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Exploring the Predictability of Non-Unique
Acoustic-to-Articulatory Mappings
G. Ananthakrishnan, Olov Engwall, Daniel Neiberg
KTH Royal Institute of Technology, Stockholm, Sweden

This paper explores statistical tools that help analyze the predictability in the acoustic-to-articulatory inversion of
speech, using an Electromagnetic Articulography database of simultaneously recorded acoustic and articulatory data.
Since it has been shown that speech acoustics can be mapped to non-unique articulatory modes, the variance of the
articulatory parameters is not sufficient to understand the predictability of the inverse mapping. We, therefore,
estimate an upper bound to the conditional entropy of the articulatory distribution. This provides a probabilistic
estimate of the range of articulatory values (either over a continuum or over discrete non-unique regions) for a given
acoustic vector in the database. The analysis is performed for different British/Scottish English consonants with
respect to which articulators (lips, jaws or the tongue) are important for producing the phoneme. The paper shows
that acoustic-articulatory mappings for the important articulators have a low upper bound on the entropy, but can still
have discrete non-unique configurations.
Index Terms: Acoustic-to-articulatory inversion, entropy of GMM (Gaussian mixture model), many-to-one-mapping.

I. Introduction
Models approximating the vocal tract with a lossless tube of varying cross-sectional area [1], [2] have indicated the
possibility of non-uniqueness in the inverse mapping between acoustic and articulatory parameters, showing that the
inverse mapping of the acoustics of a vowel is to a class of vocal tract area functions. Atal et al. [3] further
demonstrated the nonuniqueness in the inverse mapping (or inversion)where an entire region in the articulatory
parameter space, which they referred to as ‘fibers’, could correspond to a single point in the acoustic parameter
space. This was, in particular, possible because the dimensionality of the acoustic parameter space that they
considered (the first three formants) was smaller than that of the articulatory parameter space. The mapping they
computed was from an under-determined set of equations and therefore ambiguous. It was also pointed out that not
all these non-unique articulatory configurations were viable in a real physical system and could be avoided during
acoustic-to-articulatory inversion by placing certain constraints on the articulatory parameter space. The theoretical
basis for non-uniqueness was confirmed with bite-block experiments, which showed that speakers are capable of
producing sounds perceptually close to the intended sounds even though the jaw is fixed in an unnatural position [4],
by compensating with some other articulators (typically the tongue tip).

In order to study acoustic-to-articulatory non-uniqueness in a more realistic scenario, large single speaker databases
of simultaneously collected acoustics and articulatory measurements, based on methods like X-ray microbeam, Ultra
Sound (US), Electromagnetic Articulography (EMA) or Electropalatography (EPG) were necessary. Using such
techniques, the problem of compensation and tongue-jaw synergy was further investigated in [5], where the
phonemes /i, a, l/ and /s/ were elicited in different phonemic contexts and recorded using EPG and US. The contexts
were assumed to be some sort of natural constraints, similar to a bite-block. The authors found that the jaw opening
and the tongue constriction compensated for each other while keeping the acoustic phonetic identity (larger jaw
openings corresponded with raising the tongue to a higher degree). Further, even though certain articulators were not
very important (low specification articulators) for production of the sound, they were constrained by trying to
compensate for the important articulator (high specification articulators), which was perturbed due to the
co-articulation with neighboring phonemes. Kroos et al. studied the same phenomenon with two forms of natural
perturbation, namely co-articulation and loud speech [6]. They measured the positions of the articulators for the
post-alveolar consonants /t, d, s, l/ and /n/, using EMA coils on the tongue and jaws of 5 subjects. In loud speech, the
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jaw is considered to be constrained to open larger than normal. However, this was not true for all phonemes,
especially not the sibilant /s/. The consonants /l/ and /n/,  showed an inverse correlation between jaw opening and
tongue constriction.

Guenther et al. [7] and Nieto-Castanon et al. [8] performed studies on the production of American English phoneme
/r/. They found two modes of production (bunched and retroflexed) where the vocal tract shape appeared different
for different productions, while keeping the acoustic correlate corresponding to the phoneme more or less constant.
It was concluded that this was not a case of compensatory behavior, but of different vocal tract shapes corresponding
to the two modes of production. Thus one can claim that there are two main means for the occurrence of
non-uniqueness in the acoustic-to-articulatory mapping. The first is due to compensatory behavior between the
different articulators (also called ‘synergy’) with positions of individual articulators varying over a continuum [5],
[6]. The second occurs when discrete articulator positions can be mapped to similar acoustic correlates [7], [8].

While the above studies were based on specially elicited responses, studies made on continuous read speech
(without any further constraints) need to make use of statistical models to study this phenomenon. This is because
the acoustic correlates for read speech cannot be constrained to be exactly the same for different instances of the
same phoneme. Thus, the acoustic features need to be clustered in some sense in order to limit their variation. Qin
and Carreira-Perpiñán [9] defined the mapping to be non-unique if, for a particular acoustic cluster, the
corresponding articulatory mapping may be found in more than one cluster. Further studies [10] showed
non-uniqueness by finding multiple modes of articulatory distributions mapping onto a single acoustic distribution
for almost all phonemes in the databases. In [11] non-uniqueness was estimated ranging from 0.4% of the data for
the upper lip to 21.7% of the data for the tongue tip.

In our previous work [12], we defined an acoustic-articulatory mapping for one acoustic frame, , to be non-unique𝑥
𝑡

if the conditional distribution Y|X(y|xt) where y and x are articulatory and acoustic vectors, respectively) had moreρ
than one peak. The conditional distribution was modeled as a Gaussian Mixture Model (GMM). We performed
multiple peak detection on the conditional probability density function and were thus able to find more than one
high probability region in the articulatory parameter space for acoustic frames belonging to almost all phonemes.
The study also tried to inquire into whether the non-uniqueness was higher for those articulators or parts of the
trajectory that are not important for the production, as suggested in some studies (e.g., [3], [5]). However, we could
find no statistical evidence to show that the non-uniqueness was lower for the points in the articulatory trajectory
closer in time to what we considered critical for the pronunciation. This observation needed a good explanation,
being rather non intuitive.

The above studies based on statistical models of acoustic-to articulatory inversion largely consider discrete modes of
articulator positions corresponding to the findings in [7]. The variance of the articulator positions was considered a
sufficient description of the predictability for the continuous case. However, a Gaussian distribution has the
maximum entropy (upper bound) among all real valued distributions with the same variance [13]. A normal
distribution is thus called a maximum entropy distribution. In other words, consider two variables, one a single
normal distribution and the other with multiple modes. If both these distributions have the same variance, the normal
distribution will have a higher prediction entropy than the distribution with multiple modes. Thus, given that the
acoustic-to-articulatory inverse mapping is non-unique with several frames having multiple modes in the conditional
distribution, calculating the variance alone does not give an acceptable account of the predictability in the mapping.

This paper follows our previous work while trying to answer the following main questions:
1) Is the probability of finding non-uniqueness in the mapping higher for important articulators corresponding to

the place of articulation?
2) How does one distinguish the discrete [7] and continuous [6] cases of non-uniqueness?
3) What is the relationship between the acoustic-articulation predictability and non-uniqueness of the mapping?
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In Section II of this paper, we show how to estimate the conditional probability distribution of the articulatory
positions (i.e., the probability of finding the articulator at different positions), given the acoustic features, for every
time frame in the database. The conditional entropy (i.e., the entropy of the conditional distribution) is a good
indicator of the predictability of the mapping. The larger the range of positions the articulators can assume, given the
acoustics, the lower the predictability of the mapping and higher the entropy. We propose that the estimation of the
upper bound on the conditional entropy provides an insight into the extent of non-uniqueness in the continuous [6]
case as well as when there is more than one mode in the probability distribution of articulatory positions, i.e., the
discrete [7] case. We also describe a method to estimate which articulator is important for production of a certain
phoneme. Using acoustic-articulatory data described in Section III a study relating the non-uniqueness in the
mapping of each articulator to the importance of the particular articulator in the production of the phoneme is made
in Section IV. Finally, the conclusions of the study as well as future directions for research are presented in Section
V.

II. Theory and methods
This section largely deals with describing the mathematical theory behind how we estimate the non-uniqueness of
the acoustic-to-articulatory mapping in both the discrete (multi-modal) and continuous senses using statistical
models. The central idea is the method to estimate the probability distribution of the articulatory vector, given single
acoustic vector in the data.This can be estimated while keeping the acoustic vector constant, without considering a
window of variation as had been done in previous empirical studies in the domain. As described in the previous
section, finding more than one discrete high probability region in the conditional distribution is an indication of
non-uniqueness in the mapping in the multi-modal sense.

There are several ways to model an unknown probability distribution; we use GMM because it is easy to generalize
the GMM to an arbitrary multi-variate real-valued density function, and estimate its parameters. Besides, GMMs
have been used successfully in several previous studies to model the acoustic-to-articulatory mapping (e.g., [12],
[14]). While the previous studies model the joint acoustic-articulatory distribution, we model the conditional
distribution as a GMM, as described in Section II-A.

There are many ways to detect peaks in a multivariate density function (e.g., including non-parametric bump search,
parametric optimization and other methods). In this article we describe one such method to detect the total number
of maxima in a distribution in Section II-B. While there may be other methods of coming to similar results, the
method used in this article is based on calculating the upper bound of the entropy of the distribution.

Knowing this upper bound also gives us a fair idea about the predictability of the conditional distribution, and hence
the acoustic-to-articulatory mapping, i.e., an idea about how difficult or easy it is to predict the articulation, given an
acoustic vector. This provides us with the perfect means of measuring non-uniqueness in the continuous sense.

A. Non-Uniqueness as a Function of the Conditional Distribution
One can model the conditional probability density function ρX|Y(y|xt) of the articulator space y∈Rd, for a given
acoustic Vector xt∈RD, at time frame t: 1≤t≤T as a GMM (λM) with M Gaussian components as

(1)
ρ𝑌|𝑋 𝑦|𝑥

𝑡
; 𝑀( )=

𝑚=1

𝑀

∑ ρ 𝑥
𝑡
,λ

𝑀( )ρ 𝑦|𝑥
𝑡
,𝑚,λ

𝑀( ) 

where
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and cm are the weights for the individual Gaussian components and

(3)ρ 𝑦|𝑥
𝑡
, 𝑚, λ

𝑀( ) = 𝑁(𝑦; µ
𝑚,𝑡
𝑌|𝑋Σ

𝑚
𝑌|𝑋

and are the mean vector and the covariance matrix of the conditional probability distribution.µ
𝑚,𝑡
𝑌|𝑋 Σ

𝑚
𝑌|𝑋

B. Estimating the Entropy of the Conditional Distribution Modeled as a GMM
A Gaussian distribution has the maximum entropy among all real valued distributions with the same variance [13].
Huber et al. extended this to postulate that a distribution modeled with the number of Gaussians that correspond to
the exact number of modes in the distribution would have the lowest upper bound of the entropy [15]. If the
distribution has two modes, then modeling the data with only one Gaussian gives a higher upper bound on the
entropy estimate than modeling it with two Gaussians. On the other hand, if the distribution actually has only one
mode, then modeling it with two Gaussians gives a higher upper bound on the entropy estimate. This property is
illustrated in Figs. 1 and 2.

Fig. 1. A non-Gaussian distribution (with an arbitrary scale) with a single mode. The contour lines represent equal
probability regions. The estimated entropy upper bound when modeling it with a single Gaussian component
(M=1) is 3.60 (figure to the right) while when modeling it with 2 Gaussian components the upper bound on
entropy is 3.66 (figure to the left). Thus even though the fit is better with M=2, the upper bound of the entropy is
higher. The variance is the same for both models, the log of which is proportional to the entropy estimated with
M=1.
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Fig. 2. A non-Gaussian distribution with two modes. When modeling it with 2 Gaussian components (M=2) the
estimated entropy upper bound is 3.31 (figure to the left) and lower than when modeling it with one Gaussian
component, where the estimated entropy upper bound is 3.38 (figure to the right). Since the estimated variance is
exactly the same, irrespective of the number of Gaussians it is modeled with, the predictability is higher than what
the variance suggests.

It should be noted that a reduced model that has the lowest upper bound on the entropy is not an optimal model in
terms of the log-likelihood of the goodness of fitting the distribution function, as can be seen from Fig. 1. Using a
single mode for modeling this distribution provides a better (tighter upper bound) entropy estimate, but fails to
model the distribution accurately. So the number of Gaussians used for minimizing the upper bound of the entropy is
not the optimum number of Gaussian components for fitting the distribution. On the other hand, this parameter is
ideal for selecting the number of modes as is required to detect discrete modes of articulation. If the true distribution
of the data indeed had only one mode, the upper bound of the entropy would be equal to the true entropy and is
proportional to the log of the variance.

We use the method suggested in [15] to find the upper bound of the entropy of a random variable, in this case the
conditional distribution of the acoustic-articulatory mapping, modeled by a GMM (cf. Appendix II-A). This method
assumes an arbitrarily high number of Gaussian components, M, used to model the conditional distribution,

for articulator a, at time frame t. By merging the Gaussian components (cf. Appendix A) in such a wayρ
𝑌|𝑋

𝑦𝑎|𝑥
𝑡( )

that the merged distribution differs the least from the whole distribution in terms of the Kullback-Leibler Divergence
[16], we can make an approximation of the same probability function with a smaller number of components, M-1.
The upper bound of the entropy, calculated with the decreased number of components may be either lower or higher
than the upper bound of the entropy calculated with M components. If the upper bound is reduced, then we attempt
decreasing the number of components further. On the other hand, if the upper bound of the entropy increases, then it
means that we need a minimum of M Gaussians to model the distribution. If the lowest entropy upper bound,

, is for modeling the distribution with a single Gaussian component, then we can say the inversionΞ
𝑢
(𝑦𝑎|𝑥

𝑡
)

mapping is uni-modal. If modeling the distribution with a number of Gaussian components provides theℵ
𝑎,𝑡

> 1
lowest entropy upper bound, then we can infer that the inversion mapping is non-unique in the discrete
(multi-modal) sense for the said frame and articulator. Details about the mathematics of this procedure are presented
in Appendices A and B.
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C. Important Articulators

If an articulator position is crucial for distinguishing it from other phonemes in the language, one can say that the
articulator is important for the production of the phoneme. We use this idea to find out which articulators are
important for the production of certain phonemes. Here a crucial position is determined by whether the said
articulatory position can improve a classifier to distinguish between one phoneme and the rest. This is similar to a
parameter selection or parameter weighting approach where one estimates how important a parameter is for the
classification task. Here the classification task is separating one phoneme from the rest of the phonemes in the
database. For the current work we used the Support Vector Machine Projection Recurrent Feature Elimination
(SVM-Projection RFE) algorithm [17], in order to rank the articulatory parameters according to their importance.
This can be achieved by sorting the angles made by the SVM hyperplane with respect to the articulatory dimensions.

One problem is that the number of instances (frames) for a single phoneme is much less than the frames from all the
other phonemes and the SVM is always biased towards the class with the higher number of patterns. Another
problem is the presence of outliers, which could cause a change in the orientation of the hyperplane. To avoid these
two problems, the data in both classes (one phoneme versus the rest) are clustered using K-means clustering. The
SVM is applied on the K cluster-centroids from each class. Thus, outliers are filtered out and the number of patterns

from each class remains constant.The importance of each articulator can be established from for each𝑤
𝑝

∈ 𝑅𝐴
~

phoneme (Ã=2A, i.e., twice the number of articulators).

III. Data and experiments

In order to study the presence of non-uniqueness in an empirical sense, we used the MOCHA-TIMIT database [18]
with simultaneous acoustic and articulatory measurements for two speakers, ‘msak’ (male speaker) and ‘fsew’
(female speaker). The database for each speaker consists of 460 phonetically balanced short sentences. The
sentences were orthographically transcribed and then aligned with the respective phonemes (46 phonemes in total)
using a Hidden Markov Model (HMM) based forced alignment. This study was restricted to 24 consonants for
which the selection of the most important articulator is easily verified and intuitive.

The acoustic parameterization was a difficult choice. The acoustic parameters should be able to represent the
perception of articulation in a reasonable manner. Our study pertains to consonants, for which formant frequencies
do not provide adequate representation of their acoustics. While low dimensionality of the acoustic space could
create null spaces in the acoustic-articulatory transformation, a larger number of acoustic parameters would make
the parameter space very sparse and the GMM models would be ill-conditioned. Last but not the least, while
studying transients like unvoiced stop consonants, the silence region before the burst will definitely be non-unique.
Therefore we need an acoustic parametrization longer than a single frame.

In order to solve the above problems the following acoustic parameterization scheme was selected. We first chose
the first 18 Mel Frequency Cepstral Coefficients (MFCCs) from acoustic windows of 25 ms shifted by 10 ms. In
order to avoid non unique cases related to the silence region before the burst for plosives or during the central noisy
phase of the fricatives, the 18 MFCCs were then concatenated for 11 consecutive acoustic frames. Thus, each
acoustic instance parameterized 125 ms of the acoustic data. While the choice of 125 ms of acoustics is arbitrary, it
is a reasonable compromise between not including information outside that of the phoneme and making it longer
than silence regions in the plosives. A small discussion about the effect of choosing a smaller window is discussed in
Section IV-D.
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Further, Principal Component Analysis (PCA) was performed on the 198-dimensional acoustic features and 62 (in
Section II-A, D=62) principal components were taken, which represented 98% of the variance in the concatenated
features. This method of dimensionality reduction ensured that, even though one value of the acoustic parameters
may have variations in the missing dimensions, the variation would be lower than that of the considered dimensions.
Thus, every acoustic parameter vector may in fact represent a small variation in the actual acoustic signal, but we
assume that this unparameterized variation is not significant as compared to the variations caused by changes in
articulation. Finally, it is relevant to mention that many state-of-the-art algorithms for statistical based inversion
(e.g., [19]) employ similar types of acoustic parametrization.

The articulatory data consisted of 14 channels of EMA measurements, which included the X-axis and Y-axis
trajectories of coils placed on 7 articulators (in B, A=7): the Lower Jaw (LJ), Upper Lip (UL), Lower Lip (LL),
Tongue Tip (TT), TongueBack (TB),TongueDorsum (TD) and Velum (VE) along the midsagittal plane of the vocal
tract. The measurements were made with a resolution of 0.01 millimeters, but the effective resolution was estimated
to be around 0.43 mm on average [20]. The drift in the EMA data was corrected by the algorithm suggested in [21].
The articulatory data was low-pass filtered and down-sampled to 100 Hz, in order to correspond to the acoustic
frame shift rate. Each articulatory data frame corresponded to the central time instant among the 11 acoustic frames.
There were 10,358 data frames for the male speaker and 12,372 data frames for the female speaker after removing
the frames corresponding to silence.

The articulatory space for each GMM was the two-dimensional space (in Section II-A, d=2) (along the X and Y
directions of the midsagittal plane) for each of the 7 articulators. Thus, for each speaker we had 7 conditional
articulatory-acoustic models for , one for each articulator a. The GMM was modeled with an arbitrarilyρ

𝑌|𝑋
𝑦|𝑥( )

high number of mixture components, in this case M=128 components. We were forced to restrict ourselves to 128
Gaussian components due to memory restrictions in our system. However, since this was much larger than the
typical number of modes expected (i.e., between 1 and 5), the restriction was reasonable. The GMM with full
covariance matrices for the Gaussian component was trained with 50 different initializations using the Expectation
Maximization (EM) algorithm [22] with 100 iterations each or until convergence. Of the different initializations, we
picked the model with the lowest log-likelihood error to avoid local minima in the EM training. In order to avoid
ill-conditioned covariance matrices, we trained the GMMs for one articulator at a time and set a variance flooring
threshold to be 0.001% of the standard deviation of the data. We calculated the upper bound of the conditional
entropy of the prediction mapping, , as well as the number of articulator modes , for each acousticΞ

𝑢
(𝑦

𝑎
|𝑥

𝑡
) ℵ

𝑎,𝑡
vector in the data.

Based on the SVM-Projection RFE method (cf. Section II-C), consonants were assigned the most important
articulator from among the Jaw and Lips (LJ, UL and LL), Tongue Tip (TT), Tongue Back (TB) and Tongue
Dorsum (TD), depending on which of the 14 articulatory parameters had the highest weight. A Radial Basis
Function (RBF) kernel was used with K=200, the number of articulatory clusters before we ran the algorithm.

IV. Results
Table 1 shows the percentage of frames that are non-unique in the discrete sense. These results closely follow the
number of peaks in the conditional distribution calculated in [12]. We find a difference between the two methods
only for 0.001% of the frames in the database. Though a peak in the probability distribution is not strictly equivalent
to a mode in the distribution, peaks and modes can be considered equivalent for the present problem since the
representation of the distribution is made by a reduced number of Gaussian components. We therefore use these
terms interchangeably in this article.

As can be seen from Table 2, the upper bound of the entropy is more or less constant for the different articulators in
contrast to the percentage of frames with more than one mode (cf. Table 1, where there is a large difference in the
number of modes for different articulators). The maximum range of variation and therefore minimum predictability
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is for the upper lip coil (UL), while the tongue tip coil (TT) has the minimum average upper bound of the entropy.
The female subject in general shows a higher average entropy (upper bound), again the opposite of the multi-modal
case in Table 1. The average upper bounds of the conditional entropy for the uni-modal case are not substantially
different as compared to the case with multi-modal articulatory positions. The notable exceptions are the LJ and TT
coils where the average entropy is substantially lower for the multi-modal case (especially for the female speaker).
This shows that even if there may be only one articulatory mode of production, the range of positions they assume
may not necessarily be lower than when multiple modes of articulation exist.

Table 3 shows the variation of over different phoneme classes. The articulator positions of stop consonants andΞ
𝑢

sonorants consonants (like nasals, approximants and liquids) are more difficult to predict from the acoustics (given
their higher mean ) than fricatives.Ξ

𝑢

Table 1. The percentage of frames with more than one mode for different articulators
Speaker LJ UL LL TT TB TD V Total
msak 4.01% 7.5% 6.27% 17.98% 10.76% 12.4% 2.7% 8.82%
fsew 7.16% 5.75% 6.77% 13.5% 6.8% 10.2% 4.1% 7.7%

Table 2. The mean upper bounds of the conditional entropy for different articulator coils
Speaker # Modes LJ UL LL TT TB TD V Total
fsew =1 1.73 2.04 1.76 1.29 1.35 1.51 1.26 1.57
fsew >1 1.01 1.70 1.51 0.91 1.5 1.54 1.30 1.31
fsew All frames 1.68 2.02 1.74 1.24 1.36 1.51 1.26 1.55
msak =1 1.49 1.73 1.33 1.06 1.26 1.36 1.5 1.40
msak >1 1.33 1.71 1.39 1.00 1.32 1.53 1.62 1.34
msak All frames 1.48 1.72 1.33 1.05 1.27 1.38 1.50 1.39

Table 3. Comparison of non-uniqueness measures for different phoneme classes
Speaker Vowels Diphthongs Stop

Consonants
Fricatives Other Sonorants

% of frames with multiple modes from phoneme classes
fsew 5.3% 5.7% 11.9% 12.4% 11.5%
msak 6.2% 5.8% 12.3% 13.2% 10.4%

Average upper bound of entropy for different phoneme classes
fsew 1.57 1.55 1.62 1.46 1.58
msak 1.42 1.46 1.47 1.25 1.47

A. Comparative Analysis of Non-Uniqueness
When comparing individual frames, frames with multiple modes did not exhibit significantly higher as comparedΞ

𝑢
to uni-modal frames in general, as indicated by the results in Table 2. If we want to study the relationship between ℵ 
and for every articulator and phoneme, we have some difficulties because some articulators and phonemes tend toΞ

𝑢
have a higher probability of having multiple modes or have a higher with respect to other articulators orΞ

𝑢
phonemes. For example, more frames show multi-modality for the TT coil when compared to the other articulator

Self-archived manuscript of accepted version



Manuscript accepted for publication  in
IEEE Transactions on Audio, Speech, and Language Processing, 20(10), 2672 –2682

DOI: 10.1109/TASL.2012.2210876

coils. Similarly, stop consonants more frequently have non-unique articulator positions than fricatives. Hence, we
need to be able to compare the frequency of non-uniqueness for an articulator a1 for phoneme p1 with that of
articulator a2 for phoneme p2 (e.g., we may need to compare the non-uniqueness of the UL coil for phoneme /p/ with
that of the TT coil for phoneme /t/). Thus, in order to have parity in comparison, we need to perform a two-way
normalization across articulators and phonemes. The two-way normalized frequency of non-unique occurrences

of an articulator a, occurring within a phoneme p is by first normalizing with respect to the phoneme and(𝑛𝑓
𝑎,𝑝
ℵ )

then with respect to the articulator as follows.

(4)𝑛𝑓
𝑎,𝑝
ℵ =

#{∀ 𝑡:(ℵ
𝑎,𝑡
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Where L(t) is the phonemic label of frame t and #{.} is the number of elements in the set. Thus indicates how𝑛𝑓
𝑎,𝑝
ℵ

frequent it is for an articulator a to occur in discrete non-unique articulatory modes when the said frame is labeled as
phoneme p, in relation to other phonemes, and to the other measured articulators. Similarly, the normalized entropy
(upper bound) is calculated as follows

(5)𝑛Ξ
𝑎,𝑝

=
µ Ξ 𝑦𝑎|𝑥

𝑡
 ∀𝑡:𝐿 𝑡( )=𝑝( ){ }−µ Ξ 𝑦𝑎|𝑥

𝑡
 ∀𝑡( ){ }

σ Ξ 𝑦𝑎|𝑥
𝑡
 ∀𝑡( ){ }−µ{µ{Ξ 𝑦𝑎|𝑥

𝑡
 ∀𝑡( )}∀α}( )

where μ{.} is the mean of the set and σ{.} is the standard deviation of the set.

B. Relationship Between the Two Types of Non-Uniqueness

Figs. 3 and 4 show the comparison between the normalized non-uniqueness ( and the normalized average𝑛𝑓
𝑎,𝑝
ℵ ) 

conditional entropy (upper bound) for each articulator a and phoneme p. The different phonemes are located in𝑛Ξ
𝑎,𝑝

the plane. The different phonemes are clustered in this plane, using K-means clustering into 2 to 4 clusters𝑛𝑓ℵ − 𝑛Ξ
in order to elucidate some aspects of the observations. The ASCII symbols used to denote the phonemes in the
figures are explained in terms of IPA symbols in Table 4.

Consider Fig. 3(a) and (b), showing the comparison between the normalized non-uniqueness frequency and relative
entropy for the LJ coil. For both the speakers, phonemes such as ‘s’ (/s/), ’z’ ( /z/ ), ‘th’ (/θ/) have a low , but high𝑛Ξ

for both speakers. Studies on production strategies [23] indicate that the jaw position is important for these𝑛𝑓ℵ 
fricatives, which is corroborated by the observation of low relative entropy.

Fig. 3(c)–(f) show similar plots for the UL and LL coils.The three labial phonemes ’p’, ‘b’ and ‘m’ (/p, b, m/) form a
distinct cluster with high and low . This is a strong example of high for articulators that are important for𝑛𝑓

 
ℵ 𝑛Ξ 𝑛𝑓

 
ℵ

producing the phoneme, as decided by the SVM weights. Phoneme ’ω’ (/w/) for which the lips are critical for
production has a low as well as a low , especially for the LL coil. On the other hand, phonemes for which𝑛Ξ 𝑛𝑓

 
ℵ

the lips are not important for production such as ‘zh’, ‘sh’, ‘s’, ‘z’, ‘jh’, ‘ch’, ‘t’, ‘d’, ‘y’ (/ɜ, ʃ, s, z, dɜ, tʃ, t, d, j/) have
a high , but a low .𝑛Ξ 𝑛𝑓

 
ℵ
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Fig. 3. Comparison of the and normalized for articulators Lower Jaw (LJ), Upper Lip (UL) and Lower𝑛𝑓
𝑎,𝑝
ℵ  𝑛Ξ

𝑎,𝑝

Lip (LL), depending on the phonemes. The phonemes are clustered using K-means clustering, the straight lines
representing boundaries of these clusters. The symbols used depend on the articulator that is considered important
(based on the SVM hyperplane orientation) when uttering the particular phoneme. (A) Lower Jaw (LJ), male
speaker (B) Lower Jaw (LJ), female speaker (C) Upper Lip (UL), male speaker (D) Upper Lip (UL), female speaker
(E) Lower Lip (LL), male speaker (F) Lower Lip (LL), female speaker.

Fig. 4(a)–(f) show the comparisons for the coils on the tongue, TT, TB and TD. For both speakers, the alveolar and
post-alveolar consonants, ‘zh’, ‘sh’, ‘s’, ‘z’, ‘jh’, ‘ch’, ‘t’ and ‘n’ (/ɜ, ʃ, s, z, dɜ, tʃ, t, n/) are seen to have average or
above average but low for the TT and TB coils. The low is expected, since the tongue tip and tongue𝑛𝑓

 
ℵ 𝑛Ξ 𝑛Ξ

back are important for the production of these phonemes. On the other hand, labial sounds like /p, b/ and /m/ have
high and low , the opposite of the situation for the UL and LL coils. The velar phonemes ‘k’, ‘g’ and ‘ng’ (/k,𝑛Ξ 𝑛𝑓

 
ℵ

g, ŋ/) have low and high for the TD coil. Here the view that the tongue dorsum is important while𝑛Ξ 𝑛𝑓
 
ℵ 

pronouncing these phonemes is vindicated with the low estimate. However, the articulators important to produce𝑛Ξ
these phonemes are seen to have a higher . However, phonemes for which the tongue dorsum may not be𝑛𝑓

 
ℵ

important such as ‘f’, ‘v’ and ‘w’(/f, v, w/)  have a high and also a high . In almost all the plots, although𝑛Ξ 𝑛𝑓
 
ℵ

there are differences in exact location of the different phonemes in the plane, the two speakers are seen𝑛𝑓ℵ − 𝑛Ξ
to show similar strategies for their tongue movements, with similar patterns emerging for almost all the consonants.
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Fig. 4. Comparison of the and normalized for articulators Tongue Tip (TT), Tongue Back (TB) and Tongue Dorsum
(TD), depending on the phonemes. The phonemes are clustered using K-means clustering, the straight lines
representing boundaries of these clusters. The symbols used depend on the articulator that is considered important
(based on the SVM hyperplane orientation) when uttering the particular phoneme. (A) Tongue Tip (TT), male
speaker (B) Tongue Tip (TT), female speaker (C) Tongue Back (TB), male speaker (D) Tongue Back (TB), female
speaker (E) Tongue Dorsum (TD), male speaker (F) Tongue Dorsum (TD), female speaker.

Table 4. The list of phonemes used in this study

ASCII Symbol IPA Repr. ASCII Symbol IPA Repr. ASCII Symbol IPA Repr.
Stop consonants

p p t t k k
b b d d g g

Nasals, approximants and other sonorants
m m n n ng ŋ
l l r ɹ w w
y j

Fricatives
f f s s sh ʃ
v v z z zh ʒ
ch tʃ j dʒ th θ
dh ð h h
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C. Interpretation of the Results
It is clear that stop consonants are at the extreme ends of both the relative entropy (upper bound) and the relative
non-uniqueness (in the multi-modal sense) frequency scales. For most consonants it becomes clear that it is
relatively easier to predict the articulator position (low relative entropy upper bound) that is important for producing
the phonemes, the frequency of multiple articulatory models is relatively higher. Our other experiments show that
this trend is consistent for all vowels and diphthongs as well, although they tend to cluster around the average upper
bound of entropy for all the articulators. The best claim that we can make based on these observations is that it is not
possible to directly relate the presence of multiple modes in the articulatory sub-space to difficulty in prediction.
What is relatively clearer is that, for consonants, the difficulty of predicting the articulatory positions from the
acoustics is relatively lower when the articulator is important for its production.

While there are several examples of phonemes with multiple articulatory modes for the important articulators, there
are almost no examples of multiple modes for articulators that are not important for the production of that phoneme.
However, these unimportant articulators have a larger range of variations in the articulator positions, corresponding
to non-uniqueness in the continuous sense. This means that co-articulatory effects on unimportant articulators cause
an increase in the range of positions, but not in the number of frames with multiple non-unique articulator modes.
On the other hand, there are few instances of multiple articulatory modes due to co-articulation of unimportant
articulators. The exceptions are the coils on the tongue, for frames falling under phonemes ‘f,v and w’ having a high

for the TD coil. These may be the cases where co-articulation effects may be non-unique in the multi-modal𝑛𝑓ℵ

sense.

The multi-modal sense of non-uniqueness, while being very specific, is all the more interesting in hind-sight,
because it involves cases where the speaker uses the important articulators in a non-unique way to produce normal
speech without altering the acoustics (cf. Figs. 3 and 4).

D. Validity of the Results

Based on statistical methods, such as in this paper, it is not easy to assess the validity of the results. Are the
non-unique predictions an artifact of the data? How are they affected by the modeling choices? Is the
parameterization affecting the results? What do multiple modes in the conditional probability mean? This section
tries to address these factors one by one.

The first most crucial aspect is the attribution of evidence for non-uniqueness to drift, rotation or detachment of the
coils. It is possible that the data that is being considered in fact has a drift and therefore the different peaks or
clusters in the articulation may, in fact, correspond to the positions before and after the displacement of the coil in
question.

In order to verify if this is the case, for every frame that was found to be non-unique, we calculated the 100 closest
neighbors from among the data-set in the acoustic-articulatory space. From among the neighbors, we classified the
vectors according to their proximity to one of the modes that were detected. For each set of 100 neighbors, we
divided the time-series data (i.e., the data ordered according to the sequence in which it was collected) until we had
at least one sample from each mode in each time division. For each such time-division in the data, we calculated the
entropy of the probability of the neighbors being closer to one peak rather than to another. If the hypothesis that the
estimated non-uniqueness was a result of local displacements in the coil were true, it would mean that within one
such time-division, one would find more samples closer to one of the peaks rather than to the other, while for other
time-divisions, the distribution would be different. Such one-sided, biased distributions would have a low entropy
(we call this the time-spread entropy), close to zero. On the other hand, if for every time-division, the distribution
between the different neighbors were even (entropy is close to one), then it means that the non-uniqueness was not
due to local displacements but was in fact a global phenomenon in the database. We found that the average
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time-spread entropy for all the articulator coils was between 0.77 and 0.98. The hypothesis that the non-uniqueness
was due to local displacements could be rejected strongly for all the articulators (p-value>0.95).

The second question we tried to validate was whether the GMM model we adopted was good enough to
parameterize the acoustic-articulatory space. Since the largest model we could adopt was 128 Gaussian components
due to memory restrictions, this may not be a sufficiently accurate description of the data. Secondly, the EM
algorithm may not actually have reached a global minimum in terms of the log-likelihood error. In order to verify
how good the model was, we performed an inversion experiment. The model could predict the articulator positions
from the acoustics with an RMS (Root Mean Square) error of 1.34 mm for the male speaker (msak) and 1.47 mm for
the female speaker (fsew). This was without applying any smoothing or continuity constraints. However, when the
error was estimated on only the frames that were predicted as unique, the RMS errors were 0.68 mm and 0.83 mm,
values quite close to the average resolution of the acquired data (0.43 mm) and much lower than the theoretical limit
[10], found to be around 0.91 mm for the same data-set. Of course, the training and testing data were exactly the
same, in this experiment, which says how well the model could fit the data, rather than generalize it. It is obvious
that the data would be described better if modeled with a greater number of Gaussian components. Given a better
model, even if the error estimated on the data was definitely reduced, the number of non-unique frames would
increase. The trend observed when we used GMM models of different numbers of components showed an increase
in non-uniqueness from 1.1% ofthe frames to 8.8% ofthe frames as the number of GMM components was increased
from 8 to 128. There was no significant difference between M=64 and M=128.

The GMM model, while being a good tool to model data of unknown probability distributions, has some
short-comings. One of the most important of them is that they are real valued, unbounded and multi-dimensional.
Thus, the conditional probability distribution, , may exist even beyond the permissible limits of the vocalρ

𝑌|𝑋
𝑦|𝑥( )

tract anatomy. For this reason, looking at the whole distribution or making calculations on the moments (for
example, the variance estimate) of the distribution can be misleading. For this reason, the definition of
non-uniqueness in the multi-modal sense, where one can be sure that none of the detected peaks fall outside the
permissible range of articulations, is more accurate. On the other hand, the upper bound of the entropy gives an idea
about the non-uniqueness in the continuous sense, but may be more inaccurate.

Another important question is whether the said articulatory modes in fact correspond to different phonemes, because
of insufficient resolution of the acoustic parameterization. The answer to the question is that the acoustic
parameterization is in fact insufficient for the purpose of categorization into respective phonemes. Based on the
acoustic representations alone, using a K-nearest neighbor classifier with K=100 neighbors the phoneme
classification task gives an average of 53.4% with a leave-one-out cross-validation. This is in fact quite close to
human phoneme recognition on short words [24]. While the confusion over phonemic identity based on the
acoustics is a known artifact, it should not be the case that the two modes consistently correspond to different
phonemes. Thus we needed to test the hypothesis that the nearest neighbors of the two peaks in the distribution
consistently belong to different phonemes. In order to test this hypothesis we assessed the phonemic labels of the top
10 closest articulatory points (neighbors) in the data to the peaks in the conditional distribution. We observed that for
77 to 94% of the non-unique frames, at least one neighbor was assigned to the same class label as the current frame
for each of the multiple peaks. This of course was subject to the errors in the HMM based phonemic alignment. This
showed that, while confusions did occur in terms of the phonemic identity, the detected multi-modality was not
entirely due to insufficient resolution of the acoustic parametrization. In fact, for 21 to 32% of the frames, the first
three closest neighbors to each of the modes in the conditional articulatory distribution correspond to the same
phoneme as that of the current frame. Thus even though the acoustic resolution is insufficient for classification, the
non-uniqueness results themselves are not due to this artifact.

The final question we tried to answer was to observe the effect of the number of acoustic frames we used for
parameterization. In the current tests, we used an acoustic parameterization of 11 consecutive acoustic frames for
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125 ms of speech. This is expected to reduce the estimated non-uniqueness in the data, because it is easier to obtain
some context from the previous and following acoustic data. However, one must note that although the context is
obtained from the acoustics, no context is obtained from the previous prediction of the articulations, and thus the
augmentation of the acoustic frame towards a larger context does not correspond to applying continuity constraints
to the prediction. However, the empirical results presented will definitely depend on the context taken. When we
calculated the percentage of non-unique frames using different acoustic durations we found the maximum effect was
for stop consonants, followed by fricatives. The percentage of non-unique frames did not vary as much for other
sonorant consonants. For example, in the TT coil, when the acoustic vector duration was reduced from 125 ms to 45
ms, the percentage of non-unique frames from among those corresponding to stop consonants increased from
24.37% to 35.95% and from 26.4% to 34.4% for fricatives. The corresponding change was from 20.8% to 26.1% of
the frames corresponding to other consonant sonorants in the database for the TT coil.

V. Conclusions and future work

This article presents statistical tools to study non-uniqueness in the acoustic-to-articulatory mapping, using
simultaneously recorded acoustic-articulatory data. The main contribution is the ability to analyze the
non-uniqueness in two directions while constraining the acoustic distribution to be constant. The first direction is
based on finding the number of modes in the articulatory probability density function conditioned on the acoustics.
A multi-modal conditional distribution points to non-uniqueness that is less dependent on measurement or modeling
errors. The second method is to estimate an upper bound to the conditional entropy, which gives a general sense of
the range of variation in the articulation, given the acoustics. While this also gives a good account of
non-uniqueness, it is difficult to distinguish it from the errors in modeling and measurement.

The article also describes the relationship between nonuniqueness in the multi-modal sense and predictability of the
articulation from the acoustics based on the MOCHA-TIMIT database. It is generally not true that higher
non-uniqueness means higher upper bounds for the entropy and thus lower predictability. It was also found that
non-uniqueness in the multi-modal sense is not necessarily higher for the unimportant articulators. In fact, for most
phonemes, even though the entropy (upper bound) of prediction was relatively higher for the unimportant
articulators, the occurrence of non-uniqueness in the multi-modal sense was often relatively infrequent. On the
contrary, the non-uniqueness in the multi-modal sense was often relatively more frequent in the important
articulators for the phonemes, even though they were more easily predicted (with low entropy upper bounds).
The results of this article can not only be used to improve acoustic-to-articulatory inversion by explicit modeling of
nonuniqueness, it is also useful in understanding and applying to fields like infant language acquisition, second
language learning by adults, intra-oral articulation and speaker adaptation.

The reason why a speaker tends to utilize more than one configuration of the important articulators is not very
straightforwardly explained. This may be due to co-articulatory or prosodic constraints in the speech material. An
important future work is to validate whether the non-uniqueness in the discrete sense is compensatory in nature,
maintaining area-functions, or has different area functions for all sounds that can be produced non-uniquely. This
can be done by building an articulatory model and using the predicted non-unique positions to synthesize the
acoustics. One main problem that impedes such a study is to find a unique speaker specific transform from
articulator flesh points to vocal tract area functions. It has been shown that predicting the entire vocal tract based on
3 or 4 discrete flesh points is possible [25]. The next step is to verify whether the acoustics produced by the
synthesizers using the two predicted non-unique configurations are perceptually distinguishable or not. If they are
not distinguishable, one can then verify the exact means of effecting an instance of non-uniqueness.

This study is also important when trying to interpret the Motor Theory of speech perception [26] and the Direct
realist theory of speech perception [27]. These theories assert that all speech is perceived by mapping the acoustics
to an articulatory configuration corresponding to each distinct phoneme. We have shown that speakers are able to
produce non-unique configurations to produce similar acoustic sounds. Although the final vocal tract configuration
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may or may not be constant while producing sounds using these non-unique configurations, the individual
articulators (which are controlled by different muscles) seem to be able to produce almost the same acoustics from
different positions. Another theory, the Quantal Theory of speech perception [28] asserts that small changes in the
articulation cause sudden switching in the acoustic features and vice-versa. This study while illustrating such
behavior also shows that small acoustic changes may also be produced by discrete multi-modal articulations. Thus,
trying to interpret these theories of speech perception in the light of this study would be interesting future work.

Appendix

Merging Gaussian Probability Distributions: The merging of two Gaussian distributions in a GMM is based on the
method suggested in [16]. Given a GMM with M Gaussians with parameters, , merge the Gaussian{𝑐
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being the parameters of the merged Gaussian.

Algorithm for Finding the Upper Bound to the Entropy: To locate the modes of the conditional distribution for one
acoustic frame t, for each articulator a, (T is total number of frames in all utterances) and (A∀𝑡: 1≤𝑡≤𝑇 ∀𝑎: 1≤𝑎≤𝐴
is the number of articulators):

1) Estimate the conditional probability distribution of the acoustic to articulatory mapping, , usingρ
𝑌|𝑋

(𝑦𝑎|𝑥
𝑡
: 𝑀) 

an arbitrarily high number of components (M).
2) Calculate the upper bound of the entropy [15] of modeled by : 1≤m≤M),ρ
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3) Keep decreasing M by merging the Gaussian components as described in Section A until M=1 or

. For each M, find new parameters for , namely,Ξ
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4) Calculate the upper bound for the entropy, , from (10) at each step.Ξ
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final upper bound for the entropy.
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By this method, we not only find the number of modes in the distribution but also estimate a tighter upper bound to
the conditional entropy (cf. Equation (10), which is shown to be quite close to the true entropy of the distribution
[15]. The estimate of non-uniqueness in the discrete sense is provided by the number of modes, . For theℵ

𝑎,𝑡
continuous case, we base our measure of non-uniqueness on the entropy upper bound estimate. An upper bound to
the conditional entropy also gives us a lower bound to the predictability of the articulators given the acoustics. The
estimated entropy (upper bound) is directly proportional to the log of the variance for the uni-modal case. For the
multi-modal case >1), we are able to calculate a tighter upper bound to the entropy, thereby obtaining a better(ℵ

𝑎,𝑡
description of predictability (and non-uniqueness) than by approximating it by a single normal distribution (which
would be the case if we only considered the variance of the articulatory distribution). Even though the method is not
optimum in terms of merging the different Gaussian distributions (since it is a greedy search), this is sufficient for
estimating the reduction in the entropy bound. A more optimal scheme of merging would affect the final entropy
estimate, but not the final number of modes.
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