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Abstract

This thesis intends to familiarise the reader with quantum error correction,
and also show some relations to the well known concept of information –
and the lesser known quantum information. Quantum information describes
how information can be carried by quantum states, and how interaction with
other systems give rise to a full set of quantum phenomena, many of which
have no correspondence in classical information theory. These phenomena
include decoherence, as a consequence of entanglement. Decoherence can
also be understood as “information leakage”, i.e., knowledge of an event is
transferred to the reservoir – an effect that in general destroys superpositions
of pure states.

It is possible to protect quantum states (e.g., qubits) from interaction
with the environment – but not by amplification or duplication, due to the
“no-cloning” theorem. Instead, this is done using coding, non-demolition
measurements, and recovery operations. In a typical scenario, however, not
all types of destructive events are likely to occur, but only those allowed by
the information carrier, the type of interaction with the environment, and
how the environment “picks up” information of the error events. These cha-
racteristics can be incorporated into a code, i.e., a channel-adapted quantum
error-correcting code. Often, it is assumed that the environment’s ability to
distinguish between error events is small, and I will denote such environments
“memory-less”.

This assumption is not always valid, since the ability to distinguish error
events is related to the temperature of the environment, and in the particular
case of information coded onto photons, kBTR � ~ω typically holds, and one
must then assume that the environment has a “memory”. In this thesis, I de-
scribe a short quantum error-correcting code (QECC), adapted for photons
interacting with a cold environment, i.e., this code protects from an environ-
ment that continuously records which error occurred in the coded quantum
state.

Also, it is of interest to compare the performance of different QECCs – But
which yardstick should one use? We compare two such figures of merit, namely
the quantum mutual information and the quantum fidelity, and show that
they can not, in general, be simultaneously maximised in an error correcting
procedure. To show this, we have used a five-qubit perfect code, but assumed
a channel that only cause bit-flip errors. It appears that quantum mutual
information is the better suited yardstick of the two, however more tedious
to calculate than quantum fidelity – which is more commonly used.
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Sammanfattning

Denna avhandling är en introduktion till kvantfelrättning, där jag under-
söker släktskapet med teorin om klassisk information – men också det mindre
välkända området kvantinformation. Kvantinformation beskriver hur infor-
mation kan bäras av kvanttillstånd, och hur växelverkan med andra system
ger upphov till åtskilliga typer av fel och effekter, varav många saknar mot-
svarighet i den klassiska informationsteorin. Bland dessa effekter återfinns
dekoherens – en konsekvens av s.k. sammanflätning. Dekoherens kan också
förstås som “informationsläckage”, det vill säga att kunskap om en händelse
överförs till omgivningen – en effekt som i allmänhet förstör superpositioner
i rena kvanttillstånd.

Det är möjligt att med hjälp av kvantfelrättning skydda kvanttillstånd
(t.ex. qubitar) från omgivningens påverkan, dock kan sådana tillstånd aldrig
förstärkas eller dupliceras, p.g.a icke-kloningsteoremet. Tillstånden skyddas
genom att införa redundans, varpå tillstånden interagerar med omgivning-
en. Felen identifieras m.h.a. icke-förstörande mätningar och återställs med
unitära grindar och ancilla-tillstånd. Men i realiteten kommer inte alla tänk-
bara fel att inträffa, utan dessa begränsas av vilken informationsbärare som
används, vilken interaktion som uppstår med omgivningen, samt hur omgiv-
ningen “fångar upp” information om felhändelserna. Med kunskap om sådan
karakteristik kan man bygga koder, s.k. kanalanpassade kvantfelrättande ko-
der. Vanligtvis antas att omgivningens förmåga att särskilja felhändelser är
liten, och man kan då tala om en minneslös omgivning.

Antagandet gäller inte alltid, då denna förmåga bestäms av reservoirens
temperatur, och i det speciella fall då fotoner används som informationsbärare
gäller typiskt kBTR � ~ω, och vi måste anta att reservoiren faktiskt har
ett “minne”. I avhandlingen beskrivs en kort, kvantfelrättande kod som är
anpassad för fotoner i växelverkan med en “kall” omgivning, d.v.s. denna
kod skyddar mot en omgivning som kontinuerligt registrerar vilket fel som
uppstått i det kodade tillståndet.

Det är också av stort intresse att kunna jämföra prestanda hos kvantfel-
rättande koder, utifrån någon slags “måttstock” – men vilken? Jag jämför två
sådana mått, nämligen ömsesidig kvantinformation, samt kvantfidelitet, och
visar att dessa i allmänhet inte kan maximeras samtidigt i en felrättnings-
procedur. För att visa detta har en 5-qubitarskod använts i en tänkt kanal
där bara bitflip-fel uppstår, och utrymme därför finns att detektera fel. Öm-
sesidig kvantinformation framstår som det bättre måttet, dock är detta mått
betydligt mer arbetskrävande att beräkna, än kvantfidelitet – som är det mest
förekommande måttet.



Preface

This thesis has two main parts. First I start off with a chapter called “classical
coding”, where a few key concepts from information theory and coding are briefly
outlined. The next part is called “quantum error correction” and aims at setting
up the stage for paper A, but providing only the necessary set of the theory. I
will probe a little deeper on some subtle assumptions and simplifications, which are
underpinning the topic, but nevertheless are essential. Some unorthodox notions
which are new, or stem from other parts of quantum optics have also been added,
simply due to paper A’s resistance to “fit” into the more conventional theory, which
is based upon SU(2)-algebra. Paper B is more related to the first part, due to its
origin in classical information theory. This “wrong order” may seem odd, but was
chosen because classical coding was discovered before quantum error correction
(which happens to be opposite to the discoveries of paper A and paper B). A
reader very familiar with information theory may largely skip chapter 2, except
perhaps for the section on mutual information, which is very central for paper B.
Readers familiar with quantum mechanics may skip section 3.1. I wish you happy
reading!

The work presented in this thesis was performed under the supervision of Prof.
Gunnar Björk in the Quantum Electronics and Quantum Optics group (QEO),
which is part of the School of Engineering Sciences at the Royal Institute of Tech-
nology (KTH) in Stockholm.
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Chapter 1

Introduction

Quantum information theory is the exciting merging of two mature fields – infor-
mation theory and quantum theory – which have independently been well tested
over many years. When studying one in the light of the other, we see that the
combined field has many interesting features, due to the microscopic scale in which
it operates, and due to its quantum nature – but also drawbacks and limitations
for the same reasons. While many of the ideas upon which this new field of physics
are based are imported from information theory, there are also unique features in
the combined theory due to the fact that quantum theory allows for superpositions,
and as a result, a richer information structure. For quantum error correction, which
is a sub-field of quantum information, this structure can, and must, be taken ad-
vantage of, e.g., by making use of entanglement in codes, but also accounting for
more diverse types of errors. Most quantum codes existing today are based on
classical codes, but there are also situations where intuition gained from classical
coding theory may lead us wrong, and quantum codes may exist where there is
no classical counterpart. In this thesis, I will investigate quantum error correction
with the following questions in mind:

• How do we realistically harness quantum coding, i.e., how do we exploit the
“quantumness” of codes, while at the same time, control the unwanted quan-
tum effects? In particular, how are code structure, carrier, channel, environ-
ment and overall scheme complexity related?

• How is the performance of quantum codes rated? For example, how do we
know if a quantum error-correcting code (QECC) is better than another one?

• What is the future for new codes? Where should we look to improve quantum
codes? Does it pay to invent even longer codes than existing codes?

The smallest representation of classical information is one “bit”, i.e., a bit can
represent one of the two values 0 or 1. In quantum theory, the bit translates
to a “qubit”, which also has two elements in the form of orthogonal quantum

1



2 CHAPTER 1. INTRODUCTION

states in a two-dimensional Hilbert space. Even though the qubit has an infinite
number of configurations in this space, it can still host at most one classical bit of
information. This important fact lets us treat the concept of “information” on the
same footing in the two descriptions, and we can “reuse” large parts of the classical
theory due to, e.g., the results of Shannon and others. But a qubit can also exhibit
other phenomena – which are forbidden in classical information theory – such as
entanglement. Entanglement gives rise to an entirely new type of resource, the e-bit,
which also has an important role to play in quantum information. A magnificent
example of this is teleportation (of quantum states) [BBC+93].

Of course, we are not restricted to represent information as bits, in fact the
representation can move freely between bases, such as 2, 8 and 10 - however, some
transitions of representation give rise to impractical mathematical objects (groups),
such as storage of bits by means of trits, i.e., elements from a size three alphabet.
In quantum error correction (QEC), it is of essence that we find a practical physical
system that willingly can incorporate the information – an information carrier –
and that the system exhibits the sought for qualities, such as a long lifetime and
limited modes of decoherence. We shall see an example of how one can use a
system made from qutrits to redundantly encode a qubit in paper A, however in
doing so, parity operations for diagnosing errors will no longer use base 2, so other
operations are needed that use base 3. Base 2 codes abide by the SU(2) algebra,
where notably the Pauli operations provide a complete set of operations that can
be performed. On the other hand, base 3 codes follow the SU(3) algebra, which is
governed by 9 (including the unit matrix) Gell-Mann matrices. The description is
further complicated, when noting that the algebra used may, in a particular physical
setting, not take into account that some operations are improbable or forbidden.
These restrictions involves both the carrier and the characteristics of an external
reservoir, and can be adapted for in a quantum code.

Today’s digital computers and media are inherently analog, in the sense that all
bit values are represented using large numbers of electrons, directed magnetic dipole
moments in the case of magnetic storage, or “missing matter” in the case of imprints
on a music compact disc (CD). This fact has several advantages, e.g., in a computer
memory there is under normal conditions no need for error correction at all. This is
due to extremely stable voltage pulses (+1.5/0 Volts for a modern DDR3 memory)
that are used to represent the bit values. If one were to look at a digital pulse in an
oscilloscope - one would see that there are minor fluctuations due to, e.g., capacitive
losses, or external fields. As modern computers tend to have smaller and smaller
components, these fluctuations will one day become large enough to matter. In fact,
for extreme applications, such as space satellite applications where computers are
exposed to, e.g., cosmic rays, computers are set up in racks of three. Each computer
routinely performs the same set of instructions, and the overall output is the result
of a majority-voting of the output from these computers [WFS94]. Majority voting
is also one of the simplest and most used error correction procedures. However, it
is in general neither the most efficient, nor the most resilient one - as we shall see
in chapter 2.
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Hence, a classical computer on Earth is stable in its operation and usually does
not need any error correction. However, when storing and transmitting information,
usually some form of error correction is applied. The techniques used are often,
if not always, based on assumptions on what kind of errors will most likely occur.
One illustrative example is the case of error correction for CDs, where the imprinted
information needs to be protected from scratches. A scratch has a nonzero width,
that will sometimes intersect the imprinted track from a tangential direction. Thus,
a probable error event is that many adjacent imprints will be damaged, i.e., a burst
of errors. Therefore, a special type of encoding is used, a Reed–Solomon code
[RS60], and it can correct up to 12 000 adjacent errors, which corresponds to a
track length of 8.5 mm on a CD. In addition, the coded information is recorded
in a “non-local” way, on opposing positions on the disc, to minimise the risk that
the information is erased by a single scratch. The point to be retained is that
in classical error correction, it is usually the probabilities for various errors that
ultimately decide which error correction code will be used. This is also true for
QEC, as we shall see in chapter 3.

An important advantage of computers, or other processing devices for classical
information, is that the stream of information can at any time be amplified, or
duplicated (using a source of power). This is something that we take for granted.
However, the situation is different for a quantum computer, because it turns out
that copying is a severely restricted operation for quantum states, as we shall see
in chapter 3. Thus, if we cannot amplify our quantum information, it seems that
the only alternative we have for processing is to continuously use error correction,
in order to keep the quantum states from being distorted. Other means to pro-
tect qubits, is to encode them onto quantum states with long decoherence times,
and consider channels where interaction with the surrounding environment is min-
imal. Also, while QECCs necessarily increase the length of an unprotected string
of qubits (by introducing redundancy), each added qubit increases the influence
from the environment. Therefore, any good QECC must add, loosely speaking,
more protection per added qubit, than the increased need for protection per added
qubit. Whether or not it really pays to have long QECCs (that correct many errors,
or encodes many qubits) will be touched upon in section 3.4.5.

Feynman wrote on the topic of energy dissipation in information processing, in
a paper called “Quantum mechanical computers” [Fey86]:

However, it is apparently very difficult to make inductive elements
on silicon wafers with present techniques. Even Nature, in her DNA
copying machine, dissipates about 100 kBT per bit copied. Being, at
present, so very far from this kBT ln 2 figure, it seems ridiculous to argue
that even this is too high and the minimum is really essentially zero.

–Should not our DNA be a perfect example of a coding that perhaps needs
error correction? And why has Nature chosen the base 4? Is it simply because of
the need for splitting the double helix, or is there some other insight in this way
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of coding? Outside the scope of this thesis, I have thought about these problems,
and others too, see Liebovitch et al., [LTTL96]. Their study did not find any such
error correction code. Later studies show [SPC+03] that an enzyme called DNA
polymerase does “proofreading” of the DNA strands, and corrects errors – thereby
decreasing the error rate by a factor 100. This indicates that perhaps there is an
error detecting, or error correcting code in the DNA after all. On the other hand,
an error correction code in our DNA could perhaps not be a perfect one, since then,
DNA variation due to, e.g., copying errors, would not exist.



Chapter 2

Classical coding

Coding deals with the problem of transmitting or storing a message in a certain
form or shape – a code, so that it can be retrieved safely or efficiently. “Safely”
implies that the message may be sent over a noisy channel, using some form of error
correction. Error correction can be performed only if redundancy is present, and
such redundancy is then typically added, to form a coded message. “Efficiently”
on the other hand, means that if the message contains redundancy, e.g., this is
the case for natural languages, coding also can be used to compress the message.
This means that unnecessary redundancy is removed from the message, and its
information density therefore increases. However, such a coded message would be
difficult to decode and understand for a human, and therefore automated decoding
should be performed at the receiving end. Loosely speaking, we can say that coding
deals with transforming messages so that redundancy is either added or removed
– typically one wants to strike a balance between the raw information and the
redundancy in a form that suits the needs of the communicating parties, and the
channel of communication.

There are also coding schemes where some information is removed, e.g., JPEG
(Joint Photographic Experts Group) and MP3 (MPEG-1 Audio Layer 3) compres-
sion. Such compression coding is called destructive, and can in the MP3 case be
motivated by the fact that the human ear senses sound best within a limited fre-
quency range, so that recorded frequencies outside this band may be suppressed,
or discarded. Coding can also be used in conjunction with public, shared, or pri-
vate keys – to send secret messages between parties. However, I shall in this thesis
mainly focus on different aspects of quantum error correction, and in this chapter
I will give a brief background in classical information theory, from where several
concepts have quantum counterparts that will be used in chapter 3.

5
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2.1 Entropy and information

Figure 2.1: A simple combination
lock with three rotating discs and
10 symbols per disc. Credit: Wap-
caplet under Creative Commons
License.

Entropy is essentially the logarithm of the
number of allowed values for some parameter.
If, on a combination lock, the number of possi-
ble combinations is Ω, then we may calculate
the number of rotating discs, logb Ω. But if
the number of symbols written on each disc b
is unknown, then the choice of logarithm base
is equally unclear, and we can only qualita-
tively do so. For example, we can merely say
that in order to increase the number of combi-
nations to Ω2, we need to double the number
of discs, since log Ω2 = 2 log Ω. A number of
permitted, but unknown values for a parame-
ter implies uncertainty, or “ignorance”, while
knowledge of exactly which of the values the
parameter has, can be interpreted as “infor-
mation”. The interplay between information
and ignorance, is at the heart of information
theory.

2.1.1 Statistical mechanics
Classically, entropy is defined (due to Boltz-
mann)

H = kB log Ω, (2.1)

where Ω denotes the number of microstates, i.e., the number of possible configura-
tions for a physical system, and kB is known as Boltzmann’s constant. In classical
mechanics, the notion of Ω made little sense, because e.g., position and momentum
can take an infinite number of values. But this problem was circumvented, parti-
cularly in thermodynamics, by assuming that Ω for a ideal gas, should qualitatively
be proportional to the degrees of freedom in the following way:

Ω ∝ V NE(3N−1)/2, (2.2)

where N is the number of particles in a gas of volume V , and an energy E. The
energy dependent part of the expression is essentially the area of a 3N -dimensional
sphere, with the radius

√
E. Thus, the bigger sphere that is spanned by the ve-

locity vectors of the gas particles, the more states can be fitted. Here, Eq. (2.2)
should be corrected by N ! in the denominator to reflect that only distinguishable
configurations are counted in a (bosonic) gas. However, at the time of Boltzmann,
such quantum mechanical corrections for bosons and fermions were not known, and
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it turns out that some important results can be extracted even without this know-
ledge. Taking the logarithm of Eq. (2.2) results in a property that depends much
less dramatically on the degrees of freedom. Interestingly, the logarithm of the
“number of possible states” log Ω, often has real physical meaning, i.e., revealing
clues about the system’s degrees of freedom. Such descriptions are, e.g., for the
temperature and pressure of an ideal gas,

1
T

= ∂H

∂E
, and P = T · ∂H

∂V
,

which immediately results in familiar expressions for internal energy E, and the
well known ideal gas law

E = 3
2kBNT, and PV = kBNT,

respectively. The Boltzmann entropy is especially suited for this purpose for several
reasons, i.e., the logarithm function is the only function that scales linearly as the
argument grows exponentially,

log
(∏

i

Ωi

)
=
∑
i

log Ωi.

Also, the logarithm function is a strictly increasing function of its argument, which
implies that both Ω and log Ω will reach their maximum value simultaneously.

2.1.2 Information theory
Also in information theory it is common to study entropy as a function of the
system degrees of freedom [Weh78], but more commonly on a microscopic, rather
than the macroscopic scale exhibited in the previous examples. The word entropy
will be used here in analogy with statistical mechanics, however in the strictest
sense, it is disputed if the two descriptions are identical:

My greatest concern was what to call it. I thought of calling it “informa-
tion”, but the word was overly used, so I decided to call it “uncertainty”.
When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, “You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechan-
ics under that name, so it already has a name. In the second place, and
more important, nobody knows what entropy really is, so in a debate
you will always have the advantage.”
Claude E. Shannon [TM71]

The logarithm of the total number of states qualitatively describe the number of
resources needed to represent the states, e.g., in computer science – the number
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256 needs log2 256 = 8 bits for its representation. Here, we have assumed that all
integers from 1 to 256 are equally probable, i.e., that we are not allowed to exclude
any of those numbers.

Definition 2.1. (Symbol, alphabet) A symbol represents an element taken from a
set of distinct elements {0, 1, . . . b}, called an alphabet. Binary symbols can assume
only the values {0, 1}, thus, they have an alphabet size, or base, b = 2.

Despite the occurrence of non-binary alphabets in this text, we shall however
persist the choice of base 2 for logarithms, since this choice is generally unimportant,
but will allow us to speak about an entropy that we can measure in bits.

Definition 2.2. (String) A sequence of symbols, taken from an alphabet with base
b, is called a string.

Example: Two common types of strings:

• A binary string: “100101111100010011000001001101001000”, from {0,1}

• A base 19 string: “The clever fox strode through the snow.”, from {T, h, e,
’ ’, c, l, v, r, f, o, x, s, t, d, u, g, n, w, .}

The latter example raises a question – the string only uses 19 symbols, but do
we need to worry about other symbols that may occur, i.e., hypothetical strings?
The answer is that the alphabet used for communication is subject to assumptions,
specified by a standard which are supposedly shared by two communicating parties.
One such standard is the ASCII alphabet, which has 27 = 128 symbols, and covers
most of the English strings that can be written. Nowadays, a character encoding
called Unicode is commonly used which has a 216-symbol alphabet, and includes
characters from most languages, and special symbols such as the relatively new
Euro currency symbol �. One may argue that it is wasteful to use such a large
alphabet, since if Alice and Bob communicates in English, they do not need an
alphabet supporting, e.g., all Chinese characters. Morse code is an alphabet that
uses less resources, i.e., dashes and dots, for common letters in English, and for
uncommon letters like “X” – it uses more. This tends to save time for Alice, as
she encodes her message – since the total number of dots and dashes is on average
lower compared to if all characters had the same length. If – in a long sequence of
symbols – not all symbols are equally probable, a central concept is the Shannon
entropy [Sha48], defined as

H = −
N∑
i

pi log pi, (2.3)

where N is the number of different values that the symbol may have, and pi is
the probability for a given value, i. The maximum entropy is reached when all
probabilities are equal, i.e., the situation for a two symbol alphabet with symbol
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Figure 2.2: The entropy per symbol for an alphabet with two symbols. The prob-
abilities for the first outcome is p and thus 1− p for the other.

probabilities p and q = 1− p is illustrated in Fig. 2.2. If the character probabilities
are not same, such as in natural languages, the “wastefulness” described earlier can
be mitigated using source encoding, where Morse code is one example.

Consider the example of a communication line which can convey information
at the rate 1000 baud, i.e., 1000 symbols per second. However the probability for
one symbol is one, and all the others are zero. Can such a channel convey any
information? The answer is “no”, which is straightforward to calculate using the
Shannon entropy H(A), which is equal to −1 · log 1 − 0 · log 0 . . . = 0 (here 0 log 0
is defined to be equal to 0). The situation for a two-symbol alphabet is shown for
varying probabilities in Fig. 2.2.

As another example, consider the symbols A, B, C and D with relative frequen-
cies 1/2, 1/4, 1/8, 1/8 respectively. The source entropy per symbol will in this case
be H = −(log (1/2)/2 + log (1/4)/4 + log (1/8)/4) = 7/4, i.e., less than the optimal
entropy 2 (= log 4). We can in this case compress the average information sent
using a code according the following scheme:

C1: A source encoding

A→ 0,B→ 10,C→ 110,D→ 111.

This coding is called block coding (with variable block length) and in this case
it will restore the source entropy per symbol to its maximum value 1. To see this,
we can calculate the average number of bits, L, per symbol, in a C1-coded string,∑

i

piLi = 1
2 · 1 + 1

4 · 2 + 1
8 · 3 + 1

8 · 3 = 7/4.



10 CHAPTER 2. CLASSICAL CODING

However, such perfect compression encodings are not always possible to find. An
important lesson can be learned from this code – improbable symbols should be
encoded with longer strings, and vice versa. This is evident in all languages, e.g., “if”
and “it” are common words and have few letters, while “university” is longer, and
not as frequent. There are of course differences between languages, e.g., in English,
one has only one letter for “I” compared to “you”, which implies that English-
speakers prefer to talk about themselves, rather than about others. In Swedish
however, the situation is reversed (“jag”/“du”), so information theory lets us draw
the (perhaps dubious) conclusion that Swedish-speakers are less self-centered than
English-speakers.

One can say that the amount of surprise in a symbol, constitute a measure of
information, and should be reflected in its block length to ensure efficient source
encoding. An efficient technique for coding the source, according to the relative
frequencies of message symbols is Huffman coding [Huf52]. While recognised as one
of the best compression schemes, it only takes into account single symbol frequencies
and ignores any transition probabilities for sequences of symbols, which may also
exist. More optimal compression codings take care of this latter situation, such
as arithmetic coding, see e.g., [RL79], and its variants. These methods are based
on Shannon’s notion of n-graphs [Sha48], but also cover destructive compression
techniques with applications in still imaging and video.

Finally, I must mention a celebrated result of Shannon, which sums up this
section:

Theorem 1. (Noiseless coding theorem) Let a source have entropy H (bits per
symbol) and a channel have a capacity C (bits per second). Then it is possible to
encode the output of the source in such a way as to transmit at the average rate
C/H − ε symbols per second over the channel where ε is arbitrarily small. It is not
possible to transmit at an average rate greater than C/H.

For a proof, see e.g., [Pre97] (chapter 5).

2.1.3 The channel
When a string of symbols is sent from a point A to a point B, different circumstances
may affect the string, such as electrical interference, or other noise that may cause
misinterpretation of the symbols in the string. Such effects are usually referred to
as the action of the channel. Channels can conveniently be characterised by a mat-
rix, containing probabilities for misinterpreting symbols in a string. E.g., consider
the symbols {0, 1}, and the transition probabilities {p0→0, p0→1, p1→0, p1→1}. The
channel matrix is then written

CAB =
[
p0→0 p0→1
p1→0 p1→1

]
. (2.4)

Such a matrix can also be illustrated as a diagram, as illustrated in Fig. 2.3.
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p1→1

Figure 2.3: A diagram showing the symbol transition probabilities for a binary flip
channel.

Definition 2.3. (Symmetric channel) If, for a binary flip channel, the flip proba-
bilities are equal so that p0→1 = p1→0, the channel is said to be symmetric.

2.1.4 Rate of transmission for a discrete channel with noise

H(A|B) H(B|A)I(A : B)

H(A) H(B)

Figure 2.4: A Venn diagram showing the relation between the entropies for A
and B, the conditional entropies H(A|B) and H(B|A) and the mutual information
I(A : B). H(A,B) is represented as the union of H(A) and H(B).

How is the transmission of a message, i.e., a string of symbols, affected by
channel noise? As mentioned in the introduction, there is a subtle distinction
between the arranging of symbols at the sending party, and the disordering of
symbols as a result of sending them over a noisy channel. For a noisy channel,
Shannon defines the rate of transmission

I(A : B) = H(A)−H(A|B), (2.5)

where H(A) is called “entropy of the source”, which constructively contributes to
the transmission rate between two parties, while the conditional entropy H(A|B),
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also called “equivocation”, instead contributes negatively, and can be seen from
Fig. 2.4 to be

H(A|B) = H(A,B)−H(B), (2.6)

and is defined, for the (discrete) distributions A : {a, pA(a)}, and B : {b, pB(b)},

H(A|B) = −
∑
a

∑
b

p(a, b) log p(a|b), (2.7)

where p(a|b) is the probability that A = a given that B = b. H(A) depends on
the size of the “alphabet”, i.e., how many possibilities one has to vary each symbol
– but also on the relative frequencies/probabilities of those symbols. As indicated
earlier, H(A) is maximised if all probabilities are the same. H(A|B) represents
errors introduced by the channel, i.e., “the amount of uncertainty remaining about
A after B is known”. Shannon’s “rate of transmission”, is lately denoted mutual
information, because it is the information that two parties can agree upon, sitting at
the two ends of a communication channel. Mutual information is the term favoured
in today’s literature, and it is also the term that will be used in this thesis.

2.1.5 Classical channel capacity
We now know that the mutual information between A and B sets the limit of how
much information can be transmitted e.g., per time unit. But sometimes we wish
to characterise the channel alone, not taking into account the encoding performed
at A, we extend the definition of channel capacity C (in Theorem 1) in the presence
of noise,

C = max
{p(a)}

I(A : B). (2.8)

Hence, the channel capacity is defined as the mutual information maximised over all
source probabilities p(a), which is equivalent to the previous notion in the absence
of noise.

2.2 Classical error correction

Assume that Alice sends a message to Bob, but over a symmetric bit-flip channel, so
that with a non-zero probability, bits in the message will be flipped, independently
of each other. The goal of error correction is to maximise the mutual information
between Alice and Bob by adding redundant information to the message, that will
protect the message from errors. The efficiency which this feat can be accomplished
is the quotient of the actual information bits, say k bits – and the total number of
bits, including the redundant ones, n. Thus, the message is divided into sequences
of n bits, called blocks. It turns out that cleverly crafted codes can achieve a higher
ratio k/n than others, but the problem of finding such codes is difficult, and no
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general method exists. To make matters worse, the channel characteristics is also
an important part of the problem, so that different channels have different optimal
codes.

For the remainder of this chapter (but not the next!), we shall only consider the
binary symmetric channel, i.e., errors affect bits independently of each other, and
perform the bit-flip operation 0→ 1, and 1→ 0 with equal probability.

2.2.1 Linear binary codes

A linear binary (block) code C, or simply “code” from now on (if not stated other-
wise), is defined as the discrete space containing 2n words, whereof n of them are
linearly independent. The space is assigned a norm (inner product), an addition
and a multiplication operation. The nomenclature is summarised below:

Definition 2.4. (Word) A word in a code C is n consecutive elements taken from
{0, 1}.

Example: A word in a n = 4 code is written, e.g., (0110).

Definition 2.5. (Inner product) Addition and multiplication is taken modulo 2 for
binary codes, so that the inner product

u · v =
(∑

i

(uivi mod 2)
)

mod 2.

Example:

(0110) · (1110) = (0 · 1) + (1 · 1) + (1 · 1) + (0 · 0) = 0.

Definition 2.6. (Hamming weight) The Hamming weight of a codeword u is de-
noted wt (u), and equals to the number of non-zero elements of u.

Example:
wt (1110) = 3.

Definition 2.7. (Code subspace, codeword) If a code C containing 2n words has a
linear subspace C ′, spanned by 2k words which are closed under addition, i.e., u+v ∈
C ′,∀ u, v ∈ C ′, and k < n, then any set of linearly independent words from C ′ are
called codewords for the code C, and are commonly denoted 0L, 1L, . . . (2k − 1)L.

Example: Let C be a space with 24 elements. Let C ′ be a 22 linear subspace of C,
with elements (0000), (0011), (1100), (1111). Any sum of these elements is also an
element of C ′. C ′ is spanned by two linearly independent words, e.g., (1100), (0011).
Such words are called codewords.



14 CHAPTER 2. CLASSICAL CODING

Definition 2.8. (Distance) A subspace C ′ of a code C is said to have distance d,
which is the minimum weight of all pairwise combinations of its codewords iL, jL –
i.e.,

min wt (iL + jL), i, j ∈ {1, 2, . . . k}, i 6= j.

Definition 2.9. (Notation) A code C is written [n, k, d]b, or simply [n, k, d] if it is
binary.

So far nothing have been said about error correction, but the ability to detect
or correct errors is intimately connected to the distance d. d, on the other hand is
defined for a certain type of errors, namely the bit flip errors – which is important
to remember. I state without proof a basic error correction result, which will be
illustrated in a moment:

Theorem 2. A linear binary error correcting code which uses n bits of information
to encode k bits, can correct up to t = (d−1)/2 errors and detect up to t+1 errors,
where d is the distance of the code.

Since t is used to denote the number of correctable arbitrary errors, one can
optionally use the code notation [n, k, 2t+ 1]. As an illustration of the theorem,
consider the code

C2: A repetition code

0L = (000), 1L = (111).

Example: The distance d of C2 is wt ((111) + (000)) = 3. We have 2k = 2 code-
words – thus we denote the code [3, 1, 3], and its complete space is illustrated in
Fig. 2.5. From this figure, we can see that any 1 bit-flip errors in {0L, 1L} can
be identified and corrected. If errors need only be detected, we see that we can
do so for up to 2 errors. Detection is therefore a powerful mechanism, and can be
used to classify a block as erroneous, so that it can be subsequently re-transmitted
in a communication scenario. In this coding scheme, since the code is perfect (see
section 2.3.1), we must choose a detection strategy or a correction strategy – we
may not do both.

Definition 2.10. (Generator matrix, parity check matrix, syndrome) A generator
matrix G is a k×n matrix containing any k words in the code subspace C ′, that span
C ′. An (n − k) × n matrix P with the property PGT = 0, is called a parity check
matrix and is used to determine, for each received word w through the operation
PwT, the location of the bit that is in error and should be flipped. The result of
PwT is called the syndrome of w.

Example: The generator and parity check matrix in the previous example are

G =
[

111
]
, P =

[
110
101

]
, (2.9)
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Figure 2.5: A code protects an encoded bit by separating their code words by
at least a distance 2k + 1, where k denotes the number of errors that the code
can correct. The situation is shown for a 1-bit flip error correcting repetition code,
denoted [3, 1, 3]. Clearly, this code has distance d = 3, which is the required distance
in order to correct one arbitrary bit-flip error.

so that the syndromes can be calculated as P · (111)T = P · (000)T = 00 (do
nothing), P · (110)T = P · (001)T = 01 (flip third bit), P · (101)T = P · (010)T = 10
(flip second bit), and P · (100)T = P · (011)T = 11 (flip first bit).

Note that errors in this case give rise to pairwise identical syndromes, which
is a consequence of the properties of linear codes. This is advantageous from an
implementation point of view, since either memory or computing capacity can be
saved, compared to the situation where each error has a unique syndrome. We
shall see in the next chapter, that this property is sought for also in quantum error
correction, but for an entirely different reason.

2.3 Strategies for error correction and detection

Consider the code

C3: A 4-bit repetition code, [4, 1, 4]

0L = (0000), 1L = (1111).

This code can correct all single bit-flip errors, but no 2-flip errors. In general,
one would need a d = 5 code to be able to do so. Interestingly, all the 2-errors can
be detected, and we will see in a moment what to do with these.
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Figure 2.6: Alice sends a coded message to Bob over a noisy bit-flip channel, using
the code C3. Each of Bob’s blocks will after correction belong to one of the 3
disjoint sets {0L, 1L, ?L}, where ?L represents the detectable, but uncorrectable 2-
error blocks. Note that blocks with 3 or 4 errors will possibly be misdiagnosed,
since they represent elements in the more probable set of 0- and 1-error blocks.

Definition 2.11. (Fidelity) The fidelity F is a measure of “sameness”, which
I define for two messages mA and mB of equal length M , consisting of logical
codewords {0L, 1L, ?L}, as

F (mA,mB) = 1− wt (mA +mB)
M

, (2.10)

where I have extended the Hamming weight definition with addition rules for ?L,

0L + 0L = 1L + 1L = 0,
1L + 0L = 1L + ?L = 0L + ?L = 1.

Example:

F ((11111), (11011)) = 0.8,
F ((11111), (11?11)) = 0.8,
F ((00000), (00?00)) = 0.8.

The introduction of detectable errors is important, since detection can be done
more efficiently than correction, and can complement error correction in order to
improve e.g., information transmission. Errors which can only be detected (but not
corrected) typically involves re-sending the message, or part of it.

Example: Assume that Alice sends a message consisting of 100 blocks over a sym-
metric bit-flip channel, coded using C3. Bob knows which code Alice has used, thus
he can correct all 1-errors in the message. However, assume that Bob will receive
a 2-error block, e.g., one of {(1100), (1010), (1001), . . .}, with probability γ = 0.01.
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We note that such errors can be distinguished from the codewords and all 1-errors
(detected), but cannot be corrected (because Bob cannot know whether the block
was originally 0L or 1L).

—What to do once such an error is detected?

We will contemplate two strategies, I and II:

I: Replace the block with a random logical bit 0L or 1L

II: Mark the logical bit as erroneous, and do not use it

If Bob uses strategy II, the sent and received messages (after correction) mA and
mB will differ in 1 bit out of 100, i.e., the similarity, or fidelity, of the two messages
is F = 1 − wt (mA −mB) /100 = 0.99. In contrast, if Bob replaces this block
randomly with 0L or 1L, with equal probability, then half of the times he would be
able to “correct” the error and achieve F = 1.00. However, half of the times, he
would be unlucky, so that F = 0.99, but on average, he would be able to increase
the fidelity to 0.995, using strategy I.

–What does Shannon tell us about the rate of transmission (mutual in-
formation) in the two cases?

Calculating the mutual information I(A : B) for the two strategies results in 1−
(0.99 log 0.99+0.01 log 0.01) ∼= 0.92 for strategy I, while strategy II gives I(A : B) ∼=
0.99. This illustrates the seemingly odd fact that optimising similarity will result
in a sub-optimal mutual information. This can mainly be attributed to the insight
that strategy I erases the location of the error.

Example: Assume that communication between Alice and Bob is affected by strong
channel noise, so that p(a, b) = 0.25,∀ (a, b) ∈ {0, 1}. –What is the value of F (A,B)
and I(A : B)?

The fidelity in this case becomes on average
∑

(a,b)=(0,0),(1,1) p(a, b) = 0.5, while
the mutual information becomes 1− (0.5 log 0.5 + 0.5 log 0.5) = 0. This means that
communication is not possible over the channel.

In information theory, the mutual information between A and B is the generally
accepted figure of merit for data transmission, and not similarity, i.e., fidelity. In
paper B, it is shown that fidelity and mutual information for a non-zero error rate
cannot be simultaneously optimised, in the case of detectable-only errors, neither
in classical nor in quantum error correction.
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2.3.1 Bounds for linear codes
The Hamming bound sets a lower limit for how many bits n are needed to accom-
modate a [n, k, 2t+ 1] code,

2n ≥
t∑

j=0

(
n

j

)
2k. (2.11)

This bound is also known as the sphere-packing bound. For large k and n, this
approaches asymptotically

k

n
≤ 1−H

(
t

n

)
, (2.12)

where H(·) is the Shannon entropy depicted in Fig. 2.2.

Definition 2.12. (Code rate) For block coded information, where each block uses
n bits to encode k logical bits, the rate of the code is defined to be k/n.

Definition 2.13. (Perfect codes) A perfect code has the property that it satisfy Eq.
(2.11) with equality. Thus, a perfect code has a codespace just big enough to host a
[n, k, d]-code.

Example: One family of perfect codes is called Hamming codes. They can be
written on the form

[2r − 1, 2r − r − 1, 3]2, (2.13)

where r ≥ 2. The simplest example of a perfect code is the r = 2, three-bit
repetition code C2 on page 14. For r = 3, we have

C4: A [7,4,3] Hamming code

0L = (0000000), 1L = (1110000), 2L = (1001100), 3L = (0111100),
4L = (0101010), 5L = (1011010), 6L = (1100110), 7L = (0010110),
8L = (1101001), 9L = (0011001), 10L = (0100101), 11L = (1010101),

12L = (1000011), 13L = (0110011), 14L = (0001111), 15L = (1111111).

This error correction code can under extreme conditions be used for memory
storage, but since a practical block size in a computer is 8 bits, this Hamming code
is usually extended using an extra bit, to accomplish better error detection.

Another important bound is the Gilbert-Varshamov bond, which reads

2k
d−2∑
i=0

(
n− 1
i

)
< 2n. (2.14)
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Eq. (2.14) ensures the existence of “good” codes, reasonably close to the Hamming
bound. Shannon has shown that for a code with k/n < C, that by increasing n it
is in principle always possible to achieve an arbitrarily low failure probability. Eq.
(2.14) makes Shannon’s result more powerful, by showing that such codes exist.





Chapter 3

Quantum error correction

Through the understanding that quantum mechanics (QM) is governed by unitary
(and therefore reversible) operations, quantum computing emerged from the idea
of reversible computation, in the early work of Bennett [Ben73], Feynman [Fey82,
Fey86], Fredkin, Toffoli [FT82] and others. One particularly powerful consequence
of these thoughts, later proven by Deutsch [Deu85], is that a quantum computer
can compute many results simultaneously, i.e., by means of qubits (see section 3.2.2)
and unitary operations. In contrast, a classical computer would have to perform
those calculations one by one, which is clearly a disadvantage – e.g., this weakness
is exploited in today’s public cryptographic keys, as they rely on the exponential
increase, per bit added, of computing resources needed to factor large integers.
Shor showed that this “security from lack of resources”, can be overthrown by a
quantum computer, proving that it can perform such a factorisation at a mind
boggling efficiency, i.e., polynomial time [Sho97]. While this would render today’s
public key distribution (based on integer factorisation) weak, at best, quantum
information also offers fundamentally safe quantum key distribution (QKD), e.g.,
using the BB84 protocol, invented by Bennett and Brassard [BB84]. Such quantum
cryptographic systems are today commercially available (from ID Quantique and
MagiQ), however, due to imperfections in their technical implementation, they are
currently not secure in the strictest sense, see e.g., Saugé et al. [SLA+11].

A qubit, being a pure quantum state (with one orthogonal alternative), is ex-
tremely sensitive to interactions with other, nearby states, which will ultimately
cause it to become impure (when measuring only the qubit system) in a process
called decoherence, see section 3.1.4. Such interactions will entangle the qubit with
some state in the environment, and in the process destroy interference between the
qubit’s two basis states – thereby ruling out the possibility to perform operations
on both states simultaneously, i.e., reducing the qubit to a mere bit.

It was soon realised that errors caused by decoherence in quantum states are
different from those assumed in classical error correction, where coding, errors, and
decoding can be seen without regard to the error mechanism. —In fact, for QEC,

21
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every conceivable error is a result of interaction with reservoir states, thus, our
description must treat errors on coded states as the result of operations on extended
states, where the reservoir states are included. QEC picked up speed around 1990,
and soon resulted in a concrete code for protecting one qubit from any type of Pauli
error, i.e., a bit flip, phase-flip, or a combination of both [Sho95]. However, it was
soon realised that decoherence errors, such as amplitude-damping errors, needed a
different approach [FSW08].

–How can one suppress decoherence? —A qubit is often defined as a two-level
system, where the actual system is not specified. Thus, a qubit can be realised
in many different ways, e.g., using a spin-1/2 system. The transition probabilities
of a particular state into other states, depend on the interaction of such “carrier”
systems, and the characteristics of the environment. For a given carrier system, not
all transitions are equally probable and in fact, some carrier states are more stable
than others — one example of a stable state is the lowest state of the electromagnetic
field, the vacuum state. This state exhibits fluctuations, i.e. “virtual” transitions
to higher energy modes, but only for a very short time, due to energy conservation.
The vacuum state could therefore prove to be a useful element in QEC.

–One may then ask if classical error correction can be used for qubits? The
answer is surprisingly “no”, or at least not directly. The reason is that even though
errors on a coded qubit can be uniquely identified, i.e., the correct two coded states
(called |0L〉 or |1L〉 in analogy with section 2.2.1) and their resulting erroneous
states are all mutually orthogonal (which is the quantum meaning of “different”),
the correction procedure must not directly detect such an error. If it did, then not
only information of which error occurred would be gained, but also information
of which original state it was, i.e., |0L〉 or |1L〉. This is sometimes referred to
as “collapse of the wave function” and once this information becomes known to
any observer (even a seemingly insignificant atom), the qubit will start to act like
a classical bit, i.e., all interference between |0L〉 and |1L〉 would vanish. This is
of course unacceptable for a qubit, whose main purpose is to represent 0 and 1
simultaneously, i.e., maintain an arbitrary superposition between its components
|0L〉 and |1L〉. The trick, as Shor discovered in his nine-qubit code, is to delocalise
the information in the coded qubit, and in the error detection stage, perform only
measurements that do not distinguish between |0L〉 and |1L〉 errors, instead the
result of identification is an eigenvalue corresponding to two candidate states -
one from each code word. Such measurements are typically done by measuring
parity between constituent states of the syndromes. To actually undo the error, a
unitary operator is applied that simultaneously maps both candidates back to the
“no-error” state — with the help of so called ancilla states.

In section 3.1.4.2, we will look at the evolution of errors in a code, which will
entangle the coded qubit with the environment. From there, I will go on with the
formal theory behind QEC, and give some background to the QECC presented in
paper A.

To correct errors in a decohering qubit is a formidable task, in fact, just exactly
how the decoherence itself works is a topic of hundreds of papers, and perhaps
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we will never get a description for the evolution of quantum states that satisfy
everyone. Or perhaps, there are still a few secrets left for us to discover. In
particular, something that has haunted quantum theory since its advent, is the
measurement problem. It can simply be stated as the following question:

“If we assume that quantum states can be perfectly modelled by means
of unitary transformation of their wave function – how is it that our
actual measurements on the same system can only be described statis-
tically, as Born probabilities?”

3.1 Quantum mechanics

Quantum wave mechanics and the Schrödinger equation (SE) allowed for an accu-
rate description of physical phenomena such as the spectra of single atom gases,
e.g., the Lyman, Balmer and Paschen series, by realising that bound states, e.g.,
an atom, could only exist in discrete “states”, i.e., eigensolutions to the SE, later
called eigenstates. More interestingly, the wave function Ψ(x), can take the form of
any linear combination of such solutions. While it was unclear if it had any phys-
ical meaning in itself, the wave function – a weighted sum of orthogonal, complex
solutions to the SE – taken modulus squared, turned out to accurately describe
probability density, so that e.g. the probability to find a particle in the interval
[a, b] is strictly positive, and equal to∫ b

a

||Ψ(x)||2dx. (3.1)

Here, || · ||2 is taken to be the complex modulus squared, Ψ∗(x)Ψ(x). Notably,
radioactive decay, through a process known as tunnelling (see e.g., [GC29]), could
successfully be modelled with this notion of probability density.

The orthogonality of two different solutions to the SE, labelled i and j, can be
expressed ∫ ∞

−∞
ϕ∗i (x)ϕj(x)dx = δij , (3.2)

where the case i = j describes the normalisation criterion; if a particle is in a definite
state, the probability to find it somewhere on the x-axis equals one. The linear
behaviour of the wave function is remarkable, and gives rise to many effects that
are unique for quantum mechanics. I will for the remainder of the thesis, instead
use the language of Dirac, and continue this section with some basic building blocks
and terminology.

3.1.1 Quantum states
Due to the insight that distinguishable outcomes of an experiment always corre-
sponded to orthogonal eigensolutions to the SE (given the definition above), ex-
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plicitly calculating the solutions is not necessary, instead a shorthand notation has
become widely used – the Dirac bra-ket notation.

The Dirac formalism is particularly convenient for – but not limited to – systems
with a finite number of eigensolutions to the SE, which leads to a finite spectrum
of measurement outcomes (for the topic of this thesis, such treatment suffices well,
and will be used unless otherwise specified). These states will be called eigenstates
|ϕi〉, to a linear operator, see section 3.1.3, and N such states will constitute a basis
in a functional space, called Hilbert space, denoted H(N). Some properties of the
Hilbert space are outlined in Appendix A.1.

Quantum mechanics dictate that one important class of states, called pure, and
their dual, can be written as a superposition,

|ψ〉 =
N∑
i=1

ai|φi〉, 〈ψ| =
N∑
i=1

a∗i 〈φi|, (3.3)

where the coefficients ai are complex, and their modulus squared |ai|2 equals the
probability pi for the corresponding measurement outcome φi. Such states, can
also for finite N conveniently be written as the column and row vectors

|ψ〉 .=

 a1
...
aN

 , 〈ψ| .=
[
a∗1, . . . , a

∗
N

]
. (3.4)

However, a state |ψ〉 is a ray in H(N), and an overall phase factor does not change
the state,

|ψ〉 ≡ eiα|ψ〉, α ∈ R. (3.5)

The sum of the probabilities for all outcomes φi in Eq. (3.3) equals one, given that
the basis {|φi〉} is complete, therefore∑

i

pi = 〈ψ|ψ〉 =
∑
i

|ai|2 = 1, (3.6)

where we have used the inner product 〈ψ|ϕ〉, which is the projection of |ψ〉 onto |ϕ〉
(i.e., degree of parallellity, see Appendix A.4) – also known as “overlap integral”,
due to the wave function origin. Thus, due to Eq. (3.3), (3.5) and (3.6), a general
pure state in H(N) is characterised by 2N − 2, real numbers. Eq. (3.3) illustrates
that a quantum state can be superposed, i.e., manifest itself in several physical
(classical) realities simultaneously. If a quantum state can be written in this form,
it is called pure.

Now, if one considers two independent states, prepared by Alice and Bob,

|ψA〉 = a0|0A〉+ a1|1A〉,
|ψB〉 = b0|0B〉+ b1|1B〉,
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we may without loss of generality, write the joint state

|ψAB〉 = |ψA〉 ⊗ |ψB〉
= c00|0, 0〉+ c10|1, 0〉+ c01|0, 1〉+ c11|1, 1〉 (3.7)
=

∑
ij

cij |i, j〉,

where the ⊗ symbol represents the tensor product of two states, defined in an
extended Hilbert space H(2)

A ⊗H(2)
B = H(4)

AB. We have assumed that the two states
are independent, therefore they can be written as a product. We may also identify
the coefficients cij = aibj . However, if the two states interact in some way, so that
the coefficients in H(4)

AB change, e.g., if the cross-terms become zero, c01 = c10 = 0,
we may no longer write the two-(particle) state as a product of independent states.
Whenever it is not possible to write a many-particle pure state as a product of
single-particle pure states, we say that the larger state is entangled, see Werner
[Wer89].

Often, one may not be able to access a complete, pure system |ψAB〉, but only
a part of it. Mixedness then occurs as a result of entanglement, because if we only
measure state A in a state which is fully entangled over AB, e.g., the bipartite pure
state

|ψAB〉 = 1√
2

(|0A〉 ⊗ |0B〉 − |1A〉 ⊗ |1B〉), (3.8)

we will not see any interference between the outcomes of Alice’s state – Alice’s state
must in this case written as a mixed state (a motivation is given in section 3.1.5!),
represented by a density matrix

ρA = 1
2(|0A〉〈0A|+ |1A〉〈1A|). (3.9)

One may think of this construction as |0A〉 or |1A〉, each with probability 1/2 –
in contrast to the pure state (|0A〉 + |1A〉)/

√
2 where instead the word “and” is

appropriate. The state (3.9) is a very special state, which takes the same form in
all bases, i.e., ρA = 1

21, see Appendix A.5.

3.1.2 Density matrices
According to the spectral theorem, any Hermitian matrix can be diagonalised, cor-
responding to a change of basis. The eigenvalues that then appear on the diagonal
are real.

In addition to being Hermitian (ρ† = ρ), all density matrices are also posi-
tive semi-definite, i.e., their eigenvalues are non-negative. Consequently, for any
normalised density matrix, its eigenvalues correspond to probabilities pk and we
have

ρ =
∑
k

pk|φk 〉〈φk|, (3.10)
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where the states |φk〉 are orthonormal. However, the decomposition (3.10) is gener-
ally not unique. If there is only one non-zero probability, i.e., if the density matrix
has rank one, the state is pure, and ρ = |ψ 〉〈ψ|. All other states are said to be
mixed.

Any completely mixed states in a Hilbert space of dimension N has pk = 1/N ,
for k = 1, 2, . . . , N .

Partially mixed states ρ can be characterised by their purity, defined as Tr
(
ρ2).

This measure satisfies
1
N
≤ Tr

(
ρ2) =

∑
k

p2
k ≤ 1, (3.11)

where the lower and upper bound corresponds to completely mixed and pure states,
respectively.

3.1.3 Linear operators
A linear operator A takes a quantum state to a different state

A|ψ〉 = c|ψ′〉, c ∈ C

which need not be normalised. The linearity of A means that

A(c1|ψ〉+ c2|ϕ〉) = c1A|ψ〉+ c2A|ϕ〉, (3.12)

and for two linear operators A and B

(A+B)|ψ〉 = A|ψ〉+B|ψ〉. (3.13)

A linear operation on a state can be expanded into a complete basis {|φi〉}

A|ψ〉 =
∑
i

ai|φi〉,

and therefore

A =
∑
ij

cij |φi〉〈φj |, (3.14)

where |φi〉〈φj | is the outer product and cij = aia
∗
j .

3.1.4 Unitary and non-unitary operations
A postulate of QM says that all evolution of quantum states is governed by unitary
operations, U, defined as the linear operators fulfilling

U † = U−1 ⇔ U †U = 1 (= UU †), (3.15)
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where the “dagger” operation means conjugation and transposition, U † =
(
UT
)∗

.
This remarkable property means that unitary operations are reversible, and there is
no preferred direction of this evolution. Eq. (3.15) also ensures that the probability
density of a pure state |ψ0〉 is conserved,

〈ψ|ψ〉 = 〈ψ0|U †U|ψ0〉 = 1. (3.16)

If we assume that unitary operations “push the universe forward in time”, by op-
erating on pure states (which can always be found in a large enough system), there
seems to be a contradiction in that the direction of time itself has no meaning in
this context. The evolution of quantum states should reflect the increase in entropy
that we observe, i.e., in agreement with the second law of thermodynamics. For a
discussion on this dilemma, see [Mac09] and references therein. In section 3.2.4 we
shall see that the quantum entropy of a pure state is zero, and quantum entropy
emerges as a consequence of the inability of measuring this complete state.

It can be shown (see Stinespring theorem [Sti55]), that if a particular state ρ
cannot be described as a pure quantum state on its own, it is always possible to
include hypothetical reservoir states, so that a pure state |R,ρ〉 can be found. This
high-dimensional Hilbert space state is called a purification of the smaller state. One
advantage of this view is that the evolution of pure states is governed by unitary
operators, see section 3.1.4. Conversely, the mixed state ρ can be recovered from
the purification by averaging over all possible outcomes in the the reservoir states,

ρ = TrR (|R,ρ 〉〈R,ρ|) , (3.17)

where TrR (·) is the partial trace, i.e., a trace operation performed only over the
reservoir basis states – see Appendix A.3.2 for details. It is also assumed that such
hypothetical reservoir states actually exist, and that the occurrence of mixed states
is only due to observation of an incomplete state, which is part of the purification.

Eq. (3.17) describes a process known as decoherence – the evolution of a pure
state into a mixed state, as a result of entanglement between the state and states
in the environment. Completely mixed states, i.e., where no interference exists
between outcomes of a measurement, can be seen as classical, since they behave
like we are used to. That is, they evolve according to our common perception of
every-day life objects.

In the next sections I will list two types of operators that are important for
qubits, as they represent errors, i.e., transformation of qubit states that can either
be in the form of unitary rotations – or in the form of decoherence due to entangle-
ment with a reservoir. In section 3.3.4 I will show how the effects of such operations
can be counter-acted by means of other unitary operators, called quantum gates.
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3.1.4.1 The Pauli operators

An operator basis {Ai} in H(N) has N ×N elements, and a linear combination of
operators Ai can transform a pure state |ψ〉 into any other state

|ψ′〉 = (
∑
i

aiAi)|ψ〉,

where
∑
|ai|2 = 1, ai ∈ C and |ψ′〉 needs not be normalised. If the operators Ai

are unitary, they will be amplitude conserving, i.e., in H(2), |detAi| = 1 and in
H(2) it is then convenient to use the 4 Pauli operators

1 =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Since Pauli operators are unitary, they are useful for describing a general unitary
qubit error. X represents a bit-flip,

X|k〉 → |k ⊕ 1〉,

where ⊕ is the modulo 2 operation and k ∈ {0, 1}. The Z operator is called
phase-flip,

Z|k〉 → (−1)k|k〉,

i.e., it will flip the sign of the |1〉 probability amplitude. Furthermore, the 1 opera-
tion does nothing, and thus corresponds to the “no-error” case, while Y is identical
to the combined operation iXZ.

3.1.4.2 The Kraus operators

Consider a system S, assumed to be in a pure state for simplicity. If a unitary
operator acts solely on S, we can write

ρ′S = USρSU
†
S .

Or, if the operations describe the interaction between S and a reservoir R,

ρ′SR = USRρSRU
†
SR.

Also in the latter case we may assume, for some R, that ρSR is pure. However, one
may not have access to R, and the state for S can only be obtained as the partial
trace over R,

ρ′S = TrR

(
USR|R,ρS 〉〈R,ρS|U †SR

)
. (3.18)
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I will now mention an equivalent procedure, which can be performed on S only,
assuming that R is inaccessible, but often with some assumption on an initial state
in R,

ρ′S =
∑
µ

KµρSK
†
µ, (3.19)

where Kµ are so-called Kraus operators [Kra83], which are in general non-unitary,
and fulfil

∑
µK

†
µKµ = 1. If the evolution of ρS is unitary, then there can be only

one term in Eq. (3.19), but if there are more terms, a pure state in S would in
general become entangled with R after unitary evolution of the system SR.

Example: Amplitude damping qubit errors can be modelled in a two-qubit system
initially prepared in |QS〉 ⊗ |0R〉 = (a|1〉 + b|0〉) ⊗ |0R〉, using a unitary operator
with the following effect,

|1〉 ⊗ |0〉 → √
p|0〉 ⊗ |1〉+

√
1− p|1〉 ⊗ |0〉,

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉.

For USR to be unitary we also need to take into account the reverse effect |0〉⊗|1〉 →
|1〉⊗ |0〉, for R initially in |1〉. The operation entangles the combined SR state, and
can be written in the basis {|i〉S ⊗ |j〉R} = {|00〉, |01〉, |10〉, |11〉},

USR =


1 0 0 0
0
√

1− p −√p 0
0 √

p
√

1− p 0
0 0 0 1

 , (3.20)

with the property U †SR = U−1
SR , needed for unitarity. Now, we can calculate ρ′S in

two equivalent ways, either as TrR (USR|QS〉 ⊗ |0R〉), or as in Eq. (3.19), using the
two Kraus operators

K0 =
[

1 0
0
√

1− p

]
, K1 =

[
0 √

p
0 0

]
. (3.21)

In both cases we get for, e.g., the initial state ρSR = |10 〉〈 10|,

ρ′S =
[
p 0
0 1− p

]
,

which is clearly a mixed state, as a consequence of the entanglement of SR.

3.1.5 Observables are Hermitian
Measurements on quantum states are represented by observables, which are a special
type of linear operators. Such operators O are Hermitian, or self-adjoint, which
means they have the property O = O†, or equivalently,

cij = c∗ji, (3.22)
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where cij are the coefficients in Eq. (3.14). This property ensures that any observ-
able has real eigenvalues. Thus, for an eigenbasis of an observable O(φ), {|φi〉},
there exists a corresponding set of real numbers {φi}, so that

O(φ)|φi〉 = φi|φi〉.

As a consequence of Eq. (3.22), eigenstates to Hermitian operators with different
eigenvalues are orthogonal.

The projection postulate states that a measurement of a pure state |ψ〉 in the
{|φi〉} basis, i.e.,

O(φ) =
∑
i

φi|φi〉〈φi|,

can only result in one of the values φi, and this particular value will be recorded
with probability | 〈ψ|φi〉 |2 (Born rule), in which case the measurement will cause
a preparation of the state |φi〉.

Since a measurement involves a meter, which typically after interaction with
some state |ψ〉 becomes entangled with it, one cannot easily analyse this situation,
and the above statement remains a postulate in QM. We also note that O(φ) is not
unitary, which indicates that part of the system is ignored (the meter).

The emergence of mixed states in section 3.1.1, can be seen as a result of a
joint operation OA⊗1B that corresponds to a measurement on Alice’s system with
OA, and on Bob’s system with the identity operation. If we consider a pure, fully
entangled, two-qubit state shared by Alice and Bob

|ψ〉 = a|0A〉 ⊗ |0B〉+ b|1A〉 ⊗ |1B〉,

and form the expectation value

〈ψ|OA ⊗ 1B|ψ〉,

we get

|a|2〈0A|OA|0A〉+ |b|2〈1A|OA|1A〉,

due to the orthogonality of |0B〉 and |1B〉. We can write the expectation value in a
different form

〈ψ|OA ⊗ 1B|ψ〉 = Tr (OAρA) , (3.23)

where ρA is Alice’s reduced density matrix

ρA = |a|2|0A〉〈0A|+ |b|2|1A〉〈1A|.



3.2. QUANTUM INFORMATION 31

3.1.6 Collective QND measurements
A QND measurement [GLP98] is a type of observable that does not change the
measured state, i.e., there is no back-action effect. The only way to do this deter-
ministically is to measure eigenstates to the observable, which naturally results in
the eigenvalues for that observable.

For QEC, it is common to use a collective QND measurement S, that does not
distinguish between pairs of elements, taken from mutually orthogonal sets of bases
{|ψi〉(0)} and {|ψi〉(1)}, whose elements are also eigenstates of S. Thus, such base
sets have a common set of eigenvalues si, and a collective QND operator can be
written

S =
∑
i

si

(
|ψi〉(0) (0)〈ψi|+ |ψi〉(1) (1)〈ψi|

)
. (3.24)

Despite the simple form of Eq. (3.24), it is in general non-trivial to construct such a
grouping of eigenstates, i.e., to implement the operation. In QEC, the measurement
outcomes si are called syndromes, and the operation S is in the qubit case called a
parity operation.

3.2 Quantum information

I will start out this section by an important theorem, discovered by Wootters and
Zurek [WZ82], which simply states that a general single quantum state cannot be
duplicated.

3.2.1 No-cloning theorem
Theorem 3. (No-cloning) There is no quantum operation that takes a state |ψ〉 to
|ψ〉 ⊗ |ψ〉 for all states |ψ〉.

Proof. Suppose |ψ〉 and |ϕ〉 are orthogonal. Then, the cloning operation must be
able to perform the following operations

|ψ〉 → |ψ〉|ψ〉, (3.25)
|ϕ〉 → |ϕ〉|ϕ〉. (3.26)

QM operations are linear (see section 3.1.3), therefore we may add Eq. (3.25) and
(3.26) to calculate the operational result for a superposition of |ψ〉 and |ϕ〉,

1√
2

(|ψ〉+ |ϕ〉)→ 1√
2

(|ψ〉|ψ〉+ |ϕ〉|ϕ〉). (3.27)

But this contradicts the assumption that a general state can be cloned, which would
require that

1√
2

(|ψ〉+ |ϕ〉)→ 1
2(|ψ〉+ |ϕ〉)(|ψ〉+ |ϕ〉). (3.28)



32 CHAPTER 3. QUANTUM ERROR CORRECTION

Since Eq. (3.27) and (3.28) are different, we have proven a general state cannot be
cloned by a quantum operation.

3.2.2 The classical bit (cbit), the qubit and the ebit
Unlike a classical bit, i.e., an element taken from {0, 1} – the basic building block
in quantum information is an element residing in H(2), called a qubit. Thus, it is
a quantum state with two orthogonal constituent states that we will denote |Q〉
and |Q⊥〉. A single qubit prepared by Alice, but unknown to Bob, is from Bob’s
perspective a mixture of the two states (assuming the two states are sent with equal
probability)

ρ = 1
2 (|Q 〉〈Q|+ |Q⊥ 〉〈Q⊥|) = 1

21. (3.29)

In general, these states are unknown, but can be written

|Q〉 = sinα|0L〉+ eiβ cosα|1L〉,
|Q⊥〉 = e−iβ cosα|0L〉 − sinα|1L〉,

(3.30)

so that 〈Q|Q⊥〉 = 0. Since QEC utilises redundancy, it is assumed that the pure
and mutually orthogonal basis states {|0L〉, |1L〉} occupy a 2-dimensional subspace
of the Hilbert space spanned by n constituent quantum states (see section 3.3.1). I
will reserve the use of “qubit” as an information entity, in the above sense.

The qubit, despite having an infinite number of configurations, can only store
one classical bit (also called cbit) of information, due to its two orthogonal states.
However, it may represent the two bit-values simultaneously, allowing for simul-
taneous calculations [Deu85] – which is why it has attracted much attention as a
means for doing quantum computing.

A qubit can also be used as a resource of entanglement. A Bell state, e.g.,

|Φ+〉 = 1√
2

(|Q〉 ⊗ |Q〉+ |Q⊥〉 ⊗ |Q⊥〉) , (3.31)

is a maximally entangled two-qubit state, and this amount of entanglement is de-
fined to equal one ebit, irrespective of basis. While two qubits may be used to form
one ebit, this comes at a cost, namely that the state (3.31) cannot simultaneously
be used to represent two cbits, since it cannot be written as a product of two states
on the form (3.30). The ebit has many uses in quantum information, one prominent
example being teleportation of qubit states [BBC+93]. Teleportation here (unlike
in some science-fiction movies), does not mean that a piece of matter is teleported,
but rather that an unknown qubit state can be moved to a different point in space,
while destroying the original qubit. The “carrier” of the qubit, e.g., a spin-1/2
particle, is not teleported – only the unknown superposition. Therefore, an equally
sized Hilbert space must be in place at the destination point of the teleportation.
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3.2.3 Alice and Bob
In order to characterise the information effects of QEC for a given channel and
code, I will consider a joint density matrix for a single qubit, before and after the
effects from the channel and any error correction is applied. I will label the initial
qubit state A (Alice), and the final qubit state B (Bob), alluding to a scenario
where Alice prepares two identical qubits and sends one to Bob. For the sake of
reasoning, Alice keeps the other qubit as a reference state which can be written as
a density matrix in the basis {|Q〉, |Q⊥〉} as

ρA = 1
2

[
1 0
0 1

]
,

assuming, for simplicity, that Alice sends |Q〉 and |Q⊥〉 with the same probability.
The joint density matrix for the AB system allows us to quantify how well the

qubit has “survived” a single pass through the channel, but ρAB depends strongly on
what measurement basis Bob uses to measure his qubit. If the channel interaction
is absent, or errors caused by the channel can be perfectly corrected, the best basis
Bob may use is {|Q〉, |Q⊥〉}, which results in the joint density matrix

ρAB = 1
2

[
1 · ρB 0

0 1 · ρ⊥B

]

= 1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , (3.32)

in the basis {|Q Q〉, |Q Q⊥〉, |Q⊥ Q〉, |Q⊥ Q⊥〉}, where e.g., |Q Q〉 is shorthand for
|Q〉A ⊗ |Q〉B.

In contrast, the worst possible measurement basis Bob can use will result in,
firstly, a rotation of basis R = 1A ⊗RB, i.e., a pre-measurement

ρpre
AB = 1

4


1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

 , (3.33)

followed by a von Neumann measurement (that erases any off-diagonal elements),
i.e.,

ρAB = 1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.34)

using e.g., {(|Q〉+ |Q⊥〉)/
√

2, (|Q〉 − |Q⊥〉)/
√

2} as measurement basis.
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Shortly, I will show that the states (3.32) and (3.34) are really the best and worst
cases, respectively, as measured by a quantity called quantum mutual information,
i.e., the quantum analogue of Eq. (2.5).

3.2.4 Quantum entropy
For quantum states, their entropy is defined due to von Neumann [von32]

Hq(ρ) = −kBTr (ρ logρ) . (3.35)

Density matrices can always be diagonalised, since they are a sum of dyadic pro-
ducts. In addition, the eigenvalues λi of the diagonal form are always real and
non-negative. These properties of the density matrix ensure that Tr (ρ logρ) is
well-defined and it is convenient to write

Hq(ρ) = −
∑
i

λi log λi, (3.36)

where 0 · log 0 is defined to be zero. I have in Eq. (3.36) omitted kB, since I shall
express quantum entropy in units of Boltzmann’s constant, in better analogy with
Shannon entropy in Eq. (2.3).

It should be noted that the quantum entropy, as defined in Eq. (3.35), is zero
for all pure states. Take e.g., a pure state in H(2), with density matrix

ρ =
[

1 0
0 0

]
.

Its von Neumann entropy is then calculated as −0 · log 0− 1 · log 1 = 0.

3.2.5 Quantum mutual information
In analogy to classical mutual information, quantum mutual information is defined

Iq(A : B) = Hq(ρA) +Hq(ρB)−Hq(ρAB), (3.37)

where ρA = TrB (ρAB) and ρB = TrA (ρAB).
This expression gives immediately for the perfect transmission and measure-

ment, Eq. (3.32),

Iq(A : B) = 1 + 1− 1 = 1.

However, for the case when Bob performs the worst measurement, Eq. (3.34),

Iq(A : B) = 1 + 1− 2 = 0,

which tells us that no information is transmitted in the latter case.
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Since the action of the channel, and the error correction is intimately connected
to how the logical states |0L〉 and |1L〉 are coded, and the quantum computer itself
is agnostic about the qubit parameters α and β in Eq. (3.30), it is fruitful to change
basis to {|Q 0L〉, |Q 1L〉, |Q⊥ 0L〉, |Q⊥ 1L〉}, in which ρAB takes the general form

ρAB =


a b 0 0
b∗ c 0 0
0 0 d −b
0 0 −b∗ e

 . (3.38)

A remarkable quality of Iq(A : B) is that it is invariant under local unitary opera-
tions, such as a rotation of basis performed by Bob,RρABR

−1, whereR = 1A⊗RB.
Therefore, operations on qubits can be performed in e.g., the basis {|0L〉, |1L〉},
without harm, as long as the operations are unitary. One such rotation of Bob’s
basis is the optimal pre-measurement, and will unitarily transform Eq. (3.38) into
its diagonal form. Bob’s rotation of basis can be found as TrA (R), where the
columns of R constitute the eigenvectors of ρAB. The maximal quantum mutual
information possible to extract from ρAB is therefore given by the eigenvalues of
Eq. (3.38),

λ1 = 1
2

(
−
√

(a− c)2 + 4bb∗ + a+ c
)
,

λ2 = 1
2

(√
(a− c)2 + 4bb∗ + a+ c

)
,

λ3 = 1
2

(
−
√

(d− e)2 + 4bb∗ + d+ e
)
,

λ4 = 1
2

(√
(d− e)2 + 4bb∗ + d+ e

)
.

The mutual information is then

Iq(A : B) = 2 +
4∑
i=1

λi log λi.

Here, I have used

TrA (ρAB) = TrB (ρAB) = 1
21

(2),

assuming that operations are trace-preserving, and

Hq(1
21

(2)) = 1.

3.2.6 Is fidelity an information measure?
A quantity, commonly used to quantify “sameness” between two states, is the fi-
delity, defined for pure states as

F(|ψ〉, |ϕ〉) = | 〈ψ|ϕ〉 |2, (3.39)



36 CHAPTER 3. QUANTUM ERROR CORRECTION

i.e., the probability of preparing |ϕ〉 when measuring |ψ〉. Fidelity thus takes the
value 0 for two orthogonal states, and the value 1 for identical states. For mixed
states, fidelity is defined through averaging, see [Joz94],

F(ρ,σ) = F(ρ,σ) =
(

Tr
(√√

ρσ
√
ρ

))2
=
(

Tr
(√√

σρ
√
σ

))2
. (3.40)

For the situation when Alice sends a qubit 1
21, and Bob receives it in the worst

basis, we therefore get, by substituting ρ and σ with the joint density matrix in
Eq. (3.32) and Eq. (3.33) respectively,

F(A,B) = 1/2. (3.41)

As seen in the previous sections, (quantum) fidelity and quantum mutual informa-
tion both become 1 in the ideal situation, but for the worst situation, where no
information can be transmitted between Alice and Bob,

Iq(A : B) = 0, F(A,B) = 1/2. (3.42)

Therefore, one may ask if fidelity is a good figure of merit in QEC? In paper B, I
study a QECC consisting of 5 qubits, in a particular channel, and show that fidelity
and quantum mutual information in general will not be simultaneously optimised
– the optimisation of fidelity can only be done at the expense of quantum mutual
information, and vice versa.

We know from classical information theory that we may expect some sameness
between two random strings, i.e., non-zero fidelity as defined in Eq. (2.10), and
that zero fidelity between two random strings will only occur very rarely. Instead,
entropic measures such as mutual information, are used to characterise classical
information transmission. This also affects classical coding strategies, as we saw in
section 2.3, so it is not surprising that the same holds also for QEC.

3.3 Error correction procedure

The goal of QEC is to protect a qubit from decoherence and small unitary errors,
by introducing redundancy to it, i.e., encoding the logical states |0L〉 and |1L〉 from
Eq. (3.30) onto several physical qubits, so that despite errors, the coded qubit can
be recovered. This section will take the reader through the different phases of QEC.

3.3.1 Preliminaries

Firstly, I would like to mention an error effect which is subtle, and needs extra
attention – the reservoir memory effect.
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3.3.1.1 Reservoir memory effect

From section section 3.1.4, we know that errors on a system S are best described
as a unitary operation over SR, i.e., the system and a reservoir. This will in
general cause S to become entangled with R, which leads to decoherence in S if
the reservoir is inaccessible. We then describe the evolution of S by tracing out the
reservoir system, or equivalently, by application of so-called Kraus operators on S
– i.e., non-unitary operations which are trace preserving only in the operator sum
sense, see Eq. (3.19).

However, it is illustrative to express the effect of USR on a combined state of
a qubit ρQ = 1/2 and an initially pure reservoir state |φ0〉R in terms of Pauli
operators on S, and some unknown back-action on R. Then, for any state |Q〉,

USR : |Q〉 ⊗ |φ0〉R →
1|Q〉 ⊗ |φ1〉R +X|Q〉 ⊗ |φ2〉R + Y |Q〉 ⊗ |φ3〉R +Z|Q〉 ⊗ |φ4〉R, (3.43)

where the reservoir states {|φi〉R} are not necessarily mutually orthogonal or nor-
malised. There will be two extreme cases, depending on the characteristics of the
reservoir:

Example: Assume all the reservoir states are parallel, |φi〉 = ai|φ‖〉, then

|ψ〉 ⊗ |φ0〉R → (a01+ a1X + a2Y + a3Z) |ψ〉 ⊗ |φ‖〉R, (3.44)

where ai ∈ C, determined by USR,
∑
i |ai|2 = 1 and in this case the system is a pure

state after the operation. With knowledge of the coefficients ai, one can restore
the state |ψ〉 perfectly, and no memory of the event is retained in the reservoir.
To support this claim, I will calculate the leaked information, i.e., the mutual
information between S and R, and show that it vanishes,

Iq(S : R) = Hq

(
1
21
)

︸ ︷︷ ︸
1

+Hq (ρR)︸ ︷︷ ︸
0

−Hq

(
1
4

[
1 · ρR 0

0 1 · ρR

])
︸ ︷︷ ︸

1

= 0. (3.45)

I will call such reservoirs memory-less, due to this property. Some macroscopic
states, e.g., the thermal states ρT(n), consisting on the average of n photons, could
constitute an almost memory-less reservoir due to Tr (ρT(n)ρT(n+ 1)) ≈ 1, for
n� 1. Thus, for a photonic quantum code, transferring one photon to a reservoir
thermal state with n� 1, can hardly be distinguished from not doing so.

In contrast, a more realistic view is that the interaction with a reservoir results
in, to some degree, distinguishable states in R. As an extreme example, consider the
Fock states, or number states, which are simply labelled by the number of photons
in the state, and have the property 〈n|n+ 1〉 = 0, i.e., the state corresponding to
one added photon is perfectly distinguishable to the case when no photon is added.



38 CHAPTER 3. QUANTUM ERROR CORRECTION

Example: Assume all the reservoir states are orthogonal, 〈φi|φj〉 = a∗i ajδij , then
we must describe S as the partial trace of Eq. (3.43) over R

ρ′S = |a0|2ρS + |a1|2XρSX
−1 + |a2|2Y ρSY

−1 + |a3|2ZρSZ
−1. (3.46)

In this case the reservoir retains a memory of which of the events occurred. The
operators 1,X,Y , and Z are in this context called Pauli Kraus operators, due to
the resemblance to Eq. (3.19).

I shall call errors in the form Eq. (3.44) unitary rotations (on S), and errors
stemming from Eq. (3.46) will be referred to as decoherence.

In the examples above, since only one system qubit is considered, it is not
possible to distinguish 4 such Pauli errors, but if a string of n physical qubits are
considered, the situation is different, as we will see shortly. To clarify what was
just said, I will use the following new terms:

Definition 3.1. (Physical qubit, carrier) A physical qubit is a quantum state span-
ning a 2-dimensional Hilbert space. The explicit realisation of this Hilbert space, is
called a carrier. For example, the two linear polarisation states of a photon span
H(2), therefore a photon can “carry” a qubit.

Definition 3.2. (Logical qubit, codeword, code) A block of n physical qubits are
typically used for the encoding of a single logical qubit. The full Hilbert space is
then H(2n), and it has a 2-dimensional subspace spanned by the codewords |0L〉 and
|1L〉. This subspace is called a code.

3.3.1.2 Motivation for the memory-less condition

A memory-less reservoir can be motivated by the following argument: Let a photon
impinge on a mirror at a normal angle. If the mirror is heavy, the momentum
of the photon will change with 2~ω/c, where ~ω is the photon energy, while the
energy will be almost unchanged (elastic collision). If we do not care to measure in
what direction the photon travels, we may say that a qubit encoded on the photon
in the number basis {|0〉, |1〉} is not affected. If, on the other hand, the mirror is
very light, there will be some degree of entanglement between the mirror and the
qubit. If one were to perform a partial trace over the mirror, the qubit would be in
a mixed state. A similar argument can be made if instead, the photon is encoded
in the spin basis {|S = −1〉, |S = 1〉}, or the polarisation basis {|H〉, |V 〉}.

If the photon is instead absorbed in a reservoir, the distinguishability of the event
depends on the reservoir temperature TR. When a “cold” reservoir macrostate
absorbs a “hot” photon, the initial and final macrostates are almost orthogonal,
whereas a “hot” reservoir cannot distinguish this event, i.e., the initial and final
macrostates are almost parallel. The latter assumption is valid for kBTR � ~ω.
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3.3.1.3 Simple codes

One may be tempted to try to simply copy a qubit three times, in analogy to the
perfect classical three-bit code:

Example: Consider the equivalent of the classical repetition code C2, which is
formed by simply repeating a general qubit three times,

QC1: Repeating a general qubit as a code

|Q〉 → |QQQ〉, |Q⊥〉 → |Q⊥Q⊥Q⊥〉.

This code is possible to construct, since it is possible to clone orthogonal qubits
in a known basis. However, it is usually assumed that encoding of the qubit is inde-
pendent of the preparation. Then, the encoder has no knowledge of the parameters
α and β in Eq. (3.30), and therefore the no-cloning theorem (Theorem 3) forbids
such operations.

Instead, the encoding is done in a particular basis dictated by the gates in the
encoder. If qubit gates are used, I will write the basis {|0〉, |1〉}, denoting individual
physical qubit states in a logical qubit, as well as the input and output states of
the gate. While encoding a logical qubit on n physical qubits expands the Hilbert
space of the code, corresponding gates will account for this. The logical basis then
becomes {|0〉, |1〉}⊗n, since all gates are assumed to use the same basis.

The parameters α and β in Eq. (3.30) will in general affect how well a particular
QECC performs, for protecting a single qubit. However, the variation in effective-
ness due to these parameters is, for “small errors” negligible. In what follows, I will
therefore without loss of generality focus on studying the codewords |0L〉 and |1L〉.

Example: In the basis {|0〉, |1〉}⊗3, we can write a three-qubit code

QC2: Three qubit repetition code

|0L〉 = |000〉, |1L〉 = |111〉.

If we consider single bit-flips as the only source of error, and that such errors
affect the physical qubits independently with probability γ/3, we firstly note that

111|0L〉 = |000〉 = |S(0)
0 〉, 111|1L〉 = |111〉 = |S(1)

0 〉,

X11|0L〉 = |100〉 = |S(0)
1 〉, X11|1L〉 = |011〉 = |S(1)

1 〉,

1X1|0L〉 = |010〉 = |S(0)
2 〉, 1X1|1L〉 = |101〉 = |S(1)

2 〉,

11X|0L〉 = |001〉 = |S(0)
3 〉, 11X|1L〉 = |110〉 = |S(1)

3 〉.

These 8 states |S(j)
i 〉, called syndrome vectors, are all mutually orthogonal, and the

code is therefore said to be non-degenerate. Thus,〈
S

(j)
i |S

(l)
k

〉
= δjlδik, (3.47)
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which is a sufficient error correction criterion, in the case of a memory-less reservoir,
i.e., when errors are unitary operations on S. I will come back to this criterion in
section 3.4.4. Also, the resulting state from, e.g. |0L〉, will be pure

|0L〉 →
√

1− γ|S(0)
0 〉+

√
γ/3

(
|S(0)

1 〉+ |S(0)
2 〉+ |S(0)

3 〉
)
.

This example shows how Pauli operators affecting a single physical qubit can
be described in the case of a string of n physical qubits, i.e., by forming the unitary
operators

{Ei} = {1,X,Y ,Z}⊗n, (3.48)

e.g., for a three-qubit state, there exist 43 = 64 such operations. It is common to
use a quantum version of the classical term Hamming weight from section 2.2.1,

Definition 3.3. (Weight) The number of non-trivial single qubit Pauli operations
in an n-qubit operation is called weight.

Example: For a three-qubit state, there exists 10 operators of weight ≤ 1, e.g.,
1 ⊗ 1 ⊗ Y , which encompasses the situation that at most one Pauli error has
occurred.

The code QC2 was experimentally realised by Chiaverini et al., [CLS+04] using
trapped ions and simulated bit-flip noise.

3.3.1.4 Ancilla states – a reservoir that we can control

Consider again the example code QC2. The fact that all syndrome vectors (up
to maximum one bit-flip error) are different, and that errors resulting from |0L〉
can be distinguished from those resulting from |1L〉, indicates that all such errors
can be corrected. Naïvely, one would now like to map all the syndrome vectors
{|S(0)

i 〉} → |0L〉 and {|S(1)
i 〉} → |1L〉, i ∈ {0 . . . 3}, but such an operation is non-

unitary, and therefore impossible to perform using only the code Hilbert space.
Unitary operations need to map orthogonal states “one-to-one”, and we can achieve
this by introducing ancilla states.

Definition 3.4. (Ancilla) An accessible set of qubits, initially prepared in a known
state in the basis {|0〉, |1〉}, which takes part in unitary operations where it acts as
an entropy storage. In the recovery stage, ancilla states are disentangled from the
system, but will typically need to be reset before a new correction can take place.

Since we have 4 syndrome vectors for each codeword, the ancilla states needs
to span H(4). Two ancilla qubits will suffice for this task, and in principle, we can
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unitarily transform the syndrome vectors(√
1− γ|S(0)

0 〉+
√
γ/3

3∑
i=1
|S(0)
i 〉

)
⊗ |00〉,(√

1− γ|S(1)
0 〉+

√
γ/3

3∑
i=1
|S(1)
i 〉

)
⊗ |00〉,

into e.g.,

|000〉 ⊗
(√

1− γ|00〉+
√
γ/3|10〉+

√
γ/3|01〉+

√
γ/3|11〉

)
and

|111〉 ⊗
(√

1− γ|00〉+
√
γ/3|10〉+

√
γ/3|01〉+

√
γ/3|11〉

)
,

respectively. The ancilla qubits occupy positions 4 and 5, and we see that a partial
trace over the ancilla states will now preserve superpositions of |0L〉 and |1L〉. With
this I want to show that the ancilla states are needed for keeping error recovery
unitary, and constitute an important ally in fighting errors. I will come back to
how errors are reversed (undone) in section 3.3.4.

3.3.1.5 Quantum gates

Operations on qubits are performed by quantum gates, joined together in a quantum
circuit. It is important to note that the action of a gate is related to one particular
basis, usually written {|0〉, |1〉}⊗m for an m-qubit gate.

Definition 3.5. (Quantum gate) A quantum gate is a unitary operation that trans-
forms an input m-qubit state into an output m-qubit state.

Example: A CNOT gate operates on two qubits simultaneously, and can be com-
pletely described by the “truth values” in Table 3.1. In a quantum circuit, the
CNOT gate is denoted with a symbol shown in Fig. 3.1.

Input qubits Output qubits
Control(•) Target(⊕) Control Target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 3.1: Truth table for the CNOT-gate.
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⊕

•

Figure 3.1: A CNOT qubit gate with two inputs (left); one control input (•) and
one target input (⊕). The gate has the property that applying it twice is equivalent
to the identity operator.

The CNOT gate can be written as a unitary operator in the basis {|00〉, |01〉,
|10〉, |11〉},

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.49)

Example: Quantum gates are usually made for qubits, in which case CNOT gates
and so called Hadamard rotations give a complete “toolbox”, i.e., allowing for the
creation of all possible quantum circuits. For qutrits, I use a special gate in paper A,
which is unitary and whose operation is listed in Table 3.2. Its symbolic represen-
tation in a circuit is shown in Fig. 3.2.

⊕
A

•

Figure 3.2: A qutrit gate with two inputs; one control input (•) and one target
input (⊕), which also serves as output. The gate has the property that applying it
twice is equivalent to the identity operator.

In the next section, I will show how gates can be combined to perform operations
on several physical qubits.

3.3.2 Encoding
A quantum circuit is a sequence of unitary gates, which together form a more
complex unitary operation. Fig. 3.1 shows the representation of a CNOT gate,
which can be used to form a simple encoding circuit, shown in Fig. 3.3. This
circuit takes a state |ψ〉 = a|0〉 + b|1〉 in the top of the figure, and extends it to
a logical qubit with three physical qubits, creating the quantum code QC2, i.e.,
|ψ〉 → a|000〉+ b|111〉.
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Input qutrits Output qutrits
Control(•) Target(⊕) Control Target
|0〉 |H〉 |0〉 |V 〉
|0〉 |0〉 |0〉 |0〉
|0〉 |V 〉 |0〉 |H〉
|H〉 |H〉 |H〉 |0〉
|H〉 |0〉 |H〉 |H〉
|H〉 |V 〉 |H〉 |V 〉
|V 〉 |H〉 |V 〉 |H〉
|V 〉 |0〉 |V 〉 |V 〉
|V 〉 |V 〉 |V 〉 |0〉

Table 3.2: Truth table for the A-gate.

⊕

•

⊕

•|ψ〉

|0〉

|0〉
Figure 3.3: Two CNOT gates are used to encode a general qubit into three physical
qubits, forming a quantum code.

3.3.3 The action of the channel
Definition 3.6. (Channel) The channel incorporates the operational effects from
interactions between S and R, allowing calculation of code state evolution. However,
if R is inaccessible, it will be “traced out” and typically, memory effects are not
accounted for in the channel description.

QEC should ideally protect from both unitary rotations and decoherence, how-
ever many codes assume a memory-less channel, so that the reservoir states corre-
sponding to errors are parallel, i.e., independent of S after the error occurred. Thus,
while codes adapted from the classical domain typically will only correct unitary
rotations, and not decoherence errors due to entanglement with R, this depends
strongly on the channel. We have seen example of the memory-less bit-flip channel
earlier, now I will consider the action of a bit-flip channel with memory, using the
same code QC2.

It is easy to see that QC2 will not protect a qubit from decoherence errors, in
case the reservoir is entangled with a physical qubit in the codeword after the error.
From Eq. (3.30), we know that a general qubit |Q〉 or |Q⊥〉 are superpositions of
the logical states |0L〉 and |1L〉. Suppose that after a bit-flip on the first qubit of
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the state |Q〉, we have

|Q〉 → a|100〉 ⊗ |0〉R + b|011〉 ⊗ |1〉R. (3.50)

If we rotate the state back in S only, using E†1 ⊗ 1R = X−111⊗ 1R, we would get

a|000〉 ⊗ |0〉R + b|111〉 ⊗ |1〉R, (3.51)

i.e., the entanglement with the reservoir remains. In fact, it is impossible to remove
the entanglement between S and R using only local unitary operations (on S). The
error destroys any superposition between |0L〉 and |1L〉 so that the best we can do
is to “recover” (see section 3.3.4 for details) into the mixed state

|a|2|000 〉〈 000|+ |b|2|111 〉〈 111|. (3.52)

The fidelity between this state and |Q〉 is |a|4 + |b|4. For a = b = 1/
√

2, we
have F = 1/2, and a full calculation will show that Iq(S : R) = 1, i.e., one bit of
information was dissipated into the reservoir. Thus, the coded qubit completely
loses its information if this error occurs.

3.3.3.1 Amplitude damping channel

Now, consider the channel usually described by the operator sum ρ′S =
∑
κKκρSK

†
κ,

where {Kκ} are the two Kraus operators from Eq. (3.21):

K0 =
[

1 0
0
√

1− p

]
, K1 =

[
0 √

p
0 0

]
.

In essence, this channel is a SR bit-flip channel, so that a bit-flip in S has a corre-
sponding back-action on R. The reservoir is supposed to be in the |0〉R state, so
that it can “pick up” excitation from the system, i.e., |1〉S → |0〉S, but not the other
way around. Similarly to multi-qubit Pauli errors, see Def. 3.3, I will define the
weight of an n qubit (qudit) amplitude damping error as the number of non-trivial
single Kraus operators in {Ei} = {K0,K1}⊗n, where the “trivial” Kraus operator
is K0. Then, a QECC that can correct all such errors up to weight ≤ t is said to
correct t errors. A QECC was developed for this channel in [FSW08], which also
has the nice property that it can protect the qubit from decoherence, as we shall
see.

Example:

QC3: Four qubit amplitude damping code

|0L〉 = 1√
2

(|0000〉+ |1111〉),

|1L〉 = 1√
2

(|0011〉+ |1100〉).
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This code can be shown to correct one error (all Kraus operators of weight ≤ 1),
despite the fact that |S(i)

0 〉 6= |iL〉 in general, i.e., its “no error” operator K0 is not
the identity operator in this case.

In order to show that this code can, in addition, protect from decoherence
(in this channel), I will consider the full unitary operation US4R acting on the 4:th
physical qubit and the reservoir R, assuming that R is initially in the state |0〉R and
has physical qubit position 5. Making use of {|i〉S4⊗|j〉R5} = {|00〉, |10〉, |01〉, |11〉},
we have

(1S1 ⊗ 1S2 ⊗ 1S3 ⊗US4R5) |0L〉 ⊗ |0〉R =

=


1 0 0 0
0
√

1− γ −√γ 0
0 √

γ
√

1− γ 0
0 0 0 1


4,5

|000〉 ⊗


1√
2

0
0
0

+ |111〉 ⊗


0
1√
2

0
0




= 1√
2

[
|0000〉+

√
1− γ|1111〉

]
⊗ |0〉R +

√
γ
√

2
|0111〉 ⊗ |1〉R.

Similarly, for the second logical codeword,

(1S1 ⊗ 1S2 ⊗ 1S3 ⊗US4R5) |1L〉 ⊗ |0〉R

= 1√
2

[
|0011〉+

√
1− γ|1100〉

]
⊗ |0〉R +

√
γ
√

2
|0010〉 ⊗ |1〉R.

Here we see that if the reservoir is found in the state |1〉R, there is no way to tell
if this state was due to an error in |0L〉 or |1L〉, thus the pairwise superpositions
of syndrome vectors stemming from the two codewords in S survive. A complete
calculation (where all weight-0 and weight-1 amplitude damping errors are taken
into account), will show that QC3 will avoid decoherence, regardless of the the
memory retained in R. N.B. that this was not so for the code QC2 previously
mentioned, which requires that R is memory-less.

3.3.3.2 Dissipative channel

In a dissipative channel, the dissipation (or loss of excitation) of code states is
implied, resulting in emission, or scattering of quanta (e.g., photons) which are
possible to detect “in-flight” and possibly reveal clues of their origin. Such clues,
i.e., information transfer to R, are as we have seen detrimental to the performance
of QECCs since they may cause decoherence. Through coding, one may protect
a qubit from dissipation errors by eliminating clues in the same way as for the
amplitude damping channel, see QC3. A photon with energy ~ω, has two degrees
of freedom which allows the encoding of one bit, e.g., using the orthogonal polari-
sation states |H〉 and |V 〉. The dissipation of a photon results in the highly stable
vacuum state, which I will denote |0〉, and which is orthogonal to both |H〉 and
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|V 〉. Transitions between these states are assumed to take place with probability
γ, according to Fig. 3.4.

|H〉 |V 〉

|0〉

γ γ

Figure 3.4: At probability rate γ, the doubly energy-degenerate states |H〉 and |V 〉
can decay to the vacuum state |0〉 through the loss of one photon with energy ~ω.
The state |0〉 is orthogonal to both |H〉 and |V 〉.

More precisely, such a physical qutrit in S evolves according to three Kraus
operators in the {|0〉, |H〉, |V 〉} basis,

K0 =

 1 0 0
0
√

1− γ 0
0 0

√
1− γ

 , K1 =

 0 √
γ 0

0 0 0
0 0 0

 ,

K2 =

 0 0 √
γ

0 0 0
0 0 0

 , (3.53)

where γ is the probability of a jump from either |H〉 or |V 〉 to |0〉. K0 andK1,2 are
Kraus operators for the “no-jump” and “jump” events, respectively. We can also
verify thatK†0K0 +K†1K1 +K†2K2 = 1S, which is a consequence of that USR con-
serves trace in S, R and SR simultaneously, however shifting relative probabilities
between eigenstates.

The typical case for photons in a lab setup, is that the reservoir is “cold”, i.e.,
kBTR � ~ω, where ~ω is the energy of the photon and TR is the temperature of
the reservoir. In this scenario, the reservoir may be able to distinguish an emitted
(scattered) photon’s polarisation, and after tracing out the reservoir, superpositions
in the coded qubit may be lost. It is preferable to protect a qubit from such reservoir
memory effects – thus the code must hide the origin of an emitted photon. A QECC
that does exactly this is reported in paper A, and its logical code words consist of
the highly entangled states given by QC4 below.

Example:
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QC4: Three photon code - with the feature that R may without restriction measure
an emitted photon due to a dissipation error

|0L〉 →
1√
3

(|0VH〉+ |H0V〉+ |VH0〉) ,

|1L〉 →
1√
3

(|000〉+ |HHH〉+ |VVV〉) .

Some intuitive understanding of why this code protects against decoherence may
be found in Fig. 3.5.

Γ9

Γ8

Γ7

•

•
•

| HOV 〉

| V HO〉

| OV H〉
◦

◦

◦

| HHH〉

| OOO〉

| V V V 〉

Γ6

Γ5

Γ4

•

•
•

| HOV 〉

| V HO〉

| OV H〉
◦

◦

◦

| HHH〉

| OOO〉

| V V V 〉
Γ3

Γ2
Γ1•

•
•

| HOV 〉

| V HO〉

| OV H〉
◦

◦

◦

| HHH〉

| OOO〉

| V V V 〉

Figure 3.5: |0L〉 and |1L〉 are marked with dots and circles respectively. Note
that each of the 9 planes representing the photon state of a given mode con-
tains exactly two kets – one circle from |1L〉 and one dot from |0L〉. The 6 planes
Γ1,Γ3,Γ4,Γ6,Γ7,Γ9 represent the modes |H〉 and |V〉 which can dissipate. There-
fore any one dissipated photon will not reveal if it came from the |0L〉 or |1L〉
codeword.
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3.3.4 Syndrome measurement and recovery
The unitary operation envisioned in section 3.3.1.4 can conveniently be realised in
two steps, where firstly a syndrome measurement is performed, i.e., an operation
on the form Eq. (3.24), which gives the same result for syndrome vectors stemming
from different codewords, but distinct results for different errors Eκ.

S =
∑
κ

sκ

(
|S(0)
κ 〉〈S(0)

κ |+ |S(1)
κ 〉〈S(1)

κ |
)
.

Once κ is known, one can in principle always apply a corresponding recovery oper-
ator

Rκ = |0L〉〈S(0)
κ |+ |1L〉〈S(1)

κ |. (3.54)

Example: If we go back to the simple “quantum repetition code” QC2, which
only protects against bit-flip errors, I will show how error correction can proceed.
We have seen in section 3.3.1.4 that we will need 2 ancilla states to be able to
recover the superposition between the logical codewords. We also know that we
must require the reservoir to “erase” the outcomes of the S − R interaction, i.e.,
R may not store the outcomes as orthogonal states |i〉R. A suitable syndrome
measurement is to perform pairwise CNOT operations on the physical qubits and
the ancilla states, a kind of parity operation, similar to the one used in classical
error correction. The net effect of the two first CNOT gates is to set the upper
ancilla state in |i⊕ j〉, i.e., addition modulo 2. The lower ancilla state will become
|i⊕ k〉, see Fig. 3.6. As an illustration, assume that the first qubit has flipped, so
that e.g., |Q′〉 = a|100〉 + b|011〉. Then the ancillæ will read a1 = 1 and a2 = 1,
and we can correct the error by applying X11 on the logical qubit. Thus we will
recover |Q〉 = a|000〉 + b|111〉 perfectly. After the correction, we must reset the
ancilla states to their original states (|0〉).

⊕

•

⊕

•

⊕

•

⊕

•

|i〉

|j〉

|k〉

|0〉

|0〉

a1

a2

Figure 3.6: A syndrome measurement circuit for QC2. The ancilla values {a1a2}
will take the values {00, 10, 01, 11} = {sκ}, and these will determine which of the
operations {111,1X1,11X,X11} will be applied to the three output states.
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The parity operation i⊕ j in the example deserves an extra comment; in QEC
we may in general not directly measure the “bit values” of the physical qubits
i, j, k. Doing so may harm superpositions by excluding states incompatible with
the measurement outcome. Instead, Eq. (3.24) requires that we perform a collective
measurement which gives the same outcome (sκ) for the same kind of error in the
two codewords simultaneously. We have seen the exact same principle in use, in
the case of classical error correction, where parity is a good choice in order to save
either memory or processing time. In QEC, we are not allowed to choose any other
strategy.

3.4 More on quantum codes

3.4.1 Notation

In analogy with classical codes, we can classify QECCs using a notation,

Definition 3.7. (Notation) An [[n, k, d]]2 quantum error correction code uses n
physical qubits to encode k logical qubits, i.e., using 2k logical codewords, and has
a distance d, the minimum weight of a Pauli operation Ea that does not fulfil
〈iL|Ea|jL〉 = Caδij, irrespective of i and j.

Example: We see that QC2 is denoted [[3, 1, 1]], since e.g.,
〈0L|11Z|0L〉 6= 〈1L|11Z|1L〉.

For Pauli errors, a code that can correct t errors has distance d = 2t+ 1. N.B.
that the relation between t and d becomes more diffuse in the case of e.g., codes
adapted for the amplitude damping channel. Crépeau et al. comment on this
peculiarity in [CGS05]:

...It demonstrates that the connection between correcting general errors
and erasure errors breaks down for approximate QECCs. This calls into
question some of the basic foundations of the theory of quantum error
correction, as it it suggests there is no sensible notion of distance for an
approximate quantum error correcting code.

3.4.2 The information carrier

The carrier for a qubit, i.e., the manifestation of a H(2) quantum state has implica-
tions for the stability of the qubit, and also limits the transitions between its states.
One suggested way of encoding qubits, is by means of trapped ions [LBMW03]. In
a qubit transmission scenario, coding qubits on “flying” carriers, such as the pho-
ton’s two polarisation states, may be a good way to protect exchanged qubits. Since
dissipation involves transition to the electromagnetic vacuum mode |0〉, one may
use this state already in the coding – effectively encoding a qutrit.
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But the general theory for qutrits tells us that if the carrier can represent three
orthogonal states, all conceivable operations on a general qutrit is e.g., given by the
9 Gell-Mann matrices,

λ0 =

 1 0 0
0 1 0
0 0 1

 , λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,
λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,
λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 . (3.55)

One can then show that if all syndrome vectors are mutually orthogonal, the needed
dimensionality of the Hilbert space put a limit on a [[n, k, 2t+ 1]]3-code, i.e., it must
satisfy the bound

2k
t∑
i=0

8i
(
n

i

)
≤ 3n. (3.56)

A similar bound for qubits is found in section 3.4.4. The minimum number of
qutrits needed for satisfying Eq. (3.56), while correcting one error and encoding
one bit is 4 – thus a [[4, 1, 3]]3 code may exist. In this case the number of unique
syndrome vectors is 66, which can be fitted into H(81). Hypothetically, a perfect
such QECC may exist, i.e., a code that saturates Eq. (3.56) is [[10, 6 log 3, 3]]3,
using 310 = 59049 syndrome vectors and encoding 6 qutrits (or 6 log 3 qubits).

One realises that not all of the qutrit operations in Eq. (3.55) are likely or even
possible, for the three photon states depicted in Fig. 3.4. For example, the |V〉 state
is not likely to change into |H〉 in this channel model, and vice versa. Moreover,
the state |0〉, the electromagnetical vacuum state, can be seen as a decoherence-free
subspace, see [LCW98], i.e., a “quiet corner” of the system Hilbert space, unaffected
by errors. This is also the reason why a QC4 may exist, in spite of violating the
bound Eq. (3.56), that general non-degenerate Pauli error codes should abide by.

3.4.3 Where is the information stored?
To illustrate how QEC can benefit from entanglement, consider the code QC2. In
this code, a measurement of any single constituent physical qubits will immediately
exclude one of the logical codewords, incompatible with the outcome. This destroys
a superposition of the logical states, e.g., |Q〉 = a|0L〉+ b|1L〉.

To remedy this, and since errors are usually assumed to affect single physical
qubits independently in a bit-flip channel, we may apply a three-qubit rotation on
the codewords in QC2, so that each logical codeword is fully entangled:
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QC5: “Non-local” repetition code for the bit-flip channel

|0L〉 = 1√
2

(|000〉+ |111〉),

|1L〉 = 1√
2

(|000〉 − |111〉).

Now, a measurement of a single physical qubit will not exclude any logical
codeword, since both codewords are compatible with any of the outcomes 0 or 1.

This principle is at work in Shor’s code [Sho95],

QC6: Shor’s [[9,1,3]] code

|0L〉 = 1√
2

(|000〉+ |111〉)⊗3,

|1L〉 = 1√
2

(|000〉 − |111〉)⊗3.

Here an entangled block is repeated three times, in order to also correct one
phase-flip error.

3.4.4 Error correction criteria
Criteria that QECCs need to abide by include those in [EM96] and [KL97]. These
criteria had in mind a certain type of QECCs, namely those adapted for channels
which are unitary over S, such as the Pauli channel. However, it was later realised
that much of the underpinnings of such rules were overthrown for non-unitary (on
S) channels, such as the amplitude damping channel – where other codes could
successfully be used. In particular, the “trivial operation” (with weight 0) is typ-
ically not the identity operation 1 (c.f., the Kraus operator K0 for the amplitude
damping channel), but correction can nevertheless be performed to an acceptable
degree, in a recovery procedure called approximate error correction. The amplitude
damping channel models the situation where the system S becomes entangled with
a reservoir R and therefore suffers from decoherence. For these latter channels,
the codes adapted for Pauli channels did not work well, and Leung et al.[LNCY97]
found a new set of rules for these channels. In addition to these requirements,
there is also one criterion (Theorem III.5 in [KL97]) that relates to the discussion
on “reservoir memory” in section 3.3.1.1.

Recall that for the “repetition code” QC2, in section 3.3.1.3, all the error op-
erators Ei up to weight 1 resulted in mutually orthogonal syndrome vectors. We
may express Eq. (3.47) more generally,

〈jL|EiEk|lL〉 = δjlδik. (3.57)

But it turns out that Eq. (3.57) is a too strict condition, a sufficient and necessary
criterion for QEC, (for error operators unitary over S) is

〈jL|EiEk|lL〉 = Cikδjl, (3.58)
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where Cik = 〈mL|EiEk|mL〉 is a Hermitian matrix that must not depend on m.
These criteria on QECCs immediately leads to the following important classifi-

cations, which have implications on how densely one may encode information,

Definition 3.8. (Non-degenerate code) A non-degenerate QECC has mutually or-
thogonal syndrome vectors {|S(j)

i 〉}.

Definition 3.9. (Degenerate code) A degenerate QECC has at least two pairs of
parallel syndrome vectors.

3.4.4.1 Non-degenerate codes

Non-degenerate codes are similar to classical codes, in the sense that they will need
as many dimensions in the code space as there exist syndrome vectors. The Hilbert
space consisting of n qubits, can thus accommodate a maximum of 2n syndrome
vectors. Assuming a Pauli channel code that can correct t errors and encode k
qubits, we can write this as an inequality,

Definition 3.10. (Quantum Hamming bound)

2k
t∑
i=0

3i
(
n

i

)
≤ 2n. (3.59)

See [KL97, BDSW96, EM96, Got96] for details.

Definition 3.11. (Perfect quantum code) QECCs that fulfil Eq. (3.59) with equal-
ity are called perfect.

Example: The five qubit quantum code discovered independently in [LMPZ96] and
[BDSW96], is the shortest QECC that can correct one Pauli error of any kind. One
implementation of this code uses the following encoding [LMPZ96],

QC7: 5 qubit code, [[5, 1, 3]]

|0L〉 = 1√
8

(−|00000〉+ |01111〉 − |10011〉+ |11100〉+

|00110〉+ |01001〉+ |10101〉+ |11010〉),

|1L〉 = 1√
8

(−|11111〉+ |10000〉+ |01100〉 − |00011〉+

|11001〉+ |10110〉 − |01010〉 − |00101〉).

Since QC7 is perfect, it leaves no room at all for correcting, or even detecting
weight 2 errors. Instead such errors will be misdiagnosed.
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3.4.5 Short versus long codes

Codes can be made longer than QC7 (by increasing n) for two purposes, one is to
correct more errors (increase t), while another reason is to encode more qubits in
a code block (increase k). As an example of the latter, there exists an [[85, 77, 3]]
perfect code. As a rule of thumb, the former codes are more difficult to find.

For non-degenerate qubit QECCs, we know from the quantum Hamming bound
Eq. (3.59), that any code is a tradeoff between the number of encoded qubits k and
the number of correctable Pauli errors t, for a given n. Such QECCs also need to
fulfil other bounds, such as the singleton bound [KL97], and a bound presented in
[CRSS85].

Thus, to correct additional errors one has to increase the dimensionality of the
Hilbert space by adding extra physical qubits, however while doing so, the channel
interaction increases at the same time as such higher order errors become more and
more unlikely. Also, the number of syndromes needed to correct a weight k + 1
error is significantly larger than to correct a weight k error. These “counter-acting
forces” led us to study the “efficiency” of long codes [BAS08]. To do so, we used
tabulated codes from [Gra07], but also hypothetical codes (which have not been
found, but fulfill the quantum Hamming bound). We also assumed a depolarising
channel, which is a channel where (the nontrivial) Pauli errors are assumed to occur
independently, each with a probability of p/3.
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Figure 3.7: The probability that the error corrected state is identical to the original
state for different codes. The codes are assumed to have parameters [[64,56,3]]
(solid), [[64,48,5]] (dashed), and [[64,43,7]] (dot-dashed). Inset, the corresponding
code efficiency E is plotted.
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Then, the probability P that no more than t errors occur, so that a [[n, k, 2t+ 1]]
QEC can correct such errors, is given for one code block, by

P =
t∑
i=0

(1− p)n−ipi
(
n

i

)
. (3.60)

This probability is plotted in Fig. 3.7 for three n = 64 codes, where one can see
that when more errors are corrected (at the expense of less encoded qubits), the
success probability increases, which is well known.

If one instead asks – “how do we quantify efficient use of a fixed number of
physical qubits”, i.e., in order to maximise the number of correctly transmitted
qubits over the channel?
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Figure 3.8: The efficiency for codes with assumed parameters [[5,1,3]] (solid),
[[8,3,3]] (dashed), [[17,11,3]] (dot-dashed), [[40,33,3]] (small-dashed), and [[85,77,3]]
(dot-dot-dashed).

There are several ways to define “efficiency” and a measure based on mutual
information appears most natural. However, we have opted to define a measure of
efficiency which is the average number of correctly transmitted qubits, per physical
qubit and per code block,

Definition 3.12. (Efficiency) We define the efficiency of a Pauli channel, non-
degenerate [[n, k, d]] QECC, with independent errors

E = Pk

n
. (3.61)
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Some intuitive understanding of the efficiency E as a function of p can be gained
from Fig. 3.8, for some existing, and some hypothetical QECCs. Keeping t = 1
fixed, we see that the efficiency is high for large n, and small p, while for higher
p, the short codes are more efficient. A more exhaustive discussion on this can be
found in [BAS08].

3.5 Discussion and open questions

An interesting, and alternative viewpoint on QEC is to investigate properties of
the “carriers” of qubits, with respect to their stability, i.e., their tendency to inter-
act with reservoir states. The vacuum state for a photon carrier, |0〉, is one such
interesting state that is very stable, and could be used for QEC. When making
maximum use of particular carriers, and their typical resulting states after interac-
tion with the environment, the most practical choice of base b in a [[n, t, d]]b code
may be different from 2.

One may also view QEC from an informational viewpoint, and I have given
some examples of how to quantify “informational leakage” through the concept of
quantum mutual information.

While the set of Pauli operators completely describe errors on qubits in contact
with a memory-less reservoir, this description may be overly pessimistic in that
for many channels, not all such errors will occur. Also this description is overly
optimistic, in the sense that not all reservoirs are memory-less. A “hot” reservoir
is less inclined to save a record of interaction with the code system, than a “cold”
reservoir. But on the other hand, a hot reservoir typically increases the overall
noise, and would make error-correction harder.

It appears that given a limited number of information-carrying resources, it is
still an open question how to use such resources efficiently, i.e., choosing the code
parameters k, d and n in a [[n, t, d]]b code.





Appendix A

Useful identities in quantum
mechanics

A.1 Functional analysis

Associated with the complex vector space H(N) is a real valued norm, denoted
|| · ||, with the properties

|| v || ≥ 0,
|| v || = 0⇔ v = 0,
|| cv || = |c| || v ||,

|| v + w || ≤ || v ||+ || w ||,

where v, w ∈ H(N), and c ∈ C. From the norm, we also introduce a measure of
distance,

d(v, w) = || v − w ||, ∀ v, w ∈ H(N),

called the metric induced by the norm.
The inner product is a map from H(N) × H(N) to the scalar K, i.e., for every

pair (|ψ〉, |φ〉), there is an associated scalar, called inner product, with the property

〈ψ|ψ〉 ≥ 0.

A quantum state |ψ〉 is defined in Hilbert space, denoted H(N) of dimension N ,
which is a complex valued space with a dual state and a metric defined on it.

A.2 Notation

I will list an alternative “tensor notation”, which will sometimes be used due to its
compactness. It is implied that when two indices appear exactly twice, they should
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be summed over (Einstein summation convention), e.g.,

Aijbj ≡
∑
j

Aijbj .

Some of the basic notation elements are

1A
.= δijAjk = Aik,

AB
.= AijBjk,

Ab
.= Aijbj ,

a · b .= aibi,

Tr (A) .= Aijδij = Aiiδii = Aii,

where A and B are matrices, a and b are vectors. We also have

a× b .= εijkaibj êk,

where a, b ∈ R3. The Levi-Civita tensor εijk is zero for i = j, j = k, or i = k, but

ε123 = ε231 = ε312 = −ε213 = −ε132 = −ε321 = 1.

The dyadic product of a and b is written

ab
.= aibj .

The trace of any dyadic product per definition equals the scalar product

Tr (ab) = a · b .= aibi.

The transpose of a matrix is simply obtained by switching indices

Aij
T = Aji.

A.3 Density matrices

Tensor notation is useful for representing quantum states, especially when those
are defined in a Hilbert space of larger dimension than two. For the important case
when no correlations between states ρA in H(nA)

A and ρB in H(nB)
B , we may write

ρAB = ρA ⊗ ρB
.= ρA

ijρ
B
kl.

In this case, the number of unique elements is n2
A + n2

B, and assuming nB = 2, we
explicitly have

ρAB =
[
ρAρ

B
11 ρAρ

B
12

ρAρ
B
21 ρAρ

B
22

]
.

In general, however, a bipartite state ρAB has (nA ·nB)2 elements and can be written

ρAB
.= ρAB

ijkl.
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A.3.1 Trace operations
Let ρAB be a pure state in the systems A and B. To perform a measurement MA

on only A is equivalent to perform MA ⊗ 1B, which yields an expectation value in
tensor notation

〈MA〉 = ρAB
ijklM

A
kiδjl = ρAB

ijkjM
A
ki. (A.1)

This is usually written in matrix notation as

〈MA〉 = Tr
(
MAρA

)
,

where

ρA = TrB (ρAB) ,

meaning the trace is only performed over the system B. In tensor notation we can
identify

TrB (ρAB) = ρAB
ijklδjl = ρAB

ijkj . (A.2)

A.3.2 Partial trace (procedure)
Take the Bell state (|00〉+ |11〉)/

√
2:

ρ12 = 1
2 (|00 〉〈 00|+ |11 〉〈 00|+ |00 〉〈 11|+ |11 〉〈 11|) .

Trace out the second qubit:

ρ1 = Tr2 (ρ12) = 1
2 (Tr2 (|00 〉〈 00|) + Tr2 (|11 〉〈 00|) + Tr2 (|00 〉〈 11|) + Tr2 (|11 〉〈 11|))

= 1
2 (|0 〉〈 0| 〈0|0〉+ |1 〉〈 0| 〈1|0〉+ |0 〉〈 1| 〈0|1〉+ |1 〉〈 1| 〈1|1〉)

= 1
2 (|0 〉〈 0|+ |1 〉〈 1|) = 1/2.

This state is a mixed state even though the composite state was pure.

A.4 Parallellity and orthogonality

In quantum theory and in most scientific fields the notion of projection is commonly
used, so that the projection of a vector a on another vector b is calculated as a · b
and vice versa. We note that this measure depends on the length of the vectors, so
that if we want a measure that just quantifies how parallel a and b are, but says
nothing about their length, we could define parallellity as

P(a,b) = a · b
|a||b|

= â · b̂.
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This measure has the nice properties that it takes the values one for parallel vectors,
and zero for orthogonal vectors. There is another “complementary” property for the
vectors, namely how orthogonal they are. We would like to define a similar measure
for this property, which has the property that it is zero for parallel vectors, and is
one for orthogonal vectors. We would then like to define a relation between them,
namely

P2(a,b) + O2(a,b) = 1.

–But what would such an O look like, does it even exist in general? The Schwartz
inequality translates in our language to

P2(a,b) ≤ 1,

but gives no hint of what needs to be added for the equality to hold. However,
there surely must be some simple cases where we can find an explicit form for our
orthogonality measure – if it exists? Yes, we have for example in R3:

P2(a,b) + O2(a,b) = |a · b|
2 + |a× b|2

|a|2|b|2
= 1,

where a×b = εijkaibj êk. Actually a×b is only defined in R3, but I will now define
in CN ,

M = ab− ba = aib
∗
j − bia∗j ,

and

|a× b|2 =
∑
i>j

|Mij |2.

Then, for pure states |a〉 and |b〉 in H(N),

O2(|a〉, |b〉) =
∑
i>j |aib∗j − bia∗j |2

〈a|a〉 〈b|b〉
,

P2(|a〉, |b〉) = 〈a|b〉2

〈a|a〉 〈b|b〉
.

A.5 Completely mixed states

A completely mixed state ρ = 1
21, in some basis {|0〉, |1〉} takes the same form in

any basis. To see this, a different general basis can be written {|φ〉, |φ⊥〉}, where

|0〉 = cos θ|φ〉+ eiφ sin θ|φ⊥〉,
|1〉 = sin θ|φ〉 − eiφ cos θ|φ⊥〉,
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so that

ρ = 1
2 (|0 〉〈 0|+ |1 〉〈 1|) ,

= 1
2((cos θ|φ〉+ eiφ sin θ|φ⊥〉)(cos θ〈φ|+ e−iφ sin θ〈φ⊥|)

+(sin θ|φ〉 − eiφ cos θ|φ⊥〉)(sin θ〈φ| − e−iφ cos θ〈φ⊥|))

= 1
2((cos2 θ + sin2 θ)|φ〉〈φ|+ (cos2 θ + sin2 θ)|φ⊥〉〈φ⊥|)

= 1
2 (|φ〉〈φ|+ |φ⊥〉〈φ⊥|) .
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