SL hade beställt inte fungerade tillfredsställande och därmed inte kunde tas i trafik i full omfattning samtidigt som underhållet på de gamla tägen dragits ned, eftersom de skulle ersättas med nya. Det medförde inställda tåg och ökade förseningar.

Trängselavgifter på biltrafiken till/från Stockholms City togs ut under perioden januari t.o.m. juli 2006. Under denna period minskade biltrafiken till innerstaden med 22 % samtidigt som bilköarna och restiderna med bil och buss minskade. Ungefär hälften beräknas ha överförts till
kollektivtrafik och då framför allt arbetsresorna. Detta medförde att det totala resandet med kollektivtrafiken ökade med 6 % under en vardag under våren 2006 vid en jämförelse med året innan. Under morgonens högtrafik ökade kollektivresandet över innerstadssnittet med 20 %.

Tunnelbanan och bussarna tog hand om de flesta nya resenärerna och ökade med 6 resp. 8 % per vardag. Lokalbanorna (Roslags- och Saltsjöbanan samt spårvägarna) stod för den största ökningen med 10 %. Pendeltågen ökade bara med 2 % över dygnet men minskade något i högtrafik. Det beror dels på de ovan nämnda kvalitetsproblemen, dels på att särskilda busslinjer ”trängselbussar” satts in för att avlasta pendeltågen. Mot slutet av perioden fungerade trafiken bättre och då ökade också resandet markant.

![Utveckling av tågtrafiken i Stockholmsregionen](image)

Figur 3.4: Utveckling av tågtrafiken i Stockholmsregionen och Mälardalen 1950-2008.
3.4. Trafiksystem för persontrafik

Bakgrund och syfte

Fjärrtrafik
Det redovisade linjenätet för fjärrtrafik bygger dels på det linjenät som utarbetats i samband med KTH:s utredningar om höghastighetståg i Sverige kompletterat med linjenät för trafiken norrut som delvis bygger på de prognoser som genomförts i detta projekt. Linjenätet för höghastighetsbanor framgår av figur.

Norrut är det fjärrtrafikens på Ostkustbanan som är den tyngsta. År 2050 förutsätts att Ostkustbanan (och Botniabanan) är dubbelspårig kanske ända till Umeå och att Norrbotniabanan är byggd till Luleå. I princip kommer ett tåg per timme till Sundsvall och minst ett fjärrtåg varannan timme från Stockholm norr om Sundsvall. Härutöver går det fjärrtåg till Östersund via Norra stambanan 3-4 gånger per dag och till Dalarna varje timme (ett fjärrtåg och ett snabbt
Vidare förutsätts att det finns fjärrtåg med målpunkt bortom Örebro varannan timme via Mälarbanan västerut och via Svealandsbanan söderut från Stockholms central. Mot Karlstad och Oslo går det ett fjärrtåg varannan timme liksom på Västra stambanan via Katrineholm mot Göteborg.

Regionaltrafik

Det redovisade linjenäten för regionaltåg bygger bl.a. på KTH:s tidigare rapporter om ”Effektiva tågsystem i Mälardalen”. Stommen i regionaltrafiksystemet framgår av figur. Observera att turtäthetskalan är annorlunda än i fjärrtrafiksystemet. I princip är basturtätheten på de stora linjerna ett tåg var 30:e minut i regionaltrafiken men ett tåg per timme i fjärrtrafiken.

Vartannat regionaltåg fortsätter också längre bort t.ex. från Västerås och Eskilstuna mot Örebro och från Katrineholm till Hallsberg samt från Uppsala till Borlänge.

Pendeltåg och snabbpendeltåg

Vi har här valt ett räkna med ett snabbpendeltågsystem. Det finns flera motiv till detta. Ett snabbpendeltågsystem ger kortare resider från fler stationer och bättre tillgänglighet än ett regionpendeltågsystem. En regionpendeltågsystem kräver stora investeringar i nya stationer längs fjärrtågsspåren vilka i sin tur sänker kapaciteten på fjärrtågsspåren. Redan med dagens trafik är det svårt att se att det skulle vara möjligt att stanna vid fler stationer utan att restiderna förlängs och
kapaciteten sjunker. Dessutom är det sannolikt förr eller senare nödvändigt att bygga ut spårkapaciteten med ett tredje bansystem och då är det bäst att reservera Stockholm C för fjärrtrafik och mer långväga regionaltåg för bästa tillgänglighet.

Pendeltågen kompletteras således med snabbpendeltåg som stannar vid de större pendeltågstationerna och fortsätter längre ut i Mälardalen omkring 7-10 mil eller maximalt ca 1 timmes restid. Snabbpendellinjerna kan dock förlängas för att skapa resmöjligheter inom angränsande regioner i den män underlag finns. Syftet är att dels få snabbare resor till Stockholms city från förorterna, dels skapa direktförbindelser från Mälardalen till större förortscentera längs pendeltågslinjerna.

Höghastighetståg
Linjenät med Götalandsbanan och Europabanan fullt utbyggda

Interregional och regional tågtrafik tillkommer

Figur 3.5: Linjenät för höghastighetståg i Sverige utarbetat av KTH i samband med regeringens höghastighetsutredning (här med en förbindelse Helsingborg–Helsingör–Köpenhamn).

Grafik: Oskar Fröidh, 2009
Figur 3.6: Linjenät för fjärrtåg som går till/från Stockholms Central.

Figur 3.7: Linjenät för regionaltåg som går till/från Stockholms Central.
Figur 3.8: Linjenät för pendeltåg och snabbpendeltåg som går till/från Stockholm Centrals.
3.5. Snabbpendel eller regionpendel?

Snabbpendeltågen kan köras på nuvarande infrastruktur och angöra nuvarande stationer medan nya stationer måste byggas för regionpendeln. Då dessa stationer måste byggas på fjärrtågsspåren innebär det också att kapaciteten sjunker när tågen ska stanna där.

Exempel på Snabbpendelsystem

Regionaltågen går (Örebro-) Västerås-Stockholm och stannar i Enköping och Sundbyberg. Restiden blir då 50 min med X40.
Figur 3.9: Dagens trafiksystem (överst) och samordnat trafiksystem (nederst) på Uppsalabanan och Mälarbanan.
Exempel på regionpendelsystem
Regionpendeltåg enligt SLL linjer och stationer:
1. Stockholm C, Solna, Häggvik, Arlanda, Knivsta, Uppsala C
2. Stockholm C, Solna, Häggvik, Märsta, Knivsta, Uppsala C
3. Stockholm C, Sundbyberg, Barkarby, Bålsta, Enköping, Västerås
4. Stockholm C, Älvsjö, Fleminsberg, Södertälje Syd, Nykvarn, Läggesta, Strängnäs, Eskilstuna
5. Stockholm C, Älvsjö, Fleminsberg, Södertälje Syd, Vagnhärad, Nyköping

Figur 3.10: Regionpendelsystem enligt skiss från regionplanekontoret.
4. Prognoser för godstransporterna

4.1. Tillväxt på den framtida godstransportmarknaden

Godstransportmarknaden kan drabbas av stigande drivmedelspriser men den direkta effekten på det totala transportarbetet är sannolikt mindre än på persontransportmarknaden. Efter energikrisen 1974 minskade visserligen transportarbetet men det berodde mer på minskade transporter av olja som följd av kraftfulla energisparåtgärder än på att drivmedelspriserna i sig blev högre. Drivmedelspriserna utgör trots att endast en mindre del av näringslivets totala produktionskostnad, och man slutar inte att producera för att drivmedelspriserna går upp.

Däremot kan ökade drivmedelspriser och klimatkrisen direkt och indirekt få transportkunderna att välja transportmedel som är energieffektivare och som har mindre utsläpp. En sådan tendens finns redan nu, där efterfrågan på järnvägstransporter ökar av bl a miljöskäl.

4.2. Utvecklingen av långväga godstransporter

Även för godstransporterna finns stora osäkerheter både när det gäller klimatfrågan, hur snabbt avregleringen får genomslag samt utvecklingen av ett Europeiskt interoperabelt järnvägsnät för godstrafik. Klimatfrågan tillsammans med energitillgången kan dock innebära att efterfrågan på godstransporter på järnväg ökar mycket snabbare än vad vi kan förutse i dag.

Figur 4.3: Utveckling av transportarbetet för långväga godstransporter 1950-2008 med fördelning på transportmedel och prognoser för alternativa utvecklingsmöjligheter framåt 2050.
4.3. Utveckling av godstransporterna till/från Stockholmsregionen

Godstransporterna till och från Stockholmsregionen har successivt genomgått en strukturförändring. En del tung industri har flyttat ut från Stockholmsregionen medan inflödet av livsmedel och konsumtionsvaror ökat som följd av ökad befolkning. Behovet av att transportera högförädlat gods har också ökat som följd av IT-sektorns expansion liksom behovet av snabba expressgodssändningar som följd av tjänstesektorns tillväxt. En annan form av transporter som ökat är avfalls- och återvinningstransporter, t.ex. transporter av returpapper.

För att få fram en godsprognos för Stockholmsregionen har en specialbearbetning gjorts av tidigare prognoser som gjorts för Banverket. Prognoser för 2020 har förlängts till 2030 och 2050 genom att skriva upp det totala transportarbetet med hänsyn till den ekonomiska utvecklingen. För att få en prognos som speglar en hög utveckling av godstransporterna på järnväg har vi använt oss av det s.k. utvecklingsalternativet som även kallas kapacitet och avreglering (Kap) i utredningarna om höghastighetståg.

I detta alternativ har effekten av ett samlat paket med åtgärder som förbättrar järnvägens konkurrenskraft beräknats. Det är åtgärder som kan ske genom utveckling av operatörerna och godskunderna på marknaden, genom teknisk utveckling, genom investeringar i infrastruktur och terminaler, genom minskad byråkrati och genom politiska beslut. En sådan utveckling sker hela tiden men den kan vara mer eller mindre positiv för järnvägen. Här har vi försökt att samla ett antal åtgärder som skulle gynna utvecklingen av järnvägstransporter, i korthet följande:

- Fullt ut avreglerad fungerande marknad inom EU
- Förbättrade villkor för utrikestransporterna
- Ökad axellast och större lastprofil
- Ökad kapacitet i järnvägsnätet
- Utveckling av kombitrafik genom satsning på lättkombi
- Vägtrafikmodell för byggande och underhåll av industrispår
- Samverkansbonus för järnväg och lastbil för att stimulera vagnslast- och kombi
- Teknisk utveckling av järnvägens transportsystem

Järnvägens transportarbete skulle om de föreslagna åtgärderna genomfördes uppgå till 35,4 miljarder tonkm år 2020, vilket är 10,4 miljarder tonkm mer än i basalternativet. Långväga lastbilens transportarbete skulle uppgå till 32,3 miljarder tonkm år 2020, vilket är en minskning med 7,4 miljarder tonkm jämfört med basalternativet. Utrikes sjöfartens transportarbete skulle uppgå till 26,1 miljarder tonkm, en minskning på 1,9 miljarder tonkm jämfört med basalternativet.

Man kan således konstatera att förbättringarna för järnvägen framför allt skulle innebära minskade lastbilstransporter. Järnvägens marknadsandel av det långväga transportarbetet skulle mellan åren 2007 och 2020 öka från 25 till 35% samtidigt som lastbilens andel skulle minska från 38 till 32%, se figur 4:3.
En viktig faktor är ändrade förutsättningar för utrikestransporterna med järnväg. Genom en ökad konkurrens och framtida internationella samarbetsavtal kan detta uppnås samtidigt som balansen mellan import- och exportflöden kommer att kunna förbättras. Avregleringen medför ett bättre utbud med lägre priser och högre kvalitet framförallt i utrikestransporterna, medan investeringarna i det svenska järnvägsnätet framförallt innebär ökad kapacitet och lägre transportkostnader för näringslivet och ökad tillgänglighet genom fler terminaler och utvecklad kombitrafik.

En höjning av axellasten till 25 ton och större lastprofil i hela Sverige samt 30 ton på vissa linjer ger i kombination med effektivare operatörer och ny teknik avsevärt lägre kostnader i inrikestrafiken. Förbättringarna för järnvägens inrikestrafik beror bl.a. på att antalet industriårs portlönas väsentligt genom att vägtrafikmodellen skulle tillämpas för byggande av industriårs.

Kombitrafiken skulle också förbättras genom det nya lättkombisystemet som går med slingtäg mellan 40 orter i Sverige. Detta medför att ungefär 2,1 miljarder tonmiljoner skulle överföras från lastbil till kombitrafik. Sammantaget skulle tillgängligheten till järnvägsnätet öka väsentligt både när det gäller antalet orter och relationer som följd av nya kombiterminaler och industriårs.

Det bör framhållas att dessa prognoser inte förutsatt några försämringar för lastbilstrafiken i form av högre bränslepriser eller kilometerskatter eller liknande utan att de endast avse förbättringar av järnvägen. Förutsättningarna för utrikes sjöfart har inte förbättrats något i form av ett något lägre pris. Det skulle givetvis vara möjligt att järnvägens godstrafik skulle kunna öka ännu mer om någon form av väg- eller miljöavgifter skulle införas vilket genomförts i vissa länder och diskuteras i Sverige.

Till/från Stockholmsregionen transporteras ca 2,2 miljoner ton gods med järnväg år 2002. År 1990 var volymen ca 3 miljoner ton. Sedan dess har alltså transporter på järnväg minskat med ca 30%. Minskningen beror dels på strukturförändringar i näringslivet, dels på minskande marknadsandelar. Tyngre industri har flyttat från Stockholm, viss lagerverksamhet har ”utlokaliserats” till lägen utan järnvägsförbindelser och industriårs har lagts ner bl.a. i samband med exploatering.

Strukturen på järnvägsgodset i Stockholmsregionen skiljer sig från genomsnittet för Sverige. En mycket hög andel, 72%, är högförädlat gods och 28% övrigt gods, se figur 4.5. Detta kan jämföras med genomsnittet för hela Sverige där 22% är högförädlat gods och 78% övrigt gods (bashods och massgods).

Eftersom tillväxten av det högförädtrade godset är högre än för övrigt gods ökar godstrafiken till från Stockholm snabbare än för landet som genomsnitt. Detta förutsätter att järnvägen kan bibehålla eller öka sin marknadsandel i detta segment. I utvecklingsalternativet ökar godsvolymen till 5,7 miljoner ton 2030 och till 6,4 miljoner ton år 2050, se figur 4.4.

Figur 4.6: Fördelning på förädlingsnivå för gods till/från Stockholms län.

4.4. Trafiksystem för godstransporter

Godstransportsystemet kan med hänsyn till marknaden och produktionssystemet delas in i följande huvudprodukter:

- Vagnslasttrafik
- Systemtåg
- Kombitrafik
- Snabbgodståg
- Expressgods

Produkterna täcker olika marknadssegment på godstransportmarknaden och skiljer sig åt när det gäller produktionssystem och fordon, vilket gör att de har olika kostnadsstruktur och kvalitetsegenskaper.

Vagnslasttrafiken

En stor del av vagnslasttrafiken är knuten till hamnarna. Färjefloden till Finland genererar en hel del vagnlastgods till Värtan för vidare befordran till Sverige och kontinenten. Med bilfärjorna kommer också trailrar och containrar som lastas på tågen i Värtan eller i Årsta kombiterminal.

Systemtåg

Systemtåg är godståg som ingår i logistiska system där järnvägen fungerar som ett löpande band för industrin för transporter av massgods och basvaror. Varje systemtåg körs åt en viss kund med
särskilt avdelade vagnar och efter egen tidtabell. Samma teknik används som i vagnslasttrafiken, men systemtåg medger att järnvägens skalfördelar kan utnyttjas maximalt.

Kombitrafiken

Figur 4.8: Lättkombisystemet ligger terminalerna delvis i sidotågvägen. Lastning och lossning sker under kontaktledning med hjälp av gaffeltruck. Gaffeltrucken kan följa med tåget och körs av lokföraren.

I lättkombitrafiken gäller det att utveckla nya kostnadseffektiva, småskaliga olastningstekniker och terminallösningar och att introducera nya produktionsmetoder. Idén med lättkombi är linjetåg som också gör undervägsuppehåll, dvs. en produktionsmetod som i princip fungerar som dagens resandetåg. Här kan det också bli aktuellt att introducera nya fordonskoncept, t.ex. i form av korta flexibla tägenheter av motorvagnstyp. Lättkombinätet kan utnyttjas för matartransporter till tungkombinätet och till hamnarna. Lättkombitrafiken kommer dock vare lågre tägvikter och förutsatt att containrarna inte är för tunga i viss mån att kunna utnyttja även delar av höghastighetsnätet.

I samband med studier av ”lättkombisystemet” på KTH har ett linjenät skisserats och prognoser gjorts för möjliga volymer i ett sådant system. Ett sådant system med ca 40 terminaler framgår av figur 4.8. Samtidigt är det möjligt att begränsa tungkombisystemet till ett mindre antal terminaler och därmed förbättra lönsamheten i detta. På längre avstånd och för utrikestransporter kan lättkombisystemet fungera som matartransport till tungkombisystemet.

Snabbgodståg

Kraven på kort transporttid och exakt tidhållning är mycket höga på marknaden för snabbgodstrafik. Det är godsets karaktär eller kundkrav som gör att viss god måste transporteras snabbt. Typiska exempel är tidningar och färskvaror, som tappar sitt värde om de inte kommer fram i tid. För vissa godsslag, till exempel reservdelar, är det inte godsets karaktär i sig som kräver snabbhet utan centraliseringen av lager inom industri och handel som ställer allt större krav på snabba transporter.

En stor del av godset i detta marknadssegment transporteras som post, express-, kurir- eller stycke gods. Järnvägen har tidigare haft en stark ställning på denna marknad men har i allt större utsträckning blivit utkonkurrerad av lastbilen och flyget. När det gäller flygfrakten är det dock huvudsakligen det interkontinentala godset som fraktas med flyg, medan matartransporterna och

Figur 4.9: Snabbgodståg samverkar med lastbilen och flyget. Tåget kan vara både huvudtransportmedel eller mattrantransportmedel i transportkedjan.

I Frankrike finns t.ex. TGV Post, som med 270 km/h är de snabbaste snabbgodstågen för närvarande. Även i Sverige kan ett framtida höghastighetsnät användas för snabbgodståg.

Expressgods

Expressgods tillgodoser servicemarknadens transportbehov och utgörs av paket och mindre sändningar upp till en lastpall som transporteras i personstågen. I vanliga personståg kan expressgodset transporterats i vagnar med expressgodsetrymme. Transporterna sker under dagen med dagtåg eller övernatt med nattåg. Samproduktionen med persontrafiken ger en hög turtäthet, en viktig förutsättning för att kunna tillgodose kravet på snabb leverans.

SJ sålde under år 2000 sin expressgodstrafik vilket i praktiken innebar att en del av den tågburna trafiken lagts ned, särskilt i nattågen. Med ett allt större utbud av snabba och frekventa dagtåg borde potentialen till utveckling finnas, men samtidigt finns en konflikt mellan korta stationsuppehåll och lastning och lossning av expressgods, som måste finna en lösning.
Figur 4.10: Idéskiss till Lättkombinat i Sverige.
Höghastighets- och snabbgodståg

"Snabbare än lastbilen - Billigare än flyget"

4.5. Terminaler för godstransporter

Utvecklingstendenser

Urvålet av hamnar motiveras av att det är viktigt att skapa bästa möjliga förutsättningar för godstransporter via hamnar som är av stor betydelse för det svenska näringslivet. Statens roll är att ge förutsättningar för en effektiv och väl fungerande omkringliggande infrastruktur till hamnarna. Viktiga förbättringar kring de strategiska hamnarna ska prioriteras i trafikverkens olika planeringsomgångar.

Kombiterminalutredningen föreslog att man skulle peka ut 8st prioriterade kombiterminaler där en samhällsekonomisk prissättning skulle tillämpas, för att främja kombitransporter. Bl.a. Stockholm föreslogs ingå i nätet:

Analyser som utredningen gjort visar emellertid att det snarare blir en omfördelning mellan vagnslasttrafik och kombitrafik och att endast en mindre del av ökningen kommer från lastbil. Dessutom blir det en omfördelning mellan terminalerna som innebär längre mattransportavstånd. I praktiken kan det innebära att lastbilarna kommer att köra till en prioriterad terminal och lasta där istället för till en närliggande terminal som inte är prioriterad. Färre terminaler skapar också längre avstånd mellan terminalerna.

Behovet av terminaler har således ökat. Flera nya kombiterminaler har etablerats. Samtidigt har nedläggningen av industriispår bromsats upp och nya industriispår har byggts. Terminalerna måste hela tiden anpassas till näringslivets behov och därför måste även i framtiden vissa industriispår läggas ned men också nya etableras.

Banverkets utredning om industriispår ”Utveckling av det kapillära järnvägsnätet” tillsattes på grund av de problem som uppställt sedan uppdelningen mellan infrastrukturbeståndene och operatörer vid avregleringen. Tidigare togs inga särskilda avgifter ut för trafiken på industriispåren utan de ingick i fraktpriset. Efter uppdelningen hade både Banverket och kommunerna rätt att ta ut avgifter och började också göra det. Detta innebar en snedvridning av konkurrenserna mot lastbilstrafik som inte har sådana avgifter vilket medförde att många industriispår riskerade att läggas ned.

Banverket föreslog därför att ”vägtrafikmodellen” skulle tillämpas precis som för övrig infrastruktur. Det innebär att man skall kunna få statsbidrag för byggande och underhåll av industriispår precis som för kommunala och privata vägar och att en samhällsekonomisk marginalkostnad för utnyttjandet betalas via den ordinarie banavgiften. Efter avregleringen har
intresset för industrispår ökat och klimatfrågan gör att det nu finns en ökad efterfrågan på transporter via industrispår. Den föreslagna modellen syftar till att öka dessa möjligheter.

Med hänsyn till transportmarknadens utveckling och de negativa effekterna av prioriterade kombiterminaler kan en mer generell modell för terminaler behöva övervägas. En modell med statsbidrag för byggande och drift av industrispår och kombiterminaler skulle kunna utformas så att den blir neutral mellan olika terminaltyper och transportformer. Banverket skulle då kunna svara för de grundläggande järnvägsfunktionerna och också garantera tillträde till dessa terminaler för alla operatörer.

Figur 4.12: Godsstråk och Strategiska hamnar och kombiterminaler enligt Hamnstrategiutredningen och kombiterminalutredningen.
Kombiterminaler

Det behövs ett fåtal stora terminaler, ”Freight Services Centers”, som helst skall ligga i direkt anslutning till både väg, järnväg och hamn och där man kan optimera logistikflödet. Där bör också finns utrymme för lager och viss industriverksamhet som har koppling till terminalen. Därutöver behövs ett större antal mindre terminaler eller ”hållplatser” där man kan byta transportmedel för att optimera transportkedjan.

Figur 4.13: Exempel på ett horisontellt överföringssystem, det svenska CarContrain (CCT). Systemet kan överföra containers och växelflak med olika bredd och längd mellan transportmedel och till/från lagerplatser. Systemet kan göras helautomatiskt.

Denna kostnad kan dock jämföras med kostnaden för en konventionell tungkombiterminal som brukar uppgå till 50-100 Mkr per terminal. Denna är givetvis dimensionerad för större volymer, men skillnaden beror också på att den måste dimensioneras för lyft av både trailrar och tunga 40-fot-containrar. Det ställer mycket högre krav både på anläggning av terminalens körytor och på de kranar som måste anskaffas.

Hamnterminaler

Hur den framtida hamnstrukturen utvecklar sig är också viktigt. Det finns en historisk utvecklingsstendens att hamnverksamhet som ligger centralt i större städer flyttas allt längre ut. Så har också skett i Stockholm, från Skeppsbron till Stadsgården och till Värtan samt från
Liljeholmen till andra hamnar i regionen. Det beror dels på att den tunga industrin flyttar, dels på ökade fartygstonnage, och dels på att det blir ett exploateringstryck varterefor staden växer.

I ett långsiktigt perspektiv kan man tänka sig att godstrafiken minskar till hamnarna i centrala Stockholm och i stället går till hamnar längre ut i regionen som Nynäshamn, Södertälje, Oxelösund, Norrköping, Kapellskär och Gävle. I detta läge är det viktigt att det finns bra järnvägsförbindelser till dessa orter. Sannolikt kommer dock Värtan att vara kvar med kombinerade bil- och kryssningsfärjor och tågfärjor under överskådlig tid.

Terminaler för vagnslasttrafik

Den viktigaste orsaken till minskningen av antalet industriispår är att lastbilstrafiken blivit konkurrenskraftigare genom utbyggnaden av vägnätet, införandet av större och tyngre lastbilar och avregleringen av lastbilstrafiken.

Industriispårsminskningen beror dock inte bara på att man flyttar över transporter till andra transportmedel, utan också på att många traditionellt järnvägstransportberoende företag omstruktureras med den konsekvensen att vissa enheter slutar att existera. Det gäller t.ex. järnbruk, stålverk, pappersbruk och sågverk i glesbygden men också tyngre industri som flyttat ut från Stockholm bl.a. p.g.a höga kostnader för mark och arbetskraft.

En annan bidragande orsak till att industriispåren inte används är att de är utslitna och att man ser alternativanvändning av spårområden. Detta gäller framförallt storstadsområden, där både industriområden och spår ibland helt försvunnit vid exploatering.

En ödets ironi är att Posten inte ansåg sig behöva utnyttja spåren i framtiden. Bara ett par år efter rivningen av industriispåret började man använda järnväg igen och måste då bygga en järnvägsterminal vid Årsta Frilast dit man kör med lastbil för att lasta postvagnar.

Som framgått av ovan har utvecklingen vänt och efterfrågan på järnvägstransporter har börjat öka igen. Ett exempel är det nya industriispåren i Nykvarn där flera företag utnyttjar vagnslasttrafik för sina transporter.

Det är således viktigt att ha en långsiktig strategi för att bereda plats för godstransporter på järnväg även i framtiden som är nära kopplad till lokaliseringsspolitiken och stadsplaneringen.
4.6. Förslag till långsiktig terminalstrategi för Stockholmsregionen och Mälardalen

Terminalerna utgör en viktig länk mellan transportmedlen och i transportkedjan från produktion till konsumtion. Viktigt är att mark bibehålls eller att planberedskap skapas för terminaler som uppfyller följande kriterier:

- De ligger bra till i järnvägsnätet
- De ligger bra till i vägnätet
- De ligger invid eller nära stora godstransportmarknader
- Det finns tillräckliga markområden för framtida expansion

Om markanvändning och övrig infrastruktur styrs så att all transportintensiv och tung lager- och industriverksamhet lokaliseras till dessa områden skapas goda förutsättningar för järnvägs transporter i framtiden. Dessa terminaler kan förses med industrispår och frilastområden för vagnslaster samt med utrymmen för framtida kombisystem.

I Stockholmsregionen behövs kombiterminaler både norr och söder om staden. Den nuvarande terminalen i Årsta ligger mycket bra till i anslutning till partihallarna och i direkt anslutning till Essingeleden och den kommande södra länken. Om partihallarna skulle flytta längre ut, skulle matantransportavståndet öka. Ännu större miljöproblem skulle det bli om lokaliseringen sker utan järnvägsanslutning.

Om man vill ha ett långsiktigt hållbart transportsystem bör principen vara att godset skall transporteras så långt in som möjligt i tätorterna med järnväg och sedan distribueras med lastbil så kort avstånd som möjligt. Detta är också ekonomiskt fördelaktigt eftersom matantransporterna med lastbil ofta utgör en stor del av kostnaderna, ofta lika mycket som fjärrtransporterna med tåg. Ett småskaligt lättkombisystem skulle kunna angöra flera små terminaler i Stockholmsregionen och i Östra Mellansverige, och på så sätt minimera matantransporterna.

Med hänsyn till att det kommer nya operatörer och nya trafiksystem bör framtidiga terminaler kunna utnyttjas av flera trafiksystem t.ex. bör det vara möjligt att i en kombiterminal även ha en frilastterminal eller att i en lättkombiterminal ansluta ett industriispår. Det viktiga är att reservera mark nära järnväg, industrer och lager så att det finns möjlighet att hantera gods på valfritt sätt.
Figur 4.14: Vision om framtida godsterminaler i Stockholmsområdet (mindre terminaler har utelämnats). Kartunderlag från RTK.
5. Efterfrågan på resor till/från Stockholm

5.1. Utvecklingen av det totala resandet till/från Stockholm

5.2. Utvecklingen på Stockholm Central och Citybanan

Från år 2017 fram till 2030 beräknas antalet passagerare på Stockholm Central öka från 28 miljoner till 47 miljoner eller med 64% främst som följd av höghastighetsbanorna och en fortsatt ökad regionaltrafik i Mälardalen. År 2050 beräknas antalet passagerare uppgå till 62 miljoner vilket är ungefär samma nivå som 1997 inklusive pendeltågen. Man bör dock tänka på att fjärrtåg och fjärrtågsresenärer är mer utrymmeskrävande än pendeltågsresenärer och att de inte är direktt utbytbara. Det skiljer inte lika mycket mellan regionaltåg och pendeltåg men de är ändå inte direkt utbytbara.

På Citybanan beräknas resandet ökna från 69 miljoner år 2017 till drygt 100 miljoner eller med 57% till år 2030 och ca 150 miljoner eller med ytterligare 40% år 2050. Då har således pendeltågsresenärerna blivit nästan tre gånger fler än i dag. Citybanan har fyra plattformspår precis som i dag så kapaciteten på spåren vid plattformarna är ungefär densamma men utrymmena för passagerarna är väsentligt större. Av väsentlig betydelse är emellertid att tillfartskapaciteten fördubblas genom de nya spåren för pendeltågen och att de båda tågsystemen blir helt oberoende av varandra i denna känsliga punkt.
5.3. Fördelning av passagerare på tågtyper vid Stockholm Central

Utvecklingen av antalet passagerare till/från Stockholm Central fördelade på tågtyper framgår av figur 5.3. Från år 1990 till 2008 fördubblades antalet resenärer på Stockholm Central och ökningen var ungefär lika stor på fjärrtåg och regionaltåg, 70-80%, dessutom tillkom flygpendeln till Arlanda år 1999 som en ny tågtyp.

5.4. Fördelning av passagerare på tågtyper vid Stockholm City

Snabbpendeltågen stannar vid de största stationerna och går längre ut i Mälardalen, utanför det nuvarande pendeltågsområdet. Syftet är att dels få kortare reser mellan de största pendeltågsstationerna och samtidigt knyta ihop Mälardalsområdet med förortcentra långs pendeltågslinjerna. En utförligare beskrivning framgår av kapitel 7 och bilaga 2. Snabbpendeltågen går lika ofta som lokalpendeltågen och får ungefär samma belastning. År 2017 beräknas de ha ca 35 miljoner resenärer vardera, år 2030 ca 55 miljoner och år 2050 ca 75 miljoner resenärer för lokalpendeln och något mer för snabbpendeln p.g.a. utpridningen.

Snabbpendeltågen har här förutsatts gå på Citybanan dels för att skapa tillgänglighet till andra målpunkter än regionaltågen, dels för att det är kapacitetsmässigt bättre än att försöka få in dem till Stockholm Central då det skulle skapa nya konflikter mellan olika tåg.

5.5. Antal passagerare i olika snitt

Det antal passagerare som angivits ovan är antalet passagerare i dimensionerande snitt. Detta ligger en bit utanför Centralen eftersom det är fler som stiger av än stiger på exempelvis vid Stockholms Södra i riktning mot Centralen. Vi har ändå valt att redovisa antalet passagerare i dimensionerande snitt eftersom det är denna sifra som primärt beräknas i prognoserna och också dimensionerar antalet tåg och vagnar som behövs.

Det antal resenärer som åker till/från Centralen beräknas uppgå till 90% av antalet resenärer i dimensionerande snitt. En del av de som åker till Centralen ska dessutom byta tåg. De som har Stockholm Central som slutstation beräknas överslagsmässigt utgöra 85% av antalet resenärer i dimensionerande snitt. Detta ska ses som schablonmässiga beräkningar. Sannolikt kommer antalet genomresande vid Stockholm C att öka dels som följd av regionens expansion i de yttre förortsområdena, dels som följd av snabbpendelsystemet.

Det beräknade antalet resenärer i dimensionerande snitt, antalet resenärer vid Stockholm C inklusive de som ska byta tåg och antalet resenärer med start- eller målpunkt i Stockholm C framgår av figur 5.5.

<table>
<thead>
<tr>
<th>Tägtyp</th>
<th>Miljoner pass/år</th>
<th>Ökning %</th>
<th>Pass i maxh/maxriktn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärrtåg</td>
<td>5 8 11 19 25</td>
<td>72% 30% 80% 34%</td>
<td>1 432 2 469 4 031 5 623 7 559</td>
</tr>
<tr>
<td>Regionaltåg</td>
<td>6 11 14 22 29</td>
<td>91% 30% 52% 35%</td>
<td>2 535 4 847 6 391 8 435 11 845</td>
</tr>
<tr>
<td>Flygpendel</td>
<td>0 3 4 6 7</td>
<td>15% 64% 21%</td>
<td>0 1 440 1 662 2 726 3 289</td>
</tr>
<tr>
<td>Summa Sthlm Central</td>
<td>10 22 28 47 62</td>
<td>113% 28% 64% 33%</td>
<td>3 967 8 756 12 083 16 784 22 693</td>
</tr>
<tr>
<td>Snabppendel</td>
<td>35 55 80</td>
<td>54% 46%</td>
<td>17 739 28 393 40 969</td>
</tr>
<tr>
<td>Pendeltåg</td>
<td>34 54 34 54 73</td>
<td>59% -37% 59% 35%</td>
<td>15 047 23 899 17 042 28 484 38 706</td>
</tr>
<tr>
<td>Summa Sthlm City</td>
<td>34 54 69 108 152</td>
<td>59% 28% 57% 41%</td>
<td>15 047 23 899 34 781 56 677 79 679</td>
</tr>
<tr>
<td>Sthlm C/City totalt</td>
<td>44 76 98 155 214</td>
<td>72% 28% 59% 38%</td>
<td>19 015 32 655 46 864 73 662 102 371</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tägtyp</th>
<th>Miljoner pass/år</th>
<th>Ökning %</th>
<th>Pass i maxh/maxriktn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärrtåg</td>
<td>4 8 10 18 24</td>
<td>72% 30% 80% 34%</td>
<td>1 361 2 345 3 829 5 342 7 181</td>
</tr>
<tr>
<td>Regionaltåg</td>
<td>5 10 13 19 26</td>
<td>91% 30% 52% 35%</td>
<td>2 281 4 363 5 752 7 592 10 661</td>
</tr>
<tr>
<td>Flygpendel</td>
<td>0 3 4 6 7</td>
<td>15% 64% 21%</td>
<td>0 1 440 1 662 2 726 3 289</td>
</tr>
<tr>
<td>Summa Sthlm Central</td>
<td>10 21 26 43 58</td>
<td>116% 28% 64% 33%</td>
<td>3 642 8 148 11 243 15 660 21 136</td>
</tr>
<tr>
<td>Snabppendel</td>
<td>30 46 68</td>
<td>54% 46%</td>
<td>15 078 24 134 34 824</td>
</tr>
<tr>
<td>Pendeltåg</td>
<td>29 46 29 46 62</td>
<td>59% -37% 59% 35%</td>
<td>12 790 20 314 15 660 21 136</td>
</tr>
<tr>
<td>Summa Sthlm City</td>
<td>29 46 59 92 130</td>
<td>59% 28% 57% 41%</td>
<td>12 790 20 314 29 564 48 346 67 727</td>
</tr>
<tr>
<td>Sthlm C/City totalt</td>
<td>38 67 85 136 187</td>
<td>73% 28% 59% 38%</td>
<td>16 432 28 462 40 806 64 005 88 857</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tägtyp</th>
<th>Miljoner pass/år</th>
<th>Ökning %</th>
<th>Pass i maxh/maxriktn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärrtåg</td>
<td>4 7 9 16 22</td>
<td>72% 30% 80% 34%</td>
<td>1 225 2 111 3 447 4 808 6 463</td>
</tr>
<tr>
<td>Regionaltåg</td>
<td>5 9 12 18 25</td>
<td>91% 30% 52% 35%</td>
<td>2 167 4 144 5 464 7 212 10 128</td>
</tr>
<tr>
<td>Flygpendel</td>
<td>3 4 6 7</td>
<td>15% 64% 21%</td>
<td>0 1 426 1 645 2 699 3 256</td>
</tr>
<tr>
<td>Summa Sthlm Central</td>
<td>9 19 25 41 54</td>
<td>118% 28% 64% 33%</td>
<td>3 392 7 681 10 555 14 719 19 846</td>
</tr>
<tr>
<td>Snabppendel</td>
<td>29 44 64</td>
<td>54% 46%</td>
<td>14 324 22 928 33 083</td>
</tr>
<tr>
<td>Pendeltåg</td>
<td>27 44 27 43 59</td>
<td>59% -37% 59% 35%</td>
<td>12 151 19 298 13 761 23 001 31 258</td>
</tr>
<tr>
<td>Summa Sthlm City</td>
<td>27 44 56 88 123</td>
<td>59% 28% 57% 41%</td>
<td>12 151 19 298 28 085 45 928 64 340</td>
</tr>
<tr>
<td>Sthlm C/City totalt</td>
<td>36 63 81 128 177</td>
<td>73% 28% 59% 38%</td>
<td>15 543 26 979 38 641 60 647 84 187</td>
</tr>
</tbody>
</table>
6. Trafikstruktur och kapacitetsbehov på Stockholm C

6.1. Kapacitetsbehov söderut

Pendeltågen är uppdelade i lokalpendeltåg och snabbpendeltåg där båda systemen går i 15-minuterstrafik. Lokalpendeltågen stannar vid alla stationer som i dag medan snabbbpendeltågen stannar vid de största stationerna och går längre ut i Mälardalen, söderut till Eskilstuna, Nyköping och Katrineholm. I högtrafik går dessutom lokalpendeltåg som instatståg. Detta system kallas 4+4+4 (4 lokalpendeltåg+4snabbpendeltåg+4 instatståg per timme).

Trafiken på pendeltågsspåren ökar från 2017, dels som följd av att Citybanan blir klar och dels som följd av att snabbbpendelsystemet etableras. Ökningen på fjärrtågsspåren är större till 2030 som följd av att ett höghastighetsnät etablerats.

6.2. Kapacitetsbehov norrut

Norrut, dvs. mot Arlanda, Märsta, Uppsala, Ostkustbanan och Dalabanan, är resbehoven på fjärrtågsspåren något större än söderut, medan resandet på pendeltågsspåren är lägre. Man kan alternativt betrakta resandet norrut och västerut sammantaget vilket är relevant i vissa sammanhang.

6.3. Kapacitetsbehov västerut

Endast fjärrtågen till Örebro–Göteborg förväntas vara vändande vid Stockholm C, resten är genomgående.

<table>
<thead>
<tr>
<th>Riktning</th>
<th>Miljoner passagerare/år</th>
<th>Ökning %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Söderut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågsbånen</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Sthlm City / pendeltågsbånen</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Norrut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågsbånen</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Sthlm City / pendeltågsbånen</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Västerut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågsbånen</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Sthlm City / pendeltågsbånen</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Summa Norr+Väst vid Cst</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågsbånen</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Sthlm City / pendeltågsbånen</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågsbånen</td>
<td>44</td>
<td>65</td>
</tr>
<tr>
<td>Sthlm City / pendeltågsbånen</td>
<td>34</td>
<td>48</td>
</tr>
</tbody>
</table>

Antal persontåg söderut i maxtimmen

Antal personåtg norr- och västerut i maxtimmen

![Bar chart showing the total number of passenger trains per direction in the peak hour north and west towards Stockholm Central and Stockholm City 2000-2017-2030-2050 distributed between long-distance and regional trains at Stockholm Central and pendulum and express pendulum at Stockholm City.](./chart.png)

<table>
<thead>
<tr>
<th>Riktning</th>
<th>Antal tåg i maxtim</th>
<th>Beläggnings %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Söderut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Norrut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Västerut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Summa Norr+Väst vid Cst</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Därav på</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>25</td>
<td>48</td>
</tr>
</tbody>
</table>

6.4. Linjenätsstruktur och tjänstetåg

Linjenätsstrukturen har stor betydelse för kapacitetsbehovet. Den viktigaste frågan är om tågen är genomgående eller om de måste vända på Stockholm C. Tåg som vänder kräver mer kapacitet dels för vändspår dels för furnering. Det faktum att det också finns en stor depå i Hagalund gör att det också blir många in- och utgående tåg mellan Hagalund och Stockholm C.

Tillsammans med godsbangården i Tomteboda och anslutningen till Värtan innebär det att man måste analysera kapaciteten för hela sträcket från Stockholm C till Sörentorp för både persontåg, godståg och tjänstetåg för att få en helhetsbild av kapacitetsbehovet eftersom det många gånger finns ett samband mellan de olika tågens kapacitetsbehov. Någon fullständig sådan analys ingår inte i detta uppdrag men en översiktlig analys av behovet av tjänstetåg som en konsekvens av behovet av trafiktåg redovisas här.

Tjänstetågen är svåra att bedöma eftersom de är beroende av olika operatörers sätt att lägga upp verksamheten, och även samma operatör kan byta strategi under en längre tid. Den avreglering av järnvägen som nu ska genomföras innebär att det kan tillkomma nya operatörer med nya idéer. Det pekar dels på vikten av en flexibel anläggning dels på vikten av att Banverket analyserar kapacitetsbehov, störningskänslighet och den samhällsekonomiska nyttan av olika alternativ. Det kan också innebära att man i slutändan kan komma att ställa vissa krav på att operatörerna lägger upp sin verksamhet på Stockholm C så att man får ut det mesta av järnvägsystemet som helhet.

För Banverkets del kan det också vara skäl att hävda ett samhällsekonomiskt perspektiv där kostnaden för att vända tåg på Stockholm C sannolikt är ganska höga genom de krav på kapacitet som ställs och där trafikanvinsterna av genomgående tåg är stora. Det är därför angeläget att studera genomgående tåg i ett systemperspektiv och var tågvändningar, furnering och uppställning lämpligen skall ske i ett långsiktigt perspektiv.

Genomgående eller vändande tåg?

Den kanske viktigaste frågan är om tågen skall vända eller om de är genomgående i Stockholm C. Vändande tåg som t.ex. kommer in från söder måste för att vända först gå norrut och vända i Karlberg, Tomteboda eller Hagalund så att de sedan kommer in på rätt sida i spårgruppen på Stockholm C söderut. Detta för att undvika korsande tågvägar där man möter tåg i motriktning vilket är mycket kapacitetskrävande och störningskänsligt.

Pendel- och regionaltåg

I början av 1990-talet fanns inte så många regionaltåg i Stockholmsregionen, förutom Uppsalapendeln så var det mest InterCity-tåg som hade både funktionen som fjärrtåg och regionaltåg. När snabbtågen X 2000 introducerades i större skala fick InterCity-tågen alltmer
funktionen av regionaltåg. Genom utbyggnaden av Svealandsbanan och Mälarbanan har en ny generation snabba regionaltåg introducerats. Dessa regionaltåg har vidgat Stockholmsregionen och delvis fått karaktären av pendeltåg för längre avstånd.

I ett långsiktigt perspektiv, med ökad kapacitet på Stockholm C och banorna in till Stockholm (den nya Årstabron, projekt Tegelbacken, pendeltågstunneln och kapacitetsutbyggnader på Svealandsbanan och Mälarbanan) är det troligt att även de flesta regionaltågen blir genomgående. Det faktum att regionaltågen blir en alltmer integrerad del av regionen och att det är de yttre områdena som växer snabbast innebär att det kommer att finnas alltmer resbehov genom staden från bostadsområden på ena sidan till arbetsplatser på den andra.

När det gäller pendeltågen och snabbpendlarna antas att de blir genomgående vid Stockholm City dels eftersom motsvarande system redan i dag är genomgående av skäl som nämnts ovan, dels eftersom det inte kommer att gå att vända på stationen Stockholm City. Även om det inte finns behov av kapacitet för resande så måste de åndå gå vidare för att vända eller gå till depå på andra sidan Stockholm City.

För regionaltågen har vi räknat med att de huvudsakligen är genomgående. Undantag kan finnas för vissa insatståg eller tåg där det är svårt att finna en lämplig ihopkoppling mellan linjerna och när det är alltför stor obalans mellan efterfrågan på olika delarna.

Fjärrtåg

När det gäller rena fjärrtåg, främst snabbtågen, så tillhör det däremot undantagen att tägen i dag är genomgående. Dels är marknaden för genomgående tåg inte lika stor, dels är linjerna långa och drabbas ibland av stora förseningar så att man vill ha vändhållanden även som regleringstid, dels behöver de i regel furneras. Det förekommer dock att enskilda tåg är genomgående t.ex. från Gävle till Göteborg. I andra länder t.ex. i Tyskland är fjärrtågen ofta genomgående på långa sträckor och genom många stora stationer, även på säckstationer. Det kräver dock en bra baskanvändare i trafiken.

För fjärrtåg gäller att de i regel inte är genomgående år 2015, även om något enstaka undantag kan finnas. År 2030 och 2050 är däremot minst hälften av fjärrtågen genomgående. Undantag är ”insatståg” i högtrafik som i regel kommer från depå och tåg med restider över 4 timmar eller med stor andel av trafiken på enkelspår.

Till- och frånkoppling

Behovet av lokrundgångar har redan minskat, och kommer att minska ännu mer, genom att alltfler motorvagnståg används och att många loktåg har ett lok i varje ände. I och med att SJ fått sina nya dubbdäckare X40 levererade är de flesta regionaltåg till/från Stockholm C motorvagnståg i basutbudet och nästan alla insatståg ha ett lok i varje ände eller manövervagn. Behovet av rundgångspår kommer i detta perspektiv inskränka sig till några enstaka tåg och nattåg. Ett alternativ är tillkoppling av ett andra lok i rätt ände eller framväxling med växellok om man vill minimera antalet spår med rundgångsmöjlighet.

Däremot har det uppstått ett behov av tägrorrelser för av- och tillkoppling av multipelenheter i regionaltrafiken. Detta kräver en annan infrastruktur än lokrundgångar med sektionerade sträckor längs plattformsspåren och parkeringsmöjligheter för multipelenheter över dagen. Detta förekommer redan i dag med SJ:s X40-tåg när utbudet skall anpassas till efterfrågan under dagen.

Det vore en fördel om man kan finna en plats i sträket Stockholm C–Hagalund dit det framförallt går att ta sig snabbt och där man kan parkera fordon som skall multipelkoppas under dagen. Hårtill kommer behovet av att ställa upp insatståg under dagen. Man kan överlagsmässigt räkna med att det behövs ytterligare i genomsnitt fyra enheter per regionaltågssträck (Västerås, Eskilstuna, Uppsala, Gävle–Linköping och Hallsberg–Katrineholm) vilket ger högst 20 st. 2-vagnsenheter. Hårtill kommer kanske i genomsnitt 2 insatståg per gren eller 10 tåg med 2 lok och max 8 vagnar.

Den sammanlagda spårlängden för uppställning av dessa tåg uppgår till ca 1 000 m för motorvagnsennheten och ca 2 300 m för loktågen. Det bör påpekas att detta är det maximala behovet och att vissa enheter skulle kunna ställas upp i Västerås, om de skall underhållas, och i Uppsala, dit det är relativt kort avstånd. Ett möjligt område är Tomteboda, de områden som inte används för godstrafik. Ett annat är Hagalund, vilket kan vara bättre eftersom det där också finns tillgång till verkstadskapacitet vid behov.

På lång sikt kommer sannolikt loktågen i persontrafiken att ersättas av motorvagnståg. Eftersom Green Cargo redan i dag har sina lok i Tomteboda kommer behovet av lokstället och vagnverkstaden i Hagalund att minska drastiskt. Detta kan ge utrymme för uppställning av
multipelenheter och insatståg. Det är då mycket väsentligt att tägvägarna till/från Hagalund är snabba och störningsfria. Om tägen kan gå som trafiktåg till Hagalund behöver inte driftskostnaden för detta bli så höga.

Furnering

En annan slutsats man kan dra av detta resonemang är att Tomteboda i första hand borde reserveras för godstrafikens behov och Hagalund för persontrafikens behov, men att det också är viktigt att Stockholm C byggs för flexibel tägföring

6.5. **Persontågen till/från Stockholm C i maxtimmen**

De flesta persontåg är genomgående vid Stockholm C och behovet av kapacitet i norra säcken för väntande täg kommer att minska drastiskt. Arlandapendeln har dock förutsatts gå kvar med en del väntande och en del genomgående täg. Ur kapacitetssynpunkt vore det dock bättre om även denna vore genomgående. Även ur marknadssynpunkt skulle det vara en fördel om den kunde integreras i snabbpendelsystemet och därmed också få den höga tillgängligheten i Stockholms centrum och fortsätta söderut och nå några viktiga målpunkter där.

6.6. **Godstågen**

Figur 6.6: Totalt antal tåg – exklusive pendeltåg- per riktning i maxtimmen söderut vid Stockholm Central 2000-2017-2030-2050 fördelade på person- och godståg vid Stockholms Central.

Figur 6.7: Totalt antal tåg – exklusive pendeltåg- per riktning i maxtimmen norrut vid Stockholm Central 2000-2017-2030-2050 fördelade på person- och godståg vid Stockholms Central.
Antal tåg västerut från Stockholm C i maxtimmen

Figur 6.9: Behov av tåglägen för persontrafik i maxtimmen i dimensionerande riktning med utgångspunkt från beräknad efterfrågan år 2050.
Totalt behov av tåglägen i maxtimmen

Till behovet av tåglägen för persontåg kommer behovet av godstågslägen och för lokrundgångar och tomtåg samt en marginal i form av ett antal reservlägen.

En marginal på 10% har slutligen lagts på det totala antalet tåg för reservlägen. Den är i första hand till för att öka återställningsförmågan vid förseningar, men kan också utnyttjas för enstaka tåg eller tillfälliga behov t.ex. som kan uppstå som följd av tågrörelser som behövs på grund av att tåg havererar. Det är givetvis också så att det exakta behovet av tåglägen är mycket svårt att beräkna för ett år som ligger så långt fram som 2050. Till detta kommer också att signalsystemen och tågens prestanda kan utvecklas så att det är möjligt att köra fler tåg än med dagens teknik. Det antal tåg som beräkningarna resulterar i ligger i många fall på kapacitetsgränsen med dagens teknik.

Figur 6.10: Behov av tåglägen för godstrafik i per dag år 2003 och med utgångspunkt från beräknad efterfrågan år 2050.

<table>
<thead>
<tr>
<th>Station / Spår</th>
<th>Antal tåglägen i maxtimmen per riktning</th>
<th>Reservfaktor: 1,10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personståg</td>
<td>Godståg</td>
</tr>
<tr>
<td>Söderut</td>
<td>22 40 54 61</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>Därav på</td>
<td>10 16 24 27</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>12 24 30 34</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Sthlm City / pendeltågspåren</td>
<td>19 27 37 42</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Norrut</td>
<td>12 15 19 20</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Därav på</td>
<td>7 12 18 22</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Västerut</td>
<td>9 15 16 22</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>Därav på</td>
<td>6 12 16 22</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Summa Norr+Väst vid Cst</td>
<td>28 42 53 64</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Därav på</td>
<td>15 18 23 26</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Sthlm Central / fjärrtågspåren</td>
<td>13 24 30 38</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
7. Kapacitet till/från Stockholm C

7.1. Kapacitet i spårsystemet

Den nuvarande praktiska kapaciteten i spårsystemet framgår av figur 7.1 och den teoretiska kapaciteten av figur 7.2. Den teoretiska kapaciteten för ett dubbelspår med ensartad trafik ligger på ca 20 tåg per timme och riktning eller ett tåg var tredje minut. Om tågen inte stannar kan man på en kortare sträcka köra upp till 30 tåg per timme eller ett tåg varannan minut.

Tunnelbanan har en teoretisk headway (tidsavstånd) på 90 sekunder vilket är 40 tåg per timme och riktning men det är nästan omöjligt att uppnå eftersom tågen måste stanna vid stationer och stationerna ligger på lite olika avstånd och har olika belastning vilket gör att tågen inte kan köra så tätt som det teoretiska tidsavståndet anger. Järnvägsystemet har lägre kapacitet men i gengäld högre hastighet – tunnelbanan har en maxhastighet på 80 km/h medan pendeltågen har en maxhastighet på 160 km/h.

En järnväg med blandad trafik som på Stockholms Central i dag och även i framtiden där det går tåg med olika prestanda. Om man blandar snabbtåg med hög topphastighet och sämre acceleration, regionaltåg med bättre acceleration och långa godståg med låg acceleration så sjunker kapaciteten.

Stockholm Central är signaltekniskt byggd för att kunna tidtabellslägga 28 tåglägen per timme och riktning med blandad trafik. Eftersom det under flera år varit (för) stora förseningar i trafiken har Banverket bestämt att inte tidtabellslägga mer än 24 tåg per timme. Detta beror också på att det finns kapacitetsproblem längre ut i systemet som gör att det är svårt att tidtabellslägga fler tåglägen annat än mellan Stockholm C och Stockholm Södra.

Betraktar man bara de anslutande banornas teoretiska kapacitet på 20 tåg per timme så blir det 60 tåg per timme som teoretiskt skulle kunna passera Stockholms Central söderifrån och 42 tåg norrifrån. Söderifrån kommer västra stambanan, Ostlänken och Svealandsbanan om vi förutsätter att dessa är dubbelspåriga i ett långsiktigt perspektiv och norrifrån Ostkustbanan och Mälarbanan samt idag godstrafiken på den enkelspåriga Värtabanan. I och med att norra säcken finns för vändande tåg norrifrån så är det nästan balans här men med en maximal teoretisk kapacitet på 30 tåg per timme genom Stockholm Central söderut så är det bara halva kapaciteten som på de tre anslutande banorna som har en teoretisk kapacitet på 20 tåg timme vardera.

För pendeltågen så finns det två grenar söderut (Södertälje och Nynäshamn) medan det kommer att finnas tre grenar norrut (Bälsta, Märsta och Roslagspilen). Här således en teoretisk kapacitet på 40 tåg per timme söderut och 60 tåg per timme norrut medan Citybanans kapacitet ligger på.
30 tåg per timme. Det finns således en viss obalans i systemet både på Stockholm Central och på Citybanan.

Figur 7.1: Praktisk kapacitet i spårsystemet till/från Stockholm C i antal tåg per timme och riktning. Avser nuvarande utformning med Ostlänken och planerad utformning av Citybanan öppningsåret. Tåglägena på grenarna är fördelade efter efterfrågan år 2030.

Figur 7.2: Teoretisk spårkapacitet i spårsystemet till/från Stockholm C. Antal tåg per timme och riktning.
8. Möjligheter att öka kapacitetsutnyttjandet

De möjligheter som finns att öka kapaciteten och kapacitetsutnyttjandet är:

- Använda tåg med högre kapacitet
- Utnyttja ståplatser i pendeltåg
- Kortare platformstider
- Förbättrade signalsystem och ETCS/ERTMS
- Införa automatisk tågdrift

8.1. Tåg med högre kapacitet

En effektiv åtgärd är att använda tåg med många platser per tågmeter. Kapaciteten i detta avseende skiller sig mycket mellan olika tågkoncept. Korta konventionella envånings lokåg har lägst kapacitet per tågmeter medan breda tåg, där man kan sitta 2+3 i bredd, eller tvåvåningståg, där man kan sitta 2+2 ovanpå varandra har högre kapacitet per tågmeter. Motorvagnståg har i regel fler platser per tågmeter än loktåg men när det gäller tvåvåningståg kan långa loktåg vara effektivare än motorvagnståg.

Av tabell X framgår kapaciteten i några nuvarande tåg och möjliga framtida tåg för ett normalt tåg och för ett maxtåg indelade i fjärr- regional- och lokaltåg. För fjärrtåg har det svenska snabbtåget X2000 (litt X2) som är lokdraget med 6 vagnar en kapacitet på 311 sittplatser eller 1,9 platser per tågmeter. Två multipelkopplade enheter, vilket är det maximala som går in på en plattfromslängd av 355 m som vi föreslagit för fjärrtåg på Stockholm C, får en kapacitet på 622 sittplatser.

Ett fyrvagnars tvåvånings- eller brett tåg kan vara ett möjligt koncept för ett framtida höghastighetståg för den svenska marknaden. Det motsvarar också ett halvt Europeiskt snabbtåg. Ett exempel är det Franska TGV duplex som med ett lok och fyra vagnar (inklusive manövervagn) skulle få en kapacitet på 256 sittplatser eller 2,6 platser per tågmeter med en maximal kapacitet på 768 sittplatser för tre multipelkopplade enheter med 12 vagnar som är 300 m långt.

Ett fyravagnars brett tåg skulle kunna få en kapacitet på 320 platser eller 3,2 sittplatser per tågmeter och en maximal kapacitet på 960 platser för tre multipelkopplade enheter med 12-vagnar som är 300 m långt. Det är 50% fler platser än i det nuvarande X2-tåget.

När det gäller regionaltåg så har SJ:s X40-tåg, som är ett tvåvåningståg, 270 sittplatser i ett trevagnståg eller 3,3 platser per tågmeter och är relativt effektivt. Ett Regina-tåg med 3 vagnar i regionaltågstuförande skulle ha 400 platser eller 3,7 platser per tågmeter vilket är något högre. Om man multipelkopplar tre tåg så blir den maximala kapaciteten 810 sittplatser för X40 och 900 sittplatser för Regina och längden ca 250 m vilket skulle kunna fungera både på pendeltågsplattformarna och på Stockholm C.

Möjlighet finns också att formera 4-vagnars regionaltåg vilket är något effektivare och möjliggör 12-vagnståg med en längd på ca 325 m vilket skulle vara möjligt på Stockholm C och vissa regionaltågsstationer. De skulle då få en kapacitet på 1100-1200 sittplatser vilket skulle vara effektivt för insatståg.
Figur 8.1: Exempel på nuvarande och möjliga framtida tågkoncept och dess kapacitet.

<table>
<thead>
<tr>
<th>Typ</th>
<th>X2</th>
<th>X3000</th>
<th>X3000</th>
<th>X40</th>
<th>X56</th>
<th>X60</th>
<th>X70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt</td>
<td>Snabbtåg</td>
<td>Höghastighetståg</td>
<td>Regionaltåg</td>
<td>Lokaltåg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koncept</td>
<td>L-6UT</td>
<td>L-4DD-U</td>
<td>WEMU-4</td>
<td>DDEMU-3</td>
<td>WEMU-3</td>
<td>EMU-4(7k)</td>
<td>WEMU-3</td>
</tr>
<tr>
<td>Normaltåg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antal vagnar</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Platser/vagn</td>
<td>52</td>
<td>64</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>94</td>
<td>125</td>
</tr>
<tr>
<td>Antal platser</td>
<td>311</td>
<td>256</td>
<td>320</td>
<td>270</td>
<td>300</td>
<td>374</td>
<td>375</td>
</tr>
<tr>
<td>Längd m</td>
<td>165</td>
<td>100</td>
<td>100</td>
<td>82</td>
<td>81</td>
<td>107</td>
<td>81</td>
</tr>
<tr>
<td>Platser/tågm</td>
<td>1,88</td>
<td>2,56</td>
<td>3,20</td>
<td>3,29</td>
<td>3,70</td>
<td>3,50</td>
<td>4,63</td>
</tr>
<tr>
<td>Maxtåg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antal enheter</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Antal vagnar</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Platser/vagn</td>
<td>52</td>
<td>64</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>94</td>
<td>125</td>
</tr>
<tr>
<td>Antal platser</td>
<td>622</td>
<td>768</td>
<td>960</td>
<td>810</td>
<td>900</td>
<td>748</td>
<td>1125</td>
</tr>
<tr>
<td>Längd m</td>
<td>330</td>
<td>300</td>
<td>300</td>
<td>246</td>
<td>243</td>
<td>214</td>
<td>243</td>
</tr>
<tr>
<td>Platser/tågm</td>
<td>1,88</td>
<td>2,56</td>
<td>3,20</td>
<td>3,29</td>
<td>3,70</td>
<td>3,50</td>
<td>4,63</td>
</tr>
<tr>
<td>Index sittplatser</td>
<td>100</td>
<td>123</td>
<td>154</td>
<td>100</td>
<td>111</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Index platser/tågm</td>
<td>100</td>
<td>136</td>
<td>170</td>
<td>100</td>
<td>112</td>
<td>100</td>
<td>132</td>
</tr>
</tbody>
</table>

För regionaltåg är längden begränsad till 225m om det ska stanna på alla stationer men många nyare stationer, de flesta större och även Stockholm C har en längd på ca 255m, vilket vi föreslår som framtidens standard. Det skulle åtminstone vara möjligt att köra snabbpendeltåg med längre tåg, motsvarande 9 normala vagnar, i stället för som i dag 8 normala vagnar eftersom de flesta snabbpendelstationer redan i dag är så långa. Om man har moduler med motsvarande tre normalstora vagnar så kan tre enheter multipelkopplas och bli ca 245m.

De nuvarande pendeltågen X60 består av 7 kortare vagnar som motsvarar fyra normalstora vagnar i de äldre pendeltågen typ X10. De nuvarande X60-tågen har 374 sittplatser eller 3,5 sittplatser per tågmeter men har också platser för många stående och fler dörrar än regionaltågen. Två tågsätt blir den maximala storleken för fyrvagnarståg då det blir 214m och har 748 sittplatser. Även dessa kan byggas i ca 80m längd motsvarande tre vagnar och skulle då kunna få en maximal sittplatskapacitet på ca 820 sittplatser.

Ett ännu effektivare koncept skulle kunna vara ett extra brett tåg med 3+3 sittplatser i bredd. Ett trevagnarståg skulle kunna få 375 sittplatser eller 4,6 platser/tågmeter. Tre enheter får då kapacitet på 1125 sittplatser vilket är 50% mer än nuvarande X60-tåg. Ett sådant tåg skulle vara lämpligt för snabbpendeln som inte stannar på så många stationer och som går långt där alla bör få en sittplats. Även som insatståg vore det effektivt att anskaffa högkapacitetståg då de ofta används bara några gånger per vardag och man i vissa lägen härigenom kan undvika eller skjuta upp investeringar i infrastrukturen.

8.2. Utnyttja sittplatser i pendeltågen

Det kan också mycket väl inträffa att kollektivtrafiken som följd av klimatkrisen måste svara för en större andel av resandet och då kan den höga prognosen inträffa mycket tidigare än 2050. Det finns alltså flera anledningar till att ha en handlingsberedskap för investeringar i högre kapacitet.

Att utnyttja fler ståplatser i pendeltågen kan vara en buffert i väntan på högre kapacitet men ska kollektivtrafiken på allvar kunna konkurrera med biltrafiken så måste den åtminstone i genomsnitt kunna erbjuda sittplats åt alla. Man bör tänka på att om genomsnittbeläggningen i maxtimmen är 100% så kommer det alltid finnas vissa tåg som är mer belastade än andra och vissa vagnar i tågen som också är mer belastade än andra. En beläggningsgard på 100% betyder i praktiken att en hel del resenärer ändå får ståplats.

8.3. Kortare plattformstider

Den tid som tågen står vid plattform för resandeutbyte, regelrings av tidsplanen och eventuell fournering är kritisk för kapaciteten på Stockholm C. Om denna kan minskas så kan kapaciteten för varje plattformsspår öka i motsvarande mån.

Av figur 8.2 framgår de plattformstider som vi räknat med vid kapacitetsberäkningarna för Stockholm C i dag. De är helt naturligt kortast för pendeltågen med många dörrar, ofta plana insteg och vana resenärer utan bagage och långst för fjärrtåg med få dörrar, platsbokning där man måste hitta rätt vagn, och sällanresenärer med mer bagage. Regionaltågen har längre plattformstider främst beroende på att de har färre dörrar än pendeltågen. De kan också behöva mer regeltid när dom är genomgående och går längre sträckor. Att regionaltågen i dag har längre plattformstid beror också på att det fortfarande finns lokdragna tåg.

Plattformstiden beräknas i dag uppgå till för lokaltåg till 2 minuter, för regionaltåg 5 minuter och för fjärrtåg 8 minuter i dag. I Tyskland är plattformstiderna i dag i regel kortare trots längre tåg. I framtiden med mer enhetliga tåg med bättre insteg och automatisk dörrstängning och fler tekniska hjälpmedel (se automatisk tågdrift) nedan, räknar vi med att det skulle gå att tidtabellsäga lokaltåg för 1,5 minuter plattformstid, regionaltåg för 3 minuter och fjärrtåg för 5 minuters plattformstid vid Stockholm C och City.

Kan detta uppnås kan genomströmningen på varje plattformsläge vid Stockholm C och City snabbas upp och kapaciteten räknat i antal tåg ökas under förutsättning att inte linjekapaciteten, växelförbindelser eller knutpunkter utgör en trångsektion.

Figur 8.2: Uppehållstid som normalt bör planeras vid plattform vid Stockholm C i dag, möjliga tider år 2050 och plattformstider i Tyskland i dag.
8.4. Förbättrade signalsystem och ETCS/ERTMS

Signalsystemet kan förbättras dels genom att förbättra nuvarande signalsystem ATC 2 och införa olika stödssystem dels genom att på sikt införa det gemensamma Europeiska signalsystemet ETCS (European Train Control System) och ERTMS (European Rail Traffic Management System).

ETCS är ett radiobaserat signalsystem som successivt ska införas som standard i Europa. Syftet är dels att skapa interoperabilitet med ett gemensamt system som alla tåg i gränsöverskridande trafik kan användas dels att standardisera signalsystemet och genom ökad konkurrens få lägre kostnader.

ETCS är ett radiobaserat signalsystem och finns utvecklat i tre olika nivåer. ETCS nivå 1 liknar mycket dagens moderna signalsystem. ETCS nivå 2 är det som oftast används när systemet nu implementeras på många nya banor i Europa. Det är ett system där det inte finns några fasta signaler utmed banan utan endast i förarhytten på tågen och där signalbeskeden överförs med radiosignaler, dock finns fortfarande blocksträckor. Den mest avancerade versionen nivå 3 finns ännu inte i drift men har också flytande blocksträckor så att tågen i princip kan köra på bromsstreckan. ERTMS är tänkt att vara ett trafikledningssystem som kan kopplas ihop med ETCS.

Det har dock visat sig att ETCS i många fall inte ger några kapacitetsvinster jämfört med avancerade signalsystem som redan finns i Sverige (ATC 2) och Tyskland (Indusi). Tvärtom kan, om inte systemet anpassas, kapaciteten t.o.m. kan bli lägre än med nuvarande moderna system. Det beror på de s.k. bromskurvorna som bestämmer när signalsystemet ska ta över och bromsa om inte lokföraren gör det. Dessa är konstruerade så att de bromsar tidigare än nuvarande system vilket innebär att kapaciteten sjunker.

De situationer där ETCS ger bäst effekt är vid kolonnkörning på dubbelspår med flera tåg efter varandra med samma hastighet och uppehållsmönster. När det gäller utfarten söderut på Centralen ”Getingmidjan” är blocksträckorna mycket korta och signalsystemet redan nu så förfinat att ett införande av ETCS inte skulle ha någon större effekt här men däremot längre ut på västra stambanan.

Fördelarna med ETCS är således inte med nuvarande utformning kapaciteten utan framförallt interoperabiliteten när systemet är genomfört i europeiska sammanhängande korridorer. Vid byggande av nya järnvägar ger systemet också lägre investeringskostnader och det faktum att det inte har några fasta ljussignaler (i nivå 2) och inte heller några fasta blocksträckor isolerar riskar (i nivå 3) minskar underhållskostnaderna och ökar flexibiliteten. Det kan således löna sig att införa ETCS när man bygger nya järnvägar och när de gamla signalsystemen är magna för utbyte.

Ett system som däremot skulle ge högre kapacitet vid utfart söderut från Stockholm C är ett signalsystem som kan möjliggöra att det tåg som har avgångstiden inne och är klart också får avgå först. I dag fungerar det så att man lägger tävgång för ett tåg som är klart och ska avgå efter indikation från tågbefälhavaren eller tägvakten men det kan hända att det ändå inte kommer iväg p.g.a. att det blir något problem med dörrarna eller dragkraften t.ex. Vad som händer då är att tägvägen kan ligga lång tid innan trafikledningen blir varse om att tåget inte kommer iväg och kan lägga om tägvägen för ett annat tåg. På så sätt kan tågen hindra varandra så att kapaciteten sjunker.

Om istället det tåg som är klart och också börjar röra på sig kunde garanteras tägång så skulle kapaciteten kunna öka. En simulering som gjorts vid KTH där en extra kort signalsnören lagts in som tåget körde över när det började röra på sig och som först då läste tägvägen visade att kapaciteten skulle kunna öka från de nu möjliga 28 täglägen per/h och riktning till 32 täglägen/h
och riktning. Det har dock ännu inte visat sig möjligt att konstruera ett sådant signalsystem som uppfyller normerna med skyddsavstånd mm.

Det kan således ibland bli ett problem att man kräver en så hög säkerhet av järnvägen – liksom när det gäller ETCS ovan – att kapaciteten sjunker – och i värsta fall trafikanterna tvingas ut i den mindre säkra vägtrafiken. Dock finns det andra hjälpmedel som gör att man kan öka kapaciteten t.ex. TV-övervakning av avgångsspåren så att trafikledarna kan se exakt vad som händer och kortare ställtider för omläggning av tågvägar mm, åtgärder som nu håller på att genomföras.

8.5. Automatisk tågdrift

Det finns i dag ett antal tunnelbanelinjer i världen som har automatisk tågdrift. Ofta har man då slutna system där det finns en vägg med dörrar mot tåget på plattformen som öppnas endast när tåget står inne. Om inte så är fallet brukar en förare ändå åka med som övervakare. Att automatisk tågdrift ännu inte kommit till praktisk användning i större utsträckning beror nog mer på psykologiska faktorer än tekniska. Det faktum att man inte sparar så mycket pengar om man ändå måste ha en förare med inverkar också men det är ändå ett effektivt sätt att öka både kapaciteten, punktligheten och minska energiförbrukningen.

Förutom automatisk tågdrift där varje tåg tolkar signalerna och kör själv utvecklas också mer och mer avancerade stödsystem för trafikledningen. S.k. ställverksautomater är en enklare form som finns redan i dag som t.ex. ställer tågvägar efter tågnummer men man kan också tänka sig att simuleringar utvecklas så att de används för att styra tågen. I första hand utvecklas nu stödsystem för trafikledarna t.ex. det s.k. STEG-systemet där man med hjälp av simulering kan prognostisera tidtabellerna med försonade tåg några timmar framåt och på så sätt förutse vilka åtgärder som bör vidtas.

8.6. Slutsatser

Konsekvensen av ett genomförande av alla de åtgärder som gått igenom ovan blir att den praktiska kapaciteten närmar sig den teoretiska som beskrivits ovan. Med bästa teknik i bana, signalsystem, fordon och trafikledning och med ett väl underhållat system skulle man kunna närma sig den teoretiskt maximala kapaciteten som ligger uppemot 30 tåg per timme och riktning i maxtimmen när det gäller Stockholm Central och uppemot 32 tåg per timme och riktning för Stockholm City. Sedan kan det givetvis finnas flaskhalsar längre ut i systemet som kan vara mer eller mindre låta att åtgärda.

Av tabell 9.3 framgår en bedömning av det maximala antalet tåglägen som man borde kunna räkna med hänsyn tagen till de ovan nämnda tekniska och operativa utvecklingsmöjligheterna. På Stockholms Central tidtabellsläggs i dag 24 tåglägen söderut och ytterligare 10 tåglägen är möjliga norrut under maxtimmen. Efter det att alla åtgärder i Kraftsamling Mälardalen är genomförda år 2011 borde 28 tåglägen kunna tidtabellsstämplas under förutsättning att inte störningar i systemet är för stora. Det gäller en situation där Stockholms Central trafikeras av både pendeltåg, regionaltåg och fjärrtåg där pendeltågen utgör minst hälften av tågen.

När Citybanan öppnas är 2017 ökar kapaciteten med 24 pendeltåglägen vid Stockholm City. Samtidigt kommer Stockholms Central enbart att trafikeras av fjärrtåg och regionaltåg med längre

Den sammanlagda kapaciteten söderut har ökat från 18 tåg per timme och riktning innan nya Årstabron blev klar då den ökade till 24 tåg. Med den ombyggnad som genomförts av Stockholms Central med omgivning och som beräknas vara slutförd år 2011 beräknas kapaciteten öka till 28 tåglägen per timme. Med Citybanan ökar den sammanlagda kapaciteten från 28 till 44 tåglägen per timme. Med de successiva förbättringarna som beskrivs ovan skulle man kunna räkna med en sammanlagd kapacitet på 60 tåg per timme och riktning söderut år 2030 och 70 tåg år 2050.

Jämför man denna kapacitet med det beräknade behovet av tåglägen för både person- och godstrafik respektive år är det någorlunda balans år 2017 med Citybanan och år 2030 men marginalerna är inte stora år 2030. Tar man även hänsyn till reservlägen uppnår man kapacitetsgränsen. År 2050 slår man definitivt i taket både när det gäller antalet tåg och beläggningsgarden i tågen.

Figur 8.3: Antal möjliga täglägen som bedöms kunna kan tidtabelläggas per timme och riktning till från Stockholm Central och Stockholms City.

Antal tidtabellslagda tåg per timme och riktning

<table>
<thead>
<tr>
<th>År</th>
<th>Stockholm Central Ytspåren (F)</th>
<th>Stockholm City Olybanan (P)</th>
<th>Stockholm Söderut</th>
<th>Stockholm Norrut</th>
<th>Totalt</th>
<th>Atgärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>18</td>
<td>28</td>
<td>18</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>24</td>
<td>34</td>
<td>24</td>
<td>34</td>
<td>F: Arstabron invigd</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>28</td>
<td>38</td>
<td>28</td>
<td>38</td>
<td>F: Kraftsamling Mälardalen genom för Förrutsätter bättre punktlighet</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>20</td>
<td>30</td>
<td>24</td>
<td>24</td>
<td>44</td>
<td>F: Kraftsamling Mälardalen genom för Förrutsätter bättre punktlighet</td>
</tr>
<tr>
<td>2030</td>
<td>24</td>
<td>34</td>
<td>30</td>
<td>30</td>
<td>54</td>
<td>F: Endast fjärr- och regionaltåg</td>
</tr>
<tr>
<td>2050</td>
<td>28</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F: Signal- och styrsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F: Signal- och styrsystem</td>
</tr>
</tbody>
</table>
9. Långsiktiga strukturfrågor

De prognoser som hittills gjorts av den framtida trafiken i Stockholmsregionen visar på en fortsatt tillväxt av biltrafiken och att kollektivtrafikens marknadsandel skulle minska successivt. Det beror bl.a. på att den största tillväxten av både bostäder och arbetsplatser sker ganska långt ut i regionen, i de yttre förorterna. Därmed ökar också pendlingen mellan perifera förorter och arbetsplatser mest och där har bilen redan idag en starkare ställning än kollektivtrafiken. Denna utveckling förstärks också om förbifart Stockholm byggs vilket prognoserna förutsätter.

Man kan fråga sig om detta är långsiktigt hållbart med tanke på energiförbrukning och klimatkrisen. Om kollektivtrafiken ska få en större andel måste dels lokaliseringen av nya bostäder och arbetsplatser i högre grad anpassas till kollektivtrafiken, dels en större satsning göras på kollektivtrafiken mellan olika förortsområden längre ut i regionen. När det gäller kollektivtrafiken finns flera möjligheter: Utbyggnad av snabbspårvägen, snabbusar som delvis kan utnyttja de nya trafiklederna, spårtaxisystem åtminstone som lokala matarsystem och ytterligare utbyggnad av järnvägsystemet.

Behovet av ett tredje spårsystem förstärks också av de prognoser som redovisas i denna rapport som visar att tågsystemet kommer att ligga ovanför kapacitetsgränsen år 2050 då Citybanan varit i trafik i drygt 30 år. Med den stora befolkningsökning som prognoserna förutsätter, och som egentligen bara är en fortsättning på den tidigare utvecklingen som pågått ända sedan 1800-talet, så är detta naturligt. Men det är viktigt att i tid tänka igenom vilket trafiksystem som ska byggas ut för att den alltmer vidsträckta regionen ska fungera så bra som möjligt.

Figur 9.3: Vision över det tredje spårsystemet med kopplingar till nuvarande nät inklusive Citybanan.

Detta är bara en idé av en möjlig struktur men vi vill med detta snarare peka på behovet av att utarbeta en strategi för framtiden som bygger på en vision av en framtida expanderande region. Olika alternativ bör analyseras noggrant och bör utvärderas med hjälp av utvecklade prognosmodeller och andra analyser. Denna process bör startas snarast då vi vet att det tar lång tid att planera, projektera och finansiera ny infrastruktur.
Bilagor

Bilaga 1: Alternativa spårkonfigurationer för genomgående spår på Stockholm C

Inledning
Denna PM kompletterar tidigare utredningar om alternativa spårkonfigurationer för Stockholm C som presenterats i "Framtida marknad, tågtrafik och kapacitet inom Stockholms Central".

I denna utredning behandlades två lösningar för genomgående plattformsspår som ger högre kapacitet än den konventionella spårlösningen med odelade spår:

- Två tåg efter varandra på delade plattformsspår.

![Diagram av delade spår]

- Genomfartsspår kopplat till delade plattformsspår.

![Diagram av genomfartsspår]

Kapaciteten för dessa system är beroende av tidtabellen för omgivande linjer och rådande punktlighet. Givet vissa antaganden om tidtabell och punktlighet kunde kapaciteten uppskattas enligt följande tabell.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Delat spår</th>
<th>Två delade spår och ett genomfartsspår</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapacitet [tåglägen/spårstid]</td>
<td>Söderut 5-6</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>Norrut 4-5</td>
<td>6-7</td>
</tr>
</tbody>
</table>
Två tåg efter varandra med spårkryss emellan
Kapaciteten för delade plattformsspår, utan intilliggande genomfartsspår, kan stärkas genom kryssväxlar på mitten. Tanken med kryssförbindelserna är att göra tågen som trafikerar samma plattformsspår mindre beroende av varandra eftersom det blir lättare att ”köra runt” stillstående tåg.

Denna lösning ger ett spårsystem som är mer flexibelt än motsvarande utan kryssförbindelser. Detta innebär till exempel att det har en högre kapacitet när uppehållstiderna för olika tåg är olika långa eller då något av spåren används för att vända tåg.

För att uppskatta kapaciteten vid sådan varierande trafikering krävs långtgående antaganden om tidtabellen för omkringliggande linjer. I det följande görs därför endast en kapacitetsuppskattning för de ”rena” trafikfall som studerats i den tidigare utredningen. Dessa trafikfall innebär endast genomgående tåg med samma uppehållstid vid plattform för alla tåg.

För att kryssväxlarna ska ge effekt, vid denna systematiska trafikering, krävs att man utnyttjar endast tre av de fyra plattformslägena, se följande figur. Jämfört med systemet utan kryssväxlar tappar man alltså en plattformsposition. Istället ökar möjligheterna att till ett högt utnyttjande av de andra plattformpositionerna eftersom tågen blir mindre beroende av varandra.

Systemet liknar systemet med genomfartsspår i det avseendet att det finns spårsektioner där konflikter kan uppstå. De marginaler som krävs för att undvika dessa konflikter begränsar systemets kapacitet. I det följande antas att tågen ankommer från vänster.

Konfliktsektionerna är då:

- **Sektion A:** i de fall tåg till sektion B använder sektion A vid infart finns risk att A redan är upptaget.
- **Sektion C:** i de fall tåg till sektion B använder sektion C vid infart finns risk att C redan är upptaget.
- **Sektion x:** i de fall tåg till sektion B körs via C och tåg från A stamtidigt ska avgå uppstår konflikt i själva spårkorset x.

Dessa konflikter innebär att vissa trafikeringar är omöjliga medan andra är möjliga, men med större eller mindre förseningssrisker, beroende på tidsmarginalerna i A, C och x.
Precis som i fallet med genomfartsspåret kommer konfliktrisken och därmed körbarheten att bero på:

- **Ankomstmönster** från angränsande linje – vilka täglägen på linjen som kopplas till systemet.

- **Trafikeringscykeln** för plattformspositionerna – i vilken ordning de tre positionerna ska ta emot tåg. I detta fall är endast ABC och ACB möjliga.

Antalet möjliga ankomstmönster är beroende av täglägesindelningen på angränsande linje (-r) och cykeltidens längd. I det följande har en täglägesindelning antagits:

- Omväxlande var tredje och varannan minut (3+2), vilket ger 24 täglägen per timme.

I kombination med cykeltiderna 10, 15 och 20 minuter skapas ett antal ankomstmönster:

<table>
<thead>
<tr>
<th>Cykeltid</th>
<th>Antal ank.-mönster</th>
<th>Trafikerings-variater</th>
<th>Systemkapacitet [tåg/h]</th>
<th>Spårkapacitet [tåg/spårtimme]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>80</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>600</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>56</td>
<td>2 240</td>
<td>9</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Genom att beräkna vilka konflikter som uppstår vid de olika trafikeringsvarianterna fås en uppskattning av kapaciteten. Om en tillräckligt stor andel av varianterna är körbara blir kapaciteten enligt tabellen ovan.

Beräkningarna har gjorts för fyra driftfall. Mellan dessa skiljer dels uppehållstiden, 5 eller 8 minuter beroende på tågslag, dels erforderlig marginal mellan två tåg på samma plattformssektion, 6 eller 8 minuter beroende på körriktningen. Att marginaltiden är olika beror på att norrgående tåg generellt sett här mer försenade än södergående. Därför krävs större marginal för att undvika spårbrist i nordgående körriktning.

<table>
<thead>
<tr>
<th>Uppehållstid [min]</th>
<th>Marginaltid [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regionaltåg söderut</td>
<td>5</td>
</tr>
<tr>
<td>Regionaltåg norrut</td>
<td>5</td>
</tr>
<tr>
<td>Fjärrtåg söderut</td>
<td>8</td>
</tr>
<tr>
<td>Fjärrtåg norrut</td>
<td>8</td>
</tr>
</tbody>
</table>

Analysen visade dock att det inte spelar någon roll om marginaltiden är 6 eller 8 minuter. Andra faktorer är mer styrande. Därför görs i det följande ingen åtskillnad mellan söder- och norrgående trafik.

Figuren överst på nästa sida visar resultatet i form av andelar av trafikeringsvarianterna som har olika körbarhet.
- **God robusthet** innebär att varianten kan tidtabelläggas konfliktfritt både för infarten till B och i korsningen x. I detta fall uppfylls ett krav om minst 2 minuters beläggningsfri tid mellan tåg i sektion A och C (infartsvägen till B), respektive 4 minuters beläggningsfri tid mellan tåg i sektion x.

- **Låg robusthet** innebär att varianten kan tidtabelläggas konfliktfritt både för infarten till B och i korsningen x. I detta fall uppfylls kravet på minst 2 minuters beläggningsfri tid mellan tåg på plattformsspår A och C (infartsvägen till B). Kravet på x är att beläggningarna inte ska överlappa varandra.

- **Okörbara** varianter är sådana som inte uppfyller kravet på 2 minuters beläggningsfri tid mellan tåg i sektion A och C, eller kravet på konfliktfri trafikering av sektion x.

Figuren visar tydligt att det är infarten till sektion B som är begränsande. Kapaciteten skulle förbättras något utan krav på beläggningstid i infartsvägen till B, men sådana trafikerings bedöms ointressanta eftersom de leder till spårändringar eller tågköer i infarten oacceptabelt ofta.

Med god planering kan man alltså ge systemet en cykeltid på 15 minuter vid regionaltågstrafikering, vilket innebär 3 tåg per 15 minuter, eller en spårkapacitet på 6 regionaltåg/spårtimme.

Eftersom fjärrågens uppehållstid är så pass mycket längre, och de därmed begränsar infarten till sektion B, krävs en cykeltid på 20 minuter för att systemet ska fungera med fjärrtåg. Detta ger 3 fjärrtåg per 20 minuter, eller 4,5 fjärrtåg per spårtimme.
Slutsatser
Kapaciteten för de tre analyserade spårsystemen kan sammanfattas i följande tabell.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Delat spår utan kryss</th>
<th>Delat spår med kryss</th>
<th>Två delade spår och ett genomfartsspår</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapacitet [tåglägen/spårstimme]</td>
<td>Söderut</td>
<td>5-6</td>
<td>4,5-6</td>
</tr>
<tr>
<td></td>
<td>Norrut</td>
<td>4-5</td>
<td>4,5-6</td>
</tr>
</tbody>
</table>

- Det är svårt att påvisa några större effekter av spårkrysset så länge alla tåg är genomgående och trafiken är homogen med samma uppehållstid för alla tåg.
- Effekten av spårkrysset upphäver precis effekten av ett förlorat Plattformsläge (läge D).
- Infarten till sektion B är mer kritisk än själva spårkrysset (vid analyserade längder för uppehållstiden).
- I störda situationer, då alla tåg inte uppför sig likadant, kan krysset hjälpa till att hålla uppe kapaciteten. I dessa lägen har man också nytta av sektion D.
- Krysset är mer användbart vid skiftande uppehållstider och då tåg ska vända direkt vid plattformen.
Bilaga 2: Snabbpendeltåg – ett nytt trafiksyste

Förutsättningar

Denna Bilaga syftar till att övergripande beskriva en princip och ge tidtabellsförslag för framtid-
na pendeltågstrafik i Stockholmsområdet då Citybanan tas i bruk. All pendeltågstrafik ska då kun-
na ledas genom centrala Stockholm via Citybanan, vilket medför att Stockholm C kommer att
brukas enbart för regional- och fjärrtågstrafik.

Som hjälpmedel har simuleringsverktyget RailSys version 2.0 använts för att i en modell av
infrastrukturen i Stockholmsområdet skapa principtidtabeller utifrån de gångtider som
programmet genererar för respektive pendeltågslag.

Pendeltågsstrafiken antas i framtid kompletteras med en ny produkt, snabbpendeltåg, som
stannar på de större stationerna i Stockholmsområdet och som trafikerar större delen av
Mälardalen. Det ger en bättre tillgänglighet inom regionen med kortare restider och större
räckvidd än pendeltågen, men med fler uppehåll än regionaltågen.

Infrastrukturen som har studerats omfattar sträckorna från Stockholm (Station City) till
Södertälje Hamn, Västerhaninge, Märsta och Bålsta. Längs de sträckor som är fyrsprånga antas all
pendeltågstrafik trafikera de inre spåren.

Infrastrukturutbyggnader som antas vara färdiga i Stockholmsregionen är Citybanan (skede 1),
Årstabron, Årstaberg station, och en ”fly over” i projekt Citybanan söder om Årstaberg. Samtliga
dessa objekt, förutom Årstaberg, räder det en viss osäkerhet kring angående sträckor och
gångtider i tidtabellerna som presenteras, då dessa utbyggnader inte är färdigprojekterade i
skrivandes stund.

Fordon som används i trafikeringsförslagen är följande:

- Pendeltåg: X60, sth 160 km/h.
- Snabbpendeltåg: X62, sth 200 km/h, ett modifierat X60 tågsätt med samma
 accelerations- och retardationsprestanda som X60 men med högre maxhastighet.
- Insatståg (endast förslag 1): X60, sth 160 km/h, möjlighet finns att även använda X10
 som insatståg.

Principer för framtida pendeltågstrafik

Pendeltågstrafiken antas precis som idag ha genomgående linjer genom Stockholm, med
slutstationer i exempelvis Södertälje C, Märsta, Kungsängen och Västerhaninge/Nynäshamn.
Stationer utanför dessa som redan idag trafikeras med pendeltåg, som t.ex. Bro, Bålsta, Järna och
Gnesta, kan med fördel i framtid trafikeras med snabbpendeltåg. Snabbpendeltågen har också
 genomgående linjer med start- och slutstationer i exempelvis Uppsala, Västerås, Nyköping,
Katrineholm och Eskilstuna. Detta innebär att sträckan Ålvsjö–(Citybanan)–Tomteboda blir den
begränsande och styrande linjedelen i pendeltågstrafiksystemet, då samtliga pendeltåg ska passera
denna sträcka. Målsättningen är att dimensionera Citybanan (skede 1) för en kapacitet på 24 tåg i
timmen per riktning. Tidsavståndet mellan varje tåg i högtrafik blir då 2,5 minuter. Detta medför
att tågen kommer att åka i kolonn och därför måste samtliga pendeltåg ha samma
trafikeringsmönster på sträckan Ålvsjö–(Citybanan)–Tomteboda.

Med avseende på Citybanans kapacitet har två trafikeringsförslag utarbetats med sammanlagt 12
 tåg i timmen på varje linjel, vilket ger 24 tåg på den gemensamma sträckan Ålvsjö–(Citybanan)–
Tomteboda. Det första förslaget innebär att varje linjedel under maxtimmen har en styv
trafikering bestående av 4 lokalpendeltåg, 4 snabbspendeltåg och 4 insatspendeltåg (kallas här 4+4+4). I det andra förslaget består trafiken under maxtimmen av 6 lokalpendeltåg och 6 snabbspendeltåg på varje linjedel (kallas här 6+6).

Trafikeringsförslag 1 (4+4+4)

Figur B2-1: Trafikeringssystem med 4+4+4

Samtliga tåg gör uppehåll i Älvsjö, Årsta, Stockholm S, Station City och Odenplan, p.g.a. den tätta trafikeringen på denna sträcka. Uppehållstiden för samtliga tåg är satt till 40 sekunder för samtliga stationer. Antal uppehåll och teoretisk gångtid för linjedelarna redovisas i nedanstående tabell:

Figuur B2-2: Gångtider och antal uppehåll för snabbpendeltåg och pendeltåg med 4+4+4

<table>
<thead>
<tr>
<th>Sträcka</th>
<th>Snabbpendeltåg</th>
<th>Pendeltåg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gångtid (min)</td>
<td>Antal uppehåll</td>
</tr>
<tr>
<td>Södertälje H – Sthlm City</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>Västerhaninge – Sthlm City</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Sthlm City – Märsta</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>Sthlm City – Kungsängen</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Sthlm City – Bålsta</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

Trafikeringsförslag 2 (6+6)

Jämfört med förslag 1 så utökas pendeltågen och snabbpendeltågen med två tåg i timmen vardera till styv 10 minuters trafik, vilket innebär att det inte finns plats för några insatståg genom Citybanan. Trafikeringsprincipen är densamma som i förslag 1, men marginalerna mellan tågen minskar, detta innebär att snabbpendeltågarna får mindre tidslucka mellan pendeltågen och måste därför på några sträckor göra fler uppehåll för att inte komma ikapp framförande pendeltåg. Även i detta förslag beräknas uppehållstiden för samtliga tåg på samtliga stationer vara 40 sekunder. Antal uppehåll och teoretisk gångtid redovisas i nedanstående tabell:

Figuur B2-3: Gångtider och antal uppehåll för snabbpendeltåg och pendeltåg med 6+6

<table>
<thead>
<tr>
<th>Sträcka</th>
<th>Snabbpendeltåg</th>
<th>Pendeltåg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gångtid (min)</td>
<td>Antal uppehåll</td>
</tr>
<tr>
<td>Södertälje H – Sthlm City</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>Västerhaninge – Sthlm City</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Sthlm City – Märsta</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Sthlm City – Kungsängen</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Sthlm City – Bålsta</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

Jämfört med förslag 1 måste snabbpendeltågens gångtider utökas med ett uppehåll på sträckan Västerhaninge–Stockholm City, samt tre uppehåll på sträckan Stockholm City–Märsta. Även marginalerna mellan tågen minskar, vid t.ex. Södertälje hamn avgår snabbpendeln två minuter före pendeltåget i detta förslag jämfört med åtta minuter i förslag 1. Även vid pendeltågens slutstationer minskar marginalerna mellan snabbpendlar och pendeltåg.
Slutsatser och kommentarer
Genom att integrera snabbpendeltåg i pendeltågssystemet skapar det snabbare förbindelser mellan centrala Stockholm och de yttre förorterna, samtidigt skapar snabbpendeltägen även direkta förbindelser mellan Stockholms förorter och orter inom Mälardalen.

För att kunna utnyttja koncepetet med snabbpendeltåg på ett optimalt sätt bör snabbpendeltägen gå från Södertäljebanan till Mälarbanan och från Nynäsbanan till Ostkustbanan, givet att pendeltägen går som idag från Södertäljebanan till Ostkustbanan och från Nynäsbanan till Mälarbanan. Det skulle även gå att kasta om denna ordning så att snabbpendeltägen går från Södertäljebanan till Ostkustbanan och så vidare. Med denna princip skapas det stora tidsluckor mellan pendeltägen som snabbpendeltägen med färre uppehåll och kortare gångtider kan utnyttja. Båda tidtabellsförslagen som presenterats har olika för- och nackdelar, några av dessa presenteras nedan:

Förslag 1: (4 pendeltåg + 4 snabbpendeltåg + 4 insatståg)
+ 15 minuters styv trafikering för samtliga tåg ger större marginaler längst ut på linjerna.
+ Snabbpendeltägen kan ha få uppehåll och därmed korta gångtider jämfört med pendeltägen.
+ Korta restider med snabbpendeltägen ger en vidgad marknad.
- Insatstågen hamnar i ”fel läge” på vissa sträckor, då de ut från Citybanan hamnar i tågläget efter ett ordinarie pendeltåg.
- Kapacitetsproblem på linjen mellan den långväga trafiken och pendeltågstrafiken kommer att uppstå på Mälarbanan om den är tvåspårig.

Förslag 2: (6 pendeltåg + 6 snabbpendeltåg)
+ Tätare trafik ger högre turtäthet ut till de yttre stationerna i pendeltågssystemet och även ut till orterna i Mälardalen som trafikeras av snabbpendeltägen.
- Tätare trafik ger mindre marginaler mellan tågen och högre konsumerad kapacitet, vilket ökar risken för att störningar i trafiksystemet ska uppstå.
- Tätare pendeltågstrafik ger mindre utrymme för snabbpendeltägen som på vissa sträckor därför måste göra fler uppehåll och därmed får längre gångtider.
- Det blir därmed svårare att få en jämn beläggning på snabbpendeltägen.
- Kapacitetsproblem på linjen mellan den långväga trafiken och pendeltågstrafiken kommer att uppstå på Mälarbanan om den är tvåspårig.

Förslag 1 (4+4+4) med styv 15 minuters trafik är att förorda då det är ett stabilare och säkra alternativ än förslag 2 (6+6), vad gäller kapacitet och risk för störningspåverkan, samtidigt som snabbpendeltägen får kortare gångtider på några sträckor.
Tidtabell förslag 1: Södertälje - Märsta

<table>
<thead>
<tr>
<th>Station</th>
<th>Tidtabell förslag 1</th>
<th>Tidtabell förslag 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>25.2</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Bn</td>
<td>Barkarby</td>
<td>0.1</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Hov</td>
<td>Hovet</td>
<td>4.6</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Lf</td>
<td>Linköping</td>
<td>1.1</td>
</tr>
<tr>
<td>Mr</td>
<td>Märsta</td>
<td>75.6</td>
</tr>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>5.2</td>
</tr>
<tr>
<td>Upv</td>
<td>Upplands Väsby</td>
<td>7.1</td>
</tr>
<tr>
<td>Rön</td>
<td>Rotebro</td>
<td>5.3</td>
</tr>
<tr>
<td>Nvk</td>
<td>Norrviken</td>
<td>2.0</td>
</tr>
<tr>
<td>Hgv</td>
<td>Häggvik</td>
<td>2.4</td>
</tr>
<tr>
<td>Sol</td>
<td>Sollentuna</td>
<td>1.5</td>
</tr>
<tr>
<td>Hel</td>
<td>Helenelund</td>
<td>2.3</td>
</tr>
<tr>
<td>Udl</td>
<td>Ulriksdal</td>
<td>3.8</td>
</tr>
<tr>
<td>So</td>
<td>Solna</td>
<td>1.9</td>
</tr>
<tr>
<td>Odp</td>
<td>Odenplan</td>
<td>3.8</td>
</tr>
<tr>
<td>Ssc</td>
<td>Station City</td>
<td>1.6</td>
</tr>
<tr>
<td>Sst</td>
<td>Stockholm Södra</td>
<td>3.1</td>
</tr>
<tr>
<td>Årb</td>
<td>Årstaberg</td>
<td>3.2</td>
</tr>
<tr>
<td>Ås</td>
<td>Älvsjö</td>
<td>2.7</td>
</tr>
<tr>
<td>Sta</td>
<td>Stuvsta</td>
<td>3.2</td>
</tr>
<tr>
<td>Hu</td>
<td>Huddinge</td>
<td>2.1</td>
</tr>
<tr>
<td>Flb</td>
<td>Flemingsberg</td>
<td>2.7</td>
</tr>
<tr>
<td>Tul</td>
<td>Tullinge</td>
<td>3.0</td>
</tr>
<tr>
<td>Tu</td>
<td>Tumba</td>
<td>4.1</td>
</tr>
<tr>
<td>Rön</td>
<td>Rönnninge</td>
<td>4.9</td>
</tr>
<tr>
<td>Öte</td>
<td>Östertälje</td>
<td>5.9</td>
</tr>
<tr>
<td>Sö</td>
<td>Södertälje Hamn</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Figur B2-4: 4+4+4 Södertälje–Märsta

Tidtabell förslag 2: Södertälje - Märsta

<table>
<thead>
<tr>
<th>Station</th>
<th>Tidtabell förslag 1</th>
<th>Tidtabell förslag 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>25.2</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Bn</td>
<td>Barkarby</td>
<td>0.1</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Hov</td>
<td>Hovet</td>
<td>4.6</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Lf</td>
<td>Linköping</td>
<td>1.1</td>
</tr>
<tr>
<td>Mr</td>
<td>Märsta</td>
<td>75.6</td>
</tr>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>5.2</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Bn</td>
<td>Barkarby</td>
<td>0.1</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Hov</td>
<td>Hovet</td>
<td>4.6</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Lf</td>
<td>Linköping</td>
<td>1.1</td>
</tr>
<tr>
<td>Mr</td>
<td>Märsta</td>
<td>75.6</td>
</tr>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>5.2</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Bn</td>
<td>Barkarby</td>
<td>0.1</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Hov</td>
<td>Hovet</td>
<td>4.6</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Lf</td>
<td>Linköping</td>
<td>1.1</td>
</tr>
<tr>
<td>Mr</td>
<td>Märsta</td>
<td>75.6</td>
</tr>
<tr>
<td>Rs</td>
<td>Rosersberg</td>
<td>5.2</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
<tr>
<td>Bn</td>
<td>Barkarby</td>
<td>0.1</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Hov</td>
<td>Hovet</td>
<td>4.6</td>
</tr>
<tr>
<td>Hmr</td>
<td>Högakyrka</td>
<td>2.4</td>
</tr>
<tr>
<td>Huv</td>
<td>Huvudbanan</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Figur B2-5: 6+6 Södertälje–Märsta
Tidtabell förslag 1: Västerhaninge - Bålsta

<table>
<thead>
<tr>
<th>station</th>
<th>dkm</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bålsta</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bro</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Kungsan</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Kallhäll</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Jakobsberg</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Barkarby Östra</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Spånga</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Sundbyberg</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Omenplan</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Station City</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Stockholm Södra</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Årstaberg</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Älvsjö</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Farsta Strand</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Trångsund</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Skogås</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Haninge Centrum</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Jordbro</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Västerhaninge</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Figur B2-6: 4+4+4 Västerhaninge–Bålsta

Tidtabell förslag 2: Västerhaninge - Bålsta

<table>
<thead>
<tr>
<th>station</th>
<th>dkm</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bålsta</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bro</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Kungsan</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Kallhäll</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Jakobsberg</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Barkarby Östra</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Spånga</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Sundbyberg</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Omenplan</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Station City</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Stockholm Södra</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Årstaberg</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Älvsjö</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Farsta Strand</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Trångsund</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Skogås</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Haninge Centrum</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Jordbro</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Västerhaninge</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Figur B2-7: 6+6 Västerhaninge–Bålsta
Bilaga 3: Kapacitetsbehov i Hagalund 2006-2015-2030

Bakgrund och metod

För att veta hur långt man skall gå med åtgärder för att lösa de akuta problemen vill Banverket ha en uppfattning om kapacitetsbehovet på längre sikt. KTH Järnvägsgrupp har tidigare gjort en studie av kapacitetsbehovet på Stockholms Central (Framtida marknad, tågtrafik och kapacitet inom Stockholms Central., TRITA-INFRA 05-010. Oskar Fröidh, Olov Lindfeldt och Bo-Lennart Nellå, 2005). Den avsåg en situation 2015, under förutsättning att Citybanan är byggd och 2030 under förutsättning att Götalandsbanan är byggd.

Beräkningar har gjorts för följande tågtyper:

- Snabbtåg
- Regionaltåg med motorvagnar
- Fjärr- och regionaltåg med lok och vagnar
- Lokalpendeltåg och snabbpendeltåg

Därefter har ett antagande gjorts om hur stor andel av tågen som normalt står över natt i Hagalund, i annan depå eller i SL-depå. Normalt står mindre än 50% av tågen i Hagalund över natt eftersom fler åker in mot Stockholm på morgonen än ut medan det motsatta gäller på eftermiddagen. Under helger och längre ledigheter kan emellertid fler tåg samlas i Hagalund, något beroende på omlöpsplaner och kapaciteten i andra depåer.

När det gäller det framtida fordonsbehovet måste också hänsyn tas till strukturförändringar i linjennätet och i fordonsflottan. De viktigaste är:

- Loktåg ersätts av motorvagnståg med fler platser per tågmeter (breda tåg eller tvåvångståg).
- Loktåg blir kvar huvudsakligen som insatståg till 2015.
- Ökad andel genomgående linjer, de flesta regionaltåg antas bli genomgående till år 2015
- Ökat tågbehov genom ökad trafik och efterfrågan

Som framgår av detta är det ett antal faktorer som pekar mot mindre kapacitetsbehov och några som talar för ökat kapacitetsbehov i Hagalund.
Resultat

Av tabell 2 framgår det nuvarande kapacitetsbehovet i Hagalund under olika tidsperioder. Det står ca 35% mer fordon över dagen än över natten i Hagalund och över veckoslut, sommar och storhelger så kan det vara upp till 85% fler fordon i Hagalund än under en vardagsnatt. Det maximala behovet av spår uppgår då till ca 8500 meter. Dessa värden kan dock ändras beroende på tidstabeller och omlopp och om man väljer att ställa fordonen i andra depåer.

Detta behov är således inte lika säkert som behovet övernatt men man måste beakta att om fordonen inte står i Hagalund så måste dom stå någon annan stans. Normalt står ju alla fordon övernatt på vardag någonstans så kapaciteten måste ju finnas i alla fall men kan vara svår och kostsam att utnyttja om den inte stämmer med omloppen.

Figur B3-1: Kapacitetsbehov för tåg i depå i Stockholm.

Resultat tåg i depå persontrafik till/från Stockholm
Bolle 2007-05-10

Antal tågsätt

År	Antal tågsätt totalt	Antal tågsätt Pendel Stockholm/Hagalund	Därav över natt vardag i Sl- X2 Regt Lokt i Hgl X2 Regt Lokt Suma i Hgl X2 Regt Lokt Sum depå	
	X2 Regt Lokt Summa Snabb Lokal			
2006	33 29 27 90 0 82	172 12 9 10 31	35%	21 21 17 59 82
2015	55 60 20 135 31 79	245 18 16 7 41	31%	37 44 13 94 110
2030	89 88 4 181 48 87	316 26 28 1 56	31%	62 60 3 125 135

Antal vagnar

År	Antal vagnar totalt	Antal vagnar Fjärr- och regionaltåg	Därav över natt vardag i sl- X2 Regt Lokt i Hgl X2 Regt Lokt Tot depå	
	X2 Regt Lokt Summa Snabb Lokal			
2006	179 85 244 508 0 330	837 64 25 94 183	36%	115 59 150 325 330
2015	241 187 193 621 124 315	1 060 80 50 67 197	32%	160 137 125 423 439
2030	321 294 54 670 194 347	1 210 95 94 16 206	31%	226 200 38 464 540

Antal tågmeter

År	Antal tågmeter totalt	Antal tågmeter Fjärr- och regionaltåg	Därav över natt vardag i sl- X2 Regt Lokt i Hgl X2 Regt Lokt Tot depå	
	X2 Regt Lokt Summa Snabb Lokal			
2006	4 741 2 249 6 463 13 453 0 8 740	22 193 1 903 675 2 480 5 057	38%	3 050 1 575 3 983 8 607 8 740
2015	6 379 4 957 5 114 16 449 3 328 8 337 28 084	2 126 1 317 1 788 5 232	32%	4 252 3 639 3 326 11 217 11 635
2030	8 515 7 799 1 431 17 746 5 130 9 192	32 069 2 528 2 493 429 5 450	31%	5 987 5 307 1 002 12 296 14 322
Tåg i Hagalund 2006
Anders Lundin 2007-05-08

Antal tågsätt

<table>
<thead>
<tr>
<th>Tågsätt</th>
<th>Antal vagnar</th>
<th>Antal tågmeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Hagalund</td>
<td>Lok</td>
<td>Sum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dagtid</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Natt</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Fredag-Söndag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natt</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>Dagtid</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>Sommar-Jul</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

	Därav i Hagalund											
Vagnar	Lok	Sum	Andel av total	Personvagnar	Sum depå							
Dagtid	66	25	114	18	5	1	236	30%	106	50	156	320
Natt	61	10	78	18	5	1	173	22%	93	50	143	320
Fredag-Söndag												
Natt	149	38	90	19	5	1	301	38%	98	50	148	320
Dagtid	149	38	84	14	5	1	290	37%	86	50	136	320
Sommar-Jul	165	38	84	14	5	1	307	39%	86	50	136	320

	Därav i Hagalund											
Vagnar	Lok	Sum	Index	Personvagnar	SL depå							
Dagtid	2 022	675	2 862	500	100	25	6 184	136	2 862	1 350	4 212	8 320
Natt	1 854	270	2 511	360	100	25	5 120	100	2 511	1 350	3 861	8 320
Fredag-Söndag												
Natt	4 550	1 013	2 646	380	100	25	8 713	180	2 646	1 350	3 996	8 320
Dagtid	4 550	1 013	2 322	280	100	25	8 289	175	2 322	1 350	3 672	8 320
Sommar-Jul	5 055	1 013	2 322	280	100	25	8 795	185	2 322	1 350	3 672	8 320
Vändning i Hagalund

En möjlighet är att i framtiden förlägga så gott som alla vändningar som inte kan ske vid plattform på Stockholm C till Hagalund. Det finns operativa fördelar med detta då det i Hagalund alltid finns tillgång till reservtågssätt och att all verksamhet kan koncentreras hit med ett jämnare utnyttjande av personal natt och dag. Utrymme skulle också frigöras på andra områden för fler tågspår.

En förutsättning är dock att tågen kan gå i full hastighet till Hagalund. Tågen skulle då gå på driftspåren (D2 upp och D1 ned) mellan Stockholm C och Hagalund. En mycket viktig förutsättning är då att hastigheten på driftspåren höjs från dagens 40 km/h till 90-100 km/h, så att gångtiderna blir kortare än idag.

Den viktigaste fördelen med att vända i Hagalund är att trafikslagen separeras. All persontågshantering lokaliseras till Hagalund och alla godstågshantering till Tomteboda.

Den största nackdelen är att gångtiden till och från vändplatsen ökar, vilket är negativt för trafikutövarna. I vissa lägen minskar möjligheterna att klara snabba vändningar om vändplatsen ligger längre bort. Givet en viss marginaltid under själva vändningen påverkar dock inte gångtiden möjligheten att vända snabbare än normalt.

Av tabellen framgår att en höjning av sth på driftspåren från 40 till 90 km/h skulle förkorta gångtiden med ca 47%. Den totala gångtidsskillnaden mellan Tomteboda och Hagalund är ca tre minuter.

Figur B3-3: Sammanställning av gångtiderna till och från olika vändplatser

<table>
<thead>
<tr>
<th>Vändplats</th>
<th>Sth [km/h]</th>
<th>Gångtid [minuter]</th>
<th>Total gångtid [minuter]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Före vändning från E6-E7</td>
<td>Efter vändning till C2-C4</td>
<td></td>
</tr>
<tr>
<td>Karlberg</td>
<td>40</td>
<td>2,5</td>
<td>2,2</td>
</tr>
<tr>
<td>Tomteboda</td>
<td>90</td>
<td>2,8</td>
<td>2,6</td>
</tr>
<tr>
<td>Hagalund</td>
<td>40</td>
<td>7,9</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>4,2</td>
<td>4,1</td>
</tr>
</tbody>
</table>
Bilaga 4: Ny fjärrtågsstation Stockholm Nordväst i Solna

Bakgrund – behovet av fjärrtågsstationer i Stockholmsregionen

Stockholm Nordväst i Solna

Om Mälarbanan också förts in via Solna antingen via en kortare länk via Hagalund till Spånga eller via en bana via Kista skulle även Mälarbanetågen kunna stanna i Solna, därav namnet Stockholm Nordväst. Banverket har också tidigare översiktligt studerat möjligheten till en ny infart för
Figur B4-1: Möjlig framtida struktur på järnvägsnätet från Stockholm C och norrut med ny infart för Mälarbanan och station Stockholm Nordväst.

Figur B4-2: Möjlig framtida trafikering av järnvägsnätet från Stockholm C och norrut med ny infart för Mälarbanan och station Stockholm Nordväst.

Effekter av Stockholm Nordväst

SJ gjorde med hjälp av konsultföretaget transek i början av 1990-talet prognoser för hur Stockholm Nordväst skulle påverka det långväga resandet. Mycket har ändrats sedan dess men de relativa effekterna av olika alternativ är ändå relevanta.

På nästa sida framgår av figur B4-4 en basprognos för resandet till från Stockholmsregionen med de nuvarande fjärrtågsstationerna. Av figuren framgår att Stockholm C dominerar stort, med drygt 70% av resandet medan Flemingsberg hade 20%, Södertälje Syd 6% och Arlanda 3%. Prognosen för Flemingsberg stämmer inte med nu läget eftersom inte förutsättningarna finns när det gäller exploatering, anslutningsförbindelser och utbud.
Figur B4-3: Stockholm Nordväst som trafikknut och centra.

Resande till/från Stockholmsregionen utan Stockholm Nord

Andel resenärer som reser till/från

<table>
<thead>
<tr>
<th>Station</th>
<th>Andel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlanda</td>
<td>3%</td>
</tr>
<tr>
<td>Stockholm Central</td>
<td>71%</td>
</tr>
<tr>
<td>Flemingsberg</td>
<td>20%</td>
</tr>
<tr>
<td>Södertälje Syd</td>
<td>6%</td>
</tr>
</tbody>
</table>

Figur B4-4: Fördelning av påstigande på fjärr- och regionaltåg i Stockholmsregionen utan fjärrtågsstation i Häggvik och Barkarby
Figur B4-5: Fördelning av påstigande på fjärr- och regionaltåg i Stockholmsregionen med fjärrtågsstation i Häggvik och Barkarby.

Figur B4-6: Fördelning av påstigande på fjärr- och regionaltåg i Stockholmsregionen med fjärrtågsstation i Solna för alla tåg norrut, söderut och västerut.
Av figur B4-5 framgår en motsvarande prognos med fjärrtågstationer i Häggvik och Barkarby. Av den framgår att Häggvik och Barkarby skulle få 14% av antalet påstigande tillsammans och belastningen på Stockholm C minskar till 60% och Arlanda minskar något.

Av figur B4-6 framgår en prognos för Stockholm Nordväst i Solna. Denna station får då 28% av antalet resenärer från Stockholmsregionen och belastningen på Stockholm C minskar till 48%. Stockholm Syd minskar också något.

Prognos och verklighet för Stockholm Syd/Flemingsberg har visat att det är svårt att bygga och trafikera stationer långt ut i regionen där exploatering och anslutningsvägar ännu inte kommit till stånd. Häggvik och i viss mån Barkarby förutsatte liksom Flemingsberg när de planerades att västerleden och yttre tvärleden var byggd.

Ur denna synvinkel torde en utbyggnad av Solna vara säkrare, det finns redan en stor marknad här, anslutande vägar och kollektivtrafik och den kan bli ännu större med nationalarenan och snabbspårvägen som ändå är planerad och kan vara klar samtidigt med en fjärrtågsstation.

Alternativa sträckningar för Mälarbanan

Om Mälarbanan skulle få en ny sträckning från Barkarby eller Spånga finns två alternativ: Aningen behålls pendeltågen via Sundbyberg och fjärrtågen går via Solna eller så går både fjärrtåg och pendeltåg via Solna vilket så fall kräver fyrspår. I det senare fallet möjliggörs att järnvägen helt tas bort från den känsliga miljön genom Sundbyberg och att den här frigör utrymme som i stället kan utnyttjas av snabbspårvägen och för miljöåtgärder och exploatering.

Om man väljer att ha kvar pendeltågen i Sundbyberg och endast låter regionaltågen gå via Solna kan pendeltågen tillfälligtvis gå denna väg medan man gräver ner spåren i Sundbyberg vilket skulle underlätta detta projekt väsentligt. Om man väljer att gå till Spånga och därefter till Solna kan också fyrsparret från Kalhäll byggas hit direkt, vilket ger den för konfliktfria förbigångar nödvändiga sträckan med fyra pendeltågstationer.

Roslagspilen

På senare tid har även en utbyggnad av Roslagspilen, en ny pendeltågslinje från Stockholm City via Solna och vidare mot Täby-Åkersberga/Norrštulje aktualiserats. Även denna skulle således gå via Solna station och en ny station finns skissad på ritningarna till utbyggnad av nationalarenan.

Kanske kan en kommande Rosлагspendel kombineras med en utbyggd Mälarbara och Stockholm Nordväst. Även om den ligger långt fram i tiden så bör det åtminstone det finnas en planeringsberedskap för detta när det gäller utformningen av Hagalund.

Kapacitetsstudier som KTH gjort av centralen 2030 med Roslagspilen visar att det kan bli kapacitetsproblem norrut och att därför ytterligare kapacitet kan behövas mellan Tomteboda och Helenelund/Kista något som bör ses i ett sammanhang.
Konsekvenser för Hagalund
Alla dessa planer kan få konsekvenser för Hagalund. Nationalarenan och tillhörande exploatering innebär att Hagalund blir låst på denna sida. Å andra sidan kan man se att det gamla lokstallet och områdena östra delen kommer att bli dåligt utnyttjade i framtiden när de flesta loktågen försvinner. Däremot skulle det vara bra att kunna ”dra ut” och bredda områdena åt nordväst för att skapa ytterligare kapacitet här där inte heller exploateringstrycket är så stort.

Ett förslag är därför att man byter mark så att man släpper områdena vid gamla lokverkstaden till förmån för stationsanläggningar (Stockholm Nordväst), infartsparkering och kommersiella ändamål gentemot att man få tillgång till större områden mot nordväst och kan skapa en utfart för Mälarbanan via Rissne mot Spånga så att Hagalund också blir tillgängligt från detta håll och det också kan fungera som en del av fyrsået mellan Barkarby och Stockholm C.

Vändning i Hagalund
Som framgått av kap 8 ovan så finns också en möjlighet är att i framtiden förlägga vändningarna till Hagalund, vilket i så fall skulle kunna kombineras med en ny station Stockholm Nordväst.
KTH Järnvägsgruppen
Järnvägsgruppen vid Kungliga Tekniska Högskolan (KTH) i Stockholm bedriver tvärvetenskaplig forskning och utbildning inom järnvägsteknik och tågtrafikplanering. Syftet med forskningen är att utveckla metoder och bidra med kunskap som kan utveckla järnvägen som transportmedel och göra tåget mer attraktivt för transportkunderna och mer lönsamt för järnvägsföretagen. Järnvägsgruppen finansieras bland annat av Trafikverket, Bombardier och Branschföreningen Tågoperatörerna.

Detta projekt ”Stockholms Central 2050” har genomförts på uppdrag av Banverket. Tidigare har en rapport publicerats ”Framtida marknad, tågtrafik och kapacitet inom Stockholms Central” som avsåg utvecklingen fram till år 2030.

Denna och andra intressanta rapporter från Järnvägsgruppen vid trafik och logistik finns på vår hemsida www.infra.kth.se/tol/jvg