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Abstract: In this paper the design of an event-based proportional-integral (PI) control scheme for
stable first-order processes is considered. A novel triggering mechanism which decides the transmission
instants based on an estimate of the PI control signal is proposed. This mechanism addresses some side-
effects that have been discovered in previous event-triggered PI proposals, which trigger on the process
output. In the proposed scheme, the classic PI controller isfurther replaced with PIDPLUS, a promising
version of PI controller for networked control systems. Although PIDPLUS has been introduced to deal
with packet losses and time delays, and, to the best of our knowledge, a stability analysis of the closed-
loop system where such a controller is used has never been performed, here the performance of such
a controller in an event-based fashion are analyzed, and a stability analysis is further provided. The
proposed event-based scheme ensures set-point tracking and disturbance rejection as in classic time-
periodic implementations of PI controller, while greatly reducing the number of sensor transmissions.
The theoretical results are validated by simulations, where the benefits in using PIDPLUS in combination
with the proposed PI event-based triggering rule are shown.
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1. INTRODUCTION

The proportional-integral-derivative (PID) controller has been
applied to solve many control problems. Even though many
controller choices are currently available, PID controllers are
still by far the most widely used form of feedback control.
In process industry it is know that more than90% of the
control loops are regulated by PID controllers,Åström and
Hägglund [2006]. Most of such controllers are Proportional-
Integral (PI), since the derivative part is usually not usedin
practice,Åström and Hägglund [2006]. In traditional control
schemes, the implementation of PI controllers has always been
performed by assuming that sensing, computation and actuation
are performed periodically. However, with the introduction of
networked control systems (NCSs), classic design techniques
may no longer used. This originates from the fact that the
network may introduce large communication delays and loss
of information, which greatly influences the controller perfor-
mance (see Eriksson [2008] for an overview of design methods
of PID controllers for NCSs). Additionally, when the network is
wireless, the control system designer should take into account
bandwidth usage and energy consumption in the control loop
design, Willig [2008]. Hence, new controller structures and PI
tunings methods are required.

To cope with these problems, event-based techniques for
control were recently introduced,̊Aström and Bernhardsson
[1999], Tabuada [2007]. Such techniques allow an efficient uti-
lization of the network resources, while ensuring a desiredbe-
havior of the closed-loop system. This is achieved by exchang-
ing information between sensor, controllers and actuatorsonly
when relevant information is available. The use of these tech-
niques has attracted much attention from the area NCSs, Wang
and Lemmon [2011], and applied for PI or PID control Vasyu-
tynskyy and Kabitzsch [2007], Rabi and Johansson [2008],
Durand and Marchand [2009], Sánchez et al. [2011], Lehmann
[2011]. However, no definite solution was yet achieved for
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eventual implementations in real industrial systems, because
the utilization of such a control paradigm may lead to several
problems as we discuss next.

The implementation of improper sampling techniques and con-
troller structures may give rise to large oscillations of the pro-
cess output, as observed byÅrzen [1999], Cervin and̊Aström
[2007], Vasyutynskyy and Kabitzsch [2007], Durand and Marc-
hand [2009]. A common conclusion of previous studies has
been that a large variation of integral component of the con-
troller, due to long time-intervals between control updates,
appear to be the cause of large oscillations. Another poten-
tial issue arising from the implementation of event-based PI
controllers is that asticking effect may occur. This effect is
characterized by the absence of new events, even when the plant
output is far from the desired set point, incurring in a non-zero
steady-state error and no more controller updates.

Previous works have proposed methods to enhance event-based
PI controllers performance. In̊Arzen [1999], Vasyutynskyy
and Kabitzsch [2007], Rabi and Johansson [2008] and Durand
and Marchand [2009] several sampling methods and controller
adaptations were proposed to improve the transient perfor-
mance of event-based PID controllers. Sánchez et al. [2011]
and Lehmann [2011] proposed event-based PI controllers that
rely on the knowledge of the plant model for sampling and con-
trol. However, in an industrial perspective, the derivation of an
accurate mathematical model of the process may be expensive,
thus such requirements may not be met in real implementations.
Moreover, in all the aforementioned papers, the steady-state
analysis has not been addressed. However, when an event-based
control scheme is used, the design presents two degrees of
freedom: one is represented by the choice of the sampling rule,
and the other is represented by the choice of the controller.

In this paper, a novel event-based control scheme for stable
first-order processes controlled by PI controllers is presented.
The proposed scheme aim at canceling both the oscillations
around the set-point and the sticking effect by jointly con-
sidering an appropriate event-based rule and an adaptive PI
controller. More precisely, we consider PIDPLUS, Song et al.
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Fig. 1. The proposed event-based PI control system architecture

[2006] in combination with a PI-based triggering rule that
schedule the measurement transmissions from the sensor to
the controller. Although PIDPLUS was introduced to deal with
packet losses and time delays, and its stability propertiesand
performances are tested mainly by simulation or with experi-
mental test-beds, Ungan [2010], Kaltiokallio et al. [2010], here
we adopt such a controller in an event-based fashion, further
providing stability conditions in a rigorous way.

The remainder of the paper is organized as follows. In the
next section the control system architecture we consider is
presented. In Section 3 potential issues in using event-based
techniques in PI controlled systems are discussed. In Section 4
we introduce the proposed event-triggered PI controller, and in
Section 5 we investigate its stability properties. In Section 6
the theoretical results are validated by simulation, and finally, a
discussion in Section 7 concludes the paper.

2. EVENT-BASED PI CONTROL SYSTEM

The system architecture for the event-based PI control we
consider is depicted in Fig. 1. It comprises a plant, a sensor, a PI
controller and an actuator. The sensor continuously measures
the plant output, and it has an event-detector implemented
on-board. The event-detector decides when the plant output
should be transmitted to the controller. The controller generates
the input signal based on the received measurement from the
sensor, which is then sent to the actuator and it is applied tothe
plant. We assume that a new control signal is computed and the
actuator is updated at the same time and correspondently to the
reception of a new output measurement.

The process is a first-order system of the form:

ẋp(t) = axp(t) + bu(t) ,

y(t) = xp(t) ,
(1)

where xp(t) ∈ R is the process state,u(t) ∈ R is the
control signal andy(t) ∈ R is the process output. We assume
asymptotic stability of the process, i.e.,a < 0. The controller is
a PI controller, for which we consider its digital implementation
given by

xc(tk+1) = xc(tk) + β(tk)(r − y(tk)) ,

u(tk) = Kp

(

(r − y(tk)) +
1

Ti

xc(tk)

)

,
(2)

wherexc ∈ R is the integrator state,Kp ∈ R is the proportional
gain, Ti ∈ R is the integration time,β(tk) represents the
integrator update rate,r ∈ R is the reference signal assumed
to be constant andtk is the time instant in which a new
control input is computed. In traditional implementations, the
parameterβ(tk) is constant and equal to the sampling interval.

In event-based schemes, it is common to define an event as the
violation of a triggering rule having the following form

τ(t) ≤ δ ,

whereδ > 0 andτ : R+ → R
+ is a function that is reset to

zero at any sampling-time, i.e.τ(t+k ) = 0, wheretk is the event
instant defined as

tk = min{t : t ≥ tk−1|τ(t) > δ},

and wherehk := tk+1 − tk is the inter-event time.The
functionτ(t) generally depends on the accessible variables of
the control system, like the output or the input signal, and the
joint selection ofτ(t) andδ encodes the desired behavior of the
closed-loop system.

Given this setup, the problem we address in this paper is
formalized as follows:
Problem 2.1.Given the process (1) controlled by a PI con-
troller of the form (2), determine:

(1) an aperiodic event-based sampling ruleτ(t) ≤ δ;
(2) a dynamic integral update ruleβ(tk);

such that the closed-loop system exhibits zero steady-state error
for constant reference signal and eventual constant external
disturbances, while reducing the number of transmissions from
the sensor node to the controller as much as possible. ⊳

3. ISSUES WITH A NAIVE EVENT-BASED PI
CONTROLLER

When PI controllers are used in event-based fashion, we may
have the sticking effect or we may experience unacceptable
oscillations of the output around the set-point. To illustrate
these drawbacks we give an example. Consider the process (1)
controlled by (2), witha = −0.7, b = 1,Kp = 0.23, Ti = 3,
and consider the triggering implicitly defined by

τ(t) = |y(t)− y(tk)| ≤ δ , (3)
whereδ = 0.03. We compare this event-based implementation
with a periodic implementation of periodh = 0.3 s.

3.1 Sticking effect

Figure 2(a) represents the step response and the inter-event
times. Aftert = 25 s, the controller is no longer updated, de-
spite there is a steady-state error of≃ 0.15, and the system gets
stuck. The benefit of achieving zero steady state error for con-
stant references offered by continuous or periodic discrete-time
PI controllers are clearly lost. This is due because the process
is stable and the constant control inputs applied between sensor
transmissions are not strong enough to fulfill condition (3).

In the sequel we refer the problem of having steady-state error
in addition to do not performing any control updates assticking.
As the reader may argue, a trivial method to avoid sticking is
to add a time out to the sampling rule, so that the sensor is
enforced to send a new measurement to the controller when-
ever the closed-loop system gets stuck. Nonetheless, several
problems arise also by adopting this simple trick, as we discuss
next.

3.2 Oscillatory behavior

Consider again the previous example, and, in addition to the
event rule defined by (3), consider a time-out that enforce the
sensor to send a packet if no events are detected forhmax

units of time. Such time-out is added to the sampling rule (3)
to avoid sticking. In the example we sethmax = 35 s. The
output response is depicted in Figure 2(b). By considering the
event-based rule (3) plus the time-out, we obtain a large output
oscillations around the set-point.

Such oscillations are due to the large value ofhmax. Because the
integrator update rateβ(tk) is equal to the inter-event timeshk,
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(a) Sticking effect
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Fig. 2. Issues with a naive event-based PI controller.

if hmax is too large so it isβ(tk). Then, the control input input
applied at timetk+1 = tk + hmax may be too aggressive and
it potentially triggers an oscillatory behavior of the output. On
the other hand, by choosing small values forhmax to reduce the
strong variation of the integral state, we may lose the benefits
of using an event-based scheme since more transmissions are
required.

The design of an event-based PI controller presents then two
degrees of freedom: one degree of freedom is represented by
the selection of an appropriate design of the integrator update
rateβ(tk), and the other concerns the choice of a suitable event-
based ruleτ(t) ≤ δ.

4. PROPOSED EVENT-BASED PI CONTROL SCHEME

To solve the sticking problem, we need to enforce the sensor
to send a new measurement to the controller whenever the
system gets stuck, and we have to adapt the controller to avoid
oscillations around the set-point. These are the argumentsof the
following two sections.

4.1 PI-based triggering rule

Inspired by the deadband triggering-rule based on theoutput
signal Otanez et al. [2002], our intuition is to consider the
deadband triggering rule on an appropriatefiltered version of
the outputsignal. For instance, by considering the control input
as a filtered version of the output, our idea is to consider a
deadband sampling on a input-like signal. By denoting

ũ(t) = K̃p

(

(r − y(t)) +
1

T̃i

∫ t

tk

(r − y(s)) ds+ x̃c(tk)

)

,

(4)
whereK̃p, T̃i ∈ R are two sampling parameters, andx̃c ∈ R is
the state of the integrator implemented on the sensor, the event-
based rule we propose is implicitly defined by the condition

τ(t) =

∣

∣

∣

∣

ũ(tk)− K̃p

(

(r − y(t))

−
1

T̃i

∫ t

tk

(r − y(s)) ds− x̃c(tk)

)∣

∣

∣

∣

≤ δ ,

(5)

We denote (5) asPI-based triggering rule. Whenever the sys-
tem gets stuck, the integral term in (5) grows unbounded, en-
forcing the sensor to send a new measurement to the controller,
and the sticking is avoided. Moreover, the controller is no
longer updated if and only ifyk∗ = r, that yieldsũ(tk+1) =
ũ(tk) for all k greater thank∗. That way, when the system gets
stuck, the sampling rule imposes a time-out that depends on the
distance ofyk from the desired set-pointr.

Notice that by using such a triggering rule, the sensor can
potentially compute the new control inputũ(tk+1) and send
this information straight to the actuator. However, whenever the
utilization of (5) cancels the sticking problem, the controller
would be updated with̃u(tk+1) = ũ(tk) ± δ. This control
update rule leads to limit cycles that may generate unacceptable
oscillations of the output. To avoid such oscillations, we let the
sensor to verify when (5) is violated, and we let it to transmit
to the controller the value ofyp(tk) instead of the value of
ũ(tk+1). The controller updates the input signal according to
the received measurementyp(tk) and to the elapsed inter-event
times.
Remark 4.1.In general, it is possible to use completely differ-
ent tuning of the parameters̃Kp andT̃i at the sensor andKp and
Ti at the controller. This fact should not provide any concerns,
because constraining the PI sampler and the PI controller pa-
rameters to have the same tuning, then the sensor manufactures
would be constrained to produce ad-hoc sensors depending on
which controller is used by a certain customer. ⊳

4.2 Integrator update rate adaptation

The integration update rateβ(tk) that we use is the same as
PIDPLUS Song et al. [2006]. After some calculation, we get
that the PIDPLUS can be rewritten in the form (2), where

β(tk) = −Ti(1− e
h
k−1

Ti ) . (6)
In the sequel we consider the formulation of the PIDPLUS
as (2), withβ(tk) defined as in (6), and we will show that
to guarantee asymptotic stability of the closed-loop system a
condition on the controller’s proportional gainKp must be
fulfilled.

5. STABILITY ANALYSIS

In this section we study the stability property of the controlled
process whenβ(tk) is chosen according to (6), andτ(t) ≤ δ
is chosen according to (5). Before addressing the general case



of aperiodic controller updates, we first show how the adapta-
tion (6) ensures asymptotic stability of the controlled-process
for any fixed controller update rate of periodh > 0.

Lemma 5.1.Consider the system (1) controller by (2), where
β(tk) is given by (6). Then, the controlled system is asymptot-
ically stable for any constant sampling intervalh > 0 if, and
only if 0 < −bKp/a < 1. ⊳

Proof: We start the proof by assumingr = 0. To capture
all the model details of the closed loop system, let us denote
x = [xp xc]

T , and consider the hybrid model, Goebel et al.
[2009]

ẋ(t) = Acx(t) + w , if x ∈ C ,

x(tk+1) = Ad(β(tk))x(tk) , if x ∈ D ,
(7)

where

Ac =

(

a b
0 0

)

, w =

(

−bKpxp(tk)
0

)

(8)

Ad(β(tk)) =

(

1 0

−
Kp

Ti

β(tk) 1

)

, (9)

and where the flow and the jump sets are defined respectively
asC = {x ∈ R

2 : τ(t) ≤ δ} andD = {x ∈ R
2 : τ(t) > δ},

whereτ(t) andδ are defined in (5). Given the system (7), we
want to study the stability property of the origin. Under the
assumptiona < 0, and because the inputw is constant and
it acts only on the asymptotically stable part of (7), i.e. itacts
only on the dynamics ofxp, then‖x(t)‖ ≤ α(‖x(tk)‖) for
all t ∈ (tk, tk+1), and for a certainK-class functionα(·) 2 ,
see Fig. 3. To achieve asymptotic stability of the origin, itis
then enough to show the convergence to zero of the sequence
x(tk). Because it holdsxp(t

+

k+1
) = xp(tk) and ẋc(t) = 0,

we can study the behavior ofx(tk) only correspondently to
the transmissions timest = tk. By observing the particular
structure of (7), it is enough to study the stability properties
of the following system

x(tk+1) = Φx(tk) , (10)
where the matrix

Φ =







eah −Kp

b

a
(eah − 1)

b

a
(eah − 1)

−
Kp

Ti

β(tk) 1






, (11)

is obtained by considering the exact discretization of the con-
tinuous time process (1) controlled by (2) and by considering
constant time intervals of the form[tk, tk+1). Note that under
constant sampling, the matrixΦ is time invariant. The polyno-
mial characteristic ofΦ is given by

p(λ) = λ2 − tr(Φ)λ + det(Φ) ,

wheretr(Φ) anddet(Φ) denote the trace and the determinant of
the matrixΦ respectively. By applying the Jury criterion we get
the following necessary and sufficient conditions for asymptotic
stability

1. | det(Φ)| < 1 ,
2. 1− tr(Φ) + det(Φ) > 0 ,
3. 1 + tr(Φ) + det(Φ) > 0 .

By using PIDPLUS, the above conditions become

1. |eah − b
a
Kpe

h

Ti (eah − 1)| < 1 ,

2. b
a
Kp(e

ah − 1)(1− e
h

Ti ) > 0 ,

3. 2(1 + eah)− b
a
Kp(e

ah − 1)(1− e
h

Ti ) > 0 ,

2 A continuous functionα : [0, a) → R≥0, a > 0 , is said to be of classK if
it is strictly increasing andα(0) = 0, Khalil [2002].

tk tk+1 tk+2 tk+3
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t

α(‖xk+1‖)
α(‖xk+2‖)

α(‖xk+3‖)
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α(‖xk‖)

tk+4

Fig. 3. Stability analysis of the closed-loop system. The value
of ‖x(t)‖ is bounded by a decreasing boundα(‖xk‖) in
any time interval[tk, tk+1).

Condition 2 is always verified, while conditions 1–3 are verified
for all h > 0 if, and only if 0 < −bKp/a < 1. Then, by
assumption, we have thatΦ is Schur for any constant time
h > 0. The Schur property ofΦ implies the convergence to
zero of the sequencex(tk), and since‖x(t)‖ ≤ α(‖x(tk)‖) for
t ∈ (tk, tk+1), then asymptotic stability of the origin follows.

In the caser 6= 0, we have that the equilibrium point of the
controlled system is inxeq = [r −aTi/(Kpb)·r]

T . Hence, the
set-point tracking can be studied by considering a coordinate
change that translatesxeq into the origin, and then by studying
the stability of the origin in the new coordinates as done in the
caser = 0. When there are external disturbances, it is possible
to proceed in the same way by consideringxeq = [r −
aTi/(Kpb) · r − d]T as equilibrium point. ⋄

It is well known that while a common method to test instability
is to verify the position of the eigenvalues of the discretized
controlled process outside the unit circle, to prove stability
of the continuous-time process, this method should be used
with caution because no information is given on what occurs
between consecutive discretization instants. It can happen for
example that at every discretization instant it holdsxp(tk) = 0
but the output is oscillating between the discretization points.
However, by resorting to hybrid models, we proved that be-
tween two consecutive sampling instants, the continuous-time
dynamics are also upper bounded with a classK functionα(·),
and such a bound converges to zero, see Fig. 3.
Remark 5.1.The reader may argue that since PIDPLUS en-
sures asymptotic stability for any constant sampling period, a
natural method to reduce the amount of communication be-
tween the sensor and the controller would be to use a large
constant sampling period. However, if a disturbance suddenly
enters the system, the performance may drastically deteriorate
since it will be detected only at the next sampling instant that
may be far, while an event-based control scheme would react
immediately. ⊳

In the case of event-based control, the stability analysis is more
involved, since the inter-event times are varying, namely the
sampling intervalshk are not constant. This implies that the
matricesΦ are time-varying, and the controlled system can be
rewritten as

x(tk+1) = Φ(hk, hk−1)x(tk) , (12)

where

Φ(hk, hk−1) =







eahk −Kp

b

a
(eahk − 1)

b

a
(eahk − 1)

−Kp

(

1− e
h
k−1

Ti

)

1






.

(13)



However, by using PIDPLUS, it is still possible to verify the
stability condition under any event-based rule, as stated in the
next result.

Theorem 5.1.Consider the system (12), and assume0 <
−bKp/a < 1. Let 0 < hmin < hmax two arbitrary positive
constants. If there exists a matrixP = PT > 0 that sastisfies

Φ(hmin, hmin)PΦT (hmin, hmin)− P < 0, (14)

Φ(hmin, hmax)PΦT (hmin, hmax)− P < 0, (15)

Φ(hmax, hmin)PΦT (hmax, hmin)− P < 0, (16)

Φ(hmax, hmax)PΦT (hmax, hmax)− P < 0, (17)
then, the origin is asymptotically stable for anyhmin ≤ hk ≤
hmax. ⊳

Proof: The system (12) can be viewed as a discrete-time
system with time-varying uncertainty. Let the setA :=
{Φ(hk, hk−1)|hmin ≤ hk ≤ hmax}k∈N. It is easy to verify
that every matrix that belongs toA can be expressed as convex
combination of the four matricesΦ(hk, hk−1) obtained when
hk, hk−1 are equal either tohmin or hmax, and then the un-
certainty is polytopic. Hence, asymptotic stability of (12) is
achieved if there exists a matrixP that satisfies (14)–(17), see
for example Amato [2006]. ⋄

The previous theorem states that the PIDPLUS controller en-
sures asymptotic stability of the closed-loop system, no matter
when the controller is updated, provided thathmin ≤ hk ≤
hmax. Then, the set-point is asymptotically tracked and eventual
undesirable oscillations around it are canceled if the controller
receives an infinity number of measurements. Hence, accord-
ing to Theorem 5.1, we have to slightly modify the sampling
rule (5) by usinghk = hmin orhk = hmax if the inter-sampling
times given by (5) are too short or too long respectively.

The fact that an infinite number of measurements are required
to achieve asymptotic tracking of the set-point should not
mislead about the efficiency of the proposed control scheme.
The efficiency of the proposed method relies on the fact that
the transmissions can be performed at any time, provided that
hmin ≤ hk ≤ hmax, wherehmax can be very large.

6. SIMULATION RESULTS

We illustrate the performance of the proposed scheme when
controlling a first-order plant of the form (1). Then, just for the
sake of investigation, we simulate the case in which there isa
time delay between the controller and the actuator. For steady-
state condition analysis we look at the number of transmitted
packetsN from the sensor to the controller. Moreover, we use
the Integral of the Absolute Error (IAE) parameter as a general
indicator for both transient and steady-state performance. The
IAE value is calculated as

IAE =

∫

∞

0

|r − y(s)|ds. (18)

The simulations were performed using Simulink in combina-
tion with Truetime, Cervin et al. [2003].

6.1 Example 1: First-order process

We consider the same setup as in Section 3 and we compare the
performance of the proposed scheme with a periodic implemen-
tation of periodh = 0.3 s. The PI-based sampling scheme is set
with Kp andTi as for the controller. Note that the assumptions
of Lemma 5.1 are satisfied.

For this system we find the matrixP =

(

0.0956 −0.090
−0.090 0.1944

)

to fulfill Theorem 5.1 forhmin = 0.3 s andhmax = 1010 s.

The results are depicted in Figure 4. By comparing Figure 4
with Figure 2, we can appreciate how there are no oscillations
of the output, and how the system does not stick. Within this
simulation we obtainedN = 28 number of transmissions
and IAE=13.45 for the event-based implementation, while the
periodically sampled PI controller generatedN = 1500 trans-
missions and IAE=8.97. In order to generate the same number
of transmissions as the event-based, the periodically sampled PI
controller requires a transmission periodh = 16 s which would
render the closed-loop system unstable. However, if using the
PIDPLUS with periodh = 16 s, the system is stable according
to Lemma 5.1, but its transient response is slower than the
proposed scheme, with an IAE=22.31 s.

We also test the disturbance rejection of the proposed scheme.
The simulation result is illustrated in Figure 5, where a dis-
turbance of amplitude 0.2 is added to the input of the plant at
t = 200 s. As it can be seen, the proposed scheme efficiently
rejects the disturbance with a small number of samples. With
our method we experiencedN = 47 transmissions with an
IAE=23.08, while the periodically sampled PI withh = 0.3
achieves an IAE=15.4 withN = 1500 number of transmis-
sions. The PIDPLUS with periodh = 16 s is able to reject
the disturbance, but its response is slow, where the disturbance
being only detected at approximatelyt = 205 s, 5 s after it
occurred. Moreover, it generatedN = 28 transmissions with
an IAE=36.40.

6.2 Example 2: First-order process with delay

We now evaluate our event-based scheme for the control of
a first-order process with delay. We remark that the stability
analysis provided in Section 5 are no longer valid for a plant
with delay. This example serves the purpose of demonstrating
the robustness of the proposed control scheme to delays.

We consider the same example as above, with the addition of
an actuation delay of5 s. The results are depicted in Figure
6. As it can be seen, the response becomes oscillatory with
the introduction of the actuation delay, whereas the proposed
control scheme successfully tracks the set-point and rejects the
disturbance. Moreover, the performance is very close to the
periodically sampled PI controller withh = 0.3, where our
scheme provided IAE=26.41, while the periodic PI provided
IAE=26.83. As an added benefit, the number of required trans-
missions is significantly reduced to 62.

7. CONCLUSIONS

When event-based techniques are used in PI control scheme,
drawbacks as sticking or output oscillation may arise. To cope
with these problems we proposed a novel event-based scheme
that provides a PI-based triggering used in combination with
PIDPLUS. Despite PIDPLUS was introduced to deal with
network imperfections like packet losses and time delays, here
we used such a controller in an event-based scheme, further
analyzing the stability property of the closed-loop system.
Simulations results show how the utilization of PIDPLUS in
combination with the PI-based triggering rule is capable to
achieve asymptotic set-point tracking and disturbance rejection
as classic PI controller, while drastically reducing the number
of transmissions from the sensor to the controller.

Future work include the extension to processes with delay
and the extension to multi dimensional systems. Moreover, the
effect of the derivative part of the PIDPLUS when used in
an event-based scheme is worth of investigation. Finally, the
optimal choice ofδ in the PI-based triggering rule to achieve
a trade-off between performance of the closed-loop system and
number of transmission is another future research topic.
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Fig. 4. Simulation result of a PIDPLUS controller with PI
sampling in Example 1. The performance of the event-
based controller is compared to a periodic implementation
of a classic PI controller with periodh = 0.3s and a
PIDPLUS controller with periodh = 16s.
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Fig. 5. Simulation result of a PIDPLUS controller with PI sam-
pling for disturbance rejection. Performance comparisons
as in Figure 4.
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