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Abstract

A set of ray tracing equations for MHD wave propagation in a
moving media is described, together with the basics of wave physics and
ray tracing. A method for how these equations can be used to model
the propagation of a disturbance in the solar wind from the bow shock
to the magnetopause is developed. This method is implemented, using
simple linear models for the background fields and a hydrodynamic
flow model for the plasma flow. The program is then run for a few
configurations and the result is presented.
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1 Introduction

1.1 The Magnetosphere and the Solar Wind

The magnetic field surrounding Earth, with poles approximately coincid-
ing with the geographic poles, derives from electric currents inside Earth.
Close to Earth, where the field is strong and undisturbed by other magnetic
sources, it resembles the field from a magnetic dipole. Further out, however,
it changes under the influence of the solar wind, a flow of ionized particles
coming from the Sun. This electrically conducting gas, or plasma, permeats
the whole solar system, deforms the geomagnetic field into a small cavity in
the interplanetary field, and is the cause of a multitude of electromagnetic
phenomena in Earth’s vicinity, e.g., auroras and magnetic storms.

The cavity in the solar wind in which the geomagnetic field is dominating,
is called the magnetosphere. This area of space, which was first believed to
be very simple, is now known to consist of a complex structure of plasma
populations, interacting with the magnetic field. This interaction is not
only electromagnetic, but is also governed by the laws of gas dynamics.
The solar wind hits the geomagnetic field at supersonic speed and a shock
front is created, resembling the shock front in the atmosphere ahead of a jet
plane. This so called bow shock represents the transition from supersonical
to subsonical flow in the solar wind. Inside the bow shock there is a region
of subsonically flowing plasma, the magnetosheath, where the plasma flows
around the magnetosphere.

The boundary between the magnetosheath and the region where the ge-
omagnetic field is dominating is called the magnetopause. This is the outer
boundary of the magnetosphere. The inner boundary is the ionosphere. In
this layer, about 100—300 km above ground, ultraviolet and soft X-ray radi-
ation from the sun ionizes molecules from the atmosphere. This means that
the ionosphere is electrically conducting, and may reflect electromagnetic
waves.

Figure 1 shows the structure of the magnetosphere. The regions we deal
with here are mainly the bow shock, the magnetosheath and the magne-
topause, to see how waves in the solar wind, refracted by the bow shock, are
propagated inside the magnetosheath.

1.2 Magneto-Hydrodynamic Waves

A plasma is a gas containing a significant number of electrically charged
particles. Because it is a gas, its motion is governed by the laws of gas
dynamics. But it is also electrically charged, and is therefore affected by
the laws of electrodynamics. The motion of the plasma affects the charge
distributions and the currents and distorts the magnetic field lines. When
the electrons and ions of a plasma are displaced relative their equilibrium
position, a charge imbalance is induced, and the particles are affected by a
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Figure 1: The structure of the magnetosphere.

restoring force by the electromagnetic field. A number of natural frequencies
are therefore associated with a plasma consisting of certain electron and
ion populations, and these frequencies play an important role in the wave
equations of plasma motion.

When a magnetic field is present in a plasma, this interaction between
the laws of gas dynamics and Maxwell’s equations give rise to a kind of
waves unique to plasma motion, where spatial perturbations of the particles
and oscillations in the electromagnetic fields couple in a very intricate way.
These waves are called magneto-hydrodynamic (MHD) waves, or Alfvén
waves after their discoverer Hannes Alfvén. The conditions that character-
ize MHD wave propagation, and that are expressed in the governing equa-
tions, allow for a number of different ways for perturbations, mechanical
and electromagnetic, to propagate. We distinguish between compressional
waves, where disturbances in mass density and magnetic flux density are
propagated, and shear Alfvén waves, which carry a perturbation magnetic
field, without changing the plasma density or pressure. Furthermore, there
are different types of compressional and shear Alfvén waves. We shall be
concerned mainly by the type of compressional wave called the fast wave,
since this is the only mode that can carry a significant amount of energy per-
pendicularly to the magnetic field ([6]), which is the direction we shall limit
ourselves to in this investigation, for reasons of simplicity of the equations.

A shear Alfvén wave, propagating parallel to a magnetic background
magnetic field B, does so with a certain phase velocity, called the Alfvén



velocity 'V a:
B
Va= (1)
vV HOPm
where p;,, is the mass density of the plasma medium and pg is the magnetic
permeability of free space. This velocity plays an important role in all wave
equations and dispersion relations for plasma waves, as we see later in this

report.

1.3 Field Line Resonances in the Magnetosphere

Ultra-low frequency (ULF) fluctuations in the geomagnetic field have been
observed on the ground since the first measurements in the nineteenth
century. Some are continuous, quasi-sinusoidal pulsations, and these are
grouped into the so called Pc pulsations, from Pc-1 (0.2 — 5 Hz) to Pc-5
(1.7 — 6.7 mHz). The periods and the distinct frequency peaks of these pul-
sations suggest that they are deriving from resonances in the geomagnetic
field, i.e., standing MHD waves along the field lines that are reflected at the
ionosphere, and partly transmitted down to the surface of the Earth. This
theory has been developed since the fifties, and is further supported by both
ground based and satellite borne observations ([13]).

For these resonances to occur, the waves must satisfy certain boundary
conditions. The boundaries consist of the ionosphere, which in this case
can be viewed as a thin conducting sheet, and the magnetopause. To be
perfectly reflected at the ionosphere at the ends of the field line, the wave
along that field line must have a vanishing electric field and displacement
there. The strongest resonance will therefore occur for wavelengths which
satisfy

== (2)

where )| is the wavelength along the field direction, [ is the length of the
field line and n is an integer. This suggests that a perturbation in a magnetic
field line inside the magnetosphere, initialized at the magnetopause, could
create Alfvén waves with certain frequencies, standing along this field line.
The frequencies are determined by the length of the field line, the strength of
the geomagnetic field, and the plasma density. In the same way, a pressure
perturbation could excite compressional waves. These waves (the Alfvén
and the fast) would then result in the measured Pc pulsations at ground
level ([6]).

1.4 The Source of Field Line Resonances

The structure of Pc-5 field line resonances in the geomagnetic field is well
explained and documented. The source, however, is still subject of discus-
sion. As a wave, propagating through the magnetopause, comes closer to



Earth, the Alfvén speed increases, and a turning point, where the wave is
reflected, is eventually reached. One theory states that a region between
the magnetopause and this turning point acts as a resonant cavity, in which
incident waves in the solar wind could excite oscillations with the natural
frequencies of this cavity. These oscillations would then in turn excite the
field line resonances at discrete frequency intervals. It has been observed,
however, that the resonances occur at very stable frequencies: 1.3,1.9,2.6
and 3.3 mHz. This means that the dimensions of the cavity must be more
or less stable which is not plausible, noting the extremely dynamic nature of
the magnetosphere. For example, the distance between the Earth and the
magnetopause on the sunward side may vary by several Earth radii under
the pressure of the solar wind.

Instead, a model were the Pc-5 resonances are directly driven by MHD
waves in the solar wind has been proposed ([5]). The waves, passing through
the bow shock, propagate through the magnetosheath until they reach a
magnetospheric field line with matching natural frequencies. At that point
they excite a resonance along the field line. Observations of oscillations in
the solar wind and Pc-5 pulsations in the magnetosphere have been made
which agree with this theory, and further studies are in progress.

1.5 The Object

In the effort to clarify the mechanisms behind the geomagnetical pulsations,
and to achieve a more complete description of the dynamics of the mag-
netosphere, it is of interest to analyze how disturbances in the solar wind
are transmitted through the bow shock, how they propagate in the magne-
tosheath, and if and how they reach the magnetopause to be transmitted or
reflected. This has previously been done analytically, using a box model of
the magnetosphere ([1], [2]), but since the equations governing MHD wave
propagation in the plasma surrounding Earth are quite complex, numerical
methods has to be employed for more realistic geometries. An extensive
work was carried out in the 1970’s by John Spreiter and others ([14], [7]).
This advanced project is however hard to apply to the problem in focus in
this paper.

A set of previously developed ray tracing equations, together with some
crude approximations and models of the background quantities, are imple-
mented. The most important approximations are:

1. Geometry: the bow shock is approximated as a parabola and the mag-
netosphere as a sphere. This should be no great impediment, since the
geometry of the magnetosphere is very dynamic anyway.

2. Plasma flow: we assume incompressible gas-dynamic flow around a
sphere, and ignore the magnetic pressure. This leads to inconsisten-



cies in the model if a magnetic field is introduced, and restricts us to
investigating the nose of the bow shock, where the flow is subsonic.

3. Magnetic field: The magnetic field is held constant, or even set to zero
to retain consistency of the model. The presence of a magnetic field
in the magnetosheath makes the gas-dynamic flow model invalid.

By implementing these equations, paying attention to generality and easy
extendability, and evaluating the validity and consistency of the implementa-
tion, I hope to take a small step towards creating a more advanced program
for simulation of MHD wave propagation in the magnetosheath.

1.6 A Word on Notation

As it is more effective programming to use matrix and vector computations
whenever possible, instead of doing calculations component wise, I shall
stick to using matrix notation instead of the sometimes more convenient
suffix notation. The following conventions are used throughout the report:

1. All vectors are column vectors if not otherwise stated: r = (ry,ro,... ,T"n)T.
o :o q: o a da \T'
2. 5% indicates the vector (ﬁ, B B
By e e a9 o) Ara T
3. ¢ indicates the vector (G}, G2, , G2)7.
4, g—lr‘ indicates the matrix D where D;; = %, the Jacobian of k.
J

20 v qs 1 i W D;; = A
5. %% indicates the symmetric matrix D where Di; = 522
L

2 The Mathematical Background

In Chapter 1 a simple and intuitive description of plasma and plasma be-
haviour was given. Here, we go into more detail and describe the mathe-
matical basics of plasma physics and ray tracing. But let us first mention
some basic concepts of wave physics.

2.1 Waves and Wave Velocity

A localized disturbance of the equilibrium state of a physical quantity, such
as a gas or a magnetic field, transported through it with a finite speed, is
what we call a wave. This phenomenon can be mathematically described by
an integral of exponential functions:

A0 = [ w09 explig 9K 3)

-0



Each infinitesmal element in the integral represents a separate wave, oscil-
lating harmonically with its own wavelength and frequency, interfering with
the others to form the resulting wave. All this is basic Fourier analysis, see
[9].

The velocity with which a surface of constant phase propagates is called
the phase velocity of the wave. In the case of the simple wave represented
by a single exponential function the phase velocity, given by the equation

k1) =0, @
is easy to understand and make sense of. But what do we mean when we
talk about the phase and phase velocity of the total wave, consisting of the
sum of possibly infinitely many sinusoidal waves, each moving with its own
phase velocity?

In the integral (3), we assume that the amplitude function ¥ has a sharp
peak at k = kg, which is the case for a wave with a well defined frequency.
This means that the integrand is everywhere zero except in a neighbourhood
of kg, around which it oscillates antisymmetrically. At a point in space where
the phase depends strongly on k, there will be cancellation and no significant
contribution will be made to the integral. The component waves are not in
phase and interfere destructively. Only where the phase does not depend on
the components of k, so that

%(I‘,k,t) =0, (5)
will constructive interference and a strong contribution to the integral (3)
occur. The point where this condition is satisfied represents in some sense
the mean value of the wave disturbance. It moves through space with a
velocity which we call the group velocity of the wave, as it is composed of
the velocities of a group of simpler waves. This velocity is aligned with and
closely linked to the velocity with which energy is transported by the wave,
see [3] for details. In the next chapter, we will derive numerically integrable
equations for the propagation of this point, and use them to trace its path
through the magnetosheath for some different configurations.

For a detailed investigation of wave energy, see [4]

2.2 Fundamental Plasma Equations

The fundamental equations governing the behaviour of the plasma particles
are ([3]):

1. Maxwell’s equations, describing the currents and charge distributions
in the plasma.



2. Constitutive relations, relating the variables in Maxwell's equations to
each other. For example, the conductivity of the media relates the
electric field to the current density.

3. Lorentz Force Law, which gives the force imposed on a single particle
by the electromagnetic field.

To obtain an equation of motion for the plasma from these relations we can-
not describe the motion of every single particle. Instead, we consider some
average motion of a collection of particles. How this averaging procedure
is performed is a matter of what approximations are appropriate for the
problem, see [13].

If the thermal motion of the plasma is negligible compared to the motion
imposed by the wave perturbation, one can assume that an unperturbed
particle is at rest. We can treat a fluid volume element 6V as a continuum,
governed by Lorentz Force Law: mv = ¢(E + v x B). This is called the
cold plasma approximation. When the thermal motion is small, but not
negligible, we may use the same approximation by including the effects of
temperature and pressure. The basis for this work will be a set of linearized
equations taken from [3]: the momentum equation, with thermal motion
included as of above,

o ;
pm{aqLV-V}v:_]xB—Vp; (6)
a combination of the continuity equation and the adiabatic law,

dp
— = —pVEV - v; (7)

Faradays law,

db

E=——;
V x el (8)
Ampérés law,

V x b= —uj; (9)

and Ohm'’s law with infinite conductivity,
E+vxB+Vxb=(, (10)

where v, b, E,j and p are the first-order wave perturbations of the back-
ground fields V, B, Eg,J and P. From these equations a dispersion relation
can be derived, which in turn will form the basis of our ray tracing equations.

In this work, collisions between particles are not considered. In a plasma
where a significant number of particles are neutral, the equations of motion



must include the effects of collisions between the ions and the neutrals.
Likewise, if the plasma is very dense, the effects of ion-ion collisions may
become important. This can be accounted for by including an extra term in
the Lorentz Force Law. In most of the magnetosphere however, the plasma
is fully ionized and of low density, and these effects are therefore ignored.

2.3 The Dispersion Relation

From Maxwell’s equations and the constitutive relations for the plasma we
can derive so called dispersion relations, expressing the relation between
the frequency and the wave number of a propagating wave. This relation
contains all information about the phase speed of the wave. Let’s take a
look at the dispersion relation for waves in a warm magnetized plasma:

(%)2 = V3 cos®§ (11)
1
(%)2 = S{Vé+ V24 (V2 + V22 — 4VEV] cos? 67} (12)

where w is the angular frequency of the wave, k = 27 /X is the wave number,
g is the angle between the wave vector and the field magnetizing the plasma
in which the wave is propagating, V4 = |V 4| is the Alfvén speed and Vg
the speed of sound in the media. Note that the quotient % is just the phase
speed of the wave.

These relations allows for three different modes of wave propagation.
A wave with angular frequency and wave number satisfying relation (11)
is a shear Alfvén wave. This wave carries a perturbation magnetic field
and a motion of the plasma which is perpendicular to the plane of the wave
vector and to the background magnetic field, but does not change the plasma
density, plasma pressure or the magnetic pressure. The phase speed of this
wave depends on the angle between the wave vector and the background
field, as can be seen from equation (11), and all the energy in the wave is
carried in a direction parallel to B. If the wave vector is perpendicular to the
magnetic field, the phase speed is zero. Thus, this wave cannot propagate
perpendicular to B, and will not be of interest.

The other two modes carries changes of plasma density and pressure, and
are therefore called compressional waves, and sometimes magnetoacoustic or
magnetosonic waves. They may also change the magnetic pressure and the
background field magnitude, since the perturbation magnetic field of these
waves lie in the plane of B and k. In contrast to the Alfvén wave, which
is a reaction to a disturbance of the magnetic field lines, they act to reduce
pressure gradients. We see from equation (12) that if the temperature is
zero, so that the speed of sound is zero, we have only one wave propagating
with phase speed V4. If on the other hand B is zero, we have a wave with
phase fronts propagating with the speed of sound. Also, if the wave vector

10



is orthogonal to the magnetic field, so that cos @ = 0, we have only one wave

with phase speed 4/V2 + V2.

A negative sign in (12) gives us the slow mode wave. Slow waves carry
energy predominantly along the background field, and so it does not prop-
agate perpendicular to B. Its phase velocity is less than or equal to Vjy.
Neither this wave will carry any significant amount of energy between the
bow shock and the magnetopause.

The positive sign in relation (12) gives the so called fast mode. In this
mode the wave energy can propagate in any direction. Its phase speed is
higher than or equal to V4, depending on the direction of propagation rela-
tive the background field. This mode is the only one we shall be concerned
with hereafter.

These are the simplest kinds of wave propagation in plasma. Other
dispersion relations, for other plasma configurations, will allow for different
modes of wave propagation. In this work a form of equation (12), proposed
by [3], will be used:

w* — kW (Va2 + VE) — (k- V4)2Vs} =0 (13)

where w* = w — k- 'V is the angular frequency of the wave seen in the rest
frame of Earth, Doppler shifted by the plasma velocity V.

2.4 Modeling of the Background Quantities

There are three main points in the modeling of the background quantities:

e The plasma flow
e The plasma pressure/temperature/density

e The background magnetic field
The plasma flow is considered to be steady and irrotational, i.e.
V-v=0 (14)
Vv =0, (15)

from the continuity equation. Solving the Laplace equation for a flow around
a sphere of radius a, we get the potential function

U = —ypcos(@)(r + %). (16)

This gives the following expressions for the z— and y—components of the
flow velocity:
_ 3vga’ Ty
T @t R
ad z?— 22

(17)
vy = vp(1 +

). (18)

11



If we furthermore assume that the flow is inviscid and incompressible, the
pressure along a streamline is given by the Bernoulli equation:

1
B 5,91;2 = const. (19)
or
1
p=po+ 5p(v5 — v*). (20)

which is the form used in the code. This approximation is realistic near the
magnetosheath nose where the flow is subsonic.

Since we are assuming a purely hydrodynamic flow, without considering
the electromagnetic properties of the flowing plasma, introducing a magnetic
field will inevitably lead to inconsistencies in the model. The best we can
do is to investigate the model for a small magnetic field, and try to make a
qualitative evaluation of the result.

2.5 General Ray Tracing

I will here give a rudimentary description of the ray tracing methods used
in this work. For a complete theory, refer to [10], or, for a more heuristic
but thorough treatment, to [11].
For our purposes, we assume that the dispersion relation can be ex-
pressed as
w=w(k,r),

and that the wave can be represented on complex form as (3) where the
amplitude ¥, the phase ¢ and the dispersion relation all vary slowly with
the space coordinates r. Furthermore, we assume that the wave is plane, so
that the phase function can be written ¢ = k- r — wt. The stationary phase
condition, (5), then assumes the form

%[l{or—wt] =0, (21)

which is equivalent to

ow
r=—t, 22
Ok (22)
i.e. the wave disturbance, localized to the point r, travels through space
with the group velocity Vg = g—;'{’

dr  Ow

I 3k (23)
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Given the dispersion relations, the equation system (23) thus describes the
path of the wave disturbance. The system is not complete, however. To
evaluate the right hand side of equation (23) at a point in space, we also
need to know the wave vector at that point. We therefore need to find
equations for the components of k.

Differentiating the phase function ¢ gives

dp
5 =k (24)
8¢

These equations can then be used to express the dispersion relation as

¢ o
= SR, o A ' 26

at w ar bl r) ( )
Differentiation of this with respect to the space variables r, using the chain
rule, gives us

0%  Ow

2 Ok | Ow
Cordt  ‘k

)T "or + or 2T}

Rearranging the terms and using expression (24), we get

Ok w0k 0w o8

TG T T

Since k is a function of r and ¢, the total time derivative of k can be written,
using equations (23) and 28 and transposing the second term

dk Ok Ok O Ok Owgp Ok _ Bw 29)

- e mew ) w e
This derivative is the rate of change of k following a point moving with
velocity Vg = ‘—ai!%, which is the point r in equation (23). Equations (23)
and (29) now constitutes a system of coupled ordinary differential equations
for the six variables r and k. They describe the time development of a
wave disturbance, traveling along a narrow path as explained above. By
differentiating the dispersion relation and solving with respect to g—‘;’ and
g%, a numerically integrable form of these equations can be obtained, as

will be seen in the next section.
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2.6 The Ray Tracing Equations

The dispersion relation, introduced in section 2.3, is now used to derive a
system of equations for the ray propagation. Differentiation of the dispersion
relation (13) with respect to k gives:

Ow*

Bk *2(|VAE2+V5) (k-V4)VE} (30)

{403 —2w* K2 (|V 4|2+ VE)

where w* = w — k - V as before. Solving for 2 31( we obtain

ow™ k{w*2(|VA&2 + VS) (k- VA)zvg} Iklz(k . VA)VgVA

Bk o2 (20 — KP(V AP +V2)} (31)

Differentiation of the dispersion relation with respect to r gives

dw* : oV oV
{4 — 2 2V Al + V) o = kP {2 (V- =52 + Vs 2) =

or
aV; av aV
2k - V4)2 + vsa—f (k- Vao)k- 3—AVS —2(k - V4)?Vs aS
(32)

which is equivalent to

o [k (Va- 28 + Ve %) — (k- Va)Vgk - FF4 — (k- Vo) Vs 58

or - (2w~ KP(V P + V3)
(33)
Using equations (29) and (23) we arrive at
de _ (o 2(VaP + V2) = (- VAPVE) — [KP(k- VVEVA |
dt w2 {2w* — [K2(]Va2 + V2)} F
(34)
dk 1 8V 4 Vs
= k 2 *2 A o oA
dt w*2{2w* — |k|2(|[V 4 |2+ng)}(! Hw™(Va or +Vs dr )
OV 4 Vg OVp.
(- VA 2 -k VESE) - (0T e (39)

The equations (34) and (35) constitute an explicit system of equations for
the ray path, which can be solved by a numerical step-by-step method. In
the next chapter we shall see how this can be done.
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3 Software Structure and Usage

3.1 Modularization

In building the program, I have tried to modularize it in a way that follows
the physical structure of the problem as closely as possibly, both in order to
make it intuitive to the user experienced in this field, and to make the various
modules easy to replace, should a more advanced model be wished for. The
main modules will be separated into different directories, each directory
containing various submodules, or files. Each file, in turn, contains the
appropriate routines for computing a quantity or performing a task, without
getting too dependent on the implementation of the rest of the program.

Firstly, the program is divided into two main parts, which here are called
the logic module and the physics module. The logic module contains the
routines for creating initial values, the ODE solver algorithm for the ray
tracing and its helper functions, and the plotting routines. It also contains
the dispersion relation and the expressions for the sound and Alfvén ve-
locities, since these expressions are more or less exact and not likely to be
substituted in a future version. If one should wish to do so, these submod-
ules might be moved to the physics module. Furthermore, the logic module
contains the boundary models, i.e., the expressions for the coordinates of
magnetopause and bow shock. This is more because of convenience than
for logical reasons, and one might want to create a separate module out of
these, which could be called the geometry module.

The physics module contains functions for computing all the physical
quantities involved, given the relevant parameters. These are mass density,
mass pressure, magnetic field vector and velocity vector of the plasma flow.
The physics module can be replaced without tampering with the logic mod-
ule. In this work, two physics modules are explored: one with a linear flow,
the other with incompressible flow around a sphere.

Each of the two main modules has a separate settings file, where all the
actual numerical values controlling the output can be set.

3.2 Geometry and Coordinate Systems

The geometry of the magnetosphere is very dynamic. The barrier that
the bow shock presents against the stream of plasma coming from the Sun
moves with the changing intensity in the flow, which may alter the distance
between the magnetopause and Earth by several Earth radii. This means
that there are a number of different geometrical configurations that possibly
would be interesting to implement and explore. In this work we are using
only one simple model for each of the two boundaries, but the program is
implemented in a way to make it easy to change one or both of these.

The bow shock is approximated with a parabola and the magnetopause
with a sphere. The distance between Earth and the magnetopause is set to

15
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Figure 2: Ray tracing coordinate systems

10 Earth radii along the Sun-Earth line, and 15 Earth radii in the direction
perpendicular to this line. We assume that the solar wind is parallel to the
Sun-Earth axis. We are looking at the equatorial plane, and assume that
the magnetic field is everywhere perpendicular to this plane.

For the ray tracing algorithms we are using a coordinate system with the
origin fixed at the subsolar point on the bow shock, the z-axis pointing in
the direction of Earth’s motion around the Sun, the y-axis pointing towards
Farth, and the z-axis completing a right-handed system. The flow model
is for simplicity of the equations using a different coordinate system: origin
fixed at the center of Earth, y-axis pointing towards the Sun, and the z-axis
in the counter-direction to Earth’s motion around the Sun. The transfor-
mation from the flow coordinates to the ray tracing coordinates is thus a
displacement by 10 Earth radii along the y-axis of the first of these systems.

For clarity, the paths of the incident rays are plotted a short distance
before they hit the bow shock. This is done with no intention of actually
simulating the ray propagation outside the bow shock, but merely to make
the angle of incidence and the forms of the incident wave fronts clear in the
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plots. To initiate the incident rays, we use yet another coordinate system:
origin fixed on a point on the Earth-Sun axis between the Sun and the bow
shock, with the axes turned an angle #, the angle at which the wave hits
the bow shock, in relation to the coordinate axes of the ray tracing system
described above. The transformation from the coordinates of the initial
rays to the ray tracing coordinates is thus a displacement along the negative
y-axis of the ray tracing system, and a rotation with an angle 6.

In the program code, these transformations are executed inside the mod-
ules for computing the flow vector and the incident ray, respectively. In the
main routines, we always assume the ray tracing coordinate system, here-
after called the main coordinate system.

3.3 Initializing the Ray

In the settings file of the logic module, a number of parameters for config-
uring an initial set of rays are available. The rays are initialized at the bow
shock, and traced from there until they hit the magnetopause. To compute
the phase of a ray at the point where it hits the bow shock, a straight path
AB is tracked backwards from the bow shock to the line AC making an
angle § with the Sun-Earth line, see figure 2. We assume that a plane phase
front hits the line AC at time t = 0. Elementary vector algebra gives the
length of the distance AB, which is the distance the phase front has traveled
since £ = 0 until it hits the bow shock:

CB = 0B — 0C (36)
CTfi = (C_)B 4 em:)emr (37)
AB =CB-CA4, (38)

where e, is the unit vector in the coordinate system of the incident wave,
see the section about geometry and coordinate systems. The time it takes
for the phase front to get from A to B is computed by using the phase speed

Vp=1 (39)
where k is the wave number and w the angular frequency of the incident
wave.

The initial values are returned as an n x 7-matrix, where each row rep-
resents one initial ray vector. The first entry in each row is the time when
that ray hits the bow shock, the three following entries are the coordinates of
the crossing point and the last three entries are the wave vector at the bow
shock. By taking one of these rows at a time as initial vector and solving
the equations step by step until the halting condition is met, the ray paths
are computed.
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3.4 The Ray Tracing Algorithm

The ray tracing is, in short, performed by solving the system of ordinary
differential equations (34) and (35), using the IDL implementation of the
Runge-Kutta fourth order method and a step halving algorithm for error
control. The routines for this task are located in the file ode_solver.pro.
They are not specifically adopted to the immediate problem, and it should
be quite possible to use them to solve other systems of ODE’s.

To run the program, values for the time step size and the local error
tolerance are chosen in the settings file raytrsettings.pro. Conditions for
halting the program execution are chosen by giving the name of a boolean
function that will be evaluated after each time step, with the current solution
as argument. In this way, we can choose to halt execution after a specified
number of time steps, when the ray hits the magnetopause, when a quantity
blows up numerically, or when some other condition of our choice is fulfilled.
The program is compiled by running the file raytr.compile, and executed
with the file raytr.run. Every execution of the program results in a plot of
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the paths of a set of rays through the equatorial plane of the magnetosheath.

The error control method is is a simple Richardson extrapolation. If
S, 8at, and Say/o indicate the exact solution, the numerical solution with a
time step size At, and the solution with a time step size —‘52‘—3 respectively, the
error Ea; can be estimated by the following computation, since the method
used is fourth order:

: 1
S =Sat+ Eat = Saya + Tefat= (40)

16
|Eacl = 171588 = Sayl (41)

Another way of controlling the error is to check how well the solution
satisfies the local dispersion relation. If the expression 13 is not close enough
to zero, the solution is recalculated, using a smaller time step. This method
has the advantage of being considerably faster, since the step halving doesn’t
have to be performed in each time step. Figure 10 gives some hint on the
connection between the errors in r, k and the dispersion relation.

To correct the error, the program utilizes an adaptive step size method.
This method is controlled by five parameters in the raytrsettings.pro
file: red_fact, the factor with which the step size is reduced if the error
is larger than acceptable; exp_thr, the minimal error beneath which the
step size will be expanded; exp_fact, the factor with which the step size is
expanded if the error is less than exp_thr; min_dt, max_dt and initial_dt,
the minimal, maximal and initial time steps respectively.

Though a lot of simplifications could have been performed due to the
assumptions about the direction of the background magnetic field already
made, the actual equations are implemented in a general fashion, following
exactly the formulas (34) and (35). Apart from facilitating further develop-
ment, it turned out to be more time effective, since the computations could
be executed using vector algebra.

3.5 What Happens at the Bow Shock

A wave incident on the bow shock will be transmitted and reflected, ful-
filling certain laws and boundary conditions, which affect the direction, the
amplitude and the polarization of the wave. In this work we are only consid-
ering refraction by Snell’s law, expressed as e, - k; = e, - k;, where e, is the
unit vector normal to the bow shock, k; is the wave vector of the incident
wave and k; the wave vector of the transmitted wave. This tells us that the
tangential component of the wave vector is constant across the boundary.
The other component of the transmitted wave vector is chosen to satisfy the
dispersion relation inside the bow shock. For a more detailed treatment of
reflection and transmission at the bow shock, refer to [3]

The incident wave vector is assumed to be constant along the bow shock.
Its frequency ranges from 0.001 Hz (Pc-5) to 0.1 Hz (Pc-3). Outside the bow
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shock, the flow velocity of the plasma is typically higher than the sound and
Alfvén speeds (see figure 11 for some typical values). The wave fronts are
therefore mainly convected towards the bow shock with the speed V' of the
plasma flow, and the wave number k and frequency f of the incident wave
satisfies the simple dispersion relation kV = 27 f. The phase speed (and
wavenumber) of the transmitted wave, on the other hand, is dependent on
the values we choose for the background quantities inside the bow shock.
Since the flow speed of the plasma is considerably lower at the nose region,
the sound and Alfvén speeds becomes significant.

3.6 Plotting the Result

The solution, the time development of a single initial vector (to,ro, ko), is
returned as an m X 7T-matrix, where each row (%;, r,’f, k;f) represents one time
step, from the bow shock until it either hits the magnetopause or the plasma
flow speed becomes supersonic, where the incompressible flow assumption
breaks down. This process is repeated for a set of rays, and each ray path is
plotted. By indicating lines of constant phase, the wave fronts are visualized
as they propagate through the magnetosheath. At the same time, one can
see the direction of energy propagation, since the energy flux is along the
ray paths. Where the paths diverge, the energy density decreases, and vice
versa.

To visualize the wave fronts incident on the bow shock, the ray paths
are extrapolated backwards from the bow shock to the starting point at
t = 0, assuming constant values everywhere. As earlier mentioned, this is
not to study the propagation outside the bow shock, but merely to clarify
the picture.

4 Results and Discussion

4.1 Relevance and Consistency of Program Output

The picture of the magnetosheath here presented is extremely simplified,
and so it is difficult to draw any conclusions about the actual behaviour of
the propagating wave fronts from the program output. We can, however, try
to assert that the model is to some degree self-consistent and well behaved.
This can then be used as a starting point for further investigations.

The plane wave fronts hit the bow shock, are refracted and propagate
deformed through the magnetosheath until they hit the magnetopause or
the sonic line, where the simulation is interrupted. In the Earth frame of
reference, the wave fronts are moved closer to each other as they cross the
bow shock, since the plasma flow speed decreases and the density increases.
Figures 4 to 6 show the results for a configuration of typical values, taken
from (6], for different angles of incidence. The background values are plotted
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in figure 11 across the bow shock and some distance into the magnetosheath.
The solid lines in the plots show the ray paths, and the marks on the lines
indicate values of constant phase.

In figures 5 and 7, the same configuration of background values has been
used, except that the mass density is slightly higher in figure 7. With a
higher density, the wave fronts move more slowly through the plasma, as
the Alfvén speed is decreased according to 1, which can be seen in the
figure. We can also see that the ray paths are more deflected at the bow
shock, since the density step is higher. In figure 9, the background magnetic
field is increased, which slightly increases the Alfvén speed.

Values of the sound speed, the plasma flow speed and the group speed of
the propagating waves are all plotted along two different ray paths in fig 13.
In the lower panel a ray path starting close to the bow shock nose is followed,
while the upper panel shows values along a path starting further out along
the flank. The sound speed is rising in the upper panel and dropping in
the lower. This is reasonable since the pressure should be rising across
the magnetosheath nose and dropping along the flanks, and the density is
constant.

The flow speed follows the opposite pattern, gaining speed along the
flanks, as is expected of a gas flow around a circular object.

The group speed along the path starting at the bow shock front rises
steadily from around 300 to 400 km/s across the magnetosheath.

To test the ODE-solver and to achieve visual indications on the correct-
ness of the background flow, the program has been used to track the flow
lines of the plasma. itself, resulting in figure 12.

4.2 Suggestions for Further Work

There are a few obvious improvements to the program that could be easily
carried out.

1. The density is here taken as linear in y and independent of all other
coordinates. To retain consistency throughout the region, we have to
assume constant density. A better model would be to use the fact
that the normal component of the flow velocity times the density is
constant across the bow shock. This would give a density curve along
the bow shock, which then is carried with the flow, so that the density
is constant along a flow line. Temperature curves can then be plotted
and compared to the results of [7].

2. In this work, the bow shock is approximated as a parabola and the
magnetopause as a sphere. The geometry of the magnetosheath could
be more accurately modeled by implementing other models for the
bow shock and magnetopause positions. For the bow shock, one could
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utilize the expression used by [6]

2—:;3 =1+ 1.16 cos(6). (42)

The numerical values in this formula represents the mean position. K
is measured in Earth radii from a point three Earth radii towards the
Sun. The magnetopause can be more accurately modeled using the
equation

o (ﬁm@mw+@V;?%) (43)

L S
d 6 cos? ¢p — 18
S

T 3
gEREg
also used by [6]. This equation is based on pressure balance consid-
erations and contains the distance rg between Earth and the magne-
topause along the Sun-Earth axis. All routines for the geometry mod-
els ae located in the modules bowshock.pro and magnetopause.pro.
It should be possible to substitute these modules separately, without
interfering with the rest of the program.

. Since the ODE solving algorithm, with the error control and adaptive
step size method, was written by the author of this report, in a rather
short time, it is not very effective, compared to the advanced methods
available. If for example the numerical computing language Matlab
had been used instead of IDL, the whole ode_solver.pro module
would have been unnecessary, and the program would have been con-
siderably more time effective. If one wishes to develop the program
further, introducing more advanced, and time consuming, models for
the background quantities, it would be a good idea to port the whole
program to Matlab for this reason.

. A stability and consistency analysis of the method has to be performed,
to make sure that the method converges. Refer to [12] for a thorough
treatment of this procedure.
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