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Abstract

This doctoral thesis is the result of a research effort performed in two fields of
speech technology, i.e., speech recognition and mispronunciation detection.
Although the two areas are clearly distinguishable, the proposed approaches
share a common hypothesis based on psychoacoustic processing of speech
signals. The conjecture implies that the human auditory periphery provides
a relatively good separation of different sound classes. Hence, it is possible
to use recent findings from psychoacoustic perception together with mathe-
matical and computational tools to model the auditory sensitivities to small
speech signal changes.

The performance of an automatic speech recognition system strongly de-
pends on the representation used for the front-end. If the extracted features
do not include all relevant information, the performance of the classification
stage is inherently suboptimal. The work described in Papers A, B and C
is motivated by the fact that humans perform better at speech recognition
than machines, particularly for noisy environments. The goal is to make
use of knowledge of human perception in the selection and optimization of
speech features for speech recognition. These papers show that maximizing
the similarity of the Euclidean geometry of the features to the geometry
of the perceptual domain is a powerful tool to select or optimize features.
Experiments with a practical speech recognizer confirm the validity of the
principle. It is also shown an approach to improve mel frequency cepstrum
coefficients (MFCCs) through offline optimization. The method has three
advantages: i) it is computationally inexpensive, ii) it does not use the au-
ditory model directly, thus avoiding its computational cost, and iii) impor-
tantly, it provides better recognition performance than traditional MFCCs
for both clean and noisy conditions.

The second task concerns automatic pronunciation error detection. The
research, described in Papers D, E and F, is motivated by the observation
that almost all native speakers perceive, relatively easily, the acoustic char-
acteristics of their own language when it is produced by speakers of the
language. Small variations within a phoneme category, sometimes different
for various phonemes, do not change significantly the perception of the lan-
guage’s own sounds. Several methods are introduced based on similarity
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measures of the Euclidean space spanned by the acoustic representations of
the speech signal and the Euclidean space spanned by an auditory model
output, to identify the problematic phonemes for a given speaker. The meth-
ods are tested for groups of speakers from different languages and evaluated
according to a theoretical linguistic study showing that they can capture
many of the problematic phonemes that speakers from each language mis-
pronounce. Finally, a listening test on the same dataset verifies the validity
of these methods.

Keywords: feature extraction, feature selection, auditory models,
MFCCs, speech recognition, distortion measures, perturbation analysis,
psychoacoustics, human perception, sensitivity matrix, pronunciation error
detection, phoneme, second language, perceptual assessment.
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Sammanfattning

Denna doktorsavhandling beskriver forskning inom tv̊a talteknolo-
giomr̊aden: taligenkänning och diagnostik detektion av uttalsfel. Även om
de tv̊a användningsomr̊adena skiljer sig, har de föreslagna metoderna en
gemensam hypotes som baseras p̊a psykoakustisk talsignalbehandling. Hy-
potesen anger att människans perifera hörselsystem ger en relativt god sep-
aration av olika ljudklasser. Därmed kan den auditiva känsligheten för små
talsignalförändringar modelleras med teorier om psykoakustisk perception
och matematiska beräkningar.

Ett automatiskt taligenkänningssystems prestanda beror till stor del p̊a
den representation som används för talsignalen. Om representationen inte
inneh̊aller all relevant information är klassificeringsstadiet i sig suboptimal.
Arbetet som beskrivs i Artiklarna A, B och C, motiveras av det faktum
att människors taligenkänning är bättre än automatisk, särskilt i bullriga
miljöer. Målet är att utnyttja kunskapen om mänsklig perception i valet
och optimeringen av talsignalrepresentationer för taligenkänning. Dessa ar-
tiklar visar att maximering av likheten mellan den Euklidiska geometrin
för talsignalens särdrag och geometrin av den perceptuella domänen är
ett kraftfullt verktyg för att välja eller optimera särdragen. Experiment
med ett taligenkänningssystem bekräftar principens giltighet. Dessutom re-
dogörs för ett försök att offline optimera talsignalrepresentationen (MFCC-
koefficienter). Metoden har tre fördelar: i) den kräver f̊a beräkningssteg,
ii) den använder den auditiva modellen p̊a ett indirekt sätt och reduc-
erar därmed antalet beräkningssteg, och, viktigast, iii) den ger bättre tal-
igenkänningsresultat än med traditionella MFCC-koefficienter i b̊ade tysta
och bullriga miljöer.

Avhandlingens andra del behandlar automatisk detektion av uttalsfel.
Arbetet som beskrivs i Artiklarna D, E och F, motiveras av observatio-
nen att infödda lysnnare relativt enkelt tolkar akustiska särdag i det egna
spr̊aket. Variationer mellan hur olika inhemska talare producerar ett fonem
förändrar inte tolkningen p̊a n̊agot betydande sätt. Flera metoder presen-
teras i avhandlingen för att identifiera de mest problematiska fonemen för
en specifik talare. Metoderna baseras p̊a att mäta likheten mellan den Eu-
klidiska arean som spänns upp av talsgnalens akustiska representation och
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motsvarande area för den auditiva modellens utsignal. Metoderna testas
för talare fr̊an olika spr̊akgrupper och utvärderas i relation till en lingvistik
studie av vilka uttalsfel talare fr̊an dessa spr̊akgrupper har. Jämförelsen
visar att metoderna kan identifiera många av de problematiska fonemen för
talare fr̊an varje spr̊akgrupp. Ett lyssningstest p̊a samma data genomförs
ocks̊a för att verifiera metoderna.

Nyckelord: formulering och val av talsignalrepresentation, au-
ditiv modell, MFCCs, taligenkänning, distorsionsm̊att, störnings-
analys, psykoakustik, mänsklig perception, sensitivitetsmatris, automatisk
bedömning av uttalsfel, fonem, andraspr̊aksinlärning.
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Introduction

The ways that humans can interact with computers have been developed
since the early days of computer engineering. Nowadays, it it not unusual
for this interaction to be done by speech. Many computer programs there-
fore include state-of-the-art developments of speech technology to perform
various tasks. For these systems to be of practical use, i.e., to perform in
a human-like manner, a thorough understanding of human speech percep-
tion is necessary. Additionally, a compact and relevant representation of
speech input that would eliminate the influence of insignificant components
such as background noise, is an important factor to enhance the system’s
performance. These two topics are dealt with in this Introduction.

Since auditory perception plays a principal role in the work presented
in this thesis, the first part of the Introduction is devoted to discussing re-
lated terms and notions as a necessary background. Hence, in Sec. 1, the
human auditory periphery system is introduced as well as some of the com-
putational auditory models that have been developed to simulate different
functions of hearing. Next, the underlying idea, from a high-level point of
view, of the methods proposed in this thesis is discussed. Sec. 2, which deals
with the task of speech recognition, introduces the front-end and acoustic
modeling and then continues with a short presentation of several feature
dimensionality reduction methods. In most cases, existing feature-selection
and dimension-reduction methods require classified data. For speech recog-
nition this suggests that dimension-reduction methods are sensitive to dif-
ferences in training and testing conditions. To overcome this problem, but
also to increase understanding about the representation of speech in the
human periphery, a fundamentally different (auditory motivated) feature
selection technique is proposed, a brief description of which is given in the
end of this section. In Sec. 3, the task of automatic pronunciation error
detection is discussed. At first, a quick overview of different approaches is
presented, including three paradigms from real pronunciation training or
language learning systems. Usually, this task is treated as a classification
problem and several statistical methods are used. However, these statistical
approaches may not include all the information relayed by the human au-
ditory periphery which is vital for sound discrimination and classification.
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Therefore, the methods may detect or accept deviations in the pronuncia-
tion that are not relevant to auditory processing. Another issue arises from
the fact that sometimes the available systems are developed for specific
language pairs, which leaves little flexibility in cases where the language
backgrounds are not pre-determined. This thesis proposes a possible solu-
tion to the above restrictions by presenting a new, perceptually-motivated
scheme to assess the non-native pronunciation. The basic idea of the new
technique is therefore introduced in the end of Sec. 3. Finally, Sec. 4 sum-
marizes the thesis contributions and presents a short description of the six
papers of Part II, and Sec. 5 provides conclusions and discusses potential
future extensions.

1 Speech perception

Speech has been, and will continue to be, the dominant manner of human
social communication and information exchange. Within the broader area
of speech communication, speech perception, at the level of the sound sig-
nal, deals with the process by which the sounds of a language are heard and
interpreted into meaningful phonetic information that can later be used
for upper level cognitive processing. In this work, the perceptual cues of
the speech signals are studied so as to improve the performance of speech
recognition and foreign-language pronunciation error detection systems. In
doing so, psychoacoustic models of the human auditory periphery are em-
ployed. In the following paragraph, the human auditory system is presented
to provide a background knowledge necessary to be able to understand the
progress in auditory modeling research. Next, an overview of some of the
functional auditory models is given and then an outline of the underlying
idea and the primary assumption of this thesis, is presented.

1.1 Human hearing system

The human ear consists of several parts (Moore, 2003; Zwicker and Fastl,
1999; Huang et al., 2001): the outer ear, the middle ear, and the inner ear.
The way these elements operate is not totally understood, but a good level
of understanding has been reached to a considerable extent through previous
research efforts. In the next, an insight of the human ear is provided but for
more details and an extended analysis of the function of the human auditory
system the reader is referred to (Moore, 2003; Zwicker and Fastl, 1999).

The first part of the human auditory system, as shown in Fig. 1, is
the outer ear consisting of the pinna, the auditory or ear canal and the
tympanic membrane or eardrum. The pinna is the only totally visible part
of the system, and consists of what is often simply called the “ear”. This
organ is commissioned to collect different sounds which will then travel via
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the auditory canal to the middle and inner ear. The pinna is also a ‘natural
radar’ that can identify the origin of a sound, i.e., it contributes to the so
called sound localization process. The auditory canal is a channel of about
26 mm in length and 7 mm in diameter, filled with air that leads to the
tympanic membrane. The tympanic membrane is approximately 8−10 mm
in diameter and is formed of three layers of skin. The sound is filtered by the
canal and then hits the eardrum that starts to vibrate. When this happens,
the sound vibrations are passed into the middle ear.

Figure 1: The anatomy of human ear.

The middle ear space, also known as the tympanic cavity lodges the
ossicles, a group of three tiny bones that serve as link between the outer
and the inner ear. The ossicles, called malleus, incus, and stapes, are the
smallest bones of the body and their duty is to pass the vibrations of the
tympanic membrane through the middle ear to the inner ear. The malleus,
which is partially implanted in the tympanic membrane, is responsible for
transferring the vibrations to the other ossicles. Inside the middle ear, there
are also two very small muscles, the stapedius and the tensor tympani. Their
job is to suspend and retain the ossicles within the middle ear. They also
control the acoustic reflex phenomenon, namely the contraction in response
to loud sound which in turn tightens the chain of ossicles to protect the
sensory part of the ear from damage by loud sounds. The middle ear cavity
is also connected to the back of the throat by a passage called the eustachian
tube. The eustachian tube is normally closed, but opens when swallow
occurs, equalizing the middle ear pressure with the external air pressure.
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As a result, the tympanic membrane has equal pressure on either side to
prevent hearing loss.

The inner ear consists of two parts, the cochlea and the vestibule. The
cochlea is a small spiral (which looks like the shell of a snail) filled with
fluid which plays a major role in hearing. Sound is transmitted as ‘waves’
in this fluid by vibration of the last ossicle, stapes in the ‘oval window’. In-
side the cochlea is an important structure known as the basilar membrane
(BM) which is vibrated in various places by incoming sounds depending on
their frequency range. Higher-frequency sounds vibrate the membrane near
its base while lower-frequency sounds vibrate its upper part. According to
place theory, humans recognize pitch based on the area of the basilar mem-
brane that is stimulated (Moore, 2003). On the BM rests the receptor organ
of hearing - the organ of Corti, which supports rows of special cells known as
hair cells. The process of transduction (transforming mechanical vibrations
into electrical signals) is performed by them. There are approximately 3 500
inner hair cells (IHC) and 11 000 outer hair cells (OHC). These hair cells
connect to approximately 24 000 nerve fibers. The electrical signals pro-
duced by the hair cells travel through the auditory nerve (AN) to the brain.
The AN is the nerve which arises from within the cochlea and extends to
the brainstem, and carries the sound information to the cochlea nucleus,
i.e., the first site of the central auditory system in which the sensory infor-
mation is processed by the neural system. A sound is then considered to be
perceived by the time these electrical signals reach the ‘auditory cortex’ of
the brain where a cognitive processing is performed. Finally, the vestibule is
the central part of the osseous labyrinth, and is situated in the middle of the
tympanic cavity behind the cochlea and in front of the semicircular canals.
It forms part of the vestibular system which contributes to the balance of
the body and to the sense of spatial orientation.

The knowledge about the way in which the brain processes the extracted
patterns is rather vague, but many studies have shown how individuals per-
ceive tones and noise bands (Moore, 2003; Zwicker and Fastl, 1999). Based
on that knowledge, many auditory models that simulate the functionality of
the human ear, have been proposed (Moore, 2003; Zwicker and Fastl, 1999;
Dau et al., 1996a; Rix et al., 1999). In the next section, a short overview of
various auditory models is given.

1.2 Auditory models

Computational models of the human auditory system are widely used and
a series of approaches have been proposed depending on different properties
and various experimental findings. Dau (2009) presents an overview of the
auditory models that are generally divided into biophysical, physiological,
statistical and perceptual, depending on which properties these models focus
on. It is worth noticing that most of the models are not “complete”, which
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means that each one may simulate a specific observation or function and,
consequently, can be used for certain tasks. This section concentrates on
computational models of the auditory perception.

The auditory nerve has been at the epicenter of several applications.
Delgutte (1990) addressed the phenomenon of physiological masking so as to
show, by comparing the masking thresholds of the AN fibers, that suppres-
sion masking rises significantly for signals (known as probes) with frequency
higher than the masker, while the masking is excitatory if the probe fre-
quency is lower than the masker’s. Carney (1993) presented a computational
model to account for the average rate and temporal response properties of
the AN fibers in cats. A more recent development was introduced in (Heinz
et al., 2001b) in which non-linear properties of the cochlear amplifier were
studied and a computational AN model was developed to be used in psy-
chophysical experiments with human listeners, both normal and impaired.
A stochastic method based on signal detection and computational AN mod-
els, was introduced in (Heinz et al., 2001a) to evaluate psychophysical per-
formance limits for the task of auditory discrimination of tone frequency
and level. Colburn et al. (2003) presented an analytical approach to quan-
tify the information in AN fiber responses. The model included temporal
responses as well as the non-linear phase impact of the cochlear amplifier,
and was intended for the task of level discrimination.

Some approaches include information from the central auditory system.
Such models use, for example, recent findings related to the superior olivary
complex (SOC) which is a collection of brainstem nuclei that contribute
variously in hearing. Within the SOC, a specialized nucleus called the
medial superior olive (MSO) is considered to support the localization of
a sound by detecting its azimuth, i.e., the angle where the sound source is
located. It is also responsible for measuring the time difference of sounds’
arrival between the ears which is called the interaural time difference (ITD).
The interaural intensity differences (IIDs) are measured by another nucleus
inside the SOC, the lateral superior olive (LSO). IIDs are also useful for the
determination of the azimuth, particularly for higher frequency sounds. The
so-called, binaural perceptual models are based on the concept of interaural
time delay and the idea that an efficient way to estimate this delay is by
introducing a coincidence network in the MSO (Jeffress, 1948). Such a
network can be found in the work presented in (Colburn et al., 1990), which
describes a simple way to model empirical findings from excited-excited
(EE) cells (cells that are excited by signals from both ears) in the MSO.
Other approaches, e.g., the models of sound localization (Blauert, 1997),
focus on the interaural differences such as ITD and IIDs. A binaural signal
detection model (Breebaart et al., 2001a,b,c) consisting of three parts, a
peripheral preprocessing in both monaural channels, a binaural processor
which produces the internal representations and a central processor to detect
the sound signal was introduced as an extension of the approach presented
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in (Dau et al., 1996a).
Models of auditory sensations such as loudness, pitch or duration, have

also received the attention of many researchers in the field (Zwicker and
Fastl, 1999). Glasberg and Moore (2002) presented an example of such a
model which first calculated the short-term perceived loudness (loudness
that is perceived at any instant), and then computed the overall loudness
impression (long-term loudness) by an averaging mechanism applied to the
short-term loudness. In (Lyon and Shamma, 1996; de Cheveigné, 2005), a
description of several approaches can be found to computationally model
the pitch and timbre. In (Shamma and Klein, 2000), an auditory model was
presented that consisted of two stages, namely the cochlear filtering and the
coincidence detection, while in (Meddis and O’Mard, 1997), a pitch percep-
tion model was shown. Common for both approaches is the idea of combing
spectro-temporal cues to better calculate the representation of the pitch.
Further reading on this family of pitch models can be found in (Moore,
2003). In (Oxenham et al., 2004), an effort to separate temporal and place
information was made by allowing temporal information of low frequency
tones to be displayed in locations in the cochlea tuned for high frequencies.
The experiments have shown the importance of the tonotopic place in the
pitch calculation, a phenomenon that was also studied in (Shamma, 2004).

Furthermore, studies based on psychophysical experiments have revealed
the importance of compression and suppression in non-simultaneous mask-
ing. In (Oxenham and Moore, 1994), an effort was made to model the
additivity of non-simultaneous masking by including a compressive nonlin-
earity within the temporal-window model. The study was further expanded
for hearing impaired listeners in (Oxenham and Moore, 1997) and it was
found that cochlea damages lead to a reduced non-linearity of the basi-
lar membrane. The latter’s non-linearity was also the subject of experi-
ments described in (Plack and Oxenham, 1998). The temporal envelope
in normal-hearing individuals was investigated in (Nelson and Swain, 1996)
by measuring masking at the peaks and valleys of a tone signal. In (Dau
et al., 1996a,b) and (Buchholz and Mourjopoulos, 2004a,b), computational
models of forward masking were presented that also included non-linear
adaptation modules and signal-dependent compression of the input signal’s
dynamics. Both models accounted for simultaneous and non-simultaneous
masking phenomena. Finally, in (Oxenham, 2001), an attempt to distin-
guish between neural adaptation and temporal integration as possible ex-
planations of forward masking was performed, but the findings show similar
behavior of both approaches.

A general model was discussed in (Patterson et al., 1992) that produced
‘auditory images’ of the sounds. The model included assumptions that are
beyond the pure periphery, e.g., it included phenomena such as the phase
alignment and temporal integration that occur before the formation of the
initial images of the sounds. These auditory images indicated which effects
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of complex sounds may be explained peripherally and clarified which of
them require central processing. Based on this work, a software platform of
the auditory image model (AIM) was later presented in (Patterson et al.,
1995). A model that also includes assumptions about the processing in
more central auditory stages was presented in (Dau et al., 1997a,b), and
later expanded in (Jepsen et al., 2008), in which a modulation filterbank
was introduced that reflected the sensitivities to fluctuating sounds and
accounted for amplitude-modulation detection and masking data, following
the adaptation stage in each peripheral auditory filter.

Until now, a series of different auditory models, which simulate exper-
imental findings or behavioral characteristics of the periphery, has been
described. Next, a short presentation of the two models that were used in
the papers included in Part II is given. At this point it is necessary to note
that the models of human audition were used implicitly throughout this
doctoral research, for the purpose of identifying the periphery’s response
to small signal changes and its sensitivities to distortion. Consequently, in
the course of this study no development of new schemes or expansion of
current ones was performed. Contrarily, the two auditory models were used
as means of transformation of the speech distortion signals in the auditory
perceptual field.

In (Gardner and Rao, 1995), the concept of sensitivity matrix was in-
troduced to approximate a given distortion measure used in the problem
of quantization of the linear predictive coding (LPC) parameters in speech
coding systems. Later, this work was extended and generalized in (Li et al.,
1999) and in (Linder et al., 1999). In (Plasberg and Kleijn, 2007), a method
for deriving the sensitivity matrix for distortion measures that are relevant
for audio signals was developed based on spectro-temporal auditory models.
The word “sensitivity” refers to the fact that each element of this matrix
represents the sensitivity of a measure of distortion to a particular small
change (or error) in the input speech signal. A mathematical detailed de-
scription is shown in Part II of the thesis. It is however interesting to unveil
the usage of this matrix and the valuable information that is provided. As
mentioned above, the speech signal distortion is transformed into the per-
ceptual domain in which the perceived error is measured by an auditory
model-output distortion measure. A major effect of this transformation is
the reorganization of the perturbation vectors’ direction. More specific, the
perturbation vectors that are orthogonal to the transformation matrix will
lead to a perceptual domain error which will essentially become irrelevant
for the auditory model output domain, therefore not perceivable. The two
auditory models, i.e., the so called van de Par and Dau models, which were
used in the experiments of this thesis will now be described.

The van de Par auditory model (van de Par et al., 2002) is a psychoa-
coustic masking model that accounts for simultaneous processing of sound
signals. One channel of the model is shown in Fig. 2. The first filter (hom
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Figure 2: Block diagram of a channel of the van de Par psychoacoustic
model.

in Fig. 2) which models the outer and middle ear (OM filter), is approxi-
mated by the inverse of the threshold of hearing in quiet. The output of the
OM filter is then filtered by a gammatone filterbank (γg in Fig. 2) which
models the BM in the inner ear. The center frequencies of the gammatone
filterbank are spaced linearly on a equivalent rectangular bandwidth (ERB)
scale. The model consists of several channels f , in each of which the ratio
of the distortion x− x̂ to masker x is estimated, where x denotes the mag-
nitude spectrum of speech and x̂ its perturbation. In the end, all ratios are
combined together, to account for the spectral integration property of the
human auditory system. The complete model is then described by

Υ(x, x̂) = CsLe

∑
g∈G

1
N

∑
f=0,··· ,N−1 |hom(f)|2|γg(f)|2|x(f)− x̂(f)|2

1
N

∑
f=0,··· ,N−1 |hom(f)|2|γg(f)|2|x(f)|2 + Ca

, (1)

where Cs and Ca are constants calibrated based on experimental data, Le is
the effective duration of the segment according to the temporal integration
time of the human auditory system, the integer g labels the gammatone
filter γg and G the set of gammatone filters considered, hom is the outer and
middle ear transfer function which is the inverse of the threshold in quiet
and finally N is the dimension of the speech segment. In Papers A, B, D
and E, the van de Par model is used to obtain the sensitivity matrix in the
speech frequency domain.

The second model that was used is the so-called Dau auditory model
(Dau et al., 1996a,b) which is a psychoacoustic masking model that ac-
counts for spectro-temporal processing of sound signals. Thus, in this case
the signal x is a time-domain vector. It consists of several stages which sim-
ulate the human auditory periphery. A channel l of the Dau model, shown
in Fig. 3, includes the hair-cell model consisting of a gammatone filter,
a half-way rectifier, and a low-pass filter. Next, an adaptation nonlinear
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Figure 3: Block diagram of a channel of the Dau psychoacoustic model.

stage incorporates the forward masking prediction of the ear (Plasberg and
Kleijn, 2007). Finally, a low-pass filter performs a temporal smoothing and
the output is the so-called internal representation y(l)(xj), where xj is the
j’th speech segment. The original paper (Dau et al., 1996a) included also
the addition of internal noise with a level independent variance after the
nonlinear transformation to simulate the loss of information that occurs in
reality. However, the distortion prediction properties of the model was later
performed in (Plasberg and Kleijn, 2007). In the same work a distortion
measure on the internal representation was introduced as

Υ(xj , x̂j,m) =
∑

l

‖ y(l)(x′j)− y(l)(x̂′j,m) ‖2, (2)

where x′j , x̂
′
j,m are of higher dimension than the xj , x̂j,m vectors, respec-

tively due to the ring-out effect described in (Plasberg and Kleijn, 2007),
and m is the perturbation index. The sensitivity matrix in this case is a re-
sult of a more complicated effort compared to that of the van de Par model
and can be computed as the sum of the per-channel sensitivity matrices.
The Dau model is used in Papers C, E and F.

The next paragraph discusses the basic concept of the thesis and provides
the motivation and the conjecture of the proposed methods.

1.3 In search of the perceptual cues of speech signals

The principle of the proposed methods that constitute this thesis is based on
examining the common characteristics of speech sounds when transformed
into internal representations of an auditory model and into some acoustic
feature set. An insight of this is described here.

The human auditory system handles differently small alterations in the
speech signal. The basic conjecture of the work presented in this thesis
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perceptual domain  acoustic domain  

(a) The Euclidean space geometry of a speech sound transformed into

the auditory domain (to the left) and some acoustic domain (to the
right).

(b) The hypothesis indicates the human auditory periphery to provide a relatively
good separation of sounds. Emphasis is given to the local Euclidean geometry dis-
similarity across the speech sounds (bold solid edges for intra- and bold dash edges
for inter-sound). The curved lines, describing borders between different sounds, are
drawn for illustration purposes.

Figure 4: 2D drawings of a higher dimensional Euclidean space of speech
sounds in the perceptual and acoustic domains, respectively.
The nodes denote speech segments (speech vectors) and the
edges illustrate the geometry of the created regions around
these vectors in a high dimensional Euclidean space.

(that has also been verified, e.g., in (Chatterjee and Kleijn, 2011) for op-
timal design of speech recognition features) is the existence, for each class
of sounds, of a region inside the human auditory system which is partic-
ularly sensitive to speech signal changes. Consider a speech sound that is
transformed into an auditory model output domain and some acoustic fea-
ture domain. The above speech sound is composed of a finite number of
speech segments that are represented by high dimensional speech vectors.
Next, each speech vector is perturbed by a small amount of additive noise
to create a finite number of nearby perturbation vectors. It follows that in
this high dimensional Euclidean space, a number of regions that is equal to
the total amount of the speech segments, are formed. Fig. 4(a) illustrates
broadly, the geometry of this speech sound in a high dimensional Euclidean
space for each of the considered domains. The nodes represent the high
dimensional speech vectors corresponding to the segments that the speech
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sound consists of, and the edges symbolize the geometry of the created re-
gions in a high dimensional Euclidean space, which for pictorial illustration
are sketched on a two-dimensional plane.

The human audition has a significant role in the identification of various
sounds. Moreover, it is considered that all the relevant information for sound
separation is preserved in the mapping from the acoustic domain to the per-
ceptual domain. Investigating the global geometry (large distances) of the
speech sounds would be restrictive for designing any engineering scheme
as it is almost impossible to find a mathematical tool apt to handle that.
Also, as the sound class boundary is crucial, it might not be so important to
preserve the global geometry. The focus has to be on preserving those dis-
tances that are short relative to the sound boundary curve, as illustrated in
Fig. 4(b), assuming that the similarity between the local geometries in the
acoustic and the auditory domains facilitates a human-like classification of
the speech sounds. If the two spaces have similar geometry, then the norms,
including the Euclidean distances, are preserved. Furthermore, the consid-
eration of small distances helps in reducing complexity by using tools such
as perturbation theory. Based on the aforementioned, several algorithms are
proposed that are applied in two different areas: i) robust feature selection
and optimization of the sound signal representations for speech recognition
and ii) diagnostic evaluation of the perceptually relevant differences between
native and non-native speech signals for mispronunciation detection.

The next section deals with the first area of application of the concept
described above. For practical reasons, i.e., as a prerequisite knowledge nec-
essary for the comprehension of the work described in Part II, the section
begins with a general overview of a speech recognition system and a litera-
ture review. Next, a more detailed description of the components of a speech
recognition system that are connected to the acoustic signal is given. Then,
the problem of dimensionality reduction in the front-end is presented. Two
of the most popular techniques, which are compared with the thesis feature
selection approach, are presented in details, and the section ends with a
general description of the proposed, perceptually-motivated, algorithm.

2 Speech recognition

Automatic speech recognition (ASR) deals with the development of tech-
niques that transcribe human speech into written text. Fig. 5 illustrates
the main blocks of such a system. These are the front-end, the acoustic
models, the language model, the lexicon and the search algorithm (Rosti,
2004). The front-end or feature extraction part is the part of the ASR sys-
tem in which the incoming speech signal is processed in a way to derive
its meaningful characteristics. The acoustic models are then built from the
extracted features together with the text transcriptions of the speech files
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Figure 5: A real speech recognition system.

of the database. Usually, stochastic models and statistical tools are used to
create the acoustic models. A language model aims at capturing the sta-
tistical properties of a language by estimating the likelihood of a following
word, phone or segment in a speech sequence. The lexicon includes all the
phones, words and other symbols and the search algorithm is used for find-
ing the most probable sequence of phones or words that has been uttered
by the speaker.

In recent years, the performance of ASR systems has improved drasti-
cally. One of the main reasons is the development of new acoustic modeling
schemes. On the other hand it is generally accepted that an appropriate
parametric representation of the acoustic data is an important issue in the
design and performance of any ASR system. In other words, if the extracted
speech features do not include all relevant information, the performance of
the recognition stage degrades significantly.

2.1 Acoustic processing components

Focusing only on the acoustic part of the ASR system, namely the front-end
and the acoustic modeling, it is discussed in the next two paragraphs the
approaches that have been followed during the course of this study as well
as some other known techniques.

Front-End

During the first step in the feature extraction process the speech waveform
is sliced up into frames, which are transformed into spectral features as
shown in Fig. 6. In this paragraph, it is briefly described the process of
extracting mel-frequency cepstrum coefficients (MFCCs) (Davis and Mer-
melstein, 1980). These features are broadly used in the included papers in
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Part II, as they are considered to be the standard acoustic representations
of the speech signal for speech recognition as well as for other applications.
MFCCs have two important characteristics that are desirable for any sys-
tem, i.e., they follow a perceptually motivated frequency filtering rather
than a linear one and use a logarithmic function to approximate the non-
linearity of the auditory system. It is noted however, that this auditory
knowledge incorporated in MFCCs is not in accordance with the most re-
cent findings in hearing research. This is why the MFCCs have been used
in this thesis as representations of the acoustic properties of the speech sig-
nals with an objective either to select the most relevant coefficients or to
optimize them according to more sophisticated psychoacoustic models.

speech waveform 

feature extraction 
(signal processing) 

feature vectors  

Figure 6: Extracting features from a speech signal.

Mel frequencies are based on the knowledge that the human ear re-
solves frequencies in a nonlinear manner. Researchers have noticed that the
cochlea of the inner ear acts as a spectrum analyzer. The complex mecha-
nism of the inner ear and auditory nerve indicates that the sound perception
at different frequencies is not entirely linear (Huang et al., 2001). The re-
sponse is linear at frequencies below 1 kHz and becoming logarithmic with
increasing frequency (Stevens and Volkman, 1940). This behavior is mod-
eled with a filterbank with triangular filters. The amplitude of the triangular
filters, shown in Fig. 7, is computed as
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Figure 7: The mel filterbank.

Hm(k) =



0, k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) , f(m− 1) ≤ k ≤ f(m)

f(m−1)−k
f(m+1)−f(m) , f(m) ≤ k ≤ f(m+ 1)

0, k > f(m+ 1)

(3)

which satisfies
∑M

m=1 Hm(k) = 1 according to (Huang et al., 2001).
The speech signal is first pre-emphasized x(n) = x̆(n)−%x̆(n−1), where

x̆(n) is the original speech and % = 0.97 (ETSI, 2000), and then a Hamming
window (other types of windows can also be used, e.g., Blackman) is applied
to the output of the pre-emphasised speech frame

x′(n) =
{
α− β cos

{
2π[N − 1]
N − 1

}}
x(n), n = 1...N, (4)

where α = 0.54, β = 1 − α = 0.46 and N is the length of the window
(usually 10-30 ms). A discrete Fourier transform (DFT) is applied to the
windowed frame to compute the magnitude spectrum of the signal

X(k) =
N−1∑
n=0

x′(n)e−j2πkn/N , k = 1...K, (5)

where K is the length of the DFT. Next, the DFT power spectrum is com-
puted which is then multiplied with the triangular mel-weighted filterbank.
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The result is summed to give the logarithmic mel spectrum

s(m) = ln
[K−1∑

k=0

|X(k)|2Hm(k)
]
, (6)

where |X(k)|2 is the periodogram, Hm(k) is the m’th triangular filter, and
M denotes the number of triangular bandpass filters used. In the end, the
discrete cosine transform (DCT) of the logarithmic filterbank energies is
considered to get the uncorrelated MFCCs (Davis and Mermelstein, 1980)
as

c(q) =
M−1∑
m=0

s(m) cos
{
q[m+

1
2
]
π

M

}
, q = 1...Q, (7)

where Q is the number of cepstrum coefficients, and s(m) represents the
logarithmic mel spectrum of the m’ th filter of the filterbank.

Usually, the first, ∆c, and the second, ∆∆c, time derivatives are added
to the speech vector to better capture time dependencies (Young et al.,
2002). These are calculated as

∆ct =

Θ∑
ϑ=1

ϑ(ct+ϑ − ct−ϑ)

2
Θ∑

ϑ=1

ϑ2

, (8)

and

∆∆ct =

Θ∑
ϑ=1

ϑ(∆ct+ϑ −∆ct−ϑ)

2
Θ∑

ϑ=1

ϑ2

, (9)

respectively. A typical configuration used is Θ = 3 for a delta window, and
Θ = 2 for an acceleration window size.

Acoustic modeling

The feature extraction part (a typical paradigm of which is described above)
is the first step in building an automatic speech recognition system. The
acoustic modeling has likewise a significant role in an ASR system and
naturally, is important in improving accuracy. The most popular approach
in acoustic modeling is based on statistical methods. Before getting into
details, it is necessary to define what an acoustic model is.

Consider a sequence of acoustic input or observations O, defined as O =
o1, o2, ..., oT where ot is the observation at time t. (The successive ot can be
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considered as indicating temporally consecutive slices of the acoustic input
(Jurafsky and Martin, 2000)). The goal of speech recognition is to find the
corresponding word sequence W = w1, w2, ..., wT that has the maximum
a-posteriori (MAP) probability P (W |O)

Ŵ = arg maxP (W |O) =
P (O|W )P (W )

P (O)
. (10)

The above formula is known as Bayes’ theorem. Usually, the likelihood of the
observation sequence in the denominator, P (O) : P (O) =

∑
P (O|W )P (W ),

is omitted since it is independent of the word sequence. The conditional
likelihood P (O|W ) is called the acoustic model and the P (W ) is called the
language model.

In reality, the most difficult task is to build robust acoustic models to
decode/recognize the spoken utterance. For small-vocabulary applications
the task is not very complicated, and the unit that usually is modeled is
a word. However, for large-vocabulary speech recognition tasks, words are
not convenient to be modeled and hence sub-word units, e.g., phones, are
considered. In all cases, the goal is to have optimal acoustic models to reflect
the speech production mechanism, and to be able to model contextual effects
such as co-articulation.

Hidden Markov models (HMMs) is the most popular approach for acous-
tic modeling. Artificial neural networks (ANNs) is another stochastic
method that has been used in speech recognition. Segment-based models
(SMs) have also been developed for acoustic modeling. The latest seem to
overcome some of the problems met with HMMs and ANNs, though they
are of higher computational complexity. This section continues with a short
presentation, initially of the HMMs (the approach that is used in the speech
recognition Papers A, B, and C), and then with other approaches.

HMMs as a method for acoustic modeling of speech is a flexible and
successful statistical approach and hence very popular in speech recognition
(Bahl et al., 1990; Jelinek, 1976; Rabiner, 1989). In HMMs, it is assumed
that the sequence of observed vectors which correspond to a word or phone
is generated by a Markov model (Young et al., 2002) as shown in Fig. 8.
Therefore, the HMM approach is a double-embedded stochastic process with
a not-directly-observable underlying stochastic process, namely the state
sequence. Hence, the name ‘hidden’. This hidden process is probabilistically
linked with the observable stochastic process which produces the sequence
of features that are seen (Huang et al., 2001).

Typically, an HMM can be defined by the following elements:

• Number of states: N (N = 3 in Fig. 8)

• Number of distinct observation symbols: M for discrete HMMs and
∞ for continuous HMMs (M = 3 in Fig. 8)
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Figure 8: A hidden Markov model.

• State transition probability distribution: αij

• Output distribution of state j: bj(ot)

• Initial state probability: πi.

To summarize, a complete specification of an HMM includes two constant
parameters, N and M , that represent the total number of states and the size
of observation alphabets respectively, and three sets of probability measures:
the state transition matrix A, the output distribution matrix O and the
initialization matrix π. For convenience, the following notation is used

λ = (A,O, π) (11)

to denote the whole parameter set of an HMM (Huang et al., 2001).
In accordance with the elements of the observation matrix O, HMMs

are grouped in different categories (Cole et al., 1998) according to the dis-
tribution function they follow. The HMMs are called discrete HMMs if the
observation sequence consists of vectors of symbols in a finite alphabet of
N different elements, i.e., the distributions are defined on finite spaces. If
the observation is not derived from a finite set, but rather from a continu-
ous space, limitations on the functional form of the distributions should be
imposed to achieve a reasonable number of statistical parameters that need
to be estimated. A common solution to this matter is the categorization of
the model transitions to mixtures of known densities g of a family G that
have a simple parametric form. These densities g ∈ G are usually Gaussian
or Laplacian, and can be easily characterized by two parameters, the mean
vector and the covariance matrix. HMMs of this type are referred to as
continuous HMMs. To model more complex distributions, a rather larger
number of base densities has to be used in every mixture. This may require
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a very large training set of data to effectively estimate the parameters of the
distribution. Problems arise when the available corpus is not large enough,
although this can be resolved with sharing distributions among transitions
of different models. Finally, in semi-continuous HMMs, all mixtures are
expressed in terms of a common set of a base density. Different mixtures
can be characterized only by different weights.

The parameters of the HMMs can be estimated by iterative learning
algorithms (Rabiner, 1989) in which the likelihood of a set of training data
is increased in each step. As a result of their higher complexity, the con-
tinuous HMMs need a significantly larger amount of time to compute their
probability densities in comparison to the discrete HMMs. However, it is
possible to speed up the computations by applying vector quantization (VQ)
to initialize the Gaussian mixtures (Bocchieri, 1993).

The HMMs are based on two assumptions. The first is the Markov chain
assumption in which it is assumed that the current state depends only on
the previous state, given the current state (in the simplest case of a first-
order Markov chain). The second is the output independence assumption
in which a particular symbol that is emitted at time t depends only on
the state st given this state, and is conditionally independent of the past
observations. Dynamic information can be included in HMMs through the
time-derivatives (velocity and acceleration coefficients) in the observation
vector, however under the false frame-independence assumption. Although
the above assumptions allow the model to become easier to use, they intro-
duce some limitations that principally influence the accuracy of the model
(Merhav and Ephraim, 1991; Digalakis, 1992). For this, other methods have
been proposed for acoustic modeling, many of which are described in the
next few paragraphs as they may be promising alternatives to HMMs.

Artificial neural networks (ANNs), also known as connectionist models
or parallel distributed processing (PDP) were introduced by McCulloch and
Pitts (1943). Due to their nature, ANNs are of great interest for tasks that
require a series of constraints to be satisfied, such as ASR. Their ability
to evaluate in parallel many clues and facts and their interpretation in
the light of numerous interrelated constraints (Huang et al., 2001) have
been appreciated by many ASR researchers. The simplest type of ANNs
consists of a number of nodes or units, connected with each other by links
(Russel and Norving, 1995). Each link has a probabilistic weight, and the
learning procedure is performed by updating these weights. Some of the
units are connected to the external environment; these are the input or
output units. Each unit has a set of input links from other units, a set
of output links to other units, a current activation level, and a means of
computing the activation level at the next step in time, given its inputs and
weights. The units depend only on their neighbors and all the computations
they perform are independent of the rest units. For computational reasons,
many implementations have used a synchronous control to update all the
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units in a fixed sequence. Other types of ANNs are described in (Hinton,
1989; Rummelhart and McClelland, 1986; Huang et al., 2001; Waibel and
Lee, 1990). Finally, some hybrid HMMs/ANNs (Robinson et al., 1993;
Zavaliagkos et al., 1994; Cook and Robinson, 1998; Fritsch and Finke, 1998;
Morgan and Bourlard, 1995; Robinson, 1994) methods have been developed
for ASR.

Segment models (SMs) have been extensively used for various appli-
cations, among them speech recognition (Digalakis, 1992; Frankel, 2003).
HMMs generate a single observation that is conditionally independent from
other observations given the hidden state at the current time. Hence it is
difficult to model relative durations within a phone segment since it may be
possible to have some parts of a segment stretched and others compressed.
On the other hand, SMs generate a variable-length sequence of observations
(Ostendorf et al., 1996; Rosti, 2004). A segment may be a variable-length
part of the speech waveform that usually corresponds to a language unit,
e.g., a word, a phone or a sub-phone (Digalakis, 1992). Segment-based
models (Bocchieri and Doddington, 1986; Bush and Kopec, 1987; Osten-
dorf and Roukos, 1989; Digalakis et al., 1993; Kimball, 1995; Roweis and
Ghahramani, 1999) have been proposed as HMMs alternatives, offering a
more suitable and flexible scheme to model the dynamics of speech signals.
In all cases, several modeling restrictions were applied to ensure that the
model is identifiable. In (Tsontzos et al., 2007) an effort to relax these
constraints was taken which allowed the choice of full noise covariances and
state vectors. The use of the canonical form of the system’s matrices pro-
posed in (Ljung, 1998) ensured the system’s identifiability. The parameters
were estimated using a maximum likelihood, element-wise, process based
on the Expectation-Maximization (EM) algorithm and the proposed system
was applied in a speech recognition task using the AURORA2 (Hirsch and
Pearce, 2000) speech database. Significant performance gains were found
compared to HMMs, particularly in highly noisy conditions.

In recent years, a variation of segment models called hidden dynamic
models (HDMs) (Deng and Ma, 1999; Ma and Deng, 2004; Picone et al.,
1999; Richards and Bridle, 1999; Zhou et al., 2003) has been proposed.
The main focus in this approach was to efficiently model the co-articulation
phenomenon and improve the transitions between neighboring phones. The
hidden dynamic space consisted of a single vector target per phone in which
the speech trajectories were produced by a dynamic system. The observa-
tion process in HDMs was implemented by a global multi-layer perceptron
(MLP). The model was simple and flexible, and also able to capture impor-
tant aspects of the relation between the phonetic labels and the acoustic
patterns. The major drawback of the method was that the inference algo-
rithms were not tractable. Hence, a number of methods have been proposed
to improve the algorithms (Lee et al., 2003; Ma and Deng, 1999; Ma and
Deng, 2000; Ma and Deng, 2001; Seide et al., 2003).
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Alternatively, an idea of inserting articulatory knowledge into acous-
tic models (Richardson et al., 2000a,b; Richardson et al., 2003) called the
hidden articulatory Markov model (HAMM) has been applied in speech
recognition. The model, based on (Erler and Freeman, 1996), is essentially
an HMM in which each articulatory configuration is modeled by a separate
state. The state transitions aim to naturally reflect human articulation.

The aforementioned alternative approaches for the acoustic modeling
have, in some cases, accomplished better performance in ASR compared
to HMMs. However, most of these methods introduce an increased com-
putational cost and become particularly complex in larger contexts with
continuous speech. In Papers A, B and C, the HMMs are preferred instead
of the alternatives offered. The choice of the HMMs is based on: a) The fact
that in this work the focus is mostly on the observation input and not on
the acoustic model per se. In other words, the goal is to optimize the front-
end of the ASR. b) The HMMs are still the standard method used in ASR
and the HTK toolkit (Young et al., 2002) is a very popular environment
to build a speech recognizer. c) The relatively low complexity of HMMs.
d) Finally, the admittedly easier way to compare the proposed methods
with other techniques when a known (and established) configuration for the
recognition system is used.

2.2 Reducing feature dimensionality

In the previous section, two of the most important parts of an ASR system
were described in general, i.e., the front-end and the acoustic model. This
section deals with methods and techniques that have been used to lower
the cardinality of the input feature vectors without loosing the maximum
available information for sound class discrimination.

The effective process of the speech signal and the careful extraction of
the necessary, acoustic-relative, features is essential for applications such
as speech recognition. Although it seems natural to consider that a high
dimensional feature vector would lead to high performance in a speech recog-
nition system, in practice it is not always the case (Hughes, 1968; Kanal
and Chandrasekaran, 1971). The phenomenon of curse of dimensionality
(Bellman, 1957) refers to the problem caused by the exponential increase in
volume associated with adding extra dimensions to a mathematical space.
The performance of a speech recognition system may decrease in case the
system is feeded with very large feature vectors. A series of different tech-
niques and methods have been proposed in order to optimally reduce the
dimensionality of the feature representations and improve the performance
of the classification system.

In the remainder of this section, three popular methods to reduce di-
mensionality are described, i.e., linear discriminant analysis (LDA), het-
eroscedastic linear discriminant analysis (HLDA) and principal component



2 Speech recognition 21

analysis (PCA). The first two are among the techniques used for compari-
son when evaluating the proposed method described in this thesis (the other
two are the average performance of five randomly selected MFCC feature
subsets and the initial n MFCCs depending on the cardinality n that is
considered). In addition, some other techniques in feature selection are
discussed and finally, the proposed auditory model-based feature selection
method (AMFS) is presented. The latter is presented in more details in
Papers A and C.

Linear discriminant analysis

Linear discriminant analysis (Fisher, 1936; Fisher, 1938; Rao, 1965; Duda et
al., 2000) has been applied in feature reduction problems for speech recogni-
tion tasks (Brown, 1987; Hunt and Lefebvre, 1989; Haeb-Umbach and Ney,
1992; Aubert et al., 1993; Siohan, 1995; Demuynck et al., 1999; Abbasian et
al., 2008). In (Sharma et al., 2000) a study of combined feature sets includ-
ing, among other, LDA transformations was performed. In this section, an
outline of the method is given since it has been one of the major techniques
that competed with the AMFS method but was not thoroughly described
in the corresponding papers A and C.

The goal of LDA is to find an optimal transformation matrix φT to
reduce the dimensionality of the feature space and, at the same time, to
maximize the necessary information to distinguish between different classes
in a classification task problem. The above can be expressed as

y = φT c, (12)

where y is the p-dimensional feature vector in the reduced feature domain
Rp, φ ∈ Rq×p is a transformation matrix and c is the q-dimensional feature
vector in the original feature domain Rq. The method requires data asso-
ciated to class labels before the analysis starts. In the problem of speech
recognition, it is necessary to use a transcription alignment (label) file of
the recorded data in combination with feedback from the recognizer, e.g.,
the HMMs statistical properties in case of an HMM recognizer. To formu-
late mathematically the optimization procedure, the mean vector and the
covariance matrix for each class can be computed as

µj =
1
Nj

Nj∑
i=1

ci, (13)

Σj =
1
Nj

Nj∑
i=1

[ci − µj ][ci − µj ]T , (14)
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where Nj denotes the number of training tokens in class j. Then, the mean
and the covariance of all the data are computed as

µ =
1
N

N∑
i=1

ci, (15)

Σ =
1
N

N∑
i=1

[ci − µ][ci − µ]T , (16)

where N =
∑J

j=1Nj is the total number of training tokens.
Based on the above statistics, the transformation matrix can be calcu-

lated using the following optimization criterion

φ̂ = arg max
φp

|φT
p Σφp|

|φT
p Sφp|

, (17)

where

S =
1
N

J∑
j=1

NjΣj . (18)

The maximization criterion, Eq. (17), is a measure of how well the matrix
φ̂ maximizes the distances between classes and at the same time minimizes
their size. It can be shown that φ̂ consists of those eigenvectors of S−1Σ
that correspond to the p largest eigenvalues (Dillon and Goldstein, 1984;
Kumar and Andreou, 1998).

In Appendix I, a short description of the implementation of the LDA
method used in Papers A and C is given.

Heteroscedastic linear discriminant analysis

Heteroscedastic linear discriminant analysis (Kumar and Andreou, 1996;
Kumar, 1997) is an extension of the forementioned LDA method, that has
also been tested against AMFS in Papers A and C. Although the basic idea
remains the same, i.e, to find the best linear discriminant, HLDA differs
from LDA in the underlying assumptions. The main weakness of the LDA
method is the assumption of equal covariance matrices for all classes in the
parametric model. For most applications, the above assumption does not
cause major problems. The class assignment problem (Kumar and Andreou,
1998) is the second shortcoming of LDA. Therefore, HLDA was developed
to overcome these limitations.

In HLDA, the transformation matrix φ is a q × q matrix, and hence
differs from the LDA, which is applied in the original feature vector as in
Eq. (12). The transformation φ is applied to the original feature vector,
however from the resulting transformed vector y, only the first p elements
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are retained. This choice is based on the assumption that only the first
p components of y may carry the classification information (Kumar and
Andreou, 1998). The data are modeled as a Gaussian distribution (Kumar,
1997) and the parameters of the probability density function (PDF) are

µj =
[
µp

j

µ

]
, (19)

and

Σj =
[

Σp
j 0

0 Σq−p

]
, (20)

where µj , Σj are the mean and covariance for the class j, respectively.
The parameters µp

j and Σp
j are different for each class while µ and Σ are

common. Then, the Gaussian PDF of ci is given by the following equation

P (ci) =
|φ|√

(2π)q|Σg(i)|
exp

{
−1

2
[yi − µg(i)]T Σ−1

g(i)[yi − µg(i)]
}
, (21)

where yi = φT ci, and g(i) = j denotes the mapping of the observations i
to classes j.

The log-likelihood function, necessary to find the best estimator for φ,
is then

logP (µj ,Σj , φ; {ci}) = N log |φ|−

− 1
2

N∑
i=1

{
log[(2π)q|Σg(i)|] + [φT ci − µg(i)]T Σ−1

g(i)[φ
T ci − µg(i)]

}
. (22)

Considering the derivatives versus µj and Σj , and setting them equal to
zero, the following estimates arise

µ̂j = φT
p cj , (23)

µ̂ = φT
q−pc, (24)

Σj = φT
p Σjφp, (25)

and
Σ = φT

q−pΣφq−p, (26)

where j = 1, ..., J . Next, the above estimates can be substituted into the
log-likelihood function, Eq. (22), and then it can be shown (Kumar, 1997)
that the final estimate of φ is given by

φ̂ = arg max
φ

−N2 log |φT
q−pΣφq−p| −

J∑
j=1

Nj

2
log |φT

p Σjφp|+N log |φ|

 .

(27)



24 Introduction

Kumar and Andreou (1998) maximized the above equation using numerical
methods. The φ̂ is initialized by the previously (from the LDA method)
computed φ.

Principal component analysis

Principal component analysis (Pearson, 1901) is an old, non-parametric, but
still interesting method to reduce data dimensionality. Even though it is not
used in this thesis, PCA is widely applied in all forms of analysis (also in
speech recognition (Ding and Liming, 2001; Tsai and Lee, 2003; Wanfeng et
al., 2003)) due to its simplicity to extract relevant information from confus-
ing data sets, and therefore is mentioned in this chapter. Depending on the
field of application, it is also named the discrete Karhunen-Loève transform
(KLT), the hotelling transform or proper orthogonal decomposition (POD).

The goal of PCA is to compute the most meaningful and relevant basis
by transforming a set of, usually, correlated data. In doing so, the next
steps are followed: firstly, the mean value is subtracted from each of the
data dimensions and the covariance matrix is calculated. Next, an eigen-
value decomposition is applied and the eigenvectors and eigenvalues of the
covariance matrix are calculated. The eigenvector with the highest eigen-
values is the direction with the greatest variance. The k eigenvectors with
the highest eigenvalues are considered to form a matrix ψ with these eigen-
vectors in the columns. Finally, the feature vectors are transformed using
the resulted transformation matrix ψ.

Kumar (1997) attempted to compare the discussed dimension-reduction
approaches by pointing out each one’s advantages in relation to that of the
others. In PCA, the first principal component of a sample vector represents
the direction with the largest variance over all samples. All the chosen
principal components – k in total, corresponding to the k larger eigenvalues
– are linear combinations of the feature vectors with the largest variance,
and every newly chosen component is uncorrelated to the prior. As it is not
necessarily based on vector properties related to classification, this approach
includes a somewhat high risk of failure. It is not always the case that
the chosen principal components involve all the required information to
discriminate the classes in a pattern classification task.

Assume, for example, a classification task that consists of two Gaussian
distributions with equal variance in a two-dimensional sample space, which
need to be discriminated. The general form of the problem is shown in
Fig. 9. The line called “PCA” is, according to the theory, in the direction
of maximum variance for each of the two distributions, and in the direction
of the maximum variance of the mixture of these two Gaussians, and hence
in the direction of the first principal component. The line labeled “LDA”
shows how the linear discriminant analysis can easily distinguish the two
classes by choosing the correct direction. This is not the case with “PCA”,
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Figure 9: A two-class Gaussian classification problem where PCA fails
to discriminate correctly. Adapted from (Kumar, 1997).
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Figure 10: A two-class Gaussian classification problem where LDA fails
to discriminate correctly. Adapted from (Kumar, 1997).

the projection of which, gives no discrimination result. The HLDA method
would on the other hand work well, just as LDA.

Fig. 10 shows another example in which, this time, the LDA method fails.
This is the case where the within class distributions are heteroscedastic. In
this particular case, the means of the two classes are close but the variance
of the one distribution is significantly larger than the other. As discussed
previously, LDA considers the within-class variances. This is not sufficient
for this case. A heteroscedastic model such as HLDA, can indeed obtain
the best discriminant result as shown in Fig. 10. For this problem however,
even PCA would result in the best discrimination of the two classes.
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Other methods

To further reduce the dimensionality of feature sets, a series of other al-
gorithms have also been proposed to select optimal subsets. An approach
was to find the maximum statistical dependency between a feature subset
and a class by computing the mutual information (e.g., Yang et al., 2000;
Scanlon et al., 2003). This method was computationally intractable. An
alternative approach proposed in (Ding and Peng, 2003) and extended in
(Peng et al., 2005), combined the minimal-redundancy-maximal-relevance
(mRMR) criterion with a wrapper, a comparably fast method to minimize
the classification error for a particular classifier. The algorithm is particu-
larly useful for large-scale feature selection problems where a large number
of features is available, e.g., in medical tasks (Herskovits et al., 2004; Xiong
et al., 2001). Crudely speaking, the mRMR approach tries to maximize
the dependency. Typically, this would involve the computation of multi-
variate joint probability, a somehow difficult and inaccurate computation.
mRMR combines both Min-Redundancy and Max-Relevance criteria to es-
timate multiple bivariate probabilities, a much easier way to maximize the
dependency than the estimation of multivariate joint probability that would
otherwise be imposed by the dependency maximization criterion per se. At
each step, the approach selects those features that follow the mRMR cri-
terion and is hence intended for features that are not independent of each
other. In (Peng et al., 2005), the authors claimed that the whole process
was faster than other closely-related methods due to the relatively lower
computational complexity.

In (Valente and Wellekens, 2003), the maximum entropy discrimination
(MED) (Jaakkola et al., 1999; Jebara and Jaakkola, 2000; Jebara, 2001)
feature selection was proposed for ASR. The results were comparable to a
wrapper but the algorithm was less computationally expensive. In MED,
each feature was associated to a probability weight value. Then, the M out
of N most important features were considered based on their probability
values. This condition can be incorporated in the optimal prior formulation
to help the process in finding the M most relevant features. Compared to
wrapper methods, the MED feature selection is faster. Finally, since MED
is a Bayesian discriminative algorithm, it usually has a high recognition rate
capacity.

2.3 Auditory model-based feature selection

In all the above methods, the relation between features and target classes
was investigated and different criteria were applied to reduce the classifi-
cation error. In this section, the novel feature selection method for speech
recognition, which is based on human perception, is presented epigrammat-
ically (further information can be found in Papers A and C).
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The auditory model-based feature selection (AMFS) is a fundamentally
different approach to feature selection in which an exploitation of the knowl-
edge implicit in the human auditory system is performed instead of opti-
mizing the classification performance. Humans perform better at speech
recognition than machines, particularly for noisy environments, suggest-
ing that the signal representation in the human auditory periphery is both
effective and robust, and thus the usage of computational models of the
periphery are likely to improve the properties of the acoustic features. The
motivation to study the selection and design of robust acoustic features that
maximize the similarity of the Euclidean geometry of the feature set and
the human auditory representation of the signal comes from the accuracy
of recent methods for auditory modeling (e.g., Dau et al., 1996a; van de
Par et al., 2002). The goal is to better understand the relation between
human and machine-based recognition and to find a path towards better
performance. The features are selected without knowledge of the meaning
of speech and without the use of a specific speech recognizer, a distinctive
attribute that allows the method to remain system independent.

The implementation of AMFS relies on perturbation theory. While the
method does not use classified data, it is based on the following property:
for two features sets to perform similarly in classification, “small” Euclidean
distances must be similar in the two domains (except for a scale factor),
i.e., the auditory model output and the feature domain. The similarity
of “large” distances is immaterial for the classification. The results show
that maximizing the similarity of the Euclidean geometry of the features to
the geometry of the perceptual domain is a powerful tool to select features
(Papers A and C) as well as to investigate new features (Paper B).

The focus on small distances allows complex perceptual distortion mea-
sures to be reduced to quadratic distortion measures using the so-called
sensitivity matrix. This theme was first developed in the context of rate-
distortion theory (Gardner and Rao, 1995; Linder et al., 1999; Li et al.,
1999) and was later used for audio coding (Plasberg and Kleijn, 2007).
In the feature domain, it is possible to have analogous distortion mea-
sures that also use the notion of sensitivity matrix. Consider the mapping
ci : RN → RL from a signal segment xj to a set of L features ci(xj) with
set index i. For a sufficiently small distortion [x̂j,m − xj ], the Taylor series
can be used to make a local approximation around xj as

ci(x̂j,m) ≈ ci(xj) + A[x̂j,m − xj ], (28)

where A = ∂ci(xj)
∂x̂j,m

∣∣∣∣
x̂j,m=xj

, and x̂j,m is a perturbation of xj with perturba-

tion index m. An L2 distance measure in the feature domain then leads to
a signal domain sensitivity matrix DΓ(xj) = AT A. Thus, the feature dis-
tortion measure can also be written in an analogous quadratic form as the
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Figure 11: Scatter plots of the estimated distances (cf. Eq. (28)) between
the cepstra of the original and the distorted signals, δc’s, vs.
the actual distances, δctrue’s, for the first (a) and second (b)
MFCC, respectively.

perceptual distortion measure (the mathematical relationships are shown in
Paper A).

As already stated in Sec. 2.1, the method is applied to MFCCs1. The
range of validity for the linearization assumption, Eq. (28), between the
cepstrum and the speech is investigated with the following experiment.
The speech signal is distorted with independent and identically distributed
(i.i.d.) Gaussian noise at different signal-to-noise ratios (SNRs) ranging
from 30 to 90 dB with a step of one. Fig. 11(a-b) shows the change in
the features computed from the linearized relation Eq. (28) versus the true
difference between the cepstra of the original and distorted signals, for the
first (a) and second (b) MFCC, respectively. The linearity assumption is
reasonable at a scale that is meaningful for sound discrimination and there-
fore significant for the studied task. The outliers result from regions where
the power of the signal is low.

AMFS is related to other approaches that use auditory models as a
front-end for ASR (e.g., Seneff, 1988; Ghitza, 1991; Jeon and Juang, 2005;
Haque et al., 2007). The performance for such front-ends is, generally,
particularly robust to various environmental conditions. AMFS has a sig-
nificant advantage over an auditory-model-based front-end, as it avoids the
computational complexity associated with pre-processing the signal with
an auditory model, and also the difficulty of formatting the auditory-model
output for classification.

An analytical description of the method can be found in the Part II of
this thesis. Finally, Appendix II presents the derivation of the A matrix for

1The method generalizes well, hence other type of features may considered.
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the case of MFCCs in both the frequency and time domains.

An application to speech synthesis

As previously mentioned, AMFS is a general approach and can be applied
in ASR systems independently of their type. In the following, an example
is given on how the method can be adapted even in different areas, e.g.,
speech synthesis, to emphasize this generalization property.

In this experiment, the HMM-based speech synthesis system2 HTS
(Tokuda et al., 2000) is used to train the HMM models. HTS does this
in a unified framework by combining spectrum parameters with the funda-
mental frequency and duration. The spectrum part consists of the MFCCs
together with the zeroth coefficient C0 and their velocity V and acceleration
A coefficients. The excitation part is composed of the logarithmic funda-
mental frequency logF0 that consists of a continuous value sequence for the
voiced regions and discrete symbols for the unvoiced ones, and its ∆’s and
∆∆’s coefficients.

The mel-cepstral analysis technique (Fukada et al., 1992) that exploits
the mel log spectrum approximation (MLSA) filter is applied to directly
synthesize the speech from MFCCs. A multi-space probability distribution
HMMs3 (MSD-HMMs) (Tokuda et al., 1999) is then used to account for the
continuous-discrete mixed observation sequence that is considered (Tokuda
et al., 2002). A decision-tree based context clustering technique (Odell,
1995; Shinoda and Watanabe, 2000) is applied, in which context-dependent
HMMs are used to model the presence of contextual factors (Tokuda et al.,
2002), such as those related to phone identity and stress, which affect all the
parameters of HMMs. To further reduce complexity, a clustering algorithm
that has been extended for MSD-HMMs is chosen (Yoshimura, 2002). Each
group of factors influence separately the spectrum, F0 and the duration,
which therefore are clustered independently.

The text from which the speech is to be synthesized is first converted
to a context-based label sequence and an HMM sequence is then produced
as a result of the concatenation of these context-dependent HMMs. The
speech parameters, i.e., the MFCCs and the logF0, are used to maximize the
output probability of the HMMs using the generation algorithm presented in
(Tokuda et al., 2000). Finally, the synthesis is performed directly from the
generated MFCCs and logF0 values by using the MLSA filter and 5-state
context-dependent HMMs that correspond to phone units. In addition, the

2A speech synthesis environment built on HTK toolkit (Young et al., 2002), together
with the Speech Signal Processing Toolkit (SPTK) (SPTK, 2003).

3MSD-HMMs are a mixture of continuous and discrete HMMs that are more flexible
than regular HMMs in modeling various observation vectors, independently of their di-
mensionality. Each of the consisting HMMs uses a a multivariate Gaussian distribution
to model the duration of the state (Yoshimura et al., 1998).
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contextual factors, described in (Tokuda et al., 2002), are extracted from
the data using the Festival speech synthesis system (Black et al., 2001).
The training process results in trees of spectrum models, F0 models and
state duration models. The run-time core engine consists of 8 modules
(Tokuda et al., 2002), the decision trees for spectrum, F0, and duration as
well as their distributions. Finally, the extracted features are converted into
a context dependent label sequence and then the synthesizer generates the
waveform that corresponds to this sequence.

For the experiments, 450 sentences of the TIMIT corpus (Lamel et al.,
1986) sampled at 16 kHz are considered. A 25 ms Blackman window with
a 5 ms shift is used. The full set consists of 75 MFCCs in total, i.e., 24
static coefficients plus 24 velocity and 24 acceleration coefficients as well as
the zeroth one with its dynamics. The static AMFS algorithm (described
in Paper A), is applied to the static 24 MFCCs to find the subset vectors of
18−, 12− and 6−dimension. The zeroth coefficient, its dynamics and the
dynamic features of the selected MFCCs are then added. The time needed
for training the HMMs, synthesizing and generating the speech is reduced
as the cardinality of the MFCCs subsets is lowered. The time reduction
(mainly concerning the stage in which the HMM models are built and also
the context clustering phase) is between 4.3%, for the case of 18 selected
MFCCs and 17.3% when only 6 MFCCs are selected.

To evaluate the quality of the synthesized speech, a perceptual experi-
ment is performed in which the generated speech from the full set is com-
pared to the corresponding synthesized speech from the three different sub-
sets. For the listening experiment, a set of 20 synthesized speech files is
used. The participants (five experts in speech technology and one non-
expert) listen to the same sentences generated from 75−, 57−, 39−, and
21−dimensional MFCC vectors without knowing which utterance corre-
sponds to each case. The synthesized speech for the full set of parameters
receives, as expected, the best score from all the listeners. All subjects agree
that the quality of the synthesized speech remains relatively high even for
the first subset, i.e., when selecting 18 out of 24 coefficients (which essen-
tially means a reduction of totally 18 coefficients including their dynamic
features). When the dimensionality is halved, the quality of the sound is
degraded, but is still at an acceptable level. Finally, the experiment shows
that for the case of 6 MFCCs and their velocity and acceleration coefficients,
all participants agree that the synthesized speech is of low quality.

With this paradigm, the part of the Introduction devoted to the per-
ceptually relevant feature selection and optimization is concluded. The
application to speech recognition is described in the included Papers A, B
and C.
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3 Pronunciation error detection

The second area of interest in this thesis, is the automatic pronunciation er-
ror detection (PED) in foreign language learning. The subject is relatively
new with an increasing number of researchers developing original methods
and novel techniques to assist second language (L2) learners. For many L2
speakers the production of the second language is problematic, in particular
for target phonemes which are unrelated to sounds in the native language
(Flege, 1995; Guion et al., 2000). This idiomorphism is widely related to
higher-level cognition by which humans develop the ability to harmonize
their hearing (and thereby, their production) system to the sounds of their
native language (Werker and Tees, 1984; Kuhl, 1993). This behavior is re-
vealed in a more emphatic manner when comparing the perceptual ability
of non-native speakers with that of native ones under various noisy con-
ditions (Cutler et al., 2008; Cooke et al., 2008; Lecumberri et al., 2010).
Sometimes, L2 learners tend to interfere some speech sounds from their
L1 or to ignore unfamiliar ones (Piske et al., 2001). Moreover, many L2
speakers usually adopt a reduced oral rate compared to the native speak-
ers, which leads to unnatural expansion in the duration of their utterances.
Those who on the other hand avoid reducing the speech rate, often fall
into articulatory inconveniences including, e.g., unfamiliar expressional ele-
ments that cause additional difficulties to native speakers in handling speech
sounds produced by L2 speakers (Munro and Derwing, 1995; Schmid and
Yeni-Komshian, 1999).

Commonly, PED is treated as a problem of classification. Secs. 3.1-3.3
briefly present some of the approaches found in literature and provide the
necessary preliminary background in this area. Then, Sec. 3.4 presents how
the problem is dealt in this thesis.

3.1 Classification-based approaches

In (Neumeyer et al., 1996; Franco et al., 1997; Neumeyer et al., 2000) an
attempt was described to directly convert a speech recognizer to a system
of automatic scoring of pronunciations. A set of different pronunciation
scoring algorithms were developed, namely the HMM phone log-likelihood,
HMM phone log-posterior probability, segment classification, segment du-
ration, timing, and finally, a combination of scores, were all compared to
human listeners’ evaluation and found that certain such scores, like the log-
posterior and the normalized duration correlated well with human grades.
In (Witt and Young, 2000), the goodness of pronunciation (GOP) mea-
sure was presented, a likelihood-based algorithm to calculate the likelihood
ratio of a phoneme realization by an L2 speaker to its canonical pronunci-
ation. GOP measures the quality of pronunciations by non-native speakers
and gives a score to each phone of an utterance according to its close-
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ness to that of native speakers. In (Park and Rhee, 2004), the method
was knowledge-based (including acoustic-phonetic, linguistic, and expertise
knowledge) accompanied with an analysis of the correlation of human lis-
teners and machine-based rating. In (Truong et al., 2005), classifiers using
LDA and decision trees were developed for three of the most mispronounced
phonemes of Dutch by foreign speakers. The authors examined the acous-
tic properties of the considered pronunciation errors to extract acoustic
features that were used to train the classifiers and were later capable of
distinguishing erroneously produced phones by non-native speakers. An al-
ternative approach was introduced in (Tepperman and Narayanan, 2008),
in which articulatory information was used to improve automatic detection
of typical phoneme-level errors made by non-native speakers. For this, a
new version of the Hidden-articulator Markov Model (Richardson et al.,
2003), adapted for pronunciation evaluation, was presented. The articu-
latory information concerned features that were derived by concatenating
articulatory recognition results over eight streams representative of the con-
stituents of the vocal tract and by calculating multidimensional articulatory
confidence scores within these representations based on general linguistic
knowledge of articulatory variants. In (Ito et al., 2005), the pronunciation
error rules were grouped in a decision-tree based clustering scheme. Each
cluster was bestowed with a different threshold, which led the algorithm to
achieve good detection results. In (Strik et al., 2009), four different clas-
sifiers used for mispronunciation detection were examined: a GOP-based,
one combining cepstral coefficients and LDA, a method based on the work
described in (Weigelt et al., 1990), which is an algorithm that discriminates
voiceless fricatives from voiceless plosives, and an LDA-acoustic-phonetic
feature classifier. Experiments showed that the best results were obtained
for the two LDA classifiers. Finally, in (Wei et al., 2009) the problem was
addressed within a support vector machine (SVM) framework, with pro-
nunciation space models to improve performance. In short, each phone
was modeled with several parallel acoustic models to represent pronuncia-
tion variations of that phone at different proficiency levels which helped the
system outperform the traditional posterior probability based methods.

3.2 Other approaches

In the previous section, the methods that were mostly discussed were based
purely on classification. This section deals with approaches that are of a
somewhat different nature. For example, one may find a series of pronunci-
ation evaluation approaches designed for a specific first language (L1) and a
certain L2. In (Kawai and Hirose, 1998), recognition results were combined
with knowledge of phonetics, phonology and pedagogy (for a certain L1) to
show to L2 learners which phones were mispronounced. In (Moustroufas
and Digalakis, 2007), the authors developed a method that uses character-



3 Pronunciation error detection 33

istics of the L1 of the speakers to build a system that evaluates utterances
without any previous linguistic knowledge of the content.

Research on pronunciation assessment has revealed that the quality of
the pronunciation ratings may be affected by several aspects of speech char-
acteristics (Anderson-Hsieh et al., 1992). Non-native speech can deviate
from native speech in e.g., fluency, syllable structure, word stress, intona-
tion, prosody and segmental quality. In (Delmonte, 2000), a prosodic mod-
ule of a computer-assisted language learning (CALL) system called SLIM,
was presented to improve the L2 learners pronunciation by dealing with pho-
netic and prosodic problems at word and segmental level. Prosodic scoring
techniques have been described in (Yamashita et al., 2005), in which a mul-
tiple regression model was employed to predict the prosodic proficiency of
L2 learners using new prosodic measures that were based on F0, power and
duration, of L2 and L1 speech. A fluency rating experiment was conducted
in (Cucchiarini et al., 2000). Roughly speaking, a series of scoring measures
was tested on 60 non-native speakers of Dutch, namely the rate of speech,
the phonation/time ratio, the articulation rate, the number of silent pauses,
the total duration and the mean length of pauses, the mean length of runs
(i.e., the average number of phonemes occurring between unfilled pauses
of no less than 0.2 s), the amount of filled pauses and finally, the num-
ber of dysfluencies. The results showed that expert ratings of fluency in
read speech were reliable and that the automatic measure of speech rate
was a good predictor of the human judgment. Later in (Cucchiarini et al.,
2002), the authors performed two experiments to explore the relationship
between objective properties of speech and perceived fluency in read and
spontaneous speech.

In (Raux and Kawahara, 2002), an effort was described to incorporate
the intelligibility of L2 learners into a diagnostic system on mispronuncia-
tions. The authors deduced a probabilistic algorithm to derive intelligibility
from error rates and also defined a function of error priority to indicate which
errors were most critical to intelligibility.

In (Xu et al., 2009), an approach was developed for pronunciation error
detection that uses linguistic knowledge, obtained from non-native speakers’
common mistakes, and pronunciation space constructed by using revised
log-posterior probability vectors. An SVM classifier was then applied for
the pronunciation error detection of L2 learners of Mandarin Chinese.

For a good overview of various PED approaches, the interested reader
is encouraged to read (Eskenazi, 1996) and (Witt, 2012). Before presenting
the thesis contribution in PED, some examples of different PED approaches
in existing pronunciation training and language learning systems are given,
as it is interesting for the future development of the proposed approach
to examine how this integration becomes possible in real systems. The
following section presents three such cases.
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3.3 PED paradigms in real systems

Several computer-assisted pronunciation training (CAPT) systems have
been developed to be used for foreign language learning and practising. One
such system is the FLUENCY (Eskenazi and Hansma, 1998) which utilizes
the SPHINX II speech recognition system (Ravishankar, 1996) to detect L2
mispronunciations. The FLUENCY system aims to help non-native speak-
ers to improve their pronunciations by practising and interacting with the
system. Detected mispronunciations are analyzed and feedback is sent to
the learner. The system was initially built for English as a target language,
but it may be adjusted for other languages. As mentioned, FLUENCY uses
a speech recognition system to detect L2 mispronunciations concentrating
on errors in duration (Eskenazi and Hansma, 1998) and later on phonetic
errors (Eskenazi et al., 2000). For each phone or word that the user pro-
duces, FLUENCY performs an evaluation of the duration of the utterance
according to previously trained duration patterns and sends relevant feed-
back to the learner, i.e., whether the phone was shorter or longer than the
native pattern. Additionally, the system performs a phonetic error detec-
tion by comparing the non-native speech with trained native phone models.
Its goal is not only to show the location of the errors but additionally to
give the user the possibility to hear the target phone inside context and also
instructions on how to place the articulators so as to improve performance.
In (Probst et al., 2002), an effort was made to use more than one native
voice in order to find the ‘golden speaker’ (the closest possible to one’s own
voice based on several features) which could be imitated by the user in order
to improve his/her pronunciation skills.

A system called ISLE (Menzel et al., 2000) is founded on a large set of
question-answering exercises in which the learner’s response is constructed
from small sets of pre-specified building blocks. It includes a speech rec-
ognizer (Morton et al., 1999) that handles the received utterance with the
objective to localize potential pronunciation errors. For each phone or whole
word, a confidence score is computed based upon three quantities, i.e., the
acoustic likelihood of the recognized path, the output probability of the most
likely state in the model set and the acoustic likelihood of the background
model. The examined phone or word is then considered to be mispronounced
if its score violates a defined threshold. ISLE’s PED module includes both
localization, i.e., identification of the area of an utterance that contains an
error, and diagnosis of an error, i.e., detection of a mispronunciation on the
phone-level.

Another interesting system is EduSpeakr (Franco et al., 2010) which is
a toolkit that can be used for language learning and pronunciation practis-
ing which utilizes ASR technology together with PED software. The sys-
tem identifies the mispronunciations and provides feedback on the overall
quality of the learner’s production capacity. EduSpeakr supports a phone-
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level PED functionality that captures the problematic phone segments. The
toolkit, based on the DecipherTM large-vocabulary, speaker-independent con-
tinuous speech recognition system (Digalakis et al., 1996) consists of acous-
tic models adjusted for L2 speech recognition, pronunciation scoring algo-
rithms, and other modules. The pronunciation evaluation part includes
several, text-independent algorithms (Franco et al., 1997; Neumeyer et al.,
2000; Neumeyer et al., 1996), i.e., without the pronunciation scoring being
tailored according to specific contents. These scoring measures, described in
the beginning of Sec. 3.1, are spectral, durational or prosodic and are com-
bined in a nonlinear fashion to estimate the general pronunciation grade,
simulating essentially the judgment that expert tutors would have given if
a listening test would have been available. In EduSpeakr, the relationship
between the machine-driven and the human assessment is established us-
ing large-scale data of non-native speech that have been scored by human
experts on the sentence level (Bernstein et al., 1990; Franco et al., 2000).
In (Franco et al., 2010), the authors introduced an additional word dura-
tion score to evaluate the L2 pronunciations. This new score is used either
alone or in combination with the already existing ones. The PED approach
that is used in EduSpeakr is built on HMM-based ASR that trains acous-
tic models of both native and non-native speech and then, using statistical
models, compares various features of L1 and L2 utterances and creates a set
of pronunciation scores for different phonetic segments. In the end, all the
automatic scores are combined to account for the overall evaluation score.

So far, the discussion concentrated around the different approaches that
have been followed for the automatic mispronunciation detection task. The
next paragraph presents the contribution of this thesis in diagnosing prob-
lematic phonemes for this task.

3.4 Native perceptual assessment degree

The methods proposed in this thesis concentrate on the speech sound level,
and describe an attempt to mathematically formulate the native speakers’
ability to distinguish the non-native pronunciation with an objective to
develop an automatic diagnostic evaluation scheme for pronunciation error
detection. Common in all cases is the underlying idea that is based on the
description given in Sec. 1.3, which compares the Euclidean space geometry
of the auditory perceptual domain with the Euclidean space geometry of
the acoustic domain. In this case, the goal is not to select or optimize
the speech representation properties according to auditory perception as it
was with the AMFS for speech recognition (cf. Sec. 2.3). On the contrary,
the objective is to examine to what extent a non-native feature set has
similar properties – meaningful for human perception – as the native speech
signal representation. The speech sounds of a specific phoneme class that
are produced by native speakers are generally without much discrepancy
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Figure 12: Applying dissimilarity criteria between the native speech per-
ceptual domain and the non-native speech acoustic domain
and comparing with the native only case, the L2 mispronun-
ciations can be detected.

as the corresponding speech sounds produced by non-native speakers in
the event of occurring mispronunciations. In terms of ASR, the native
speech signal can, in this case, be considered as clean speech and the non-
native as noisy speech. The approach followed in Paper D, measures the
dissimilarity of the local geometries between the acoustic and the auditory
domain for each phoneme class, considering first the native speech and then
the non-native speech. In the end, the method quantifies to what extent
the non-native dissimilarity differs from that of the native, considering that
the larger this difference is, the more problematic, for the L2 speakers, the
examined phoneme is.

The above idea is modified in Paper E and further extended in Paper
F, to directly measure the dissimilarity between the non-native acoustic
domain and the native auditory model-output domain. Fig. 12 shows a
block diagram of the methods’ scheme. An HMM-based aligner (Sjölander,
2003) generates a phone-level transcription from the speech signal and the
text file, which separates the native speech stimuli into phoneme categories.
For each considered phoneme class, the native signal is transformed into the
auditory domain and the non-native signal into the acoustic domain. The
spatial dissimilarity

A` =
1
I

∑
i∈I

1
Ji

∑
j∈Ji

[
υn(xni

, x̂ni,j
)− φ`(x`i

, x̂`i,j )
]2
, (29)

between these two domains is measured to investigate, quantitatively, to
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what extent the non-native acoustic feature distortion measure φ`(x`i , x̂`i,j )
differs from the native perceptual distortion measure υn(xni , x̂ni,j ). The
native stimuli xn is then transformed into the acoustic domain to calculate
the following dissimilarity measure

An =
1
I

∑
i∈I

1
Ji

∑
j∈Ji

[
υn(xni , x̂ni,j )− φn(xni , x̂ni,j )

]2
, (30)

between the native perceptual and acoustic distortion domains, and the
two measures An and A` are compared to identify the most problematic
phonemes. The perceptual-based method ends by considering for each
phoneme class, the native-perceptual assessment degree nPAD that is com-
puted for every L1 background as

nPAD =
A`

An
, (31)

considering the most mispronounced phonemes to have the largest nPAD
values. Eq. (31) is a normalized ratio that shows the degree of the dis-
similarity between the native perceptual outcome (using a spectral or a
spectro-temporal auditory model) and the non-native acoustic speech sig-
nal representations (the magnitude spectrum of speech or its acoustic static
and dynamic features, depending on the application, as shown in Part II) as
compared to the native-only case. That is, nPAD quantifies the non-native
speaker’s additional pronunciation variation for each phoneme, which is
meaningful for human speech perception.

nPAD is one way to detect problematic L2 phonemes aiming at profiting
from recent findings in auditory research but at the same time avoiding to
increase the computational complexity. Depending on the available data,
nPAD could be measured using two different groups of L1 speakers to in-
vestigate the variety within the native pronunciations. Alternative methods
would, e.g., transform both L1 and L2 speech signals into the auditory-
model output domain to find dissimilarities or appropriately format the
output for phoneme classification.

Evaluation of the method

For the experiments, a speech database was recorded which includes data
from 37 (23 male and 14 female) non-native speakers from eleven different
language backgrounds and also recordings from 11 (9 male and 2 female)
native Swedish speakers. The stimuli consists of 23 phonetically rich single
words and 55 sentences of varying complexity and length. A more detailed
description of the corpus can be found in Papers D and E.

The evaluation of the automatic method can be done in various ways.
One such option is by setting up a listening experiment to associate human



38 Introduction

assessment with the score of the automatic method. There are however
many obstacles to follow this procedure. It is, for example, particularly
difficult for a human listener to remain focused on a certain phone when
hearing a whole sentence or, even impossible, to listen only to one specific
phone as this would mean just a few milliseconds of speech. In addition, even
if the above problem could be solved, it would still be difficult to perform
a complete test with all samples of the L2 phonemes from all the exam-
ined language groups of non-native speakers4. Alternatively, the automatic
method can be compared against a theoretical linguistic study performed
for the same or similar task. Hence in the work described in this thesis,
nPAD is juxtaposed against the findings of Bannert (1984). The objective
for the refereed study was to be able to identify and analyze common errors
made in Swedish by adult immigrants of various language backgrounds so
as to improve their pronunciation performance. The study was performed
through linguistic analysis and subjective observations and the informants
were chosen for speaking Swedish with a foreign accent that would demon-
strate their L1 backgrounds. Bannert did not use any objective measure to
evaluate the mispronunciations, however in his work, which is an extensive,
long-term survey in second language research, various cases of errors are
examined from a linguistic perspective.

As the nPAD method is quantitative, with phonemes being ordered ac-
cording to their nPAD values, it is important to set an objective threshold
by which the problematic phonemes can be distinguished. This thresh-
old is defined using the equal error rate (EER) so that the probabilities of
false acceptance (mispronounced phonemes according to (Bannert, 1984)
accepted by the automatic method as correctly produced) and false rejec-
tion (non-problematic phonemes according to (Bannert, 1984) judged by
the computational methods to have been mispronounced) to become equal.

Considering all language groups of speakers, the EER value for the spec-
tral nPAD version (using van de Par model and the speech power spectrum)
is 41% at a threshold value of T1 ≈ 1.0005, and for the spectro-temporal
nPAD version (using Dau model and the MFCCs) it is 31% with a threshold
value at T2 ≈ 1.0000. The value of the EER is high for the spectral nPAD
and significantly reduces when the method additionally includes temporal
information of the speech signals. However, the EER remains relatively
high. There are several reasons that contribute to this behavior. Bannert
(1984) examines the task from a broader angle compared to nPAD, including
in his analysis various linguistic and phonological factors such as coarticula-

4An intermediate solution has been followed in Papers E and F in which the most prob-
lematic phonemes according to the spectro-temporal automatic evaluation were tested
as well as one phoneme for each group that, according to Bannert (1984), would have
caused seriously mispronunciation problems but for which nPAD indicated no error. A
description of the test and a further discussion can be found in Papers E and F and in
Appendix IV.
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tion, epenthesis, prosody, which contribute to a different methodology. His
study considers L2 speakers who have a strong accent, representative for
their language background, and who speak Swedish based purely on their
own capacity. The subjects used in the work described in this thesis did on
the other hand repeat each utterance directly after a virtual language tutor.
In addition, it is important to note at this point that the nPAD is used in
this thesis with the objective to, first, introduce a novel idea of estimating
L2 mispronunciations based only on models of auditory perception and per-
turbation analysis of the speech signal and, second, perform a diagnostic
evaluation of the pronunciation of L2 speakers showing an ordered list of
problematic phonemes that can later be used for mispronunciation analysis.
On this account, the comparison of the proposed method with (Bannert,
1984) is done with a scope to investigate if the new scheme is suited for
diagnosing most of the mispronunciations which are generally considered in
the literature. Furthermore, the evaluation of the nPAD with teachers of
Swedish as a foreign language resulted in an agreement between the human
and the automatic assessment of 86.5% for the spectro-temporal nPAD and
65.4% for the spectral nPAD method as described further in Papers E and
F. The aforementioned evaluation is based on a relatively small number of
phonemes and can hence not be used to perform a complete comparison
but only to verify some important findings of nPAD. It is noted that the
choice of the tested phonemes where mostly based on the spectro-temporal
method as this version achieves better experimental results.

Another way of comparing the quantitative and the theoretical findings
is to consider the same number of mispronounced phonemes per language
as Bannert found, and check for potential mismatches between the two
lists. The latter method is selected for the experiment described in the next
section because it is more suitable for comparisons between the examined
measures.

The benefit of auditory knowledge

Intuitively arises the question whether the auditory input is fruitful for
the system to perform an automatic pronunciation evaluation. In order to
investigate this query, a measure B` is considered (Koniaris et al., 2012)
that only evaluates the Euclidean geometric similarities as

B` =
1
I

∑
i∈I

1
Ji

∑
j∈Ji

[
φn(xni

, x̂ni,j
)− φ`(x`i

, x̂`i,j )
]2
, (32)

between the native and the non-native power spectrum distortion. With
this definition, Bn is zero.

Tables 1 and 2 list the vowels and the consonants, respectively, found to
be difficult for the different groups of non-native speakers according to the
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two considered evaluation methods described by Eq. (31) and Eq. (32) (to
the left) and the previous linguistic observations (Bannert, 1984) (to the
right). For each L2 speaker group, the first line to the left shows, in or-
der, the most deviating phonemes according to the spectral nPAD method
(described in Paper E). Correspondingly, the second line to the left shows
the evaluation of the spectral dissimilarity measure B`. The experimental
results are ordered, beginning with the phonemes that are the most prob-
lematic for each L2 speaker group. The corresponding theoretical list to the
right is not ordered, since no quantitative measure was used. For the scope
of this evaluation, the mispronounced phonemes found in (Bannert, 1984)
have been divided into two categories. The first is the seriously problematic
phonemes (marked in bold in the list to the right), i.e., that are totally
mispronounced under all circumstances, while the second category consists
of the problematic phonemes that are mispronounced in special cases or ly-
ing in the edge of being characterized as native-like according to Bannert
(1984). From the tables, it can be seen that in most cases the results of the
perceptual-based method are in better agreement with previous linguistic
observations (Bannert, 1984). Divergences from the theoretical findings are
reported in parentheses (false rejections) and underlying (false accepts). It
can be seen that the majority of the parentheses are located on the right
side, meaning that most of the false rejects are for lower nPAD values. In
general, this also holds for B`, but it is worth mentioning that for three lan-
guage groups the first vowels are misdetections according to Bannert (1984).
Comparing the algorithms, it can be seen that, generally speaking, for as
many as eight language groups, i.e., English US, German, French, Polish,
Greek, Turkish, Arabic, and Persian the nPAD method gets quantitatively
better results. For three language groups, namely Russian, Spanish, and
Chinese, the results of the perceptual-based method become worse in com-
parison to the spectral dissimilarity measure. The perceptual-based method
not only performs better in terms of a lower number of false rejections com-
pared to the linguistic study, but also in terms of detection of seriously
mispronounced phonemes. In short, the nPAD method has one mismatch
less for the German and Arabic speakers, two less for French, Greek and
Turkish speakers and three less for the English speakers. In addition, con-
centrating mainly on the seriously problematic phonemes, nPAD captures
one more seriously problematic phoneme for German, Polish, Greek, Arabic
and Persian speakers, two more for French and three for Turkish speakers.
The spectral dissimilarity measure has one mismatch less for Chinese speak-
ers and four for Russian speakers. Finally, it captures one more seriously
problematic phoneme for English, Spanish and Chinese speakers and two
more for Russian speakers. To summarize, the nPAD method has in total 69
false rejects (34 for vowels and 35 for consonants) and the spectral measure
75 (37 for vowels and 38 for consonants) out of 350 mispronunciations listed
in (Bannert, 1984), i.e., 19.7% for the nPAD method and 21.4% for the
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spectral B`. Finally, the nPAD method has 49 missed seriously problematic
phonemes (27 for vowels and 22 for consonants) and the spectral measure 54
(34 for vowels and 20 for consonants) out of 245 in total, i.e., 20.0% for the
nPAD method and 22.0% for the spectral B`. This type of evaluation gives
the opportunity to look into some quality aspects of the findings, e.g., the
number of seriously mispronounced phonemes that have not been captured
by the automatic evaluation.

The quantitative difference in the total numbers of mismatches for the
two methods is arguably small. However, the qualitative differences are
more important. Tables 1 and 2 reveal some important weaknesses of the
measure B` in identifying major mispronunciations for some of the most
problematic phonemes. In most cases for example, it does not recognize
the Swedish long rounded vowel /u:/ as problematic, except for the Spanish
group. The linguistic findings have shown that all foreign groups mispro-
nounce the Swedish /u:/ because they produce it either as a short vowel
or with inadequate lip rounding. The nPAD measure on the other hand
is not only able to capture this vowel, but additionally to rank it high on
the problematic vowels list. In most cases, except for Chinese and Per-
sian speakers, the spectral distortion measure B` further fails in detecting
the vowel /8/, which is one of the seriously problematic Swedish vowels for
non-native speakers, often confused by /U/ (Bannert, 1984). Additionally,
the measure B` misses the vowel /y:/, which is produced with protruded
instead of compressed lips, and according to Bannert (1984), is mainly con-
fused with the short unrounded /i/. On the contrary, the nPAD measure
succeeds to detect both the aforementioned vowels and indeed to classify
them among the most problematic vowels.

There are several consonants that appear to be problematic for many
foreign speakers, four of which are in particular difficult for almost all of the
language groups. The velar nasal /N/ is one of the consonants that most
speakers are inclined to mispronounce. In (Bannert, 1984) it is noted that it
is often replaced by /Ng/. Table 2 show that the nPAD method can better
detect this error than the spectral distortion measure. Additionally, the
Swedish consonant /v/, which is very often mispronounced by non-native
speakers either as /f/, /b/ or /w/, is also detected by the nPAD measure.
The Swedish fricatives /Ê/ and /C/ are probably the most difficult Swedish
consonants for non-native speakers due to their uniqueness and their large
variety depending on the neighboring sounds. The nPAD approach is more
capable in capturing the problems related to the /Ê/, while the spectral
distortion measure is more sensible in detecting errors only related to /C/.

This comparatively better capacity of the nPAD measure to detect prob-
lematic phonemes has presumably its roots in the information that the au-
ditory model provides through the sensitivity matrix. It seems that the
small distances in the power spectrum between the native and the non-
native speech signals become clearer in the auditory domain where only the
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perceptually relevant elements of the two spectrums are considered. This
enriches the nPAD method’s potential to identify the meaningful details
that reveal the pronunciation divergences between native and non-native
speakers. In addition, it is worth noting that when computing the total
value of B` for all of the problematic consonants for each language, the part
that corresponds to the value of the first one is very high. In other words,
the method has limited capability to detect the problematic consonants in
general and can mainly focus on the detection of the most mispronounced
consonant.

Even though the performance of nPAD is better than that of the spec-
tral evaluation, it appears to have some disagreements with the theoretical
study concerning the problematic phonemes. This can be explained by the
nature and the context of the data since the recordings were made with the
subjects repeating, in two sessions, text after a natively speaking virtual
language tutor. Hence, it is likely that the speakers have avoided some
otherwise occurring mispronunciations, that usually accompanying sponta-
neous speech.

A more analytic and detailed description of the work introduced in this
chapter can be found in the Part II of the thesis.

4 Summary of contributions

This thesis makes the following major contributions:

• Two novel methods to select conventional acoustic features for
speech recognition based on the knowledge of human perception (Pa-
pers A and C).

• An optimization and design of improved MFCCs using a spectral psy-
choacoustic auditory model for speech recognition (Paper B).

• A method to automatically and quantitatively measure the percep-
tually relevant differences between native and non-native speakers in
distinguishing the target phonemes (Paper D).

• Three general, novel methods for automatic diagnostic assessment of
the pronunciation of individual non-native speakers based on models
of the human auditory periphery (Papers E and F).

This work is described in more detail in six original research papers that
are included in Part II. The initial concept in Papers A, B and C comes
from Bastiaan Kleijn who had the overall supervision and helped with the
writing of the papers. In Paper A, the author did the theoretical deriva-
tions of the A matrix (see Appendix II), the implementation of the method
and conducted all the experiments. Marcin Kuropatwinski helped with the
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van de Par model and the algorithm. The author together with Bastiaan
Kleijn wrote Paper A. In Paper B, the author did the word recognition ex-
periments, provided the A matrix and the van de Par model, and helped
with the writing of the paper. The main contributor of Paper B is Saikat
Chatterjee who implemented the method, did the phone recognition exper-
iments, and wrote the major part of it. In Paper C the author did the
implementation of the algorithm and the experiments and wrote the major
part of the paper. Saikat Chatterjee helped with the algorithm. The main
concept in Papers D, E and F comes from the author who is also the prin-
cipal contributor. In Paper D, the author performed the implementation of
the algorithm, did the experiments and wrote the major part of it. Olov
Engwall supervised the research effort and helped with the writing of the
paper. In Paper E, the author proposed and implemented the algorithms,
derived the W` matrix that linearizes the non-native and native speech sig-
nals, performed the experiments and wrote the major part of the paper.
Giampiero Salvi and Olov Engwall provided valuable feedback concerning
the structure of the paper. In addition, Giampiero Salvi verified the math-
ematical validity of the proposed methods and Olov Engwall helped with
the writing of the paper. Finally, in Paper F the author proposed and im-
plemented the algorithm, performed the listening test and wrote the major
part of the paper. Olov Engwall provided consultation on the setup of the
listening test and helped with the paper’s writing. Giampiero Salvi com-
mented on the manuscript. A short summary of each paper is presented
below.

Paper A: Auditory-Model Based Robust Feature Selection for
Speech Recognition

We show that robust feature selection for speech recognition can be based
on a model of the human auditory system. Our approach is fundamentally
different from the established selection methods: instead of optimizing clas-
sification performance, we exploit knowledge implicit in the human auditory
system to select good features. The method finds the acoustic feature set
that maximizes the similarity of the Euclidian geometry of the feature do-
main and the perceptual domain, as represented by an auditory model. As
only small distances are critical for correct sound discrimination, we use
a perturbation analysis for the selection process. Using a static auditory
model and static features, experiments with a practical speech recognizer
confirm that the human auditory system can be used for feature selection.
The results are robust and generalize to unseen environmental conditions.
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Paper B: Auditory Model Based Optimization of MFCCs Im-
proves Automatic Speech Recognition Performance

We use a spectral auditory model and perturbation analysis to develop a
new framework to optimize a set of features for speech recognition. The
proposed framework tries to reflect the way human perception performs
recognition. The optimization of the features is done offline based on the
assumption that the local geometries of the feature domain and the percep-
tual auditory domain should be similar. In our effort to modify and optimize
the static mel frequency cepstrum coefficients (MFCCs), no feedback from
the speech recognition system was used. The results show improvement in
speech recognition accuracy under all environmental conditions, clean and
noisy.

Paper C: Selecting Static and Dynamic Features Using an Ad-
vanced Auditory Model for Speech Recognition

We extend our previous work in feature selection for speech recognition
exploiting a sophisticated quantitative model of the human auditory pe-
riphery. Motivated by the success of the method proposed in Paper A, we
expand the system in two ways: we use a spectro-temporal auditory model
to include the effect of time-domain masking, and consider the first and
second order time derivatives in the feature selection algorithm. The new
selected subsets consist of features able to capture their time dependencies
in a more efficient way. In parallel, the method remains still independent of
the automatic speech recognizer. The experimental results show a signifi-
cantly better performance of the extended selection algorithm compared to
discriminant analysis.

Paper D: Perceptual Differentiation Modeling Explains Phoneme
Mispronunciation by Non-Native Speakers

Influenced by the underlying idea of comparing the geometry between audi-
tory and acoustic signal domains and motivated by human sound perception,
we investigate the similarity of the Euclidean space spanned by the power
spectrum of a native speech signal and the Euclidean space spanned by the
auditory model output, for a certain phoneme category. We then repeat
the procedure, this time considering only non-native speech signals from
second language learners. Comparing the two similarity measurements, we
find problematic phonemes for a given set of speakers. The method, which
is general, totally automatic and quantitative, is applied to different groups
of non-native speakers of various language backgrounds and compared to
theoretical linguistic findings. The results are promising as they are in ac-
cordance with theory.
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Paper E: On Mispronunciation Analysis of Individual Foreign
Speakers Using Auditory Periphery Models

We introduce two general, automatic, diagnostic, pronunciation evaluation
methods of non-native speakers based on models of the human auditory sys-
tem. Both approaches are based on one of the major difficulties in second
language learning, namely the discrimination between the acoustic diver-
sity within an L2 phoneme category and between different categories. We
model the native perception by measuring the geometric shape similarity
between the native auditory and acoustic representation domains. Then
for each phoneme, we compare the native perception with the dissimilari-
ties found between the Euclidean geometry of the native perceptual domain
and the non-native acoustic domain. Our approaches are tested with dif-
ferent non-native speaker groups from various language backgrounds. The
experimental results are in agreement with linguistic findings, particularly
when the spectro-temporal cues of the speech signal are considered, instead
of simply its spectral characteristics.

Paper F: Auditory and Dynamic Modeling Paradigms to Detect
L2 Mispronunciations

We expand the work presented in Paper E on automatic pronunciation er-
ror detection by using the state dynamic representations of a trained linear
dynamic model with native speech stimuli. In addition, we perform a pro-
nunciation analysis by considering the task of mispronunciation detection
as a classification problem. A linear dynamic model is employed to model
the native speech phoneme classes and then data from non-native speech
are classified according to the trained models. Finally, we evaluate the
proposed methods with a listening test on the same speech material and
compare the results with the automatic methods. The spectro-temporal
approach is found to have the best agreement with the human evaluation,
particularly with that of teachers of Swedish as a foreign language, and with
previous exhaustive linguistic studies.
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5 Conclusions and future work

The goal of the first half of this thesis was to investigate the use of audi-
tory modeling in the front-end of an ASR system. The proposed methods
incorporated a combination of knowledge from models of the human audi-
tory periphery, speech signal processing, perturbation analysis techniques
and acoustic modeling. It is concluded that the selection or optimization
of speech features based on human perception results in robust features
that generalize well to various environmental conditions. Furthermore, the
successful experimental results can be considered as the “proof” of the un-
derlying assumption that the output of the auditory system is useful for
increasing the accuracy of the modern speech recognition engines.

The second half of this thesis was directed on investigating the problem
of automatic pronunciation error detection from a fundamentally different
perspective than conventional methods. Exploiting the underlying idea uti-
lized in the speech recognition part, the proposed methods performed a
diagnostic evaluation of the most problematic speech sounds for various
groups of non-native speakers. The conclusion is that the utilization of au-
ditory models and the use of perturbation theory can lead to results that
are generally close to linguistic studies. A listening test with native listen-
ers, experts and non-experts, on the same data as the automatic methods
strengthened the claim that the method is both efficient and valid.

The research presented in this thesis is somewhat unconventional and
the two areas of study, the speech recognition and the mispronunciation de-
tection, are treated differently compared to the common approaches. This
suggests that there is room for further development in both fields. Hence
for the feature selection for ASR applications, the method can be modified
to account for other type of acoustic features or even for a combination of
different sets of features. In this case, the method can be used as it cur-
rently is or it could be converted to fully benefit from the speech recognizer
by, e.g., combining AMFS with HLDA to first select the optimal feature
subset (out of a large feature vector) and then apply the HLDA to receive
feedback from the recognizer and find a set of transformed features to max-
imize the performance of the system. Moreover, the information from the
sophisticated (and enriched with recent findings in hearing technology) au-
ditory models could also be applied to other type of features to develop new
robust, optimized features as it was the case with the MMFCCs.

For the automatic assessment of the non-native pronunciation, an in-
teresting extension could be to optimally integrate such a module into a
computer-assisted pronunciation training program to perform an online mis-
pronunciation detection. Before that, a further evaluation of the proposed
methods would be necessary. For this, the methods have to be tested on
larger datasets so as to obtain an adequate number of utterances from all the
groups of speakers and for all the target phonemes. Furthermore, a listen-
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ing test with more native experts should be considered, to evaluate all the
target phonemes instead of only judging the most mispronounced according
to the automatic assessment output. The results of this test would then be
examined in relation to all the proposed methods and also to state-of-the-art
methods for mispronunciation detection, in order to find the most optimal
method that would be integrated into a CAPT program. Depending on
the application, the methods can easily be adjusted for similar tasks, e.g.,
for comparison among regional accent within a target language or to addi-
tionally account for prosodic features such as syllable length or loudness,
and hence to be used for a broader pronunciation and language learning
purposes.
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Appendix I LDA implementation

In this appendix, the implementation of the LDA is presented (it also con-
cerns the HLDA method since, as it is stated in the related paragraph in
Sec. 2.2, the LDA matrix was used to initialize the HLDA algorithm). Before
applying the LDA method, the feature extraction and the speech recogni-
tion tasks should be performed. In this case, the generated features were
the MFCCs (Davis and Mermelstein, 1980). Using the HTK toolkit (Young
et al., 2002), the digits were modeled as whole word HMMs with 16 states
(HTK’s notation is 18 states including the beginning and end states) and
three Gaussian mixture components per state with full covariance matri-
ces. An initial model with global data means and covariances, identical for
each digit was used, and then 16 iterations were necessary to build the final
model. Two recognition tasks were considered. In the first, the training was
performed on the clean train set of 8440 sentences and the testing on the
4004 clean data of the so-called AURORA2 Test set A. In the second, the
training was performed on the multi-conditioning noisy train set consisting
of 6752 files and the testing on the 24024 noisy data of the AURORA2 Test
set A.

Statistics computation

Using again the HTK toolkit, a master label file was created by reading
through the MFCCs and the HMMs that were trained during the recogni-
tion stage. A short sample of the master label file is

"MAE 12A.lab"
0 1000000 sil s2 sil
1000000 1900000 sil s3
1900000 2000000 sil s4
2000000 2100000 one s2 one
2100000 2200000 one s3
..............................

where the .lab is the file’s name and the numbers represent the start and
end times in 100 ns units. Next, new label files for each word-state were
created followed by start and end points of each occurrence of this class,
containing all of its different realizations in the database. For example,
the file for the word-state eight s2 (referring to the word eight at HMM
state 2) that includes the filename, followed by start and end point of each
occurrence of the word-state is as follows

"MAJ 1978213A.lab"
11300000 11800000
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"MAJ 4487A.lab"
6200000 6300000
"MAW 2568Z23A.lab"
13100000 13800000
..............................

Then, the word-class label files accompanied by the MFCCs were
read serially, and the class and the overall data statistics µj ,Σj , µ,Σ were
computed, respectively. The procedure started by reading a label file (e.g.,
the eight s2 as mentioned above) and by opening the MFCC file that was
named first (in the aforementioned label file). In each iteration, one frame
is read for each sample vector according to the time indices specified in
the label file. A context size C = 5, defined in (Kumar, 1997; Kumar
and Andreou, 1998) as the number of feature vectors before and after the
current feature vector that are used to incorporate dynamic information,
was considered. When the reading of all frames had finished, the next
MFCC file was considered and the procedure continued with all the MFCCs
that included tokens of the considered word-class. The number of tokens
in each class as well as the total number of tokens counted. Thereafter, the
next word-class label file considered and the same procedure was repeated.
Both the means of each class and the whole database were calculated after
reading through all the data once. To compute the covariance matrices Σj

and Σ, a second run through the whole corpus was necessary, because the
mean vectors, indispensable for the computation, were not available during
the first run.

Transformation computation

At the end, as the statistics to compute the optimization criterion Eq. (17)
were finally known, i.e., both the within-class and total scatter matrices, the
LDA transform was computed by accumulating the eigenvectors of S−1Σ
in a matrix that corresponds to the p largest eigenvalues. The output is the
transformation matrix φT .

New LDA representations

The new - reduced in size - representations of the original MFCC features
were extracted in the last stage of the process. The procedure was similar
as in the first stage, when the label files were read one after the other, but
the difference was that, this time, no computation was performed. The
tokens were just read in, multiplied by the φT , and written to a new feature
file with the same name. To ensure that the files were stored in a “HTK-
friendly” format, the function writehtk.m from the VOICEBOX toolbox
(VOICEBOX, 1999) was used. The new transformed features were then



52 Introduction

used as input to HTK and new HMM models were trained. Then, the
recognizer used the transformed test data to complete the word recognition
task.

Discussion

The performance of the LDA features (Papers A and C) although reasonable
in clean conditions, was not very promising when noisy conditions were
considered. Apart from the straightforward reason of the presence of the
noise per se, a possible explanation of this behavior is the computation of
a global LDA transformation which, for the multi-to-multi case, is trying
to compensate noises of subway, babble, car, and exhibition in several SNR
values of 20, 15, 10, 5, 0 and −5 dB. Naturally, this transformation considers
all the different noisy aspects of noise type and noise level and leads in a
general transformation φT . On the other hand, if someone would try to
have a separate transformation for each individual case, a single φT should
be computed for each one of the 4 noise types and for each of the 6 noise
levels leading to a total number of 24 different transformation matrices for
each experiment i.e., for every reduced feature subspace. Note also that
this approach does not guarantee a better performance of the analysis. On
the other hand, for the case of clean-to-clean no such phenomenon occured
since all the data were clean, and hence the transformation was computed
based on a homoeomorphous data set.
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Appendix II Derivation of the A matrix

In this appendix, the derivation of the A matrix is shown both in spectral
and time domains. The linearized relation between a small distortion in the
speech frame δx = x̂− x and the corresponded distortion in MFCCs δc =
ĉ− c is described by Eq. (28) or to write it in a simpler way, δc ≈ A δx.
The formula for the computation of MFCCs can be written in different
ways by simply following the steps of computing MFCCs, beginning from
the latest. Hence,

c(q) =
M−1∑
m=0

s(m) cos
{
q[m+

1
2
]
π

M

}
, q = 1...Q, (33)

where Q is the number of cepstrum coefficients, and s(m) represents the
logarithmic mel spectrum of the m’ th filter of the filterbank or

c(q) =
M−1∑
m=0

ln z(m) cos
{
q[m+

1
2
]
π

M

}
, (34)

where z(m) is the product of the power spectrum with the triangular mel
weighted filters or

c(q) =
M−1∑
m=0

ln
{K−1∑

k=0

Y(k)Hm(k)
}

cos
{
q[m+

1
2
]
π

M

}
, (35)

where Y(k) is the periodogram, Hm(k) is the m’th triangular mel-filter or

c(q) =
M−1∑
m=0

ln
{K−1∑

k=0

|X(k)|2Hm(k)
}

cos
{
q[m+

1
2
]
π

M

}
, (36)

in which X(k) denotes the DFT of the signal or finally as

c(q) =
M−1∑
m=0

ln
{K−1∑

k=0

∣∣∣∣ N−1∑
n=0

x′(n)e−
j2πkn

N

∣∣∣∣2Hm(k)
}

cos
{
q[m+

1
2
]
π

M

}
, (37)

where x′(n) is the windowed speech frame and x(n) the pre-emphasized
speech block. From the above, A can be calculated as the product of the
following derivatives

A(q, n) =
∂c(q)
∂s(m)

∂s(m)
∂z(m)

∂z(m)
∂Y(k)

∂Y(k)
∂x′(n)

∂x′(n)
∂x(n)

. (38)

In Paper A, the A matrix is shown in frequency domain. This covers
the first three derivatives in Eq. (38). In this paragraph, it is further found
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the corresponding formula for in time domain. For the fourth factor, it can
be shown that the periodogram Y(k) is given by

Y(k) =
N−1∑
n=0

x′2(n) + 2
N−2∑
n=0

N−1∑
m=n+1

x′(n)x′(m) cos
{

2πk
N

[n−m]
}
. (39)

Then, its derivative
∂Y(k)
∂x′(n)

, i.e., the derivative of the periodogram with

respect to the windowed signal is

∂Y(k)
∂x′(n)

= 2x′(n) + 2
N−1∑
h=0,
h6=n

x′(h) cos
{

2πk
N

[n− h]
}
. (40)

One can see that

∂Y(k)
∂x′(n)

= 2x′(n) + 2
N−1∑
h=0,
h6=n

x′(h) cos
{

2πk
N

[n− h]
}

=

2
N−1∑
h=0

x′(h) cos
{

2πk
N

[n− h]
}

=

2<

{
N−1∑
h=0

x′(h)
{

cos
{

2πk
N

[n− h]
}

+ j sin
{

2πk
N

[n− h]
}}}

=

2<

{
N−1∑
h=0

x′(h)ej 2πk
N [n−h]

}
=

2<

{{
N−1∑
h=0

x′(h)ej 2πk
N h

}
e−j 2πk

N n

}
=

2<
{
X∗(k)e−j 2πk

N n
}
, (41)

where X∗(k) is the conjugate of the DFT of the signal. Finally, the formula
of matrix A in time domain is given by

Aqn =
M−1∑
m=0

cos
{
q[m+

1
2
]
π

M

}
1

z(m)
Hm(n)2<

{
X∗(k)e−j 2πk

N n
}

w(n), (42)

where w(n) is the hamming window.
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Appendix III Linear dynamic model imple-
mentation

In Paper F, the linear dynamic model (LDM) - that was used for mispronun-
ciation detection and analysis - was outlined. In the first case of mispronun-
ciation detection, the model was used so as to include additional knowledge
from classified data, aiming at enriching the nPAD system’s acoustic infor-
mation. In the second case of analysis, the LDM was used as an ordinary
classifier aiming not to compare with nPAD, but to test the ability of the
model in analyzing the detected mispronunciation. In the following, the
implementation of the model is described.

Training phoneme models

For each phoneme class, the mel cepstra from native speech cn were ex-
tracted to be used as the observation vector for the LDM described by the
following pair of equations

xnk+1 = Fxnk
+ wk (43)

cnk
= Hxnk

+ uk, (44)

where xnk
, cnk

are the state and the observation vectors at the time frame
k, respectively, and wk,uk are uncorrelated, zero-mean Gaussian vectors
with covariances E{wkwT

l } = Pδkl and E{ukuT
l } = Rδkl. The initial state

xn0 was Gaussian with known mean µxn0
and covariance Σxn0

. Eq. (43)
describes the state dynamics, and Eq. (44) gives an observation prediction
based on the state estimation. The size of the state-space (state vectors)
was considered equal to the size of the observation vectors. The initial
state-transition matrices, and the covariance of the initial state xn0 were
directly estimated from the observation vectors. The noise covariance ma-
trices of the system were randomly initialized. The parameters of the LDM
θ = {F,H,P,R} were calculated using an Expectation-Maximization (EM)
based algorithm introduced in (Digalakis, 1992; Digalakis et al., 1993), ac-
cording to which their estimated values can be computed as

F̂ = Γ4Γ−1
3 (45)

Ĥ = Γ6Γ−1
1 (46)

P̂ = Γ2 − Γ4Γ−1
3 ΓT

4 = Γ2 − F̂ΓT
4 (47)

R̂ = Γ5 − Γ6Γ−1
1 ΓT

6 = Γ5 − ĤΓT
6 (48)
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where

Γ1 =
1

N + 1

N∑
k=0

xnk
xT

nk
(49)

Γ2 =
1
N

N∑
k=1

xnk
xT

nk
(50)

Γ3 =
1
N

N∑
k=1

xnk−1x
T
nk−1

(51)

Γ4 =
1
N

N∑
k=1

xnk
xT

nk−1
(52)

Γ5 =
1

N + 1

N∑
k=0

cnk
cT
nk

(53)

Γ6 =
1

N + 1

N∑
k=0

cnk
xT

nk
. (54)

The above sufficient statistics required the following quantities at iteration
p:

Eθ(p){cnk
xT

nk
|Y} = cnk

x̂nk|N (55)

Eθ(p){cnk
cT
nk
|Y} = cnk

cT
nk

(56)

Eθ(p){xnk
xT

nk−1
|Y} = Σk,k−1|N + x̂nk|N x̂T

nk−1|N
(57)

Eθ(p){xnk
xT

nk
|Y} = Σk|N + x̂nk|N x̂T

nk|N
. (58)

At each EM iteration (5 in total), the sufficient statistics described previ-
ously were computed using the fixed interval smoothing form of the Kalman
filter (RTS smoother) (Rauch et al., 1965) (it consisted of a backward pass
that followed the standard Kalman filter forward recursions (Kalman, 1960))
and the old estimates of the model parameters. Then during the maximiza-
tion step, the new estimates were obtained from these statistics and the
Eqs. (45)-(48). Moreover, the cross covariances were computed in both the
forward and backward pass (Digalakis, 1992; Digalakis et al., 1993). Since
the estimates of the parameters of the state linear equation are mutually de-
pendent, it was considered an additional iterative estimation process based
on the same sufficient statistics obtained in the expectation step. This it-
erative process was terminated when a predefined small threshold (equal to
0.001) of the distance d(θ, θ̂) = ‖θ−θ̂‖

‖θ‖ between two successive estimates θ

and θ̂ was reached. All the necessary recursions of the forward - backward
from the Kalman smoother are shown in the next page.
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Forward Recursions

x̂nk|k = x̂nk|k−1 + Kkek (59)
x̂nk+1|k = Fx̂nk|k (60)

ek = cnk
−Hx̂nk|k−1 (61)

Kk = Σk|k−1HT Σ−1
ek

(62)

Σek
= HΣk|k−1HT + R (63)

Σk|k = Σk|k−1 −KkΣek
KT

k (64)
Σk,k−1|k = (I−KkH)FΣk−1|k−1 (65)

Σk+1|k = FΣk|kFT + P (66)

Backward Recursions

x̂nk−1|N = x̂nk−1|k−1 + Ak[x̂nk|N − x̂nk|k−1 ] (67)

Σk−1|N = Σk−1|k−1 + Ak[Σk|N −Σk|k−1]AT
k (68)

Ak = Σk−1|k−1FT Σ−1
k|k−1 (69)

Σk,k−1|N = Σk,k−1|k + [Σk|N −Σk|k]Σ−1
k|kΣk,k−1|k (70)

The estimated model parameters were then used for two purposes.
Firstly, to compute the state vectors that served as the acoustic input for the
hybrid nPAD method, and secondly, to proceed to the classification of non-
native speech and through this, to the mispronunciation analysis presented
in Paper F. The classification stage is described in the next paragraph.

Classification of the non-native observations

It was then used the trained phoneme-models to classify the non-native
speech features5. Hence, the classification process began by considering the
non-native signal representations c` of a specific phoneme class and the pa-
rameters of each phoneme category θ that were previously estimated during
the training stage using the native speech signal. For example, consider the
model parameters for the Swedish phoneme /n/. The system was initial-
ized by the model parameters θ/n/ and the MFCCs from a specific language
group ` were first considered. The data were classified according to the

5In the case of LDM pronunciation analysis (Paper F), two different acoustic features
were used, namely the MMFCCs and the MFCCs. As the extraction of both features
are based on the same process, what is here referring to MFCCs was also applied for the
MMFCCs.
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value of the log-likelihood

L(C`, θ) = −
I∑

k=0

{
log |Σek

(θ)|+ eT
k (θ)Σ−1

ek
(θ)ek(θ)

}
, (71)

where ek(θ) is the prediction error and Σek
(θ) its covariance, obtained from

the linear quadratic estimation.
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Appendix IV The listening test setup

This appendix section presents the setup of the listening test, described in
Paper F, so as to evaluate the proposed automatic methods for the scope
of pronunciation error detection. It should be noted that performing such
a listening test was not a straightforward assignment, since the proposed
methods were evaluated for each L2 phoneme on the segment level, while
any extra non-speech signal information was discarded. Therefore, the sim-
ulation of such a process by human evaluation involvement was difficult.
Ideally, the test should let the listeners hear the phonemes, which each file
consists of, individually. However, this would likely lead the experiment
in failure as it is humanly impossible to judge such a short, often unclear,
sound. Hence, it was decided to let the subjects listen to entire utterances
and request them to pay attention to a specific phoneme at each time. An-
other problem, which needed to be solved, was the total amount of the
speech material that each native listener would have to listen to, since the
total amount of data (even though not large for computer programs) ex-
ceeded the physical limitation of a listening test with humans. It was hence
decided to consider the phonemes which were found to be the most problem-
atic according to the spectro-temporal nPAD Ξ` and the hybrid nPAD Ξh`

methods for each language group of L2 speakers as well as one phoneme for
each group that, according to Bannert (1984), would have caused seriously
mispronunciation problems but for which both nPAD methods or at least
one of them, indicated no error.

Eight native listeners were chosen to participate in the test. Three of
them were teachers of Swedish as a foreign language, qualified with great
experience from students from different language backgrounds and hence
highly sensitive in identifying pronunciation errors. Those were the ‘experts’
group. The remaining five listeners were well-educated native speakers from
different areas of Sweden which, for the purpose of the experiment, were
considered as the ‘naive’ listeners group6. All listeners were seated in front
of a screen displaying the graphical user interface of a computer program,
and were asked to evaluate (accept or reject) if a specific target phoneme was
pronounced natively within various contexts (words or sentences). Fig. 13
shows an example of the graphical environment used. Each listener was
associated with a numerical identity before starting to listen through all of
the considered material that was divided into 52 categories depending on
the target phoneme and the L2 speaker group. The content of all speech files
was displayed on the screen with the target phoneme shown in uppercase
letter independently of its position in the sentence. In case there were more
than one instance of the considered phoneme, the listener was asked to
focus on each one of them and press the correct button only in case all the

6Simply because they are not teachers of Swedish as a foreign language.
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Repeat

CORRECT WRONG 

klockan är kvart i sjUChoose wav sequence

Listener's # ID

Go back 

Select whether the phoneme(s) highlighted 
in the display panel with CAPITAL LETTER(S) 

is/are correctly or erroneously pronounced

Be sure not to take 
someone else's grader ID

Discard last decision Listen again

1/10

  Some factors to consider when judging:
. if the phoneme was actually produced or deleted
. if the duration of the phoneme was adequate enough
. if the phoneme was replaced by another one
. if you feel that the mouth opening was not correct
. In case of more than one phonemes in one sentence,
  be sure to concentrate on all of them individually. If one
  of them was not pronounced correct, then choose 'WRONG'

Figure 13: The listening’s test graphical interface. Here an example of
the phrase “klockan är kvart i sjU” (the time is a quarter to
seven). The target phoneme is the short U (/8/ in the IPA
notation) in the word ‘sjU’, displayed in uppercase.

target phonemes were pronounced natively. It is important to note that
the listener was encouraged to concentrate only on the target phoneme and
try to reduce the influence of other components, e.g., fluency of the L2
speaker in Swedish. Explicit instructions were also written in the graphical
interface to consider factors such as the duration of the phoneme or if the
phoneme was deleted by the speaker or even replaced by another one. To
avoid prejudge and reduce biased decisions, the information regarding the
language background of the L2 speakers was not available to the listeners.

The duration of the experiment varied significantly, from 35 minutes up
to almost 120 minutes, though the majority completed the test in about
50 minutes. For many listeners, it was necessary to repeatedly listen to
most of the phrases, as it was difficult for them to judge any potential
error immediately from the first hearing. At this point, it is interesting
to concentrate on the participants’ feedback concerning the experiment.
It was widely admitted that the task was difficult since humans usually
combine a variety of factors to judge the pronunciation of L2 speakers. The
concentration on a specific phoneme, especially on consonants for which
the duration is usually shorter than that of the vowels, was not an easy
assignment, especially for the ‘naive’ group. For the ‘experts’, the daily
experience with foreign students of Swedish has helped them to develop the
ability to identify relatively easily pronunciation difficulties and weaknesses.
This is probably the basic reason that explains both the agreement within
the ‘expert’ and with the automatic methods, which by nature, are based
on small geometric distortion differences in order to assess the utterances.
On the other hand, the ‘naive’ group appeared to be more divided and
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sometimes incapable to capture all the errors. The participants declared
that they mainly judged based on their own way of pronouncing Swedish
and factors, such as dialect origin and subjectiveness, were at the top of
their evaluation criteria in lieu of the standard, dialect-free, official Swedish
pronunciation.
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Appendix V International phonetic alphabet
for Swedish

Tables 3-4 present the International Phonetic Alphabet (IPA) for Swedish
vowels and consonants, respectively, that has been used in the work pre-
sented in this thesis. The phoneme symbols are shown to the left accompa-
nied by an example word in Swedish, and its translation in English to the
right.

Table 3: List of IPA symbols for Swedish vowels.

IPA symbol Example

/A:/ glas (glass)

/a/ kan (can)

/e:/ parkera (park)

/e/ demokrati (democracy)

/E:/ väg (road)

/E/ tändsticksask (matchbox)

/æ:/ här (here)

/æ/ närmast (nearest)

/i:/ vila (rest)

/i/ finna (find)

/u:/ god (good)

/U/ tomat (tomato)

/0:/ ful (ugly)

/8/ upp (up)

/y:/ by (village)

/Y/ kykling (chicken)

/o:/ fr̊an (from)

/O/ l̊ang (long)

/ø:/ köpa (buy)

/ø/ mjölk (milk)

/÷:/ för (for)

/÷/ först̊a(understand)

/@/ ringer (call)
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Table 4: List of IPA symbols for Swedish consonants.

IPA symbol Example

/b/ betala (pay)

/d/ dyr (expensive)

/ã/ borde (should)

/g/ glas (glass)

/k/ åka (go; drive)

/N/ ringa (ring)

/p/ potatis (potato)

/h/ ha (have)

/l/ vila (rest)

/s/ stuga (cottage)

/Ê/ sju (seven)

/ù/ tandborste (toothbrush)

/C/ tjock (thick)

/í/ härlig (lovely)

/ú/ snart (soon)

/v/ vinna (win)

/n/ när (when)

/m/ middag (dinner; noon)

/ï/ gärna (willingly)

/t/ ta (take)

/j/ grej (thing)

/f/ f laska (bottle)

/r/ vara (be)
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