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ABSTRACT

Envirormental modsl areimportanttools, however uncertainty is pervasive

in the modeling proces<Current research has shown thatesstandingand
representing thesmcertaintiess criticalwhen decisions are expected to be
made from thanodelingresults One critical question hascbene how
focused should uncertaimyervalde with consideration of @tacteristicef
uncertain input data, model equation representatia and output
observatiord This thesiglelves into thisissue withapplied reseetn in four
independentstudies. These studiesdeveloped aiverse array ofimply
structured processnodels ¢atchment hydrology, soil carbon dynamics,
wetland P cyclingtream ratinggmployedield data observatiomsth wide

rangng characteristidg.g., spatial variability, suspected systeratjc and
explored severa&hriations of probabilistic and Rprobabilistic uncertainty
schemes$or model calibrationsA key focus has been bow the design of
various schemes impacted the resultingrtanaty intervals, and more
importantly the ability to justify conclusions general, somencertainty in
uncertainfy’) resuled in all studigsin variousdegrees Subjectivity was
intrinsic in the noiprobabilistic results. @ study illustratedthat such
subjectivitycouldb e partly mitigated using a
with posterior validation of errorsf wasalso a factofrom probabilistic
calibration algorithmsas residual errors were not whsibchastic Overall
howeveru” was not a deterrent to drawduanclusionérom each studyOne

insight on the value of data for modeling was that there can be substantial
redundant information in some hydrological time series. Several process
insightsresulted: there can be subB# fractions of relatively inert soil
carbon in agricultural systems; the lowest achievable outflow phosphorus
concentration in an engineered wetland seemed partly controlled by rapid
turnover and decomposition of the specific vegetation in that system.
Additionally,consideration of uncertaintiesairstagelischargeatingmodel
enableanoreconfidentdetection othangen longterm river flowpatterns

Keywords: Models, data error, uncertainty hydrology, soil carbon,
wetlands, phosphorus
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1. INTRODUCTION wherein practice confronts theory and
theory, practice (Box, 1976).

Modeling is an important tool for advig
scientific  understanding as iposes
hypothesis on the mathematical form of
hysical processes and/or relationships.
ypotheses in model structures can be tested
. against their ability to describe available data
conservation and managmt of natural bservations. Thus, the process of model
resources. Some issues concern the glob evelopment and catition hasasis in the
carbon cycle, climate change, decreasing SQkientific method (Fig. 1). Mathematical
fertility, altered nutrient cycles, ecosystem ethods for quantifying uncertainties have

restoration, impacts of land use change, an : : :
: , » “eveloped in support of testing hypothesis
wastemanagemenRckstrom et al., 2009; and advancing science via the scientific

Fleishman et al2011). Progress on these method (e.g. Gauss 1809, Fisher, 1922:

issues will inevitably employ teeientfi 4.1 1964° Box 1980) For neple
methodwhich describes grocedure that hasgaristical methods in combination  with

characterized natural science since the 17t F@E&Wi}fty theory can in some circumstances
consisting in systematic observation, mea umeric expressions of confidence
and experiment, and the farmidating, and

o . to reject (or not) hypotheses, as in testing a
modification of hypotf@8is; 2012). It has linear regression. (Fisher, 192Borrowing

been referred to as @mo t i vaob ed,,l4dq&h thd dstBefhed statian George

Sustainableatural resources and ecosystem
services are the foundation to the
continuatiorof human development (Odum,

1996). Accordingly, there are many critical
scientific questions that must be addresse
by the natural sciences to support

Future data needs Likelihood function &
Data acceptance criteria
(1, 1, 11, V)
Input I O
data Observations
Research questions:
Residual [
error - process hypotheses (I, Il, 1)
T Net - change detection  (IV)
Model ¢ . Simulations " uncertainty
P B - ; - value of data @, 11, 1

Equations = parameters

. J _ Callibration via repetitive
) - evaluation

process hypotheses

Figure 1. Environmental modés areimportant tools; however uncertainty is pervasive
in the modeling process. A key question has become. how focused should the fina
representaton of uncertainty be with consideration oferrors and uncertainties in

input forcing data, approximate mathematical representatios, and response
observations used for calibratior? The selection of the likelihood function and

associated acceptance critex plays a determining role during calibration with

repetitive evaluations. The threededbackpathwaysin this diagram are consistent
with the motivated iterationo philosophy of the scientific method (Box 1976)

Roman numerals refer to areas of reseéiran the Papers.
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Box (1976), an explicit expression of methodsonly. Consegently,new methods
unc er inaaasefs)ygreaily the probabilityeiregrgedd u r i n g ttohaddreds3he<e 6 s
the investigator will be led along a true ratherctraremns The field of hydrogical s@nces
false patho has been a particularly active arena for

Environmental systemsare intrinsically ~methalological advanoeent, including sub
complex with penboundariesncontrdled ~ Stantial ~ developents both inside and
conditions, and substantial feedbacks andPutside of probability theorg.g.,Warwick
interactions (Odum1983). Thesetiinsic ~ and Cale, 1988; Beven and Binley, 1992;
complexities bring serious challenges toKuczera and Parent, BP9 These haveni
connecting model representations andfact been polarizing developments, as they
predictions to fieldollected data have yielded considerablecud$sion and

observations (Beven, 200 For example, debate in the literature in recent years (e.g.,
e’]vironmmtal models often require Beven, 2006, Mantovan and T0d|n|, 2006,
mathematical complexity beyond linear ~ Beven et al., 2008; Stedinger et al., 2008;
relatioships ~ particularly procesdased ~ Vrugt et al., 2008; Montanari et a009;
models that simulate time series. d&ax Beven et al., 201Qlarke et al., 2011).

(1979) also expressed the wtown One critical question in these discussions has
opinion thatoall models are wrong, but somebaen: how focused should the final
usefdl . Followingthis logic, evirormental representation of uncertainty be with
model equations, no matter homany or consideration of characteristics in uncertain
detailed(e.qg, Andren and Katterer, 1B9 input forcing data model dructure
Seibert 1997 Gerten et al.,, 20pdansson, repesentation and output data observeations
2013, are at best simplified numerical The key to this question lies in the selection
approximations  of complex natural of an appropriate evaluation measuces
processes Fieldcollectd environmental  justify the conclusions drawn from
dataaddsubstantiahdditional complexity comparing model output with independent
the pcture as these dasae often difficul(if observational data. oF model calibratign

not impossiblefo measure witlprecision theselikelihood funatjas they will be called
and adequate spatial and/or temporal henceforth, represent the likelihood that a
representivity (e.g., rainfall, streamflow, watermodel (a hypothesis about the real world) is
quality; McMian et al., 1012). Thus, it is supported by data A likelihood function
wellrecognized that uncertainty permeatesconsolidates the information in a set of
the environmental modeling process from residual errors in order to expedifgetitive

the input data used to drive modtisy the and consistent evaluation of model
inadequacies odquationsthemselves, and performance (Fig 1) Achieving an
again in the data used to calibrate andappropriate level of focus is important to
validate moel perfomance Janssen and properly address pressing environmental
Heuberger, 1995; Walker et al., 2003; Loucksesearchguestiong(Fig. 1) when decisions

et al., 2005; Refsgaatal, 2005; Beven, are expected to be made from the modeling
20®). With these considerationise entire results There is a cdimued reed for further
undertakinganseem taencompasa rather theoretical, experimental, and applied
o0signi fi cant(D Bgdpssaoe i nesgdrciorotimsassue

andMontanari 2009. 1.1. Objectives

As inlinear regressipthe key t@uantifying . L
the uncertaintyn environmentamodelling ngstrgsneg{g:]t't?]e”:g‘ﬁi's;di%g‘:';ﬁ?éﬁein
(i.e., just how significant an approximation is .

net residual errors from modeldata

this?)lies ininterpretinginformation inthe comparisonfor quantifying uncertainties
residuarrobetweenmodel simulatios and P q 9

dataobservatios (Fig. 1) However, iyen e How should the nature of
the inherentcomplexities, uncertaintiean unce_rtalntles_ln d_a&nd_modelS, _and
no longer beestimad with classidextbook the information inresiduals guide
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the selection of @popriate 2. BACKGROUND
likelihood functiondi.e, evaluation

measureg This section introdusethe ingredientsin

, o Ot he , sirnclaiwg) background on

 How do different likelihood furc  conceptual process modelgxpressing
tions dfect uncertainty tevals and  yncertainty, the nature of error and
hypothesis testing? uncertainty in environmental modelling

e How do different characteristics likelihood functions, and automated
and/or typesof data act t@onstrain sampling strategies for model calibration and
model parameters, predictions, and uncertainty analysis.

pararm
uncertainties: 2.1. Conceptual processnodels

Thes_e objectlve§ were addresﬁsem an Ecological processes can beodeled as
applied perspectiy sirveyingexperiences deterministic systems of discrete state

generated withfour diverse case studies. variablesand fluxes (Odum, 1983). This

These .StUd'eS focusean plevelopmg approach is followed in this thesis. Hare,
appropriatemodelsand uncertainty schemes storags defined as aase variablghat is

with consideration of sispecific input and constrained by cearvation of rss. A flow

Ca”braﬂon data o_bservationm this way, is defined as a tardependent flux in or out

th's. thegs conaderede!evant methogl of storage (Fig.2). Corceptualprocess models

ological ISSUes througlpplllcatlortc_) a suite are composedrom these building blocks.

p.f relevanter_mronmental Issuessite spec Flow equations do not necessarily need to be

ific questiosincluded complex, althougeometimes this is neces

e To what extent add a simple sitated, ashe furction of the wholeoften

catchment hydrology model be o0 becomes more than the
expanded to more fully describe the when t here are ,1983).er act |
nearsurface hydrology at a nuclear Here, he termmodel developrefars tothe
fuel repodory site in coastal process ofadding storage and/or flux
Sweden?Paper I) elemerg to an existing model in order to

e Could a simple soil carbon model advance or impve aprocess description

developed for Swedish conditites (Fig. 2). It_is WeHrecogniz_ed that process
improved and used to clarify ¢if understanding can benefit from interactive

in Sweden anarid Kenya(Paper Il available data (e.Ghapra and Canale, 1991,

. Krueger et al., 201Quston and DeBl,
e Is a proces®riented modefor the 2011; McMillan atl., 201)L

apparent limiting phosphorus

concentration ina $1+ bilion 2.2. Paradigm  for  expressing
constructd wetland system for uncertainties

Everglades restoratioJuston and  The paradigm for expressing uncertainties in
DeBusk, 2011)supported bya  environmental modeling follows a template
diversearray ofuncertainjield data?  from regression analysis (Schoups and Vrugt,
(Paper I1I) 2010). Thus, thentent is to express

e Has historic deforestation in the marginal and conditional densitydiions
Mara River basim Kenya (home to  for model parameters and credibility foisun
the Serengeti esystem) manifested for model predictions (Fi@), independent
in any detect abl e ofthefarmyadon pf ghe likelihoodfunctios.r & s
response with consideration of It might be anticipated that different
uncertainty in the available stream uncertainty schemes based on different
flow data?PaperV) assumptions might yield differentertainty

intervals.
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l l l

e Water column P  —= —— Water columnP  —> I Water column P
A A oA A
: P 3
i Accrued marl P\
Sediment P ! Biomass
s P
Underlying muck P
A
|
KC* model :

(Kadlec and Knight, 1996)

¢
Accrued marl P

Underlying muck P

L] L] Model development > Paper Ill

Figure 2. a) A schematic of a conceptual process model with two storages and fi
flows. This model was existing and used as a starting place for further developmer.
which included the schematic b) for a period before it wasltimately rejected for rot
adequately describing the available datand c) which performedmore satisfactorily
and is elaborated in Paper I/l

>
Model parameter uncertainty bounds ) 0 g // N\
1 °© 5 — °
- o
Total prediction bounds \o 905 o%og 2 / \
° 0% o //01)/0/// o i) / \.
° o _—— o kS g
> 7 /’O/(o:(;/cf g O\
OO T
°o _—v% 0 a. © 0.75 1 1.25
T Slope
X 2
: o
Qo
g /
) ° ° R o /
o ° .
n o [¢] ° (5] ° =
= e © o ° o oo e 0® /
g 3 6% 00 T o0 v S o 00° i 00" o © § _
w o ° o o ° 10 0 10

Intercept

Figure 3. Linear regression provides a starting point faonsidering uncertainties in
systems with more complex datasets and models. In this exampkesidual errors
wereindependent, stochastic and normally distributed (by design)thus uncertainties
could be estimated from probability theay. The fit of the line itself wa uncertain due
to uncertainty in parameter values. Total prediction boundscaount for the full data
scatteraround the uncertain line fit(based on an error mod|). Parameter uncertainty
can be represented with marginaand conditional probability distributions (here, a
density function for slope, and cumulative function for intercept), where the dot
indicate conventionally reported 85% confidence intervals.
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2.3. Characteristics of uncertainty refers to ifthe uncertaintis due to inherent
in environmentalmodeling varidilityor is episten(i@valker et al., 2003)

. Epistemiencertainty is defined as originated
Walker etal (2003) provided ageneral 0 5 faise, limited, or imperfect knowledge,

definit!on ofuncertainity mc_)dellinga_s:oany independent of inherent variabil{y/alker et
deviation from the unachievable ideal of cogpp%g. Refsgaard et al., 2007; Beven, 2009
deterministic knowledge oéldlant system S[.),iegelhlallter ande’ch 20']')1 ’ "

Such deviatiomsanleadto an overalblack of
confideade the obtainedesultsbased ora

judgmetitattheymi g h tincom@etepblurre

inaccurate, unreliable, inconclusive, or pof@ﬁﬁ'&li%e'f.-rlhés car; igclude classic random
falsé(Refsgaard et al., 2007). error ield or lab measurements (e.g.,
. . Larson and Peck, 1978auerand Mayer,
Various sources oérrorcan contribute to 1992 Stahlet al., 2004and intinsic spatial
uncertainty in modelling results Data 5 apility of some environmental variables
measurementsinevitably contain error (e.g..Conant and Paustian, 200ager and
(Taylor, 1997)  Inadequaciesn process King, 2003 Stochastic variables and

model elquationiBsire refeereOdS toTr?smodeI residual errors can often be treated with
structural - emrofBeven, ). The net — ,pabilistic models and methode.g.,
deviation (i.e. difference) between an Fig.3).

observed and simulated environmental _~. . . : .

response ieferr@ to asresidual ar(big. 1) Epistemic uncertainty in environmental

even though thie might be no fixed point of ~Modelling can originate from several sources,

reference in this signéle., net deviations ncluding systematic errer in field

can originatefrom either observational measurements (e.garson and Peck, 197_4

andor simulation errorin environmental ~ Sauer and Mayer, 199:{a¥|or, 1997

modelling. Neyroud an_d Fisher, 20.03; Stahl et al., 2004);
representatiorerrors of field-collected data

Walker et al. (200Bjoposed aisefulthree relativeto model variableg.g., Freer et al,

dimensional classgl_catllon lrrllatrlx_ for g 2004 or unknowable patterns (e.g., the
uncertainties accordinglével, location, and ¢ ' gpaigfdistributionof rainfall Lebel et

nature. Levelrefers to the. magnitude of al., 1987McMillan et al., 20%2 atifacts in
u_ncer\tamty as a progression fr_dmn/ to data  from nonstationary physical
high,0 k n 0 wo -kitowd. L@eatirefers — jhonomena (e.g., Werberg et al., 2011)

to the originating source of uncertainty ~ goneoyus data (Beven et al, 2011); and
including mpgt fqrcwllg data,_ the mogell scientific uncertaint@gnd/or inadequacyn
concept  an implementation,  mode modelconcepts anéquationgSpiegelhalter
parameters, and/or model outputNature and Riesch, 201Reven et al., 20L1All of

Variability uncertainty in  environmental
dmodelling is considerechatural andnon-

Figure 4. A typical simulated
response of an environmental
variable from a conceptual process
model. Here, data is shown as a
deterministic signal, although
uncertainty exsted. Residual
errors are considerably more
patterned than the example in
Figure 3, with evidence of serial
dependenceand non-stationary
variance Residual erors alsohad
bimodal distribution.

Discharge

Error

=]
‘%j © error = data - model

-0.6
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representation uncertainty
(relative to model variables)

point uncertainty
(field measurement)
>

dominant nature of uncertainties
(random/ epistemic)

Figure 5. A suggested framework for
categorizing  uncertainty in  field
measured data in the context of mode.
usage

these sourceare not random anbdave a
base quality ofimperfect or inadequate
knowledge

The net effect of mstemic errorin
modelling canproduce patterred and/or
structuredesidual error8eéven et al., 2011;

assessed in the context sgfecific model
usage of the data, as different models might
use the same data in different waier
example, groundwater levels may be rather
precisely measuredsatverapoints within a
catchment, but here mght be some
(epistemic) uncertainty that accompanies
how this data is interpreted for constraiaing
single groundwater storage variable in a
hydrological model.

2.4. Likelihood functions

A series of residualrors (Figs. 3 and 4) is
calculated:

§=0,-M;(6,1) (Eq. 1)

where & is the set of residuals far
observations, O are the data obsetions

and M. represents model output with

p ar a me, andimpstforcingldatal. The
combined errors, uncertainties, and/or
inadequaciesf input data modelequations

and calibration dataare embodied in this
single error signal. In some cases, a model
application may have multiple calibration
objectives and thus multiple error series to

Fig.4), but the influence can be less obviousconsider. However, two key points areahat

as well (e.gTaylor, 199\Westerberg et al.,
2011). Epistemic uncertainty is often

residal error series U is an aggregated
measure of the net errors amdertaintiem

considered reducible by more study, but suchthe modeling process, and that it can be

studies may not be practioapossiblde.g.,
for somehistoric data sets)Epistemic error
can also include elusive unknawmknowns
(Spiegelhalter and Riesch, 2011;rBetal.,
2011) . cohtmeed arguinesib no
influence and treatment of epistefators

difficult, if not impossible, to disentangle
relative contributions of various sourites
this signal (Beven, 2009

Likelihood measurdarther consolidate the
iffd®mation in a residuatror series so that
it can be used toguide model parameter

inmodel uncertainty estimation (Spiegel estimation(Fig. 1) Likelihood functions for

halter and Riesch, 2011; Beven et al., 2011).

A categorizatioframeworkfor uncertainties
in fieldcollected enk@nmental dataand
their relationship to a specific model
frameworkis suggestd in Figures; thiswill
be recalled lateto summarizedata and
characteristicsised in this thesis This
framework focuses dhe datao dcatiord in
the levellocationnature uncertaintymatrix
(Walkeret al, 2003). Howevethe data
location is suategorizedor uncertainties
originatingfrom field (oint) measurement
and uncertainty originating from the
represetivity of this data to specificmodel
variables This secondharacter can only be

environmental modelling can be
characterized aeither formalor informal
(Smith et al.,2008 Schoups and rwugt,
2010). A formal likelihood function is one
that is defined within the context of statistics
and probability theory. An informal
likelihood is one formulated outside of
probability theory.

2.4.1Formal

A formallikelihood is based on an assumed
statisttal model for residuairois, known as

an error modeFor clarity,the error model
would be in addition tadhe conceptual
process model, so there are in effect two
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modelsbeing consideed For examplein distribution of residualSmith et al.2008,
linear regression, tHmear model can be as is the relatedoot mean square error
acconpanied with a statistiearormodel of (RMSE). Another common informal
residuals which mightassume(and thus measureis the secalled model effiency
requir@ that residuals beindependent parameteNash and Sutcliffe, 1970
normally distributedwith zero meanand

2

constant variance? (e.g.Fig.3). Thepara Ret :1—M (Eq. 3)
meters in the error model can be used to 9 observatios
formulate a formal statistical likelihood This measure normalizes the variance in
function(Aldrich, 1997) errors to the variance in the observations,

. » such that the maximum possible score for a

L(O|M(®")):H 1 ex{_lg_iz} perfect simulation is 1.0.Scores from
1 V2r o 20 sequential evaluation of measusesh as

thesecan be compared to one another, but
. . (Ea.2) cannot be assessed with aljgctivitysince
where(O|M(®,1)) is defined as the there is no commonly agreed framevask
likelihood that modelM with parameter® to what values fromthese measures mean
and inputl describes tha observation®. Thus, individual judgment can come into
Model parametersthat maximize this  play with informal measurésone wishes to
likelihood function (orany other for that  comparethe merit of one scorerelativeto
mattej are consideregptimal It shouldbe  another. This subjective aspect of informal
noted that maximizing Eq@ will yield the  measureshas been criticized in some
same solutioras minimizing the sum of  hydrological modellirgpplicationgKuczera

square error (SSQEprovided errors are and Parent, 189 Mantovan and Todini
indeed random and Gauwssi The 2006;Stedinger et al., 2008

advantage of a formal likelihood formulation
is that theoptimasolution is also thenost
probablfom a statistical perceptivagain
provided tie assumptions theerror model
arevalid andconfirmed(e.g., Fig3). Valr
dationof the assued error modek in fact
thekey step that imbues the formal approach
with a sense abjectiviigchoups and Vrugt,
2010; Stedinger et akP0§. However,the
opposite can also be tragtincorrect error
model might lead astray the objectivity
(Bevenet al., 2008). There are limited
examples of extended error model
formulationsthat attempt to address the
complicated nature of errors that can occur
in time series simulatiofeg., Fig. 4such

as serial dependencenonnormality and

Other informallikelihoodfunctiors attempt

to mitigatethis subjectivity bgstablishing a
means to validate if residuals errors are
within acceptabldéimits. In thelimits of
acceptabililyOA) approach (Beven, 2006;
Liu & al., 2009), acceptable ranges for
residualsire specified faa simulationbased

on analysisof uncertaintiesni the output
observational dafae., the observations used
to compare tanodel outpy(Fig.6). This is

not a comprehensive treatment afl
possibleerrois, since the effect of input and
model equation errors are difficult to
encapsulate in this measurélowever, it
does allowneans texplicitly check model
outputs areat leastwithin the limits of

: . . . observational accuracyand investigate
nonstationary variancein residuals €(g., possille patterns anatauses when they are
Yang et al,. 26pSchoups and Vrugi0l0). not LOA can be set with consideratioh
2.4.2Informal uncertainties ina single series of field

Informal likelihood measures do not employ observations (e.g., Westerberg et al., 2011)
a statistical error model, although they may inand/or with consideration of intrinsic spatial
some casespecify nosparametricdistri variabilityin multipleseries ofobservations
butions for acceptable residualSSE is (e.g., Freest al, 20@).

itselfan informal likelihood if it used without

statistical assumptions on theicure and
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2.5. Equifinality 2.6. Bayes Theorem

The concept ofequifinalityderives from  The likelihood measures of the previous
general systems theory and suggests agection can be integrated into a Bayesian
inability to uniquely differentidtee pathway  framework to provide a theoretical
by which a final state in an open system isframework for model parameter calibration
achieved (von Bertalanffy, 196Bgven was and uncertainty estimation. Bayes Theorem
the first touse the wordn the context of  (Bayes, 176Bjovides a means to refipeor
model calibratioand uncertainty estimation informatian (i.e., beginning distributiorigj
(Beven 1993. Beven (1993, 2006) argued model parameters to narrow(gspsterior
that equifinality is intrinsic in many distributions through repeated evaluation of
environmental modelling  applications; an appropriate likelihood function:
specifically, that there dagse\eraldifferent .

model constructions aral/ many different P©]0) = L(OlM(g» P(®) (Eq. 4)
parameter sethat producesimilar empirical ) .
output, and that there is no unproblematic Where P@) denotes the prior joint
way to know which realization is closer to Probability densityof model parameters,
nature The principlean also be statéarm P©|O) denotes a posterior probability

a rejectionist persptive there is often density after conditioning to observations
inadequate evidence to reject multipleVvia the likelihood functiorl,, andC is a
hypotheses of acceptable models and/orscaling constantso that cumulative
parametersets given inherent uncertainties Probabilities sum to onéayesian inference
and errors inenvironmentalobservations  has been adapted a genar calibration (i.e.,
and model equations(Beven, 2006). learning) framework with either formal or
Equifinality and optimality cdre viewed as  informal likelihood functionse(g.,Freer at
competing philosophies in model calibration al., 1996

thus,it is not a uni\_/e_rsally held bglief (9., 27 Sampling

Mantovan and Todini, 2006; Stedinger et al., .
2008:; Clarke et al., 2D11However, the Monte Carlo methods provide meangor

concept has found wide adaption and utility gﬁg\?\/tglp:/aeran:noe(iglr E;?f;;lffcm dogésgﬂc;ﬂz

.. score=1

score=0

score=0.5

score=0.9

score=0

0

Figure 6. A hypothetical example of limits of acceptability applied to a modelec
series. This example illustrates a trapezoidal function with a coaceptance range
(inner error bars) and fuzzy boundaries (full extent) defined for each observatior.
The model is compared to the acceptance limits at each step and assigned-4 (
score. Scores can be averaged over a simulation to yield a singlkied likelihood

function, and/or evaluated individually or by subset. Fuzzy boundaries are optional.
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of likelihood measures comparison to
observationsSacalled prior distributions of
model parameters establish faasible likelihood measures (e.g., Eqn 2) and Bayes
parameter space Monte Carlomethods ian inference (Eqn. 4pmith and Roberts,
sample this parameter space. Sampling cah993; Gelman et al., 1995; Kuczera and
be truly random or partly structured. Parent, 19). Accordngly, this approach
Markov chain Monte Carlo (MCMC) requires statisticarrormodel forresiduals,

analysesstructure the search wittlever  \hich might include data transformations
algorithms (g., Metropoli®t al., 1993for  and attributes to addreserial dependence
generating random samplés focused  andnon-statonarityin residualsf necessary.
regions of the parameter space based Omgs stated above, the key step that imbues
feedback and learning from likelihood gpjectivity and probabilistic meaning to
evaluationsThe principalfeature of MCMC  results is the posterior affirmation ofoe
algorithms is iterativeampling coupletb model characteristicéGelman et al., 1995
probabilistic acceptance criteria. In this way.Schoups and Vrugt, 2010n practicethe
the resulting sample density can be tsed ggorithm works flawlessly for many
approxima complex probability distri  posteriorprobability densitie@.g.,Gelman
butions that cannot be analytically solved.gt g, 1995Figure 3. However despite
This can be contsted to a simple random strongminded advocatesthere is con

aimed at producing a samigdepproximas
the posterior probabilityeshsity usingprmal

sampling al goritBoth WwhkidefbleBrioing HeBae! particidHy for
haveutility. modelling hydrological time series (e.g.,

Clarke et al., 20113s toif the BMCMC
algorithm yields reliable probabilitiefer
model applicationsubstantially affected by

uncertainty estimdion

Model calibration methodsan draw upon a
number ofingredients in regards to sampling ., random uncertainty(e.g., Beven et al.
and evaluationTwo method$avebecome 2008 Beven et al., 2011 ’ ’
prevalent in recent years that integrate ’

calibration with uncertainty estimation, but 2.82Generalized LikelihoodUncertainty

draw upon different ingredients to do so Estimation

(Table 1). On the other hand,naequifinality ideology
2.8.1Bayesian Markov chain Monte Carlo frames the GLUE T“.eth"d C.;LUE applt
algorithm cations tendo explicitly avoidthe use of

statistical models to describe stracture of
model residuals. Thus, GLUE utilizes
informal likelihoodneasures in combination

A probabilistic ideology frames the BMCMC
algorithm. Most often, BICMC analysis is

Table 1 Differences in philosophy, theory, and practice for Bayesian Markov Chai.
Monte Carlo (BMCMC) and Generalized Likelihood Uncertainty Estimation (GLUE)
methods

BMCMC

GLUE

Philosophical basis

Optimality, errors can be modeled with
parametric distributions

Equifinality, immunity from parametric
constraints on residuals

Parametric assumptions for structure of

No fixed assumptions; nonparametric

Error model residuals errors distributions are an option
Likelihood measures Formal Informal
Monte Carlo sampling Markov chain (e.g., Metropolis) Random

Acceptance criteria

Probabilistic

Thresholds and/or LOA

Representation of
uncertainty

Parameters: posterior densities
Predictions: 1) parameter uncertainty
bounds, 2) total prediction bounds

Parameters: posterior densities
Predictions: GLUE prediction bounds
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with thresholdcriteria to accept sets of 3. METHODS
model simulationghat represent equally .
plausible representations ~ Selection of 9-1. Overview
threstold criteria can introduce subjectivity The four Papes encompassed \ariety of
to a GLUE assessme(Beven and Binley, study sitegFig. 3, data, model applications
199). Early effortsvith GLUE tended to  (Table 3, and uncertainschems (Table 3.
use informal measure.g.R,) with user This thesis presentnly snapshots from
selected threshold criteria (€3g:>0.8)e.q., each Paperthenceforth these snapshots are
Freer et al., 199&even and-reer 200). cdled Studies, where each Stuthtee toa
Thesecan be referred to asoftinformal corresponding PapeBy necessitynethod
likelihoals asit can be difficult to defend ological details are lacking in some
the bais for slectig either the likelihood or  descriptionsthe interested readerréferred
the acceptance criteria. More recent effortsto the Papers The brief methdological
have focused on LOA methods to define overviewsfor each Study begiwith a
whatcould be referred to aformedformal statement ofesearclguestions thaklateto
likelihood, astheseare based on analysfs the overalThesiObjedives(Section 1.1)
the scatter in data observatica®l can 32  Stud

. : ) 2. yl
provide amore rigorousneans to validate

3.2.1Researciquestions

residua and investigate deviations.
The GLUE methodalogy is most often e Could asimplecatchment hydrology
model be expanded to describe -near

implementedby generating large number of
purelyrandomsample®f aparameter space. surface groundwater levels in
addition to dischar@e

Since GLUE does noemploy a formal
modelof residual errors, this approach does 4 Are all data in daily discharge and
groundwater time series equally

not separatgredictive uncertainty bounds

into contributionsfrom model parameter informative teovards calibrating the
anddata scattemas in linear regression (Fig. model?
3) and BMCMC output Thusall predictive
uncertainty isembodied in oneinterval
which will be referred to herein & .UE

prediction boyidsle 1).

3.2.2Stuady site and datzharacteristics

The 5.6kn¥ catchment at the Forsmasite
bordeed the Baltic Sea in central Sweden
(Fig.7). This wasa low-lying region, with

Table 2. Overview of data and models. Symbols and units for data are as follon
PPT=precipitation (mm/d), T=temperature (C), PET=potential evapotranspiration
(mm/d), Q=discharge(mm/d), GW=groundwater depth (mm), C=carbon input to
soil (kg/m*?/yr), C =carbon storage in soil (kg/nF), Q= water inflow rate (mm/d),
P=inflow phosphorus concentration f1g/l), VV=distribution of vegetation species, F,=
P cancentration in water fig/l), P .= P storage in sediment (g/nf), GH=gauge height

( m) . The od&taaraampa sea sad&nd col umns [ ndi c
structures and equations.
Calibrati Model
; alibration
Study Study sites Model type Input data data parameters
storages (#)
#)
Catchment PPT, T,

I Forsmark, SE hydrology PET Q, GW 3 11

Il SLU, SE Soil carbon Ci Cs 3 5

1 Everglades USA | Wetland P cycle Q,P,V Pw, Ps 4 5

\Y Mara River, KE Rating Curve GH Q 5

10
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1634000

6700000

6698000

8698000

Groundwater monitoring wells
®  inQuatemary deposits.

[E5) water dvide

1630000 1632000

@ Discharge gauging station Water
A Meteorological station
Snow measurement station

Arable land
Other open land
Forest

Clear cut
Wetiand

C) — WCAs

Mat'l Park

[ Jems

Vater quality
Sediment, 2010
Sediment, 2005
Vegetation surveys
SAY rooting depth

.— STA-2 Cell 3

Inflow

O Rain stations
D Nyangores catchment

:] Amala catchment

Figure 7. Study sites for the four modelling studies. a) the 5.6 kmwatershed
boundary for the catchment hydrology stuady in Paper I, b) two of thert’ plots from
the SLU Frame Trial for the soil carbon dynamics study in Paper Il, c) the 92
engineered wetland for the phosphorus cycling study in Paper Il (dots indicate
internal sampling locations), and d) the 65@&n7 catchment boundary for the
dischargerating model studyin Paper V.

Table 3 Overview of calibation and uncertainty schemes. For Study Il, the seconc
method was not documented in Paper 1.

Calibration | Likelihood Likelihood Acceptance MC Error
Study . o samples .
Method Type functions criteria #) analysis
Q: Reff Top 200 scores; .
| GLUE Informal GW: LOA combined index 4E6 visual
GLUE Informal RMSE RMSE <0.19 g/m2 50E6
Il visual
BMCMC Formal Eqgn. 2 Probabilistic 30E3
Ps: LOA Posterior
1] GLUE Informal P, LOA +/- IQR of scatter 100E6 validation
I Posterior
\ BMCMC Formal Eqgn. 2 Probabilistic 30E3 validation

11
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smalscale topography,dominated by  There were 10 diand groundwater wells in
Quaternary deposits and an average depth aothe surficial deposits within the catchment

~5 m b underlying granite rock A rather boundary. Both stream height and
fine-resolution network ofmeteorological groundwater elevations were recorded at
hydrological, andhydrogeological monk high frequency and reduced to daily average

toring was initiatedon site ad in the valuegor modeling purposes.
surrounding region in 20Q3uston et al.,

2007) 3.2 3Model rationale and structure

L , o The model used in this study was developed
Daily time seriedatafor precipitation (PPT),  #om the HBV modelaweltknownlumped

calculated potential  evapotranspiration conceptual catchment hydrology model
(PET), stream discharge the catchment (Bergstrom 1976 Siebert, 1997 One
outflow , and a distributed network of Rear ¢iandardfeature ofthe HBV structureis

surface groundwater waell were available ¢, o field capaci :
. . : pacitystoragefor representing
since 2003 arabsime to be of high quality e nsaturated zonef the soil profile

(e, | low I(levecllu.rlmerta‘lir}ty).. fTemporaI However groundwater measuremte in the
correlation I'nh al )prel:(upltatlfon rorp} WO study site indicated neanface levels
stations - with 3 km of catchment  yonarqly within the uppemtl of the soil

boundaries was vehjgh (R=0.85). The profile that challenged thisncepualzation
stream was instrumented with a palong (Juston et al., 2007) Thus, HBV was
throated flumes with different measurement adaptedto site conditions by elaborating

ranges. Each flume was equipped withp,qre getaileihteractions betweesaturated
pressure transducers coupled to data loggers,g unsaturated zoleig. 8). Specifically,

for automatic recording of water levels. A o siqrage capacity of the unsaturated zone
theoretical rating curve was applied that ha ecametimedependentand everal new

good ~agreement to  periodicflow hysical variableswere specified to
measurements (Johansson and Juston, 200’3.

wtr !
& ' '
P ET = :
' T, Luo 'WET i DRY R
pmmes tt 5 o = e JRREN
, ~ 0 0 = geRRZcap x USdet So
melt = [CFMAX (T(0)-tff + KRA R (' t Snow o
[ (o 549 ) [ Snow | P us RZ deficit
l _______ ground surface, d=0 Lo ) / ___________ _ ’
US, unsaturated /! 7
_________________ storage £ , .
-7 S ! /
Gapllaryrise=CRM A (1 - US| TR X0, groundwater depthy > 2 storage.
<. . —- ) i storage |

T T - l | / E / capacity |
I E I‘

S, saturated storage !

o, disch S(t)= SP - [X(t) -DZ]%57
T t), discharge

QM =KA sCt)

DZ, dead zone depth

Porosity (%)

Figure 8. The HBV model was adapted to sitgpecific conditions at Forsmark,
namely close coupling between the unsaturated zone and neanface
groundwater (green circles indicate enhancements). There were 11 moa
parameters that were calibrated (indicated in bold red).
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approximatethe water holding capacity of After a baseline calibration was established
the till The resulting model retained the several calibration experiments were
capacity to simulate catchment discharge, buperformed using sampledsubsets of the
had a new capacity to litlke groundwater  available dataFig. 9). The resulting
storage variable taneasured depth to parameter sets from each subset calibration
groundvater from the monitoring network  were evalated in their ability to simulate the
(Fig.8). full daily data series. The purpobe¢hese
experimergwasto utilizethe revisedmodel

. L andsitedata as a platforte exploremore
The model was calibrated witie objective general questions about the information

of matchingooth discharge and groundwater value of data for model calibratiore.g.,

dynamics in the small catchment. The .
informal likelihoodR,, was used tevaluate Gupta etal., 1998eibert and Beven, 209

residuakerrors in discharge simulation. The 3.3.  Stuadyll

_10 _neaisurfa_ce wells in the study c_atchment 3.3 1Research questions

indicated different mean elevations and . :
seasonal amplitudes but generally similar ¢ &na modelingapproachprovide
temporal cevariance (Juston et al., 2007). new msughts on soil : carbon
An LOA approach was used tonstrain decomposition processes irloag
groundwater simulations in the model, but term  plotscale agricultural
with recognition that the true catchment experiment?

response was not knowable from this limited e How dissimilar are GLUE and
sample of information. A tinvarying core BMCMC uncertaity bound in
acceptance range for simulations was defined comparative calibration?

from the 95% confidence intervaf
groundwater observations in the region; and
a timevarying fuzzy boundary fro the
99.9% interval (see Fig.for definitions).
The likelihood function for groundwater
simulations was the avehdeODA score
from the series of scores at each time step
A single pooled likelihood was defirted
guide calibration by averagihgand LOA

3.2. 4 Calibration and uncertainty estimation

3.3.2Stuady siteand data characteristics
Thdramme T i al 6 e(Kigp7atthene nt
Swedish University of Agriculture in Uppsala
has maintained 15various ploscale
agriculturaltreatmentssince 195Persson

and Kirchman, 1994) It is one of the
longest running agricultural trials in the
world €.g., Richter et al.,, 2007)Six
treatments from the Frame Trial were

scores (both having maximum possible .
values of 1.0). Uncertainty intervals for selec_ted for SWSBC*‘ of these_adrecelved
consistently different organic carbon

model parameters and simulations were;". 0 thes @ i hori h
calculated from the top 200 scores fags O ' N PO IN& UPPEISOIl horizonover the

randon samples of the model parameter duration _of_the stud_y. Carbomputs
space occurredviadirectorganimamendmentg.g.,

Figure 9. In Paper I, several
calibration experiments were
conducted using weekly,

monthly, quarterly, and
ofnformedod dat a
were sampled from the daily
series, not intervalaveraed. For
Weekly reference, the complete daily time
series had 1065 observations, the
Daily | informed observer subset had®

"Informed" OCOOOOCEEEDOOO0O00OIRD OO0
Quartely | o 0 o0 0 0 0 O O O O ©O

Monthly - (5000000000000 CEOCCCOOOCOCO000CCO

May-04 May-05 May-06
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straw and manure)n three treatments
and/or continuous belowground root
contributiongall treatmenjs Aboveground
biomass was harvested and tiatsamajor
source of carbon to the underlying.sdihe
six treatments includeal null treatment (i.e.,
fallow), a basiccrop cycle (o fertilizer or
amendmenifertilization(increasd product
ivity), straw application, straw plus
fertilization andmanure application Each
treatment had four replicatioat the study
site

Dataon carbon input were either measured
or estimated. Crop residue and manure
goplications were normalizedwith lab
proceduresto ~0.38 kgC/m? every two
years; this wamnsdered alow level unceft
ainty in tle modeling (although certainly not
without uncertainty) Belowground inputs
werenot sampled but werealcuhted with
allometricequationshasedon estimates of
aboveground production. High uncertainty
and error aampaniedthese calculations
(Bdinder etal., 2007 Katterer et al., 2011
yetthese calculations accounted fol @0%

of net carbon forcingfor the different
treatmentsin the model (Katterer et al.,
2011). The concentratiorof soil organic
carbon (SQ@) in the treatments was sampled
biannually.  Theaverage coefficient of
variation amongst treatmerdplicates was
~10%, sugging a moderatelevel of
stochastic variability mbservations Some
systematic bias was identified in lab
proeessing technigs over time that
contributed visible artifacts in the output
seriegKatterer et al., 2011)Conversion of

l i, inputs l

S ¥, young B@-h) kA A K
':\ I, inert /,' Eh, Aky A K
O, old ko A r A

SOC concentrations to estimates of SOC
storage in thaipper 20 cm (kg/m) were
based on interpolated time series of bulk
density from four measurents in each
treatment over the 5far duration. Thus,
thisintroduced furtheuncertainty in theoil
storage timaseries due to unknownsgap
filling soil physical properties.

3.3.3Model rationale and structure

The Introductory Carbon Balance Model
(ICBM) was originally developed and
palameterized specifically to describe these
same si¥rame TriatreatmentgAndrén and
Katterer, 1997 The original ICBM
simulatd soil organiccarbondynamicswith

two storages, each withcanceptuab a g e 6
(Fig. 10. Soil carbon inputs (roots, crop
residues, manure) are added to the young
pool (with different subkstorages for
different quality inputs Some young carbon

is oxidized to the atmosphere, and some is
decomposed to more resistant statBeth
processes oarin proportion to the storage
turnover rate and aclimatedependent
biological activity factor, This activity
factor wa normalizedo approximatelyl.0O

at the Frame Trial sif&ndrén et al, 2007,

so it was notonsideredurtherin this study
SoilC pools werénitiated to field measured
values in 1956-4.3 kg/nf).

During a preliminary study field trialfrom

a site inarid Kenya, it was determined that
theoriginallCBM structure wasotadequate

to describe trends those datgAndrén &
al.,in revigw One hypothesis was that the
model did not adequately account for carbon
with very long turnover timeslative to the

Figure 10. The ICBM in Study II.
Carbon inputs were crop materials
(including roots) or manure. The
young pool, Y, contained sub
storagesfor inputs of different
quality, each with humification
factor, h. A fraction ofthe initial
soil carbon content was assumed
effectively inert. Calibration
parameters are indicated in bold
red. The climatic activity factor, 1,
was normalized to 1.0 inhis studly.
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decadenterval in thestudy It was proposed  systen of treatment wetland$esigned for

to add an additionatarbon pool in the stripping P from inflowing water to
model that waseffectively ineérover the protected Everglades areaRhe study site
period of study This pool did not alter the has beenmanaged for a dense cowdr
conceptualizedlecompositiondynamicsin submerged aquatic vegetatiavhich has
the modebut did aker theinitial partitioning beenidentifiedas having unique P removal
of C. The fraction of initial carbon assigned capacityin the Ewerglades environmefin

to the inert pool was treated as a calibrationcomparison to more conventional emergent
variable in tisinew formulation (Fid.0. vegetated wetlands).However, a recent
study suggested that there may be a
fundamental limitation to the lowest
achievable outflow Pomcentration from

3.3. 4 Calibration and uncertainty estimation

This insight from the Kenyan experiments
moti h rein igatiorof th
e e ey hese sytems betweed17 i on
framework Two calibration intervals were an .DeBus_, 2011). .
considered, 1988 ad 195607, using both A Wide variety of data were availdiden
informal GLUE and BMCMC algorithms the study sitéo support a modelling study.
(Table 3). The MCMC results have not Inflow and outflow rates have been
been pre\./iously reportéand were, in fact measuredontinuously and P concentrations
produced specifically foretikappg. The  Sampled ~weeklgince startup.Thesedata
calibratiorobjective were to jointhsimulate ~ Were considered to bef relatively high
time seriestrends of the six Fame Trial duality. Phos_ph_orusconcentratlons have
treatments with single parameter sdtse &S0 been periodicaBpmptd (n=28) at 45

GLUE experiments utilized a soft informal "€9ularhspacedinternal sites irthe cell,
RMSE likelihood with acceptance threshold Providing snapshots  of longitudinal = P
of 0.19 kg/m. This value was greater than removal gradl_ents_; th_ere was considerable
the average standard deviation in replicatdempPoral variability in hése  snapshots
samples (0.14 kgAnbut very close (as will (Juston and DeBusk, 2011Additionally, P

; ; dn accrued sediment was sampled (n#b4)
RMSE scores. The BMCMC calibrations 2010to helpestablish a spatial mass balance
were conducted rathead hocwith no in the cel(g/m?). Some measurement error
detailed consideration or validation of IN€vitably accompanies fietbliected - soil
assumptions in the error modaking a cores such as thesmwever this was likely

BMCMC algorithmsimibr to Justo and dwarfed by the high intrinsic spatial

DeBusk (2011) variability in these sampless well as
' longitudinal pa¢rns, similar to what have
3.4. Studylll been observed in other similaretland

systems (Grunwald et akp004). Ad
ditionally, compositionf submeged veg
tation specieshas been monitoreannually
since startuyphere again, there were expect
ations of considerablgpatial variabilityn

3.4.1Research question

e Can a processnodding approach
support and provide additional
insighs on, the lowest achievable

outflow . phosphorus_ (P) " these data (e.g., Jager and King, 2004).
concentration observed in an _
engineered wetland 3.4.3Model rationale andstructure

3.4.2Study siteand data characteristics A P cycle modelas developeds an
extension of thesimple and weltknown

The study site was a 920 ha ConStrUCtedsteadf,state NKC* rodel (Kadlec and
wetland situated between agricultural landﬁ(night 1996 Fig. 2. The NKC* model

;nd_ dprotgctle:c_l E7ve_:_ghlades arerassmljth g simulategonstituent removal from the water
orida USAFig. 7) etreatment wetlan column with a Storder rate constank,

has Dbeen operatedontinuously for P limited by an intrinsic background
removal since 200and ispart of a larger y g
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concentrationC*, in ahydraulicsystem oN schematic As in NKC* the P cycling
tanksin-series (TIS). The TIS formulation routine was series connectesihg atanks
providesa means to simulate longitudinal in-series (TIS) hydraulic representation,
gradientsaccordinghNKC* has become a which alsoprovidel a capeity to simulate
standard tool for modeling treatment water column and sediment dPadents
gradients ira simpleconceptual framework Themodel aimed atn alternative estimation
(Kadlec and WallaceQ@®). However, the of the previously identifiedC* in these
NKC* model was not adequate to describe systems (Juston and DeBusk, 2011), plus
thesediment Profilefrom this site additionalnsights according to the following

The process basis for the extensibrthe decomposition:

NKC* model was hypothesizedirom an

extensive survey of literature regarding the P cx= ¢+ + C*,, + C*, (Eq.5)
cycle in SAMlominated laksystems.The

new model structurewas based orthe :

following notiors  decomposition of SAV ~ WhereC*s,, was due to the internidad
tissue associated with biomass turnover iscreated by the biomass P cyafelC* was
rapid and acts as a P source to the watefrom asyet unexplaine@esidualprocesses
column; rooted SAV caauCabtadoreandtuicertnty gstimationy mp O
P from sediment to the water colummtris  The calibration schemetilized limits of
mechanism; the presence of SAV mediategceeptability (LOA) to constrain medel
efficient P removal processes separate fromyredicted water column and sediment P
the P cycling thru SAV plant tissue itself. |In gradients with recognition of temporal and
this wayijt was hypothesizétiat P removal  spatial uncertainties in the fisidasured
in SAV systems is sbifited due 0 an  gpservations. Data treatment assumed a
internal load created by thegetation itself  phygeal correspondence  between  long
The newmodel had four storages for P in  t,dinal positiorin the direction of flowand
water column, SAV biomass, accrued marlmathematidarepresentation of stateark
sediment ah underlying muck soil (Fig)11 aples inTIS; thus, for example, the field
There is some complexity in defining how sanples in thdirst onesixthof the study site
different SAV species pump P from the (rig. 7)were used to constrain predictions in
different sediment storageattaccompanies  the first ofthe six TISin the model (Fig. 11)
this formulation and thas hidden in the  The threshold criterion for accepe

atmos. inputs F/gl.ll’é’ 11. The
C*a mos
pumped (Camos) pumped wetland P cycle
inflow outflow modelin Studly /.
Yv—a-t? r column P b) Six tanks-in-series Green circles

~ < indicate new
internal I(;igd \\\\ ‘D—DDD—M featuires added to
(o) \ the NKC*
:, framework
: | \ Calibration
‘1\ b'O";ass :”>E; k A ©&) - c) Biomass P turnover parameters are in
\‘ ; bold red; three
SA DA A additional were
required to specify
b AN A biomass P turnover
: as a function of
F =1 : position in the
Underlying muck P N 0 b 5 wetland treatment
________________ longitudinal position (units = TIS) gfad/@ﬂl‘-

Accrued marl P

P turnover (g/nf/yr)
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Table 4. The three model evaluation catchment outflowwith good consistency
criteria, expressed as [limits of since 1964These data were considered high
acceptability. The model was quality in comparison to uncertainties in
calibrated to two intervals in the long stream rating (i.e., discharge) measurements
term data record: 20605 and 20089, There were 1l4discharge measurements
each treated as steadgtate. available for 196d7. Alow concreteweir
Con- Criteria Max was constructedcross the river channel in
straint score the early 199060s; 8 8
Simulated outflow P (ug/l) + before and 33 from after construction.
[-O mass S . .
balance | 2 Hg/l within observed flow- 2 Discharge (i.e.tream floy was measured
_We'ghted means_ using the aregelocity method, from which
Internal Simulated gradient in _ both random and systematic errors can be
sediment accrued sediment P(g/m®) 6 ted (S dM 19970h
b balance |  Within IQR of field data, expected (Sauer and Mayer, Z) ere
lumped by TIS was a moderate degree of scattefi.e.,
Simulated water column P uncertainty)in stagealischarge data pairs
Internal | gradient (ug/l) within IQR of from this site There were severalsite
water P | field observations lumped | 12 specificissues thataised particular concern
gradient by TIS and time interval . .
(n=2) over nortrepeating nonrrandom error in

these dataincluding: a high number of
outliers, suggestingat least periodic
systematic difficultiesin the field or

; . _ reporting multiple observers (from site
interquartile range (IQR) of observations yo.qrqs): multiple stream sssections for

corresponding to each model. There were g,pseryations (from site records); and high
total 20 criteria (Table 4); however one potential for seasonal and lorgem
criterion was eventually relaxed due 10 \qapility in physical characteristics of the
physical considerationsas descrlbe.d N stream bed. Thus, significant random and
Results. All parameter sets that achiewed non-randomuncertainty wasuspected ithe
scoreof 19 weretreated agqually likely 10 413 scatter although a reduction  of
describe observations. contributions was not possibl@herefore
3.5. Study IV this study proceled assuminigoth required

. consideration anteitherwasnegligible.
3.5.1Research question gg

e Was there evidence of a change 353que/s#ucz‘ure o
flow paterns over time im 45year ~ 1he rating curve was based oneenpirical
dischargeseries with consideration ~POwer law modeiwhich transfored to a

of flow duration curves and rating linear relatioship when both age and
modeluncertainty discharge observationsrevéogtransformed

(Fig 12. Visual assessment of the data

X . indicated that a two stage rating model was
reallythatimportant for hydrological  5n5rgpriate (ie.., a piecewise linear model).
hypothesis testing? Furthermore, the slope of the lower segment

3.5.2Stuay sitesand data characteristics in the rating model changed after the

The 6® knt study catchmentwas located ~ construction ofhe concrete weir

west KenygFig. 7). Loss of forest cover 35 4cCalibration and uncertainty estimation

and other land use transitiansthe basin  11¢ rating model was calibrated using a

have become an issue of concern in regardgycmc algorithm The error modetreatd

to sustaining historic flow patterns to the 4o scatter of dataround eaclsegment of

downstreanecosystem. the rating model (Fi@2) asif it was random.

River levels (i.esfag) havebeen measured The likelihoodormulaton assumed the data

daily at the gaugstation that defines the dispersion around each segment of the rating

simulations was defined from the

e Are issues of epistemic error ever

17
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Figure 12. The rating model with five
parameters, indicated in bold red. The
two lower limbs correspond to before
and after a low concrete section contrc
was constructed.

model was normally distributed and with

steady varianae?, such that:

3 n; .2
LOM(©) =[] Hiex;{—%‘;'—z:l
i

j=1 i=1 9
(Eq. 6)
Procedural detailsr the BMCMC dgorithm

were essentially the samenaguston and
DeBusk (2011).Values for e threeerror

variancéerms cf, were calibrated within the
BMCMCinference.

3.5.5Hypothesls testing

The calibrated rating modeid uncertainty
intervals weresed to infer aischarge time

series with uncertainty intervals from two

eightyearperiod in thedaily gauge height
series:196471 and 20007. Flow duration
curves (FDCs) were calculated for e
intervals with accompanyinguncertainty
intervals, and compared toeoanother to
testthis null hypothesighereis no evidence
of altered flow conditions in the basin
between these two eigigar data intervals
This hypothesis would be accepteBDC

uncertainty intervalwere fully overlapping
for the two periods. eparation of FDC
uncertainty intervals(either partial or

follow-up investigatins (beyond the scope
of this study)such as: was this change due to
deforestatiomnd/or climate variabili®y

4 ,RESULTS

Presentation of results is aimedcepss
study comparisons. THeaperselaborate
substantiallynoredetail.

4.1. Data

All data used in this thesis was field collected.
The categorization framework introduced
earlier (Fig5) was useful to synthesize field
data characteristiesd their relationship to
model usage The character ofrer and
uncertainty ininput and calibration data
varied amongsnodellingstudies(Fig 13).
Study | had lowancertainty input data, one
(assumd) low~uncertainty calibration target
(Q), and a second high qualdslibration
dataset that had high spatial representation
uncertainty in reference to modesage
(GW). Study Il utilized highncertainty
input and calibration dataStudy Il was
driven by low and higkhuncertainty inputs,
and calibrated thigh variabilityuncertaity
outputs. Study IV had lemncertainty input
data, bututilized calibration dat4Q) that

was suspecteddf substantialrandom and
non-random errors.

4.2. Models

Visual asses®nt of thecalibrationresuls
suggestd that model equations and
parameter calibrationswere generally
successful at simulatinghe targetd
observations (Fi@4 and 1%. The calibrated
hydrological modebf Study | captured
seasonal trends in grounthvaresponse
with similar variance and covariance as the
cloud of groundwater well dataeasonal
dynamicsin dischargeand peak events as
well,were weltaptured Thecalibratedsoll
carbon modebf Study Il jointly captured
central tendencies in camnbo storage
trajectorie$rom the six field trial treatments.
The calibratedwetland P cycle modebf
Study Il reproducedsteadystatetrends in
water column P and sediment P storage
gradientsweltcenteredwithin the cloud of

completewould provide basis to reject the field data for eachariable The calibrated

null hypothesis.A rejection might lead to
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Input data Calibration data

30
006

Representation uncertainty
(relative to model variables)

OB
HEE

Point uncertainty Point uncertainty
(field measurement) (field measurement)

Figure 13. A characterization of unceriaty in input and calibration field data. Each
oval contains first a reference to a specific study number and then an abbreviation f
each data variable (see Table 2 for d
ohi gh | evel 0. subectves1cdquaiatives Higheleved uncertainties
were colorcoded. green for variabilitydominated uncertainty; yellow for epistemie
dominated uncertainties, and light brown for mixed nature.

ratingmodelin Study IVcapturéd the central recession (e.g., April 2004 and 2B@pH14);

tendency in thstagedischargeata however selection of a wider uncertainty
The etimaed uncertainty bandim each ~ band could eraséhat contusion. This
calibration study refleced different illustrates one problem witkoftinformal

likelihood measures and acceptance criteridikelinood criteria.

(Table3), and thus had differemeaning.  The GLUE uncertainty bands iStudy Il

For the Study | results the GLUE were similarly selected. In this case, the
uncertainty bunds represented tisemulated acceptance thresholds sefor simulations
extremedrom the top200 likelihood scose  with RMSE <0.19 g/rhand the boundaries
from 4E6 random parameter realizations. were derigd from250 simulationthat met
This was an arbitrary critem, aimed at this criterionfrom 50E6 realizations The
elucidating equifinality atbt h e u plgwest identified RMSE score in the Monte
echel onso of t he; pCarto fsemnchhaas @184 §/so peaecagain,
differently chosen threshaldteria(e.g., top  this was a depiction of equifinality at the
100 or 400) woulglield narroweror wider upper e€helons of the parameter space
boundaries The top 200 scorescontained However, the uncertainty bandsiddnot
discharge simulations wiRy, scoresin the cover the data scatter in spite of the fact that
range of 0.79.87 groundwatescoresn the the threshold value was in excess of the
rangeof 0.890.97, and net averdgscores standard erronin field replicates. Thus,

of 0.880.90 These we=indeedjood scores  althoughthe centraltendencies in the six
(considering max possible = 1.0 in all gases)treatments wereavellsimulated there still

and providd basis to assea 0 s u 0 c eappeted | considerable unexplained
calibration Howeverthe subjectivedsis of phenomenonwith shorteiterm dynamics
the threshold interfedeto some extentyith (Fig. 14)

more detailedmodel evaluabns ~ For  The GLUE uncertainty dunds inStudylll
example, one might assess that model  \ere determined by 550 simulations that
often l@ged in predicty hydrograph  satisfied 19 of th 20 predefined LOA
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Figure 14. Data observations, calibration results amnaicertainty intervals for Studies
/and Il.

(Table4) from 100E6 random parameter set scatter in front region of the study site
realizations.No simulations satisfied all 20 (Fig.15. Was it the model or data that
criteria, and all 55@ailed on the same  contributed to the consistency efror®
criterion sediment P storage in the first tank Further consideration suggested the data was
of the model was consistently over most suspertherewas higher variability in
simulatingn comparison to the IQR of data sediment accrual in this region due to
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Figure 15. Data observations, calibration results and uncertainty intervals for Studije
/I and IV.
physical factors sgecifically, jetting and inadequate information. Additional field

transloation of sediment from

inflow data would be useful and important to

culverts), thus suggesting a possibility thatconfirm this Howeverin generalthe new
the region was undsampled In turn, this

suggested a possibility thhats particular
acceptanceriterion wasperhaps based on

model structure was considered quite
adequate to describe the available data, and
this provided rationale to consider insights
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on calibratedC* valuesn a broader context moredetail (see circled regidosSudy | in
(discussd below). Fig. 14 and 36 For the most part, the

The uncertainty bounds in the rating model model failed to simulate the moderate
calibration (Study 1V) resulted from discharge event during thisvo-month
probabilistic acceptance criteridltbim to ~ interval. Was it the model or data that
the BMCMC algorithm. Model parameter ~ contributed to the consistency of errors?
and prediction uncertainty bounds rere  Three other regional gauge stations reported
estimated (Fig. 19, which have direct asimilar discharge e\_/emtrlng this mte_rval;
a’]a|ogy to parameter and prediction thUS reasonably rUlIng OUF error. in the
uncertainty bounds in linear regression undeidischarge data. However, interestingly, the
the assumption of random, Gaussian errorsJulyAugust interval coincidexith a period
(eg., Fig:3). When this assumption is valid, Of missing precipitation data (the only ione
the difference betweemodel uncertainty the on-siterecord) during with the series
boundswould bedue to measurement noise Was gaflilled from stations 280 kilometers
with magnitudes; (Eqn 6). However, it ha distant ‘I_'hus it seem_d mostplaus!ble that
been established that itsumlikelyscenario 1€ gagilled data might have yielded the
in StudylV, sincesubstantialnonrandom  Simulation error. —fiis suggestedrother
errors weresupected Fig. 13. Under this ~ €xample of howo k nowl edgoan error
condition, it has been recognizéu other ~ INtroducepatterrs inmodé residuals

studieghat theBMCMC algorithmineviably ~ In general, residuals fronut Il were more
represerstononr epeati ng sy s tseatiesed (Fig. Lautskll mdicatedatterns

as part of the r egr bothshetween and iwihin streafmeng tireer s e n
@verleir et al., 2009 This calibration  series. For example, there is a curious
procedurecould not explicitly account for ~commonality in response in the three

these systematic error contribution® treatments that receivedastr and manure
parameter uncertaintgtervals Thus the amendr_nents _ during 198892
resultanparameteuncertainty boundsom Interestingly, this corresponded to a

the Study IVBMCMC analysisnust be suspectedtemporal interval of systematic
interpreted(and used)vith some careas error in lab procedures (Katterer et al., 2011)

they wee likely oveconditione@.e., too Furthermorethere waset biasin some of
narro duetot r eat i ng syst ethedgesidual sesigs fapdividualtzegments
if6 it were random. This suggesteatiat this calibration had value

. for understanding the treatment responses in
4.3.  ResidualErrors a unifiel framework, but less value for
Information in residual errors represent understanding the response of each
the cumulative filtering of input uncertainties individual treatment.

thru model equatisnand comparisanto For the LOA likelihoods (Study I andl,|lI
uncertain calibration dataThe different Fig. 16, errorsoccurredwhen simulations

models data, and calibration methods gy ceeddthe limits, while all valusisulated
yl(_eldech wide variety aksidual erroseries within the coreacceptanceangewere not in
(Fig. 16. errar For example,esiduals inrgundwater
There was no native stosti@ty evident in  simulations in Studydemonstrategatterns
the discharge simulation error from Study I. (relativeto the man)(Fig. 1, but much of
Input and dischargeriesn this studyere  these patterns were within tpesdefined
consideredamongstthe highest qualityata  representation uncertainty of the available
used in the studi¢Big 13), yet the residuals groundwater datandthusnot in error

for the discharge simulatiomere the most  the gtandardizedresiduals in Study IV
patternecf all(Fig. 1§. This suggestdtiat 55 he4red stochastic amdre approximately
patters were introducedlargely by the — nomap distribued with relatively steady

modelequatios. Itishoweveinterestingo —\arjance (Fig. 16The stochastic appearance
consider the Juljugust 208subinterval in s intepsting consideringhe suspectedon-
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Figure 16. Residual errors calculated from the difference of model simulations an

data observationsn each Study.

random error in these dat@hishighlights a

4.4.

Information and uncertainty

need to consider not just the appearance of
residualsbut their actual nature as well (e.g., #41Stuady !

Taylor, 1997;Bevenet al., 2031Fig 5
andl13.

Calibration experiments with the catchment
model in Study | and sampled data subsets
were illuminating in regardsutaderstanding
information contained in tenseries data for
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Discharge Re

Groundwater score

Figure 17. Study | results. Validation
scores for data subsetcalibrated
HBV simulations (top 200 each)
compared to the completedaily time
Inaentifies
sampling frequency for discharge
data first, groundwater second as
=quarterly,

series.

=dally,

1.0

0.6
0.4 1
0.2 1

resuls suggested

0.0

model calibration.

0.8 1 -
0.6 1
04 1

0.0

D-D  W-w I-l D-Q D-N

The xaxis

W=weekly,

=informed, and N=not used.

calibration.There existed parameter sets that gcceptance
were derived from calibration to as few as 53p,19kg/m?2

samples of the complete 1@y series that
provided
performancdérom calibration to the full 66

da

Fig 9and 17. An additional calibration sug
gested that even a minimal amount of the

0.2

0.0

virtually

ys (e.g.,

N-D of

4.4.2Stuay Il

groundwater data (e.gjuarterly samples)
could provide significanthelp constrain
o model parameters in comparisons to having
no goundwater data at all (Fig).17These
there can be much
redundant information in time ssridata for

A comparison of

performance measured frome full data (D

D), the discharge only {®), and ground
water only (ND) calibratons corroborate
insights of Fenia et al. (2008) on the value
oorthogonal 0
simultaneously represent several aspects of
catchment behavior.

dat a

Calibrationtrialswith the soil carbonmodel

of Study Ilanddifferent likelihood functions
(Table 3) illuminated severalperspective
The originalipublishedGLUE calibration
(Paper Il)presented marginal distributions
for ICBM parameters from calibration to

two data interval§195691 and 19567)
using a informal RMSE likelihoodand an

most  part,

0.4

a) ky (yr)
Young pool turnover rate

g
0.4

c) inertfraction

0.8 1.0

b) ko (Yr-l)
Old pool turnover

© 1956-07, BMCMC
° 1956-07, GLUE

Inert fraction

0.0

0.0 0.1

old pool turnover (yr™)

—o—1956-07, GLUE, RMSE<0.19
"""""" 1956-91, GLUE, RMSE<0.18

——1956-07, BMCMC
—1956-91, BMCMC

24

threslid
Those

of RMSE

distributions
diaty SErie: reproduced irFigure 8. Concurrent with
indistinguishable Kappapreparatiors, a second calibration was
= performed usinga BMCMC dgorithm
oi nf or merghks). Ankefefihgh,Ctfie postariBiPdise s ;
tributions from the two methods wefer

<
are

indistinguishabléor

Figure 18,

Posterior densites

for three
calibration

parameters in the

ICBM (Study 11).
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However, this changed with thddition of

1.0 T GLUE threshold with — 0.011 .
equiinality to BMCMC 16years of subsequent dateyre 1% thus
1 0.008 the extended time series contained valuable
0.8 - 2 information to support the newproposed
2 proces hypothesisin the modelstructure
S P I (Fig. 10) This was evident in botBLUE
g 06 1 D/ - < and BMCMGQesults.
m B 7900 2 It is alsointeresting to consider the covariant
04 o i relationship betweernld pool turnoverate
e T 0002 and inert fraction parameteirs Study I
A - (Fig.18d). There hasilso been some debate
0.2+ - 0.000 as to if laboratory fractionatiamalysesan
0.18 0.23 0.28 be useful toprecisetytialize storage pools in
RMSE acceptance threshold (kg/m’) soil carbon models such as IC8Mul et al.,
- o 2006). However, the results from this
—a— coeff. variation, Ko distribution . .
6 coverage of SOC time series modelling studyurn th|§ argument qround
somewhat Any additional constraint on
07 accepiance rate possible values for the inert pool, beyond
Figure 19. Width of parameter v_vhat was identified from the -pdar SOC
distributions and prediction bourtls time seriesyould automatically constréie
in Study Il as a function of GLUE range ofcovarianturnover rates (Fig. dB

Thus, evenimprecisaformation fromlab
cheamicalanalysesould be of value to reduce
model parameter and hence Hergn
predictive uncertainties.

acceptancecriteria.

calibrationgo both data intervals (Fig. 18)
In one way, this wa®t an unexpecteadsult 4.4.3Stuay Il

since  minimizing an informal RMSE  After the simulation capacity of the P cycle
likelihood is essentially the same as model in Studyll model wasestablisbd
maximizing a formal likelihood function (Fig. 15 and B), it wasof high interesto
(assumingrrors were random and Gaussian, evaluatehe model predictions and insights
as was assumed heréjowever, tiis also  for C*. Often,it is not prudento compare
well established that uncertainty bounds andparameters betweenodel studiesbecause
parameter distributiondrom a GLUE they can lose meaningoutside of their
analysis are dependent on the thresholdspecific conceptualmodel However,the
criteria when using soft likelihood functions, background® concentratioparameterC*,
such as RMS (e.g.,Fig. B). Thus, this in Study Illhad direct relevance to the same
result was from another perspective parameter estimated in a prior st{idyston
completely surprising given that the and DeBusk2011). In factStudy Il was
subjectivethreshold criteria chosen three  motivatel specificallyowardnew insights on
years prior provided near exact this parameterThe model and data basis in
caroboration (and vice versafo the  the previous study were very different than

uncertainty intervals estimated withthe Study ll; thepreviousstudy employed a
BMCMC algorithniFig. B). database of historic annual scaleutnP
It is interesting tofurther considerthe performance fronseveral sites in tteame

identification of theinert fraction model project (including the Study Il sjteggn

parameter in this studlig. 18). Posterior ~ empirical model, a formal likelihood
distributions for the inert fraction from the function, ad a BMCMC algorithmfor

195691 calibration suggested some calibratio. The posterior distributicior C*

possibility that this parametercould still from this study is reproducéd Figure20

equal zero and adequately explain the datg595% C.I. = 13L7ug/L).
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047 C* explained by internal Figure 20. Distributions for the
load fromSAV ., background P concentration

A (C?*) in SAV wetlandsfrom
Study Il and a past study
(Juston and DeBusk, 2011).
C*esivuallS definedin Eq. 5. The
principal issueof comparison /s
that no C* estimate suggestd
possibilities for achieving
outflow P < ~13ug/l. This
corroboration provides
additional decision support for
——— C* (Study Il, 2001-05) ——— C* (Study Ill, 2006-09) Everglades restoration.

- C* (Juston and DeBusk, 2011) C* residual (Study IIll)

0.3 1

0.2 1

Density function

0.1

. A
0.0 L B B T T T Tt T T L B S R R T T T T T 2l

Background P concentration in SAV wetlands (ug/l)

The posterior density for Qdroducedrom @verleir, 2008); the other that total
the processmodel calibration irgtudy |l prediction bounds were appropriate (Moyeed
had a very similar rangespecially in and Clarke, 20Q05) It has already been
consideration thahe allowable range for C* established that parameter uncertainty
in this calibration was-4D pg/L. The intervals were not suitable fbypothesis
cumulative constraint of the-omt and  testing here since they werdikely over
internal gradient mass balances that wergonditioneddue to the treatment oésidual
specified in this study (Table 4) provided for errors asif they were random (a suspected
a relatively narrow estimation of plausible C*fallacyjn the BMCMCcalibration In factin
values(Fig. 15) with about the sameange this casge evaluationof FDC uncertainty
and dstributionas identified in the previous intervals based on parametancertainty
study This is interesting given the very might have ledto somefalse conclusions
different data and methods involved.he

process model implementation in Study Il

alsoprovidedsomed6 e x t r atéon thensi 15 — _
nature ofC*in thesesystem$ugge3i!hgthat = 1967 E]|:0t61l prediction unFertalnty
about a third of the observed @fight be € ] SeTee ey
explaied by internal loading caused by £ |
biomass turnover ardkecomposition of the A I N
SAV (Fig. 2D This is interesting, as it sug 0 : : ‘ ; ;
gests thathe lowest achievable outflow P A M J J A S
from thee systems might be detiiting 15

even though these systems are highly
efficient at treating P to this background
level

4.4.4Stay IV

A discharge time series was inferred fhem
calibratedrating model (Fig. 15glong with

estimates of dischargencartainty intervals Figure 21. Uncertainty in discharge time
(Fig. 21) Two precedentshave been series inferred from rating  curve
establishedn the hydrological literature in  wncertainty in Study IV (Fig. 15) The
regards tdypothesis testing witlischarge horizontal lines partition the flow

10 A

Q (mm/d)

uncertainty intervals inferrftdm BMCMC ajccord/'ng,_l‘o rating model segments;
calibrationof rating modelsone suggested  0kn e a@lgines the flow regime abovéhe
model parameter uncentsi intervalswere breakpoint in the twosegment rating

appropriateor testing(Reitan and Petersen ~ /70d€/(Fig. 15)
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