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ABSTRACT 

Environmental models are important tools; however uncertainty is pervasive 
in the modeling process.   Current research has shown that understanding and 
representing these uncertainties is critical when decisions are expected to be 
made from the modeling results.  One critical question has become: how 
focused should uncertainty intervals be with consideration of characteristics of 
uncertain input data, model equation representations, and output 
observations?   This thesis delves into this issue with applied research in four 
independent studies.  These studies developed a diverse array of simply-
structured process models (catchment hydrology, soil carbon dynamics, 
wetland P cycling, stream rating); employed field data observations with wide 
ranging characteristics (e.g., spatial variability, suspected systematic error); and 
explored several variations of probabilistic and non-probabilistic uncertainty 
schemes for model calibrations.  A key focus has been on how the design of 
various schemes impacted the resulting uncertainty intervals, and more 
importantly the ability to justify conclusions.  In general, some uncertainty in 
uncertainty (u2) resulted in all studies, in various degrees.  Subjectivity was 
intrinsic in the non-probabilistic results.  One study illustrated that such 
subjectivity could be partly mitigated using a òlimits of acceptabilityó scheme 
with posterior validation of errors.  u2 was also a factor from probabilistic 
calibration algorithms, as residual errors were not wholly stochastic.  Overall 
however, u2 was not a deterrent to drawing conclusions from each study. One 
insight on the value of data for modeling was that there can be substantial 
redundant information in some hydrological time series.  Several process 
insights resulted: there can be substantial fractions of relatively inert soil 
carbon in agricultural systems; the lowest achievable outflow phosphorus 
concentration in an engineered wetland seemed partly controlled by rapid 
turnover and decomposition of the specific vegetation in that system.  
Additionally, consideration of uncertainties in a stage-discharge rating model 
enabled more confident detection of change in long-term river flow patterns. 

 

Keywords: Models, data, error, uncertainty, hydrology, soil carbon, 
wetlands, phosphorus 
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1. I NTRODUCTION  

Sustainable natural resources and ecosystem 
services are the foundation to the 
continuation of human development (Odum, 
1996).  Accordingly, there are many critical 
scientific questions that must be addressed 
by the natural sciences to support 
conservation and management of natural 
resources.  Some issues concern the global 
carbon cycle, climate change, decreasing soil 
fertility, altered nutrient cycles, ecosystem 
restoration, impacts of land use change, and 
waste management (Rockström et al., 2009; 
Fleishman et al., 2011).  Progress on these 
issues will inevitably employ the scientific 
method, which describes a "procedure that has 
characterized natural science since the 17th century, 
consisting in systematic observation, measurement, 
and experiment, and the formulation, testing, and 
modification of hypothesis" (OED, 2012).   It has 
been referred to as a òmotivated iterationó, 

wherein practice confronts theory and 
theory, practice (Box, 1976).  

Modeling is an important tool for advancing 
scientific understanding as it poses 
hypothesis on the mathematical form of 
physical processes and/or relationships.  
Hypotheses in model structures can be tested 
against their ability to describe available data 
observations.  Thus, the process of model 
development and calibration has basis in the 
scientific method (Fig. 1).  Mathematical 
methods for quantifying uncertainties have 
developed in support of testing hypothesis 
and advancing science via the scientific 
method (e.g. Gauss 1809, Fisher, 1922; 
Zadeh, 1964; Box, 1980).   For example, 
statistical methods in combination with 
probability theory can in some circumstances 
provide numeric expressions of confidence 
to reject (or not) hypotheses, as in testing a 
linear regression (Fisher, 1922).   Borrowing 
words from the esteemed statistician George 

Figure 1. Environmental models are important tools; however uncertainty is pervasive 
in the modeling process.   A key question has become: how focused should the final 
representation of uncertainty be with consideration of errors and uncertainties in 
input forcing data, approximate mathematical representations, and response 
observations used for calibration?   The selection of the likelihood function and 
associated acceptance criteria plays a determining role during calibration with 
repetitive evaluations.  The three feedback pathways in this diagram are consistent 
with the òmotivated iterationó philosophy of the scientific method (Box 1976).  
Roman numerals refer to areas of research in the Papers. 
 

Research questions:

-  process hypotheses  (I, II, III)

-  change detection       (IV)

-  value of data             (I, II, III)

Likelihood function &

acceptance criteria

(I, II, III, IV)

Calibration via repetitive 

evaluation

process hypotheses

Future data needs

Site 

info

Data

Residual

error 

Input

data

Calibration

data

Parameters

Model

Equations

Simulations

Observations

Net 

uncertainty

(I, II, III)



John M Juston TRITA LWR PHD 1068 

 

2 

Box (1976), an explicit expression of 
uncertainty òincrease(s) greatly the probability that 
the investigator will be led along a true rather than a 
false path.ó   

Environmental systems are intrinsically 
complex with open boundaries, uncontrolled 
conditions, and substantial feedbacks and 
interactions (Odum, 1983).  These intrinsic 
complexities bring serious challenges to 
connecting model representations and 
predictions to field-collected data 
observations (Beven, 2009).  For example, 
environmental models often require 
mathematical complexity beyond linear 
relationships, particularly process-based 
models that simulate time series data.  Box 
(1979) also expressed the well-known 
opinion that òall models are wrong, but some are 
usefuló.  Following this logic, environmental 
model equations, no matter how many or 
detailed (e.g., Andren and Kätterer, 1997; 
Seibert, 1997; Gerten et al., 2004; Jansson, 
2012), are at best simplified numerical 
approximations of complex natural 
processes.    Field-collected environmental 
data add substantial additional complexity to 
the picture, as these data are often difficult (if 
not impossible) to measure with precision 
and adequate spatial and/or temporal 
representivity (e.g., rainfall, streamflow, water 
quality; McMillan et al., 1012).   Thus, it is 
well-recognized that uncertainty permeates 
the environmental modeling process from 
the input data used to drive models, thru the 
inadequacies of equations themselves, and 
again in the data used to calibrate and 
validate model performance (Janssen and 
Heuberger, 1995; Walker et al., 2003; Loucks 
et al., 2005; Refsgaard et al., 2005; Beven, 
2009).  With these considerations, the entire 
undertaking can seem to encompass a rather 
òsignificant approximationó (Di Baldassarre 
and Montanari, 2009).   

As in linear regression, the key to quantifying 
the uncertainty in environmental modelling 
(i.e., just how significant an approximation is 
this?) lies in interpreting information in the 
residual error between model simulations and 
data observations (Fig. 1).  However, given 
the inherent complexities, uncertainties can 
no longer be estimated with classic textbook 

methods only.  Consequently, new methods 
emerged during the 1990õs to address these 
concerns.   The field of hydrological sciences 
has been a particularly active arena for 
methodological advancement, including sub-
stantial developments both inside and 
outside of probability theory (e.g., Warwick 
and Cale, 1988; Beven and Binley, 1992; 
Kuczera and Parent, 1998).  These have in 
fact been polarizing developments, as they 
have yielded considerable discussion and 
debate in the literature in recent years (e.g., 
Beven, 2006; Mantovan and Todini, 2006; 
Beven et al., 2008; Stedinger et al., 2008; 
Vrugt et al., 2008; Montanari et al., 2009; 
Beven et al., 2011; Clarke et al., 2011).  

One critical question in these discussions has 
been: how focused should the final 
representation of uncertainty be with 
consideration of characteristics in uncertain 
input forcing data, model structure 
representation and output data observations?  
The key to this question lies in the selection 
of an appropriate evaluation measures to 
justify the conclusions drawn from 
comparing model output with independent 
observational data.  For model calibration, 
these likelihood functions, as they will be called 
henceforth, represent the likelihood that a 
model (a hypothesis about the real world) is 
supported by data.  A likelihood function 
consolidates the information in a set of 
residual errors in order to expedite repetitive 
and consistent evaluation of model 
performance (Fig. 1).  Achieving an 
appropriate level of focus is important to 
properly address pressing environmental 
research questions (Fig. 1), when decisions 
are expected to be made from the modeling 
results.  There is a continued need for further 
theoretical, experimental, and applied 
research on this issue.   

1.1. Objectives 

The research in this thesis addresses three 
questions about the value of information in 
net residual errors from model-data 
comparisons for quantifying uncertainties: 

 How should the nature of 
uncertainties in data and models, and 
the information in residuals, guide 
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the selection of appropriate 
likelihood functions (i.e., evaluation 
measures)?   

 How do different likelihood func-
tions affect uncertainty intervals and 
hypothesis testing?   

 How do different characteristics 
and/or types of data act to constrain 
model parameters, predictions, and 
uncertainties?  

These objectives were addressed from an 
applied perspective by surveying experiences 
generated with four diverse case studies.  
These studies focused on developing 
appropriate models and uncertainty schemes 
with consideration of site-specific input and 
calibration data observations.  In this way, 
this thesis considered relevant method-
ological issues through application to a suite 
of relevant environmental issues.  Site spec-
ific questions included: 

 To what extent could a simple 
catchment hydrology model be 
expanded to more fully describe the 
near-surface hydrology at a nuclear 
fuel repository site in coastal 
Sweden?  (Paper I) 

 Could a simple soil carbon model 
developed for Swedish conditions be 
improved and used to clarify dif-
ferences in decomposition processes 
in Sweden and arid Kenya? (Paper II) 

 Is a process oriented model for the 
apparent limiting phosphorus 
concentration in a $1+ billion 
constructed wetland system for 
Everglades restoration (Juston and 
DeBusk, 2011) supported by a 
diverse array of (uncertain) field data? 
(Paper III) 

 Has historic deforestation in the 
Mara River basin in Kenya (home to 
the Serengeti ecosystem) manifested 
in any detectable change in the riverõs 
response with consideration of 
uncertainty in the available stream 
flow data? (Paper IV) 

2. BACKGROUND  

This section introduces the ingredients in 
òthe stewó, including background on 
conceptual process models, expressing 
uncertainty, the nature of error and 
uncertainty in environmental modelling, 
likelihood functions, and automated 
sampling strategies for model calibration and 
uncertainty analysis. 

2.1. Conceptual process models  

Ecological processes can be modeled as 
deterministic systems of discrete state 
variables and fluxes (Odum, 1983).   This 
approach is followed in this thesis.  Here, a 
storage is defined as a state variable that is 
constrained by conservation of mass.  A flow 
is defined as a time dependent flux in or out 
of storages (Fig. 2).  Conceptual process models 
are composed from these building blocks.  
Flow equations do not necessarily need to be 
complex, although sometimes this is neces-
sitated, as the function of the whole often 
òbecomes more than the sum of its parts 
when there are interactionsó (Odum, 1983).  
Here, the term model development refers to the 
process of adding storage and/or flux 
elements to an existing model in order to 
advance or improve a process description 
(Fig. 2).   It is well-recognized that process 
understanding can benefit from interactive 
considerations of model structure and 
available data (e.g., Chapra and Canale, 1991; 
Krueger et al., 2010; Juston and DeBusk, 
2011; McMillan et al., 2011). 

2.2. Paradigm for expressing 
uncertainties 

The paradigm for expressing uncertainties in 
environmental modeling follows a template 
from regression analysis (Schoups and Vrugt, 
2010).  Thus, the intent is to express 
marginal and conditional density functions 
for model parameters and credibility bounds 
for model predictions (Fig. 3), independent 
of the formulation of the likelihood function.  
It might be anticipated that different 
uncertainty schemes based on different 
assumptions might yield different uncertainty 
intervals. 
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2.3. Characteristics of uncertainty 
in environmental modeling 

Walker et al. (2003) provided a general 
definition of uncertainty in modelling as: òany 
deviation from the unachievable ideal of completely 
deterministic knowledge of the relevant systemó.  
Such deviations can lead to an overall òlack of 
confidenceó in the obtained results based on a 
judgment that they might be òincomplete, blurred, 
inaccurate, unreliable, inconclusive, or potentially 
falseó (Refsgaard et al., 2007). 

Various sources of error can contribute to 
uncertainty in modelling results.  Data 
measurements inevitably contain error 
(Taylor, 1997).  Inadequacies in process 
model equations are referred to as model 
structural errors (Beven, 2005).  The net 
deviation (i.e., difference) between an 
observed and simulated environmental 
response is referred to as residual error (Fig. 1), 
even though there might be no fixed point of 
reference in this signal (i.e., net deviations 
can originate from either observational 
and/or  simulation error in environmental 
modelling).  

Walker et al. (2003) proposed a useful three-
dimensional classification matrix for 
uncertainties according to level, location, and 
nature.  Level refers to the magnitude of 
uncertainty as a progression from low to 
high, òknowó to òno-knowó.  Location refers 
to the originating source of uncertainty 
including input forcing data, the model 
concept and implementation, model 
parameters, and/or model output.  Nature 

refers to if the uncertainty is due to inherent 
variability or is epistemic (Walker et al., 2003).  
Epistemic uncertainty is defined as originated 
from a false, limited, or imperfect knowledge, 
independent of inherent variability (Walker et 
al., 2003; Refsgaard et al., 2007; Beven, 2009; 
Spiegelhalter and Riesch, 2011).   

Variability uncertainty in environmental 
modelling is considered natural and non-
reducible.  This can include classic random 
error in field or lab measurements (e.g., 
Larson and Peck, 1974; Sauer and Mayer, 
1992; Ståhl et al., 2004) and intrinsic spatial 
variability of some environmental variables 
(e.g., Conant and Paustian, 2002; Jager and 
King, 2004).  Stochastic variables and 
residual errors can often be treated with 
probabilistic models and methods (e.g., 
Fig. 3). 

Epistemic uncertainty in environmental 
modelling can originate from several sources, 
including: systematic errors in field 
measurements (e.g., Larson and Peck, 1974; 
Sauer and Mayer, 1992; Taylor, 1997; 
Neyroud and Fisher, 2003; Ståhl et al., 2004); 
representation errors of field-collected data 
relative to model variables (e.g., Freer et al, 
2004) or unknowable patterns (e.g., the 
òtrueó spatial distribution of rainfall; Lebel et 
al., 1987; McMillan et al., 2012);  artifacts in 
data from non-stationary physical 
phenomena (e.g., Westerberg et al., 2011); 
erroneous data (Beven et al., 2011); and 
scientific uncertainty and/or inadequacy in 
model concepts and equations (Spiegelhalter 
and Riesch, 2011; Beven et al., 2011).  All of 
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Figure 4.  A typical simulated 
response of an environmental 
variable from a conceptual process 
model.  Here, data is shown as a 
deterministic signal, although 
uncertainty existed.  Residual 
errors are considerably more 
patterned than the example in 
Figure 3, with evidence of serial 
dependence and non-stationary 
variance.  Residual errors also had 
bimodal distribution.    
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these sources are not random and have a 
base quality of imperfect or inadequate 
knowledge. 

The net effect of epistemic error in 
modelling can produce patterned and/or 
structured residual errors (Beven et al., 2011; 
Fig. 4), but the influence can be less obvious 
as well (e.g., Taylor, 1997; Westerberg et al., 
2011).  Epistemic uncertainty is often 
considered reducible by more study, but such 
studies may not be practical or possible (e.g., 
for some historic data sets).  Epistemic error 
can also include elusive unknown-unknowns 
(Spiegelhalter and Riesch, 2011; Beven et al., 
2011).  There is òcontinued argumentó on the 
influence and treatment of epistemic factors 
in model uncertainty estimation (Spiegel-
halter and Riesch, 2011; Beven et al., 2011).  

A categorization framework for uncertainties 
in field-collected environmental data and 
their relationship to a specific model 
framework is suggested in Figure 5; this will 
be recalled later to summarize data and 
characteristics used in this thesis.  This 
framework focuses on the data òlocationó in 
the level-location-nature uncertainty matrix 
(Walker et al, 2003).  However, the data 
location is sub-categorized for uncertainties 
originating from field (point) measurement 
and uncertainty originating from the 
representivity of this data to specific model 
variables.  This second character can only be 

assessed in the context of specific model 
usage of the data, as different models might 
use the same data in different ways.  For 
example, groundwater levels may be rather 
precisely measured at several points within a 
catchment, but there might be some 
(epistemic) uncertainty that accompanies 
how this data is interpreted for constraining a 
single groundwater storage variable in a 
hydrological model.    

2.4. Likelihood functions 

A series of residual errors (Figs. 3 and 4) is 
calculated:  

  ),( IMO iii       (Eq. 1) 

where ǣ is the set of residuals for i 
observations,  Oi are the data observations 
and Mi represents model output with 
parameters, Ǉ, and input forcing data, I.  The 
combined errors, uncertainties, and/or 
inadequacies of input data, model equations, 
and calibration data are embodied in this 
single error signal.  In some cases, a model 
application may have multiple calibration 
objectives and thus multiple error series to 
consider.  However, two key points are that a 

residual error series, Ů, is an aggregated 
measure of the net errors and uncertainties in 
the modeling process, and that it can be 
difficult, if not impossible, to disentangle 
relative contributions of various sources in 
this signal (Beven, 2009).  

Likelihood measures further consolidate the 
information in a residual error series so that 
it can be used to guide model parameter 
estimation (Fig. 1).  Likelihood functions for 
environmental modelling can be 
characterized as either formal or informal 
(Smith et al., 2008; Schoups and Vrugt, 
2010).  A formal likelihood function is one 
that is defined within the context of statistics 
and probability theory.  An informal 
likelihood is one formulated outside of 
probability theory.   

2.4.1. Formal 

A formal likelihood is based on an assumed 
statistical model for residual errors, known as 
an error model.  For clarity, the error model 
would be in addition to the conceptual 
process model, so there are in effect two 

representation uncertainty

(relative to model variables)

point uncertainty

(field measurement)

   dominant nature of uncertainties

(random/ epistemic)

Figure 5.  A suggested framework for 
categorizing uncertainty in field 
measured data in the context of model 
usage. 
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models being considered.  For example in 
linear regression, the linear model can be 
accompanied with a statistical error model of 
residuals, which might assume (and thus 
require) that residuals be independent, 
normally distributed, with zero mean, and 

constant variance, 2 (e.g., Fig. 3).   The para-
meters in the error model can be used to 
formulate a formal statistical likelihood 
function (Aldrich, 1997): 

  
n

1i
2

2
i

2

1

2

1
IMOL exp)),(|(  

    (Eq. 2) 

where )),(|( IMOL  is defined as the 

likelihood that a model M with parameters  
and input I describes the n observations O.  
Model parameters that maximize this 
likelihood function (or any other for that 
matter) are considered optimal.  It should be 
noted that maximizing Eqn. 2 will yield the 
same solution as minimizing the sum of 
square error (SSQE), provided errors are 
indeed random and Gaussian.  The 
advantage of a formal likelihood formulation 
is that the optimal solution is also the most 
probable from a statistical perceptive, again 
provided the assumptions in the error model 
are valid and confirmed (e.g., Fig. 3).   Vali-
dation of the assumed error model is in fact 
the key step that imbues the formal approach 
with a sense of objectivity (Schoups and Vrugt, 
2010; Stedinger et al., 2008).  However, the 
opposite can also be true: an incorrect error 
model might lead astray the objectivity 
(Beven et al., 2008).  There are limited 
examples of extended error model 
formulations that attempt to address the 
complicated nature of errors that can occur 
in time series simulations (e.g., Fig. 4), such 
as serial dependence, non-normality and 
non-stationary variance in residuals (e.g., 
Yang et al,. 2007; Schoups and Vrugt, 2010).    

2.4.2. Informal 

Informal likelihood measures do not employ 
a statistical error model, although they may in 
some cases specify non-parametric distri-
butions for acceptable residuals.  SSQE is 
itself an informal likelihood if it used without 
statistical assumptions on the structure and 

distribution of residuals (Smith et al., 2008), 
as is the related root mean square error 
(RMSE).  Another common informal 
measure is the so-called model efficiency 
parameter (Nash and Sutcliffe, 1970): 

  
2

nsobservatio

2
residuals

eff 1R           (Eq. 3) 

This measure normalizes the variance in 
errors to the variance in the observations, 
such that the maximum possible score for a 
perfect simulation is 1.0.  Scores from 
sequential evaluation of measures such as 
these can be compared to one another, but 
cannot be assessed with any objectivity since 
there is no commonly agreed framework as 
to what values from these measures mean.   
Thus, individual judgment can come into 
play with informal measures if one wishes to 
compare the merit of one score relative to 
another.  This subjective aspect of informal 
measures has been criticized in some 
hydrological modelling applications (Kuczera 
and Parent, 1998; Mantovan and Todini, 
2006; Stedinger et al., 2008).   

Other informal likelihood functions attempt 
to mitigate this subjectivity by establishing a 
means to validate if residuals errors are 
within acceptable limits.  In the limits of 
acceptability (LOA) approach (Beven, 2006; 
Liu et al., 2009), acceptable ranges for 
residuals are specified for a simulation based 
on analysis of uncertainties in the output 
observational data (i.e., the observations used 
to compare to model output)(Fig. 6).  This is 
not a comprehensive treatment of all 
possible errors, since the effect of input and 
model equation errors are difficult to 
encapsulate in this measure.  However, it 
does allow means to explicitly check if model 
outputs are at least within the limits of 
observational accuracy, and investigate 
possible patterns and causes when they are 
not.  LOA can be set with consideration of 
uncertainties in a single series of field 
observations (e.g., Westerberg et al., 2011) 
and/or with consideration of intrinsic spatial 
variability in multiple series of observations 
(e.g., Freer et al., 2004). 
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2.5. Equifinality  

The concept of equifinality derives from 
general systems theory and suggests an 
inability to uniquely differentiate the pathway 
by which a final state in an open system is 
achieved (von Bertalanffy, 1968).  Beven was 
the first to use the word in the context of 
model calibration and uncertainty estimation 
(Beven, 1993).  Beven (1993, 2006) argued 
that equifinality is intrinsic in many 
environmental modelling applications; 
specifically, that there can be several different 
model constructions and/or many different 
parameter sets that produce similar empirical 
output, and that there is no unproblematic 
way to know which realization is closer to 
nature.  The principle can also be stated form 
a rejectionist perspective: there is often 
inadequate evidence to reject multiple 
hypotheses of acceptable models and/or 
parameter sets given inherent uncertainties 
and errors in environmental observations 
and model equations (Beven, 2006).  
Equifinality and optimality can be viewed as 
competing philosophies in model calibration; 
thus, it is not a universally held belief (e.g., 
Mantovan and Todini, 2006; Stedinger et al., 
2008; Clarke et al., 2011).  However, the 
concept has found wide adaption and utility.   

2.6. Bayes Theorem 

The likelihood measures of the previous 
section can be integrated into a Bayesian 
framework to provide a theoretical 
framework for model parameter calibration 
and uncertainty estimation.  Bayes Theorem 
(Bayes, 1763) provides a means to refine prior 
information (i.e., beginning distributions) for 
model parameters to narrow(er) posterior 
distributions through repeated evaluation of 
an appropriate likelihood function: 

  
C

PMOL
OP

)())(|(
)|(        (Eq. 4) 

where P( ) denotes the prior joint 
probability density for model parameters, 

P( | O) denotes a posterior probability 
density  after conditioning to observations 
via the likelihood function, L , and C is a 
scaling constant so that cumulative 
probabilities sum to one.  Bayesian inference 
has been adapted as a general calibration (i.e., 
learning) framework with either formal or 
informal likelihood functions (e.g., Freer at 
al., 1996).   

2.7. Sampling 

Monte Carlo methods provide a means for 
repetitive model evaluation of randomly 
drawn parameter sets, followed by evaluation 

0

1 2 3 4 5

Model

0 1

score=1

0 1

score=0

0 1

score=0.5

0 1

score=0

0 1

score=0.9

Figure 6.   A hypothetical example of limits of acceptability applied to a modeled 
series. This example illustrates a trapezoidal function with a core acceptance range 
(inner error bars) and fuzzy boundaries (full extent) defined for each observation.  
The model is compared to the acceptance limits at each step and assigned a 0-1 
score.  Scores can be averaged over a simulation to yield a single-valued likelihood 
function, and/or evaluated individually or by subset.  Fuzzy boundaries are optional. 
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of likelihood measures in comparison to 
observations.  So-called prior distributions of 
model parameters establish a feasible 
parameter space.  Monte Carlo methods 
sample this parameter space.  Sampling can 
be truly random, or partly structured.  
Markov chain Monte Carlo (MCMC) 
analyses structure the search with clever 
algorithms (e.g., Metropolis et al., 1953) for 
generating random samples in focused 
regions of the parameter space based on 
feedback and learning from likelihood 
evaluations.  The principal feature of MCMC 
algorithms is iterative sampling coupled to 
probabilistic acceptance criteria.  In this way, 
the resulting sample density can be used to 
approximate complex probability distri-
butions that cannot be analytically solved.  
This can be contrasted to a simple random 
sampling algorithm with no òlearningó.  Both 
have utility. 

2.8. Calibration assessment with 
uncertainty estimation 

Model calibration methods can draw upon a 
number of ingredients in regards to sampling 
and evaluation.  Two methods have become 
prevalent in recent years that integrate 
calibration with uncertainty estimation, but 
draw upon different ingredients to do so 
(Table 1).  

2.8.1. Bayesian Markov chain Monte Carlo 
algorithm 

A probabilistic ideology frames the BMCMC 
algorithm.  Most often, BMCMC analysis is 

aimed at producing a sample to approximate 
the posterior probability density using formal 
likelihood measures (e.g., Eqn 2) and Bayes-
ian inference (Eqn. 4) (Smith and Roberts, 
1993; Gelman et al., 1995; Kuczera and 
Parent, 1998).  Accordingly, this approach 
requires a statistical error model for residuals,  

which might include data transformations 
and attributes to address serial dependence 
and non-stationarity in residuals, if necessary.  
As stated above, the key step that imbues 
objectivity and probabilistic meaning to 
results is the posterior affirmation of error 
model characteristics (Gelman et al., 1995; 
Schoups and Vrugt, 2010).  In practice, the 
algorithm works flawlessly for many 
posterior probability densities (e.g., Gelman 
et al., 1995; Figure 3).  However despite 
strong-minded advocates, there is con-
siderable ongoing debate, particularly for 
modelling hydrological time series (e.g., 
Stedinger et al., 2008; Beven et al, 2008; 
Clarke et al., 2011), as to if the BMCMC 
algorithm yields reliable probabilities for 
model applications substantially affected by 
non-random uncertainty (e.g., Beven et al., 
2008; Beven et al., 2011). 

2.8.2. Generalized Likelihood Uncertainty 
Estimation  

On the other hand, an equifinality ideology 
frames the GLUE method.   GLUE appli-
cations tend to explicitly avoid the use of 
statistical models to describe the structure of 
model residuals.  Thus, GLUE utilizes 
informal likelihood measures in combination 

Table 1.  Differences in philosophy, theory, and practice for Bayesian Markov Chain 
Monte Carlo (BMCMC) and Generalized Likelihood Uncertainty Estimation (GLUE) 
methods 
 BMCMC GLUE 

Philosophical basis 
Optimality, errors can be modeled with 

parametric distributions 
Equifinality, immunity from parametric 

constraints on residuals 

Error model 
Parametric assumptions for structure of 

residuals errors 
No fixed assumptions; nonparametric 

distributions are an option  

Likelihood measures Formal Informal 

Monte Carlo sampling Markov chain (e.g., Metropolis) Random  

Acceptance criteria Probabilistic Thresholds and/or LOA 

Representation of 
uncertainty 

Parameters:  posterior densities 
Predictions:  1) parameter uncertainty 

bounds, 2) total prediction bounds  

Parameters:  posterior densities 
Predictions:  GLUE prediction bounds 
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with threshold criteria to accept sets of 
model simulations that represent equally 
plausible representations.  Selection of 
threshold criteria can introduce subjectivity 
to a GLUE assessment (Beven and Binley, 
1992).  Early efforts with GLUE tended to 
use informal measures (e.g. Reff) with user-
selected threshold criteria (e.g., Reff >0.8)(e.g., 
Freer et al., 1996; Beven and Freer, 2001).  
These can be referred to as soft informal 
likelihoods, as it can be difficult to defend 
the basis for selecting either the likelihood or 
the acceptance criteria.  More recent efforts 
have focused on LOA methods to define 
what could be referred to as informed informal 
likelihoods, as these are based on analysis of 
the scatter in data observations and can 
provide a more rigorous means to validate 
residuals and investigate deviations.  

The GLUE methodology is most often 
implemented by generating a large number of 
purely random samples of a parameter space.  
Since GLUE does not employ a formal 
model of residual errors, this approach does 
not separate predictive uncertainty bounds 
into contributions from model parameters 
and data scatter, as in linear regression (Fig. 
3) and BMCMC output.  Thus all predictive 
uncertainty is embodied in one interval 
which will be referred to herein as GLUE 
prediction bounds (Table 1). 

3. M ETHODS  

3.1. Overview 

The four Papers encompassed a variety of 
study sites (Fig. 7), data, model applications 
(Table 2), and uncertainty schemes (Table 3).  
This thesis presents only snapshots from 
each Paper; henceforth these snapshots are 
called Studies, where each Study relates to a 
corresponding Paper.  By necessity, method-
ological details are lacking in some 
descriptions; the interested reader is referred 
to the Papers.  The brief methodological 
overviews for each Study begin with a 
statement of research questions that relate to 
the overall Thesis Objectives (Section 1.1). 

3.2. Study I   

3.2.1. Research questions: 

 Could a simple catchment hydrology 
model be expanded to describe near-
surface groundwater levels in 
addition to discharge?  

 Are all data in daily discharge and 
groundwater time series equally 
informative towards calibrating the 
model? 

3.2.2. Study site and data characteristics  

The 5.6-km2 catchment at the Forsmark site 
bordered the Baltic Sea in central Sweden 
(Fig. 7).  This  was  a  low-lying  region,  with  

Table 2.  Overview of data and models.  Symbols and units for data are as follows:  
PPT=precipitation (mm/d), T=temperature (C), PET=potential evapotranspiration 
(mm/d), Q=discharge(mm/d), GW=groundwater depth (mm), C i=carbon input to 
soil (kg/m 2/yr), C s=carbon storage in soil (kg/m2), Qi= water inflow rate (mm/d), 

Pi=inflow phosphorus concentration ( g/l), V=distribution of vegetation species, Pw= 

P concentration in water ( g/l), P s= P storage in sediment (g/m2), GH=gauge height 
(m).  The òstoragesó and òparametersó  columns indicate the total count in the model 
structures and equations. 

Study Study sites Model type Input data 
Calibration 

data 

Model 

storages (#) 
parameters 

(#) 

I Forsmark, SE 
Catchment 
hydrology 

PPT, T, 
PET 

Q, GW 3 11 

II SLU, SE Soil carbon Ci Cs 3 5 

III Everglades USA Wetland P cycle Qi , Pi, V Pw, Ps 4 5 

IV Mara River, KE Rating Curve GH Q - 5 
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Table 3.  Overview of calibration and uncertainty schemes.  For Study II, the second 
method was not documented in Paper II.   

Study 
Calibration 

Method 
Likelihood 

Type 
Likelihood 
functions 

Acceptance 
criteria 

MC 
samples 

(#) 

Error 
analysis 

I GLUE Informal 
Q: Reff 
GW: LOA 

Top 200 scores; 
combined index 

4E6 visual 

II 
GLUE Informal RMSE RMSE < 0.19 g/m

2
 50E6 

visual 
BMCMC Formal Eqn. 2 Probabilistic 30E3 

III GLUE Informal 
Ps: LOA 
Pw: LOA 

+/- IQR of scatter 100E6 
Posterior  
validation 

IV BMCMC Formal Eqn. 2 Probabilistic 30E3 
Posterior 
validation 

Figure 7.  Study sites for the four modelling studies: a) the 5.6 km2 watershed 
boundary for the catchment hydrology study in Paper I, b) two of the 4-m2 plots from 
the SLU Frame Trial for the soil carbon dynamics study in Paper II, c) the 920-ha 
engineered wetland for the phosphorus cycling study in Paper III (dots indicate 
internal sampling locations), and d) the 650-km2 catchment boundary for the 
discharge rating model study in Paper IV.  
 

a)

d)

c)

b)
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small-scale topography, dominated by 
Quaternary deposits and an average depth of 
~5 m to underlying granite rock.   A rather 
fine-resolution network of meteorological, 
hydrological, and hydro-geological moni-
toring was initiated on site and in the 
surrounding region in 2003 (Juston et al., 
2007). 

Daily time series data for precipitation (PPT), 
calculated potential evapotranspiration 
(PET), stream discharge at the catchment 
outflow , and a distributed network of near-
surface groundwater wells were available 
since 2003 and assumed to be of high quality 
(i.e., low level uncertainty).  Temporal 
correlation in daily precipitation from two 
stations with 2-3 km of catchment 
boundaries was very high (R2=0.85).  The 
stream was instrumented with a pair of long-
throated flumes with different measurement 
ranges.  Each flume was equipped with 
pressure transducers coupled to data loggers 
for automatic recording of water levels. A 
theoretical rating curve was applied that had 
good agreement to periodic flow 
measurements (Johansson and Juston, 2007).  

There were 10 on-land groundwater wells in 
the surficial deposits within the catchment 
boundary.  Both stream height and 
groundwater elevations were recorded at 
high frequency and reduced to daily average 
values for modeling purposes.   

3.2.3. Model rationale and structure 

The model used in this study was developed 
from the HBV model, a well-known lumped 
conceptual catchment hydrology model 
(Bergström 1976; Siebert, 1997).  One 
standard feature of the HBV structure is 
fixed field capacity storage for representing 
the unsaturated zone of the soil profile.  
However, groundwater measurements in the 
study site indicated near-surface levels 
generally within the upper 1-m of the soil 
profile that challenged this conceptualization 
(Juston et al., 2007).  Thus, HBV was 
adapted to site conditions by elaborating 
more detailed interactions between saturated 
and unsaturated zone (Fig. 8).  Specifically, 
the storage capacity of the unsaturated zone 
became time-dependent and several new 
physical variables were specified to 

ground surface, d=0

DZ, dead zone depth

RZ, root zone depth

X(t), groundwater depth

Porosity (%) 

S(t)= SP · [X(t) -DZ]
SSF

US

US, unsaturated 

storage

S, saturated storage

Snow

RZ storage 

capacity

P ET

Q(t), discharge

0

1

0 1

E
T

 /
P

E
T

DRY

ū = RZdef /RZcap

WET

RZ deficit 
melt = [CFMAX (T(t)-tt) + KRĀR(t)] /1000

FC 

capillary rise = CRM Ā (1 - US / FC) /1000

Q(t) = KĀ S(t) 
KQ

USdef

T,

tt

Figure 8.  The HBV model was adapted to site-specific conditions at Forsmark, 
namely close coupling between the unsaturated zone and near-surface 
groundwater (green circles indicate enhancements).   There were 11 model 
parameters that were calibrated (indicated in bold red).   
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approximate the water holding capacity of 
the till.  The resulting model retained the 
capacity to simulate catchment discharge, but 
had a new capacity to link the groundwater 
storage variable to measured depth to 
groundwater from the monitoring network 
(Fig. 8).    

3.2.4. Calibration and uncertainty estimation 

The model was calibrated with the objective 
of matching both discharge and groundwater 
dynamics in the small catchment.   The 
informal likelihood, Reff, was used to evaluate 
residual errors in discharge simulation.  The 
10 near-surface wells in the study catchment 
indicated different mean elevations and 
seasonal amplitudes but generally similar 
temporal co-variance (Juston et al., 2007).  
An LOA approach was used to constrain 
groundwater simulations in the model, but 
with recognition that the true catchment 
response was not knowable from this limited 
sample of information.  A time-varying core 
acceptance range for simulations was defined 
from the 95% confidence interval of 
groundwater observations in the region; and 
a time-varying fuzzy boundary from the 
99.9% interval (see Fig. 5 for definitions).  
The likelihood function for groundwater 
simulations was the averaged LOA score 
from the series of scores at each time step.  
A single pooled likelihood was defined to 
guide calibration by averaging Reff and LOA 
scores (both having maximum possible 
values of 1.0).  Uncertainty intervals for 
model parameters and simulations were 
calculated from the top 200 scores from 4E6 
random samples of the model parameter 
space. 

After a baseline calibration was established, 
several calibration experiments were 
performed using sampled subsets of the 
available data (Fig. 9).  The resulting 
parameter sets from each subset calibration 
were evaluated in their ability to simulate the 
full daily data series.  The purpose of these 
experiments was to utilize the revised model 
and site data as a platform to explore more 
general questions about the information 
value of data for model calibration (e.g., 
Gupta et al., 1998; Seibert and Beven, 2009).  

3.3.  Study II   

3.3.1. Research questions 

 Can a modeling approach provide 
new insights on soil carbon 
decomposition processes in a long-
term plot-scale agricultural 
experiment? 

 How dissimilar are GLUE and 
BMCMC uncertainty bounds in 
comparative calibration? 

3.3.2. Study site and data characteristics 

The òFrame Trialó experiment (Fig. 7) at the 
Swedish University of Agriculture in Uppsala 
has maintained 15 various plot-scale 
agricultural treatments since 1956 (Persson 
and Kirchmann, 1994).  It is one of the 
longest running agricultural trials in the 
world (e.g., Richter et al., 2007).  Six 
treatments from the Frame Trial were 
selected for study; each of these had received 
consistently different organic carbon 
òinputsó to the upper soil horizon over the 
duration of the study.  Carbon inputs 
occurred via direct organic amendments (e.g., 

Figure 9.  In Paper I, several 
calibration experiments were 
conducted using weekly, 
monthly, quarterly, and 
òinformedó data subsets.  Subsets 
were sampled from the daily 
series, not interval-averaged.  For 
reference, the complete daily time 
series had 1065 observations; the 
informed observer subset had 53.   

 
May-04 May-05 May-06

"Informed"

Quarterly

Daily

Weekly

Monthly



John M Juston TRITA LWR PHD 1068 

 

14 

straw and manure) in three treatments 
and/or continuous belowground root 
contributions (all treatments).  Aboveground 
biomass was harvested and thus not a major 
source of carbon to the underlying soil.  The 
six treatments included a null treatment (i.e., 
fallow), a basic crop cycle (no fertilizer or 
amendment), fertilization (increased product-
ivity), straw application, straw plus 
fertilization, and manure application.  Each 
treatment had four replications at the study 
site.   

Data on carbon inputs were either measured 
or estimated.  Crop residue and manure 
applications were normalized with lab 
procedures to ~0.38 kg-C/m2 every two 
years; this was considered a low level uncert-
ainty in the modeling (although certainly not 
without uncertainty).  Below-ground inputs 
were not sampled but were calculated with 
allometric equations based on estimates of 
above-ground production.   High uncertainty 
and error accompanied these calculations 
(Bolinder et al., 2007; Kätterer et al., 2011); 
yet these calculations accounted for 20-100% 
of net carbon forcing for the different 
treatments in the model (Kätterer et al., 
2011).   The concentration of soil organic 
carbon (SOC) in the treatments was sampled 
biannually.  The average coefficient of 
variation amongst treatment replicates was 
~10%, suggesting a moderate level of 
stochastic variability in observations.  Some 
systematic bias was identified in lab 
processing techniques over time that 
contributed visible artifacts in the output 
series (Kätterer et al., 2011).  Conversion of 

SOC concentrations to estimates of SOC 
storage in the upper 20 cm (kg/m2) were 
based on interpolated time series of bulk 
density from four measurements in each 
treatment over the 51-year duration.  Thus, 
this introduced further uncertainty in the soil 
storage time series due to unknowns in gap-
filling soil physical properties.   

3.3.3. Model rationale and structure 

The Introductory Carbon Balance Model 
(ICBM) was originally developed and 
parameterized specifically to describe these 
same six Frame Trial treatments (Andrén and 
Kätterer, 1997).  The original ICBM 
simulated soil organic carbon dynamics with 
two storages, each with a conceptual òageó 
(Fig. 10).  Soil carbon inputs (roots, crop 
residues, manure) are added to the young 
pool (with different sub-storages for 
different quality inputs).  Some young carbon 
is oxidized to the atmosphere, and some is 
decomposed to more resistant states.  Both 
processes occur in proportion to the storage 
turnover rate and a climate-dependent 
biological activity factor, r.  This activity 
factor was normalized to approximately 1.0 
at the Frame Trial site (Andrén et al., 2007), 
so it was not considered further in this study.  
Soil C pools were initiated to field measured 
values in 1956 (~4.3 kg/m2).   

During a preliminary study of field trial from 
a site in arid Kenya, it was determined that 
the original ICBM structure was not adequate 
to describe trends in those data (Andrén et 
al., in review).  One hypothesis was that the 
model did not adequately account for carbon 
with very long turnover times relative to the 

Y, young 

O, old 

I, inert 

i, inputs

 Ɇ (1- h i) Ky R Yi

  k o   Å r Å O

 Ɇ (1- h i) Å k y Å r Å Y i

 Ɇ  h i  Å k y Å r Å Y i

Figure 10.  The ICBM in Study II.  
Carbon inputs were crop materials 
(including roots) or manure.  The 
young pool, Y, contained sub-
storages for inputs of different 
quality, each with humification 
factor, h.  A fraction of the initial 
soil carbon content was assumed 
effectively inert.  Calibration 
parameters are indicated in bold 
red.  The climatic activity factor, r, 
was normalized to 1.0 in this study. 
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decade interval in the study.  It was proposed 
to add an additional carbon pool in the 
model that was effectively inert over the 
period of study.  This pool did not alter the 
conceptualized decomposition dynamics in 
the model but did alter the initial partitioning 
of C.  The fraction of initial carbon assigned 
to the inert pool was treated as a calibration 
variable in this new formulation (Fig. 10). 

3.3.4. Calibration and uncertainty estimation 

This insight from the Kenyan experiments 
motivated a thorough re-investigation of the 
Frame trial dataset with the new ICBM 
framework.  Two calibration intervals were 
considered, 1956-91 and 1956-07, using both 
informal GLUE and BMCMC algorithms 
(Table 3).   The BMCMC results have not 
been previously reported (and were, in fact, 
produced specifically for the Kappa).  The 
calibration objectives were to jointly simulate 
time series trends of the six Fame Trial 
treatments with single parameter sets.  The 
GLUE experiments utilized a soft informal 
RMSE likelihood with acceptance threshold 
of 0.19 kg/m2.  This value was greater than 
the average standard deviation in replicate 
samples (0.14 kg/m2), but very close (as will 
be shown in Results) to the best achievable 
RMSE scores.  The BMCMC calibrations 
were conducted rather ad hoc, with no 
detailed consideration or validation of 
assumptions in the error model, using a 
BMCMC algorithm similar to Juston and 
DeBusk (2011). 

3.4. Study III   

3.4.1. Research question 

 Can a process modeling approach 
support, and provide additional 
insights on, the lowest achievable 
outflow phosphorus (P) 
concentration observed in an 
engineered wetland? 

3.4.2. Study site and data characteristics 

The study site was a 920 ha constructed 
wetland situated between agricultural lands 
and protected Everglades areas in south 
Florida USA (Fig. 7).  The treatment wetland 
has been operated continuously for P 
removal since 2001, and is part of a larger 

system of treatment wetlands designed for 
stripping P from inflowing water to 
protected Everglades areas.  The study site 
has been managed for a dense cover of 
submerged aquatic vegetation, which has 
been identified as having unique P removal 
capacity in the Everglades environment (in 
comparison to more conventional emergent 
vegetated wetlands).  However, a recent 
study suggested that there may be a 
fundamental limitation to the lowest 
achievable outflow P concentration from 
these systems between 13-17 µg/l (Juston 
and DeBusk, 2011).   

A wide variety of data were available from 
the study site to support a modelling study.  
Inflow and outflow rates have been 
measured continuously and P concentrations 
sampled ~weekly since startup.  These data 
were considered to be of relatively high 
quality.   Phosphorus concentrations have 
also been periodically sampled (n=28) at 45 
regularly-spaced internal sites in the cell, 
providing snapshots of longitudinal P 
removal gradients; there was considerable 
temporal variability in these snapshots 
(Juston and DeBusk, 2011).   Additionally, P 
in accrued sediment was sampled (n=54) in 
2010 to help establish a spatial mass balance 
in the cell (g/m2).  Some measurement error 
inevitably accompanies field-collected soil 
cores such as these; however this was likely 
dwarfed by the high intrinsic spatial 
variability in these samples, as well as 
longitudinal patterns, similar to what have 
been observed in other similar wetland 
systems (Grunwald et al., 2004).  Ad-
ditionally, composition of submerged vege-
tation species has been monitored annually 
since startup; here again, there were expect-
ations of considerable spatial variability in 
these data (e.g., Jager and King, 2004).   

3.4.3. Model rationale and structure 

A P cycle model was developed as an 
extension of the simple and well-known 
steady-state NKC* model (Kadlec and 
Knight, 1996; Fig. 2).    The NKC* model 
simulates constituent removal from the water 
column with a 1st-order rate constant, k, 
limited by an intrinsic background 
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concentration, C*, in a hydraulic system of N 
tanks-in-series (TIS).  The TIS formulation 
provides a means to simulate longitudinal 
gradients; accordingly NKC* has become a 
standard tool for modeling treatment 
gradients in a simple conceptual framework 
(Kadlec and Wallace, 2008).  However, the 
NKC* model was not adequate to describe 
the sediment P profile from this site.   

The process basis for the extension of the 
NKC* model was hypothesized from an 
extensive survey of literature regarding the P 
cycle in SAV-dominated lake systems.  The 
new model structure was based on the 
following notions:  decomposition of SAV 
tissue associated with biomass turnover is 
rapid and acts as a P source to the water 
column; rooted SAV can effectively òpumpó 
P from sediment to the water column via this 
mechanism; the presence of SAV mediates 
efficient P removal processes separate from 
the P cycling thru SAV plant tissue itself.  In 
this way, it was hypothesized that P removal 
in SAV systems is self-limited due to an 
internal load created by the vegetation itself.  
The new model had four storages for P in 
water column, SAV biomass, accrued marl 
sediment and underlying muck soil (Fig. 11).   
There is some complexity in defining how 
different SAV species pump P from the 
different sediment storages that accompanies 
this formulation and that is hidden in the 

schematic.  As in NKC*, the P cycling 
routine was series connected using a tanks-
in-series (TIS) hydraulic representation, 
which also provided a capacity to simulate 
water column and sediment P gradients.   
The model aimed at an alternative estimation 
of the previously identified C* in these 
systems (Juston and DeBusk, 2011), plus 
additional insights according to the following 
decomposition:  

  

   C* = C*atmos + C*SAV + C*res          (Eq. 5) 

 

where C*SAV was due to the internal load 
created by the biomass P cycle, and C*res was 
from as-yet unexplained (residual) processes. 

3.4.4. Calibration and uncertainty estimation 

The calibration scheme utilized limits of 
acceptability (LOA) to constrain model-
predicted water column and sediment P 
gradients with recognition of temporal and 
spatial uncertainties in the field-measured 
observations.   Data treatment assumed a 
physical correspondence between longi-
tudinal position in the direction of flow and 
mathematical representation of state vari-
ables in TIS; thus, for example, the field 
samples in the first one-sixth of the study site 
(Fig. 7) were used to constrain predictions in 
the first of the six TIS in the model (Fig. 11).  
The threshold criterion for acceptable 

Figure 11.  The 
wetland P cycle 
model in Study III. 
Green circles 
indicate new 
features added to 
the NKC* 
framework.  
Calibration 
parameters are in 
bold red; three 
additional were 
required to specify 
biomass P turnover 
as a function of 
position in the 
wetland treatment 
gradient.  
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simulations was defined from the 
interquartile range (IQR) of observations 
corresponding to each model.  There were a 
total 20 criteria (Table 4); however one 
criterion was eventually relaxed due to 
physical considerations, as described in 
Results.  All parameter sets that achieved a 
score of 19 were treated as equally likely to 
describe observations. 

3.5. Study IV  

3.5.1. Research question 

 Was there evidence of a change in 
flow patterns over time in a 45-year 
discharge series, with consideration 
of flow duration curves and rating 
model uncertainty? 

 Are issues of epistemic error ever 
really that important for hydrological 
hypothesis testing? 

3.5.2. Study sites and data characteristics 

The 650 km2 study catchment was located 
west Kenya (Fig. 7).  Loss of forest cover 
and other land use transitions in the basin 
have become an issue of concern in regards 
to sustaining historic flow patterns to the 
downstream ecosystem.   

River levels (i.e., stage) have been measured 
daily at the gauge station that defines the 

catchment outflow with good consistency 
since 1964.  These data were considered high 
quality in comparison to uncertainties in 
stream rating (i.e., discharge) measurements.   
There were 114 discharge measurements 
available for 1964-07.  A low concrete weir 
was constructed across the river channel in 
the early 1990õs; 88 of the ratings were from 
before and 33 from after construction.   
Discharge (i.e., stream flow) was measured 
using the area velocity method, from which 
both random and systematic errors can be 
expected (Sauer and Mayer, 1992).    There 
was a moderate degree of scatter (i.e., 
uncertainty) in stage-discharge data pairs 
from this site.  There were several site-
specific issues that raised particular concern 
over non-repeating, non-random error in 
these data, including: a high number of 
outliers, suggesting at least periodic 
systematic difficulties in the field or 
reporting; multiple observers (from site 
records); multiple stream cross-sections for 
observations (from site records); and high 
potential for seasonal and longer-term 
variability in physical characteristics of the 
stream bed.  Thus, significant random and 
non-random uncertainty was suspected in the 
data scatter, although a reduction of 
contributions was not possible.  Therefore, 
this study proceeded assuming both required 
consideration and neither was negligible. 

3.5.3. Model structure 

The rating curve was based on an empirical 
power law model, which transformed to a 
linear relationship when both stage and 
discharge observations were log-transformed 
(Fig. 12).    Visual assessment of the data 
indicated that a two stage rating model was 
appropriate (i.e.., a piecewise linear model).   
Furthermore, the slope of the lower segment 
in the rating model changed after the 
construction of the concrete weir.  

3.5.4. Calibration and uncertainty estimation 

The rating model was calibrated using a 
BMCMC algorithm.  The error model treated 
the scatter of data around each segment of 
the rating model (Fig. 12) as-if it was random.  
The likelihood formulation assumed the data 
dispersion around each segment of the rating 

Table 4.  The three model evaluation 
criteria, expressed as limits of 
acceptability.  The model was 
calibrated to two intervals in the long-
term data record: 2001-05 and 2006-09, 
each treated as steady-state. 

Con-
straint 

Criteria 
Max 

score 

I-O mass 
balance 

Simulated outflow P ( g/l) ± 

2 g/l within observed flow-
weighted means 

2 

Internal 
sediment 
P balance 

Simulated gradient in 
accrued sediment P(g/m

2
) 

within IQR of field data, 
lumped by  TIS 

6 

Internal 
water P 
gradient 

Simulated water column P 

gradient ( g/l) within IQR of 
field observations lumped 
by TIS and time interval 

(n=2) 

12 
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model was normally distributed and with 

steady variance, j
2, such that: 
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  (Eq. 6) 

Procedural details for the BMCMC algorithm 
were essentially the same as in Juston and 
DeBusk (2011).  Values for the three error 

variance terms, j
2, were calibrated within the 

BMCMC inference. 

3.5.5. Hypothesis testing 

The calibrated rating model and uncertainty 
intervals were used to infer a discharge time 
series with uncertainty intervals from two 
eight-year periods in the daily gauge height 
series:  1964-71 and 2000-07.  Flow duration 
curves (FDCs) were calculated for these 
intervals with accompanying uncertainty 
intervals, and compared to one another to 
test this null hypothesis: there is no evidence 
of altered flow conditions in the basin 
between these two eight-year data intervals.  
This hypothesis would be accepted if FDC 
uncertainty intervals were fully overlapping 
for the two periods.  Separation of FDC 
uncertainty intervals (either partial or 
complete) would provide basis to reject the 
null hypothesis.  A rejection might lead to 

follow-up investigations (beyond the scope 
of this study), such as: was this change due to 
deforestation and/or climate variability?  

4. RESULTS 

Presentation of results is aimed at cross-
study comparisons.  The Papers elaborate 
substantially more detail. 

4.1. Data 

All data used in this thesis was field collected.  
The categorization framework introduced 
earlier (Fig. 5) was useful to synthesize field 
data characteristics and their relationship to 
model usage.  The character of error and 
uncertainty in input and calibration data 
varied amongst modelling studies (Fig. 13).  
Study I had low-uncertainty input data, one 
(assumed) low-uncertainty calibration target 
(Q), and a second high quality calibration 
dataset that had high spatial representation 
uncertainty in reference to model usage 
(GW).  Study II utilized high-uncertainty 
input and calibration data.  Study III was 
driven by low- and high-uncertainty inputs, 
and calibrated to high variability-uncertainty 
outputs.  Study IV had low-uncertainty input 
data, but utilized calibration data (Q) that 
was suspected of substantial random and 
non-random errors.  

4.2. Models 

Visual assessment of the calibration results 
suggested that model equations and 
parameter calibrations were generally 
successful at simulating the targeted 
observations (Fig. 14 and 15).  The calibrated 
hydrological model of Study I captured 
seasonal trends in groundwater response 
with similar variance and covariance as the 
cloud of groundwater well data; seasonal 
dynamics in discharge, and peak events as 
well, were well-captured.  The calibrated soil 
carbon model of Study II jointly captured 
central tendencies in carbon storage 
trajectories from the six field trial treatments.  
The calibrated wetland P cycle model of 
Study III reproduced steady-state trends in 
water column P and sediment P storage 
gradients well-centered within the cloud of 
field data for each variable.  The calibrated 
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Figure 12.  The rating model with five 
parameters, indicated in bold red.  The 
two lower limbs correspond to before 
and after a low concrete section control 
was constructed. 
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rating model in Study IV captured the central 
tendency in the stage-discharge data. 

The estimated uncertainty bands in each 
calibration study reflected different 
likelihood measures and acceptance criteria 
(Table 3), and thus had different meaning.  
For the Study I results, the GLUE 
uncertainty bounds represented the simulated 
extremes from the top 200 likelihood scores 
from 4E6 random parameter realizations.  
This was an arbitrary criterion, aimed at 
elucidating equifinality at òthe upper 
echelonsó of the performance space; 
differently chosen threshold criteria (e.g., top 
100 or 400) would yield narrower or wider 
boundaries.  The top 200 scores contained 
discharge simulations with Reff scores in the 
range of 0.79-0.87, groundwater scores in the 
range of 0.89-0.97, and net averaged scores 
of 0.88-0.90.  These were indeed good scores 
(considering max possible = 1.0 in all cases), 
and provided basis to assess a òsuccessfuló 
calibration.  However, the subjective basis of 
the threshold interfered, to some extent, with 
more detailed model evaluations.  For 
example, one might assess that the model 
often lagged in predicting hydrograph 

recession (e.g., April 2004 and 2006, Fig. 14); 
however selection of a wider uncertainty 
band could erase that conclusion.  This 
illustrates one problem with soft informal 
likelihood criteria. 

The GLUE uncertainty bands in Study II  
were similarly selected.  In this case, the 
acceptance threshold was set for simulations 
with RMSE <0.19 g/m2 and the boundaries 
were derived from 250 simulations that met 
this criterion from 50E6 realizations.  The 
lowest identified RMSE score in the Monte 
Carlo search was 0.184 g/m2; so here again, 
this was a depiction of equifinality at the 
upper echelons of the parameter space.   
However, the uncertainty bands did not 
cover the data scatter in spite of the fact that 
the threshold value was in excess of the 
standard error in field replicates.  Thus, 
although the central tendencies in the six 
treatments were well-simulated, there still 
appeared considerable unexplained 
phenomenon with shorter-term dynamics 
(Fig. 14).    

The GLUE uncertainty bounds in Study III 
were determined by 550 simulations that 
satisfied 19 of the 20 predefined LOA 
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(Table 4) from 100E6 random parameter set 
realizations.  No simulations satisfied all 20 
criteria, and all 550 failed on the same 
criterion: sediment P storage in the first tank 
of the model was consistently over-
simulating in comparison to the IQR of data 

scatter in front region of the study site 
(Fig. 15).  Was it the model or data that 
contributed to the consistency of errors?  
Further consideration suggested the data was 
most suspect; there was higher variability in 
sediment accrual in this region due to 

Figure 14.  Data observations, calibration results and uncertainty intervals for Studies 
I and II.   
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physical factors (specifically, jetting and 
translocation of sediment from inflow 
culverts), thus suggesting a possibility that 
the region was under-sampled.  In turn, this 
suggested a possibility that this particular 
acceptance criterion was perhaps based on 

inadequate information.   Additional field 
data would be useful and important to 
confirm this.  However in general, the new 
model structure was considered quite 
adequate to describe the available data, and 
this provided rationale to consider insights 

Figure 15.  Data observations, calibration results and uncertainty intervals for Studies 
III and IV.   
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on calibrated C* values in a broader context 
(discussed below).   

The uncertainty bounds in the rating model 
calibration (Study IV) resulted from 
probabilistic acceptance criteria built in to 
the BMCMC algorithm.  Model parameter 
and prediction uncertainty bounds were 
estimated (Fig. 15), which have direct 
analogy to parameter and prediction 
uncertainty bounds in linear regression under 
the assumption of random, Gaussian errors 
(e.g., Fig. 3).  When this assumption is valid, 
the difference between model uncertainty 
bounds would be due to measurement noise 

with magnitude i (Eqn 6).  However, it has 
been established that it was unlikely scenario 
in Study IV, since substantial non-random 
errors were suspected (Fig. 13).  Under this 
condition, it has been recognized in other 
studies that the BMCMC algorithm inevitably 
represents ònon-repeating systematic erroré 
as part of the regression noiseó (Petersen-
Øverleir et al., 2009).  This calibration 
procedure could not explicitly account for 
these systematic error contributions to 
parameter uncertainty intervals.  Thus, the 
resultant parameter uncertainty bounds from 
the Study IV BMCMC analysis must be 
interpreted (and used) with some care, as 
they were likely over-conditioned (i.e., too 
narrow) due to treating systematic error òas-
ifó it were random.     

4.3. Residual Errors 

Information in residual errors represented 
the cumulative filtering of input uncertainties 
thru model equations and comparisons to 
uncertain calibration data.  The different 
models, data, and calibration methods 
yielded a wide variety of residual error series 
(Fig. 16).   

There was no native stochasticity evident in 
the discharge simulation error from Study I.  
Input and discharge series in this study were 
considered amongst the highest quality data 
used in the studies (Fig. 13), yet the residuals 
for the discharge simulation were the most 
patterned of all (Fig. 16).  This suggested that 
patterns were introduced largely by the 
model equations.  It is however interesting to 
consider the July-August 2005 sub-interval in 

more detail (see circled regions for Study I in 
Fig. 14 and 16).  For the most part, the 
model failed to simulate the moderate 
discharge event during this two-month 
interval.  Was it the model or data that 
contributed to the consistency of errors?  
Three other regional gauge stations reported 
a similar discharge event during this interval; 
thus reasonably ruling out error in the 
discharge data.  However, interestingly, the 
July-August interval coincided with a period 
of missing precipitation data (the only one in 
the on-site records), during which the series 
was gap-filled from stations 20-30 kilometers 
distant.  Thus, it seemed most plausible that 
the gap-filled data might have yielded the 
simulation error.  This suggested another 
example of how òknowledge errorsó can 
introduce patterns in model residuals.   

In general, residuals from Study II were more 
scattered (Fig. 16), but still indicated patterns 
both between and within treatment time 
series.  For example, there is a curious 
commonality in response in the three 
treatments that received straw and manure 
amendments during 1986-1992.  
Interestingly, this corresponded to a 
suspected temporal interval of systematic 
error in lab procedures (Kätterer et al., 2011).  
Furthermore, there was net bias in some of 
the residual series for individual treatments.  
This suggested that this calibration had value 
for understanding the treatment responses in 
a unified framework, but less value for 
understanding the response of each 
individual treatment. 

For the LOA likelihoods (Study I and III, 
Fig. 16), errors occurred when simulations 
exceeded the limits, while all values simulated 
within the core acceptance range were not in 
error.  For example, residuals in groundwater 
simulations in Study I demonstrated patterns 
(relative to the mean)(Fig. 16), but much of 
these patterns were within the predefined 
representation uncertainty of the available 
groundwater data, and thus not in error.    

The standardized residuals in Study IV 
appeared stochastic and were approximately 
normally distributed with relatively steady 
variance (Fig. 16).  The stochastic appearance 
is interesting, considering the suspected non-
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random error in these data.  This highlights a 
need to consider not just the appearance of 
residuals, but their actual nature as well (e.g., 
Taylor, 1997; Beven et al., 2011; Fig. 5 
and 13). 

4.4. Information and uncertainty 

4.4.1. Study I  

Calibration experiments with the catchment 
model in Study I and sampled data subsets 
were illuminating in regards to understanding 
information contained in time series data for 

Figure 16.  Residual errors calculated from the difference of model simulations and 
data observations in each Study. 
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calibration.  There existed parameter sets that 
were derived from calibration to as few as 53 
samples of the complete 1065-day series that 
provided virtually indistinguishable 
performance from calibration to the full 1065 
days (e.g., òinformedó observer samples; 
Fig. 9 and 17).  An additional calibration sug-
gested that even a minimal amount of 

groundwater data (e.g., quarterly samples) 
could provide significant help constrain 
model parameters in comparisons to having 
no groundwater data at all (Fig. 17).  These 
results suggested there can be much 
redundant information in time series data for 
model calibration.  A comparison of 
performance measured from the full data (D-
D), the discharge only (D-N), and ground-
water only (N-D) calibrations corroborate 
insights of Fenicia et al. (2008) on the value 
of òorthogonaló data to challenge a model to 
simultaneously represent several aspects of 
catchment behavior. 

4.4.2. Study II 

Calibration trials with the soil carbon model 
of Study II and different likelihood functions 
(Table 3) illuminated several perspectives.  
The originally-published GLUE calibration 
(Paper II) presented marginal distributions 
for ICBM parameters from calibration to 
two data intervals (1956-91 and 1956-07) 
using an informal RMSE likelihood and an 
acceptance threshold of RMSE < 
0.19 kg/m2.  Those distributions are 
reproduced in Figure 18.  Concurrent with 
Kappa preparations, a second calibration was 
performed using a BMCMC algorithm 
(Table 3).  Interestingly, the posterior dis-
tributions from the two methods were, for 
the most part, indistinguishable for 
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calibrations to both data intervals (Fig. 18).  
In one way, this was not an unexpected result 
since minimizing an informal RMSE 
likelihood is essentially the same as 
maximizing a formal likelihood function 
(assuming errors were random and Gaussian, 
as was assumed here).  However, it is also 
well established that uncertainty bounds and 
parameter distributions from a GLUE 
analysis are dependent on the threshold 
criteria when using soft likelihood functions, 
such as RMSE (e.g., Fig. 19).  Thus, this 
result was from another perspective 
completely surprising given that the 
subjective threshold criteria chosen three 
years prior provided near exact 
corroboration (and vice versa) to the 
uncertainty intervals estimated with the 
BMCMC algorithm (Fig. 18).   

It is interesting to further consider the 
identification of the inert fraction model 
parameter in this study (Fig. 18).  Posterior 
distributions for the inert fraction from the 
1956-91 calibration suggested some 
possibility that this parameter could still 
equal zero and adequately explain the data.  

However, this changed with the addition of 
16-years of subsequent data (Figure 14); thus 
the extended time series contained valuable 
information to support the new proposed 
process hypothesis in the model structure 
(Fig. 10).  This was evident in both GLUE 
and BMCMC results.   

It  is also interesting to consider the covariant 
relationship between old pool turnover rate 
and inert fraction parameters in Study II 
(Fig. 18d).  There has also been some debate 
as to if laboratory fractionation analyses can 
be useful to precisely initialize storage pools in 
soil carbon models such as ICBM (Paul et al., 
2006).  However, the results from this 
modelling study turn this argument around 
somewhat.  Any additional constraint on 
possible values for the inert pool, beyond 
what was identified from the 51-year SOC 
time series, would automatically constrain the 
range of covariant turnover rates (Fig. 18d).   
Thus, even imprecise information from lab 
chemical analyses could be of value to reduce 
model parameter and hence long-term 
predictive uncertainties.  

4.4.3. Study III  

After the simulation capacity of the P cycle 
model in Study III model was established 
(Fig. 15 and 16), it was of high interest to 
evaluate the model predictions and insights 
for C*.  Often, it is not prudent to compare 
parameters between model studies because 
they can lose meaning outside of their 
specific conceptual model.  However, the 
background P concentration parameter, C*, 
in Study III had direct relevance to the same 
parameter estimated in a prior study (Juston 
and DeBusk, 2011).  In fact, Study III was 
motivated specifically toward new insights on 
this parameter.  The model and data basis in 
the previous study were very different than in 
Study III; the previous study employed a 
database of historic annual scale in-out P 
performance from several sites in the same 
project (including the Study III site), an 
empirical model, a formal likelihood 
function, and a BMCMC algorithm for 
calibration.  The posterior distribution for C* 
from this study is reproduced in Figure 20 

(5-95% C.I. = 13-17 g/L).   

Figure 19.  Width of parameter 
distributions and prediction bounds 
in Study II as a function of GLUE 
acceptance criteria. 
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The posterior density for C* produced from 
the process model calibration in Study III 
had a very similar range, especially in 
consideration that the allowable range for C* 

in this calibration was 0-40 g/L .  The 
cumulative constraint of the in-out and 
internal gradient mass balances that were 
specified in this study (Table 4) provided for 
a relatively narrow estimation of plausible C* 
values (Fig. 15) with about the same range 
and distribution as identified in the previous 
study.  This is interesting given the very 
different data and methods involved.  The 
process model implementation in Study III 
also provided some óextraó insight on the 
nature of C* in these systems, suggesting that 
about a third of the observed C* might be 
explained by internal loading caused by 
biomass turnover and decomposition of the 
SAV (Fig. 20).  This is interesting, as it sug-
gests that the lowest achievable outflow P 
from these systems might be self-limiting, 
even though these systems are highly 
efficient at treating P to this background 
level.   

4.4.4. Study IV 

A discharge time series was inferred from the 

calibrated rating model (Fig. 15), along with 

estimates of discharge uncertainty intervals 
(Fig. 21).  Two precedents have been 
established in the hydrological literature in 
regards to hypothesis testing with discharge 
uncertainty intervals inferred from BMCMC 
calibration of rating models: one suggested 
model parameter uncertainty intervals were 
appropriate for testing (Reitan and Petersen-

Øverleir, 2008); the other that total 
prediction bounds were appropriate (Moyeed 
and Clarke, 2005).  It has already been 
established that parameter uncertainty 
intervals were not suitable for hypothesis 
testing here since they were likely over-
conditioned due to the treatment of residual 
errors as-if they were random (a suspected 
fallacy) in the BMCMC calibration.  In fact in 
this case, evaluation of FDC uncertainty 
intervals based on parameter uncertainty 
might have led to some false conclusions 

Figure 20.  Distributions for the 
background P concentration 
(C*) in SAV wetlands from 
Study III and a past study 
(Juston and DeBusk, 2011).  
C*residual is defined in Eq. 5.  The 
principal issue of comparison is 
that no C* estimate suggested 
possibilities for achieving 
outflow P < ~13 ug/ l.  This 
corroboration provides 
additional decision support for 
Everglades restoration. 
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Figure 21.  Uncertainty in discharge time 
series inferred from rating curve 
uncertainty in Study IV (Fig. 15).  The 
horizontal lines partition the flow 
according to rating model segments; 
òkneeó defines the flow regime above the 
breakpoint in the two-segment rating 
model (Fig. 15) 
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