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aSchool of Electrical Engineering, Electric Power Systems, KTH Royal Institute of
Technology, Teknikringen 33, SE-100 44 Stockholm, Sweden

bSchool of Electrical Engineering, Electrical Energy Conversion, KTH Royal Institute of
Technology, Teknikringen 33, SE-100 44 Stockholm, Sweden

cAtkins Sverige AB, Kopparbergsvägen 8, SE-722 13 Väster̊as, Sweden

Abstract

This paper presents an optimization model for simulations of railway power
supply systems. It includes detailed power systems modeling, train move-
ments in discretized time considering running resistance and other mechan-
ical constraints, and the voltage-drop-induced reduction of possible train
tractive forces. The model has a fixed number of stationary power system
nodes, which alleviates optimized operation over time. The proposed model
uses SOS2 (Special Ordered Sets of type 2) variables to distribute the train
loads to the two most adjacent power system nodes available.

The impacts of the number of power system nodes along the contact
line and the discretized time step length on model accuracy and computation
times are investigated.

The program is implemented in GAMS. Experiences from various solver
choices are also discussed. The train traveling times are minimized in the
example. Other studies could e.g. consider energy consumption minimiza-
tion. The numerical example is representative for a Swedish decentralized,
rotary-converter fed railway power supply system. The proposed concept
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is however generalizable and could be applied for all kinds of moving load
power system studies.

Keywords: optimization, railway, power systems, special ordered sets of
type 2 (SOS2), MINLP, moving loads

1. Introduction

This paper is a further developed model of the preliminary results pre-
sented in (Abrahamsson and Söder, 2012), moreover, in this paper the models
used are presented completely and exhaustively.

The paper shows in various numerical examples that the model produces
reliable results. The computational times and details in accuracy of results
are compared for various number of power system nodes along the contact
line and various discretized time step lengths.

This paper presents and proposes an optimization model for simulations
of railway power supply systems, including train movements in discretized
time considering running resistance and other mechanical constraints, as well
as the voltage-drop-induced reduction of possible train tractive forces.

The proposed model uses SOS2 variables to distribute the train loads to
the two most adjacent power system nodes available. The program is imple-
mented in GAMS (GAMS, 2008). Experiences from various solver (GAMS,
2011) choices are also presented. The train traveling times are minimized in
the example.

The numerical examples are representative for Swedish decentralized,
rotary-converter fed railway power supply systems with contact lines using
Booster Transformer (BT) (Hill, 1994) technology. The proposed concept is
however generalizable and could with some modifications be applied for all
kinds of moving load power system studies.

1.1. Background and Motivation

There are some well-known problems associated with power system mod-
eling of moving electrical loads for load flow studies. One of the first to
ventilate these was (Talukdar and Koo, 1977). In (Talukdar and Koo, 1977)
also the main differences between public power systems and railway power
supply systems are extensively discussed and explained. Typically, the loads
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are neither fixed power, fixed current, or even fixed location, they vary heav-
ily.

If each moving load is represented by an electric node in the power system,
the ordering and numbering of nodes and loads (in this case train vehicles)
will soon need detailed bookkeeping algorithms (Abrahamsson, 2008; Arbo-
leya et al., 2012). Such bookkeeping will involve: train numbers, train loca-
tions, node numbers, which trains are in traffic or not, which nodes coincide
and should be merged or not, etc.

In order to keep the admittance matrix element values within reasonable
limits, electrical nodes cannot be located too close to one another. If two
trains are very close to each other, or if a train is right under a catenary
junction or substation of any kind, the admittances might tend to infinity.
This can be overcome with an additional bookkeeping, that merges nodes if
they come too electrically close to each other (Abrahamsson, 2008; Talukdar
and Koo, 1977). Another option is to introduce minimally allowed impedance
values (Arboleya et al., 2012). This bookkeeping obstructs a straight-forward
modeling. It should however be noted, that from a strict computational
point-of-view, the bookkeeping and updating of matrices between each time
step is not a severe problem (Talukdar and Koo, 1977).

Besides the bookkeeping issues for merging nodes, the number of nodes
in the power system varies also when trains start or stop and run in and out
of the studied part of the system. If the number of nodes change between a
pair of consecutive time steps, it is untrivial to optimize train operation or
power system operation over time. That is because optimization problems
cannot change in size during computation, and migrating the book-keeping
algorithms into an optimization program without introducing a multitude
of binary variables is not doable. Such a model cannot be rejected without
investigation, but is however out of the scope of this paper.

The proposed solution, c.f. Section 3, use a fixed number of stationary
nodes to represent the RPSS electrically. This alleviates temporal optimiza-
tion. The solution makes use of SOS2 variables in a way that the above de-
scribed bookkeeping becomes unnecessary and these issues are now treated
internally in the optimization model.

Another solution to the bookkeeping problem has been proposed in (Ar-
boleya et al., 2012), using incidence matrices and graphs. Drawbacks with
that proposal are that trains never leave the power system, trains not con-
nected to the system are instead assigned extremely high numerical values
on impedances. This results in an undesired wide spread range of impedance
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magnitudes (Talukdar and Koo, 1977), and might cause computational prob-
lems in studies where there are many trains not in service for the moment.
The sizes and locations of the loads are in (Arboleya et al., 2012) determined
in an external program, and therefore the load flows are (and have to be)
solved separately for each time step.

The idea to shop up the catenary in discrete segments in order to create
a power system with a fixed number of stationary nodes was first introduced
in (Talukdar and Koo, 1977). That model moved the electrical load of each
train from its actual position to the most adjacent node.

1.2. The Idea Behind the Proposed Model

In this paper, the solution by (Talukdar and Koo, 1977) has been refined.
The discretization errors are reduced by a linear weighting between the two
most adjacent nodes instead of using just the most adjacent node. Moreover,
no formalized bookkeeping of the relations between trains, their positions,
and the power system are needed, because the linear weighting has been
seamed within the model. This altogether creates a model that is compar-
atively easy to understand for developers and users, and that also manages
optimization over time.

This is made possible by the use of SOS2 (Special Ordered Sets of type 2)
variables, by which the trains exact position can be linearly approximated in
the power system without losing the exact train position for the mechanical
part of the model. The obtained linear approximative weighting between the
two electrical nodes most adjacent to the train is used also for train power
consumption and train voltages.

In many Railway Power Supply System (RPSS) simulator models the
power system operation of each discretized snapshot in time acts as if there
where no future and no past. In contrast to that, the model in this paper is
able to optimize electrical and mechanical RPSS operation also temporally.
What is optimal if things would stay the same forever is normally not optimal
when the modeling includes the changes of the system.

Optimization in the time dimension will typically be useful for studies of
on-vehicle (Iannuzzi and Tricoli, 2012; Ciccarelli et al., 2012; Barrero et al.,
2008) and railside (Barrero et al., 2008; Iannuzzi et al., 2011, 2012) energy
storage.

Present-day models (Shiokawa and Tagaki, 2012; López-López et al., 2012;
Ciccarelli et al., 2012) often consider catenary voltage levels and train speeds
for determining the optimal operation of energy storage equipment.
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In temporal studies one can also consider the fact that the limit for short-
hold overloading of equipment normally significantly exceeds the long-term
overloading of equipment.

1.3. SOS2

SOS2 variables are, in vector form, nonzero for at most two adjacent
elements in the vector. The concept can be generalized for higher dimensions.
SOS2 is traditionally used for sampling nonlinear functions into piecewise
linear ones. The application of SOS2 presented in this paper is as far as the
authors know completely new and unpublished, besides the presentation of
the concept and the preliminary results in (Abrahamsson and Söder, 2012).

How the SOS2 variables work in practice in this particular problem is
illustrated graphically in Section 4.2.

Theoretically, an SOS2 variable αi,

c1,i ≤ αi ≤ c2,i (1)

where c1,i and c2,i are the upper and lower bounds of that variable, can be
described mathematically equivalent by a real variable bi and the binary
variables βi and ii in the following,

bi ≤ βi · c2 (2)

bi ≥ βi · c1 (3)∑
i

βi ≤ 2 (4)

βi + βi+1 ≥ ii (5)∑
i

ii = 1. (6)

It should however be noted that SOS2 variables algorithmically are treated
more efficient in some solvers than the above mathematical equivalent. In (2)
and (3), the lower and upper bounds of bi are defined. For an SOS2 variable
it is said implicitly, but here it is stated explicitly that it can only be nonzero
under some conditions. Those conditions are defined in (4) where it is stated
that bi can be nonzero only on two elements. Equations (5) and (6) together
says that these two elements have to be neighbors.
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2. Terminology Used

2.1. Contact Lines

The contact line, delivering electricity to the trains, is often denoted the
catenary.

Physically however, the catenary is just the part of the overhead contact
line system which is shaped very much like a catenary. The catenary shape is
the curve theoretically assumed by a perfectly flexible and inextensible cord
of uniform density and cross section hanging freely from two fixed points.

For convenience, in this paper, as in many other publications, the terms
catenary and (overhead) contact line are used synonymously.

When contact lines are not installed as overhead lines, they are normally
installed as a third rail alongside the railway tracks. This solution is common
in subways.

The pantograph is the current collector, i.e. the device that connects the
train electrically to the catenary.

2.2. Forces and Efforts, Curves and Diagrams

In the railway society many people use the term tractive force, whereas
others use the term tractive effort for the resulting total motoring mechanical
force at the locomotives’ wheels. In this paper however, the term tractive
force is being used.

Additionally, the graphical representation of the maximal possible tractive
force of the train as a function of train velocity and pantograph voltage level,
c.f. Figure 1, is sometimes called tractive force curve, sometimes tractive
effort curve, sometimes tractive force diagram, and sometimes tractive effort
diagram. In this paper however, the term tractive force curve is consequently
used.

3. The Model

Section 3 starts by presenting the mathematical model used in detail in
Section 3.1, whereas the equations and modeling choices are expressed and
explained in words in Section 3.2.
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Table 1: Index Sets

Set Description

n, n2 ∈ {1, 2, ..., N} Electrical nodes
g (n) ∈ {G1, G2} Converter station nodes
c (n) ∈ {1, 2, ..., C} Catenary nodes

nng (n) ∈ {1, 2, ..., N} \ {G1, G2} Nodes with no converter
nnc (n) ∈ {C + 1, C + 2, ..., N} Nodes not representing the catenary

t ∈ {1, 2, ..., T} Train numbers
δ, δ ∈ {1, 2, ...,∆} Time steps

3.1. Mathematical Modeling

The model presented here is constrained to one doubly-fed catenary sec-
tion. The optimization problem consists of the index sets listed in Table 1,
the parameters listed in Table 2, and the variables listed in Table 3.

In a simple BT system with only one catenary section fed from each
end-point by converter stations, like the one studied here,

N = C (7)

G1 = 1 (8)

G2 = N, (9)

which makes the index set nnc in Table 1 empty for this study. The concept
can however be generalized. The number of time-steps ∆ are calculated such
that even severely delayed trains will make it to their destinations before time
is up. The model is simplified such that the adhesive train mass is assumed
to be the entire mass of the train. This is done to simplify the equations
describing braking, coasting, and motoring. Therefore, also rotational inertia
in the wheel sets and in the locomotive are disregarded. Slippage is also
neglected since the adhesive force between wheel and rail is assumed to always
be large enough to use the entire motoring force as tractive force. The model
is simplified in this way because the focus of this paper is to promote the
idea of fixed-node grid-models for moving load power systems – not to have
exact mechanical models of the train-rail interaction.

Moreover, train running resistance due to curves and gradients of the
track are not implemented in this model. The track topography is thus
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Table 2: Parameters

Parameter Description

pc The positioning of each catenary node [km]
Gn,n Real part of admittance matrix [S]
Bn,n Imaginary part of admittance matrix [j·S]

A,B,C
Resistive force parameters (Abrahamsson, 2008) for a

train [15400 N, 279 N·s
m , 49.2 N·s2

m2 ]
m Train mass [1470000 kg]
θ50;g The no-load angle of the public grid [0 rad]
X50
g The short-circuit reactance of the public grid [0.15 p.u.]

U50;g The voltage at the public grid side [1 p.u.] of converter
Q50;g Reactive power consumption on the motoring side [0 p.u.]
#conv
g Number of converters per station [6]

xqM
Motor-side inner reactance of rotary converter Q48/Q49
[0.22897 p.u.]

xqG
Generator-side inner reactance of rotary converter
Q48/Q49, including transformer [0.3036 p.u.]

Fmax Maximal train tractive force [275000 N]
amax Maximal train acceleration [0.85 m/s2]
r Length of studied catenary section [km]
dδ Length of each time step [minutes]
vmax Speed limit [160 km/h]
vmin The assumed slowest possible average speed [80 km/h]
Ub Base voltage of power system [16.5 kV]
Ub2 Base voltage for tractive force curve [15 kV]
Sb Base power of power system [5 MVA]
F rmax Maximal possible running resistance of train [N]

F b,max
t,δ Maximal allowed braking force for train t at time δ [N]

vmax
t,δ Maximal train speed for train t at time δ [km/h]

pmin
t,δ Minimal train position for train t at time δ [km]

pmax
t,δ Maximal train position for train t at time δ [km]
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Table 3: Variables

Variable Description

st,δ Is the train standing still? binary
dt,δ Is the train driving? binary
bt,δ Is the train braking? binary
ht,δ Has the train braked? binary
αt,δ,c Share of train t load assigned to catenary node c SOS2
F rt,δ The resistive force of the train [N]

vt,δ The velocity of the train [km/h]
pt,δ The position of the train [km]
Un,δ The voltage level at each node [p.u.]
U tt,δ The voltage level at each train [p.u.]

θn,δ The voltage angle at each node [rad]
F ut,δ The used tractive force of train t [N]

F bt,δ The used braking force of train t [N]

P tt,δ The active power consumption of the train [W]

Qtt,δ The reactive power consumption of the train [VAr]

at,δ The acceleration of the train [m/s2]
Pnn,δ The net active power injection in node n [p.u.]

Qnn,δ The net reactive power injection in node n [p.u.]

P gn,δ The active power inflow to the RPSS at converter station g [p.u.]

Qgn,δ The reactive power inflow to the RPSS at converter station g [p.u.]

P dn,δ The active power consumption at node n [p.u.]

Qdn,δ The reactive power consumption at node n [p.u.]

θ0g,δ The voltage angle at the public-grid side of converter node g [rad]

Ψg,δ The phase-shift on the railway side of the converter node g [rad]
z The objective function
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assumed to be straight and flat. The maximal possible running resistance

F r
max = A+B

vmax

3.6
+ C

v2max

3.62
(10)

is defined by the running resistance at maximal allowed speed. The variables
in Table 3 are bounded by

0 ≤αt,δ,c ≤ 1 (11)

0 ≤F r
t,δ ≤ F r

max (12)

0 ≤vt,δ ≤ vmax
t,δ (13)

pmin
t,δ ≤pt,δ ≤ pmax

t,δ (14)

0.5 ≤Un,δ ≤ 1.1 (15)

0.5 ≤U t
t,δ ≤ 1.1 (16)

−20

180
π ≤θn,δ ≤ 5

180
π (17)

0 ≤F u
t,δ ≤

{
Fmax, δ ≤ r·60

dδvmin

0, δ > r·60
dδvmin

(18)

0 ≤F b
t,δ ≤ F b,max

t,δ (19)

0 ≤P t
t,δ ≤

{ Fmaxvmax

3.6
, δ ≤ r·60

dδvmin

0, δ > r·60
dδvmin

(20)

0 ≤Qt
t,δ ≤ 0 (21)

0 ≤at,δ ≤ 0, δ >
r · 60

vmindδ
(22)

−amax ≤at,δ ≤ Fmax

m
, δ ≤ r · 60

vmindδ
(23)

−
9#conv

g

4
≤P g

g,δ ≤
9#conv

g

4
(24)

−
9#conv

g

4
≤Qg

g,δ ≤
9#conv

g

4
(25)

0 ≤P g
nng ,δ

≤ 0 (26)

0 ≤Qg
nng ,δ

≤ 0 (27)

0 ≤P d
c,δ ≤ 5 (28)

0 ≤P d
nnc,δ ≤ 0 (29)

0 ≤Qd
n,δ ≤ 0 (30)
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−20

180
π ≤θ0g,δ ≤ 5

180
π (31)

−20

180
π ≤Ψg,δ ≤ 5

180
π (32)

where

F b,max
t,δ =

 0,


δ < r·60

vmaxdδ

or
δ > r·60

dδvmin

amaxm, else

(33)

where

vmax
t,δ =

{
vmax, δ ≤ r·60

dδvmin
, δ 6= 1

0, δ > r·60
dδvmin

, δ = 1
(34)

where

pmin
t,δ =

{
0, δ ≤ r·60

dδvmin

r, δ > r·60
dδvmin

(35)

pmax
t,δ =


0, δ = 1

vmax(δ−1)dδ

60
,

{
δ 6= 1,
δ < r·60

vmaxdδ

r, δ ≥ r·60
vmaxdδ

(36)

and where the level values (values of the variables in the initial step of the
iteration) of the variables are set to zero, except for the voltages which level
values are set to 1.

The term level value is another term for the variable values that the algo-
rithm starts with. It is theoretically wiser from convergence and optimality
points of view to chose a feasible start point for the solver, or a start point
close to the expected optimal point. In this article however, the focus is not
set on warm-starting the problems optimally.

The net injected powers P n and Qn are not bounded because by expe-
rience it is hard to find relevant bounds for them. The objective z is not
bounded either because a majority of the existing solvers for GAMS perform
better with unbounded objectives (McCarl et al., 2012).
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The constraints of the optimization problem are

at,δ =
F u
t,δ − F b

t,δ − F r
t,δ

m
(37)

vt,δ+1 = vt,δ +
at,δd

δ36002

1000 · 60
(38)

pt,δ+1 = pt,δ +
vt,δd

δ

60
+
at,δ
(
dδ60

)2
2000

, δ 6= ∆ (39)

0 =
vt,δd

δ

60
+
at,δ
(
dδ60

)2
2000

, δ = ∆ (40)

F r
t,δ ≤ A+B

vt,δ
3.6

+ C
(vt,δ

3.6

)2
+ F r

maxst,δ (41)

F r
t,δ ≥ A+B

vt,δ
3.6

+ C
(vt,δ

3.6

)2
− F r

maxst,δ (42)

F r
t,δ ≤ F r

max (1− st,δ) (43)

bt,δ−1 ≤ bt,δ + st,δ (44)

dt,δ−1 ≤ dt,δ + bt,δ (45)

F u
t,δ ≤ dt,δFmax (46)

bt,δ ≤ 1− 10−3 +
F b
t,δ

amaxm
(47)

bt,δ ≥ −10−3 +
F b
t,δ

amaxm
(48)

1 ≥ st,δ + dt,δ−1 (49)

1 ≥ st,δ + dt,δ (50)

1 ≥ bt,δ + st,δ (51)

1 ≥ bt,δ + dt,δ (52)

1 ≥ ht,δ + dt,δ (53)

ht,δ ≥
bt,δ + ht,δ−1

2
(54)

bt,δ ≤ 1− ht,δ−1 − bt,δ−1

2
(55)

st,δ−1 ≤ st,δ + dt,δ (56)

st,δ−1 ≤ 1−

((
at,δ
amax

)2

+
vt,δ
vmax

)
(57)
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st,δ−1 ≥ 10−3 −

((
at,δ
amax

)2

+
vt,δ
vmax

)
(58)

Fmax ≥
F u
t,δvt,δ

78
(59)

Fmax

U t
t,δUb

Ub2
≥
F u
t,δvt,δ

78
(60)

1 =
∑
c

αt,δ,c (61)

pt,δ =
∑
c

αt,δ,cpc (62)

P t
t,δ = F u

t,δ

vt,δ
3.6

(63)

P d
n,δ =

∑
t

αt,δ,cP
t
t,δ

106

Sb
(64)

U t
t,δ =

∑
c

αt,δ,cUc,δ (65)

P n
n,δ = Un,δ

∑
n2

Un2,δ (Gn,n2 cos (θn,δ − θn2,δ) +

+Bn,n2 sin (θn,δ − θn2,δ))

(66)

Qn
n,δ = Un,δ

∑
n2

Un2,δ (Gn,n2 sin (θn,δ − θn2,δ)−

−Bn,n2 cos (θn,δ − θn2,δ))

(67)

0 = P g
n,δ − P

d
n,δ − P n

n,δ (68)

0 = Qg
n,δ −Q

d
n,δ −Qn

n,δ (69)

θ0g,δ = θ50;g − 1

3
arctan

(
X50
g · P

g
g,δ

(U50;g)2 +X50
g ·Q50;g

)
(70)

Ψg,δ = −1

3
arctan

(
xqMP

g
g,δ

#conv
g (U50;g)2 + xqMQ50;g

)
−

− arctan

(
xqGP

g
g,δ

#conv (Ug,δ)
2 + xqGQ

g
g,δ

) (71)

θg,δ = θ0g,δ + Ψg,δ (72)
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Ug,δ = 1−
Qg
g,δSb

#conv · 20 · Ub
(73)

z =
∑
t,δ

(
pmax
t,δ − pt,δ

)
dδ. (74)

3.2. Modeling Description

Given the catenary type, catenary lengths, system topography, the num-
ber and placement of desired electrical nodes (i.e. a discrete sampling of the
catenary), the admittance matrix is created. It has been assumed that the
trains consume no reactive power, that the constant power part of the trac-
tive force curve starts at 78 km/h and that the constant power part is linearly
reduced as a function of pantograph voltage level, for voltage levels below
15 kV. The tractive force curve used in the paper is illustrated in Figure 1.
Moreover, auxiliary power load and internal train losses are neglected.

The electrical, physical, and computational explanations of the constraints
are as follows:

The train acceleration is defined in (37), the train velocity in (38), and
the train position in (39)-(40), where (40) is a boundary condition for the
last time step in the model.

The running resistance of the trains is defined by equations (41)-(43).
These three make sure that the running resistance is 0 for a train that is
standing still, i.e. when st,δ is valued 1, and equals the running resistance
polynomial (Lukaszewicz, 2001) otherwise.

Still standing trains are defined by equations (57)-(58). In other words,
trains are defined to be standing still if and only if they have no acceleration
and no speed.

A train can only brake at one time step if it either brakes or stands still
in the next consecutive time step, c.f. equation (44). Note that this is a, for
practical purposes, undesired constraint since trains in real traffic on main
lines often encounter various speed limits and may then consequently have to
brake and speed-up alternately. The constraint (44) will have to be modified
or removed in future, more realistic models, c.f. the discussion about this in
Section 6.3.

Moreover, a train can only drive if it drives or brakes in the next consec-
utive time step, as stated in (45). This precludes the possibilities of trains
slowly stopping just due to running resistance. It implicitly says that the
only allowed way to stop the train is by braking, since it is not allowed to
stand still right after driving.
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Figure 1: Tractive force curve description. Red areas are always for-
bidden. Horizontal line represents the constant force part of the curve,
c.f. equation (18). Vertical line represents the speed limit part of the curve,
c.f. equation (13). The curves inversely proportional to train speed repre-
sents the constant power region of the curve. The first of the constant power
curves, the one right below the purely red area represents catenary voltage
levels on and above 15 kV. The following curves, represents maximal tractive
forces for 14 kV, 13 kV, 12 kV, 11 kV, and 10 kV, respectively. The forbid-
den tractive force curve area increases with decreasing voltage levels. The
voltage-dependency is a continuous and piecewise smooth function modeled
by equations (59)-(60).

Equation (46) makes sure that the train tractive force is nonzero only
when the train is driving. By similar reasons, equations (47)-(48) make sure
that the braking force is nonzero if and only if the train is braking.
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A train cannot stand still in one time step right after a time step of
driving, expressed in (49). Trains can never stand still and drive at the same
time, c.f. (50); brake and stand still simultaneously, c.f. (51); brake and drive,
c.f. (52); or drive and have been braking at the same time, c.f. (53).

Note that in Table 3 there is one binary variable indicating that the train
is braking at the moment, and there is another variable indicating that the
trains has been braking either at the time studied, or sometime before. In
(54) it is declared that if a train has been braking at a certain time step
δ − 1 or if it braked in time step δ, it has been braking in the δ time step.
Additionally, according to (55) a train cannot brake at a time step if it has
been braking and stopped braking, to avoid pumping brakes and probably
undesired local optima. A train can only stand still at a time step if it stands
still or drives in the following time step, c.f. (56).

Equation (59) illustrates the constant power part of the tractive force
curve, whereas (60) illustrates the constant power part affected by further
reductions due to catenary voltage drops below nominal level at the panto-
graph. The tractive force curve is illustrated graphically in Figure 1.

Equation (61) defines the SOS2 variables αt,δ,c. Equation (62) projects
the actual train position on the closest pair of catenary nodes, or in other
words, defines the nonzero elements of the SOS2 variables. Tractive power
is calculated by equation (63) whereas the tractive power is projected on the
catenary nodes into electrical power by (64). Train (pantograph) voltages
are in an analogous but reverse fashion computed as a weighted average of
the voltages in the pair of neighboring catenary nodes by (65).

Active power flow is computed in (66), and reactive power flow in (67),
whereas active power mismatch equations are stated in (68), and the reactive
power mismatch in (69).

The converter stations are modeled in equations (70)-(73). Equation (70)
models the public-grid-side phase shift due to converter loading, (71) repre-
sents the corresponding phase shift on the railway-grid-side of the converter,
whereas (72) merely summarizes the phase shifts in order to determine the
actual voltage angle on the railway side, and (73) models the voltage regu-
lation (sometimes denoted voltage compounding) on the railway side of the
converter station.

Last, but not least, the objective function (74), to be minimized, is de-
termined by the difference between the trains destination position and its
actual positions. That kind of objective forces the train to arrive, not only
as fast as possible at its final destination, but actually as far as possible at
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every time step.

4. Numerical Examples and Results

In all the studies made, the catenary nodes were located equidistantly.
The model as such does however allow non-uniform spatial sampling of the
catenary.

4.1. General Results
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Figure 2: Electrical and mechanical properties of the train plotted against
time. All the curves are normalized. Their descriptions and their normaliza-
tion factors are stated in Table 4.

This section is mainly for showing the functionality of the model pre-
sented. In this section, the same system is being studied, and the figures 2,
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Figure 3: Electrical and mechanical properties of the train plotted against
position. All the curves are normalized. Their descriptions and their nor-
malization factors are stated in Table 4.

3, and 14 all contain curves normalized in the same fashion. The normaliza-
tion is presented in Table 4. The examples are all taken from studies with
a 150 km BT catenary section, 1 train, 1 minute time step length, and 31
catenary nodes.

In Figure 2 the resulting curves of tractive force, pantograph voltage,
velocity, position, and power consumption as functions of time are displayed,
whereas tractive force, pantograph voltage, velocity, and power consumption
are presented as functions of train position in Figure 3.

Studying figures 2 and 3, one can see that there are two flat levels of the
traction power curve, the higher one represents the maximal power limitation
of the train, 5.958 MW, computed by the upper limit of the constant power
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Table 4: Description of the normalizations being done in figures 2, 3, and 14.
These figures present case studies made in a 150 km BT catenary section,
with 1 train, using 1 minute time step lengths, and 31 catenary nodes.

Technical entity Label Graphically represented by Normalized by

Train tractive force F u A solid black line 275 kN
Train voltage U t A dotted black line 16.5 kV
Train velocity v A dash-dotted black line 160 km/h
Train active power

P t A dashed black line 5.958 MW
consumption
Train position p A solid dark grey line 150 km

constraint

Fmax · 78

3.6
= 5.598 MW, (75)

whereas the lower one, at 5.555 MW originates from the running resistance
at the speed limit

vmax

3.6

(
15400 + 279

vmax

3.6
+ 49.2

(vmax

3.6

)2)
= 5.555 MW, (76)

which is the special case of the maximal tractive force considering the speed
limit, when already traveling at the maximal speed. The general function
describing the speed-limit-imposed maximal tractive force is

Fvmax =
m · (vmax − v) · 1000 · 60

dδ · 36002
+ F r (77)

and is illustrated graphically in figures 4 and 5.
The lowest value of the tractive power, due to catenary voltage drops and

reduced tractive performance, is 5.214 MW. That occurs in Figure 2 right
after 30 minutes of traveling, and in Figure 3 after 75 km of traveling, i.e. in
the middle of the catenary section.

In Figure 4 the bounding limiting tractive force functions are displayed
zoomed up for the first traveled 22 km of the train. For the first 1 km the
constant force part of the tractive force curve, c.f. (18), is actively bounding
the tractive force. Thereafter, between 2 km and 16 km, the constant power
region, c.f. (59), of the tractive force curve is active. The constant speed part
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Figure 4: Bounding limiting train tractive forces. Zoomed at the first 22 km
of the trip, in a 31 nodes, 150 km BT system.

of the bounds on the tractive force becomes active from 16 km on and into
the next, un-zoomed figure, Figure 5, where the bounding force functions
are illustrated for the entire trip. The speed-limit part, Fvmax is neither
explicitly a variable bound, nor a functional constraint in the model, just an
implicit bound originating from the speed limit, c.f. (77). The speed-limit is
the active bound on used tractive force up to the train has travelled 40 km,
c.f. Figure 5. Thereafter, the catenary voltage actively limits, c.f. (60), the
tractive force up to 120 km of the section has been passed by the train, which
is illustrated in Figure 5. For the rest of the trip, from the 120 km position
until braking has started, the speed limit is once again the actively bounding
limit on the train tractive force.

In Figure 6, the voltage levels of all nodes for all time steps in this case
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Figure 5: Bounding limiting train tractive forces. The entire trip, in a 31
nodes, 150 km BT system.

study are illustrated in a color matrix.
In order to further illustrate the functioning of railway electric traction

system operation, and particularly the functioning of this presented model,
the tractive force, F u, and the resistive force, F r, are plotted together in
Figure 7. F u and F r are equal when the speed limit is actively bounding F u.
F u is larger than F r before reaching the speed limit. When entering the area
where the catenary voltage limits the tractive force of the train, the resistive
force surpasses the tractive force, wherefore the train slows down. When
passing the 75 km location, i.e. the power section midpoint, the tractive force
starts to exceed the resistive force once again and the train speeds gradually
up to the speed limit. When the speed limit is reached, the resistive force
and the tractive force equals each other once again. In the short final braking
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Figure 6: Voltages at the catenary nodes. All 31 nodes, plotted over 65 min-
utes, whereas the train trip lasts for 60 minutes. Voltage levels in p.u. with
base voltage 16.5 kV. The catenary node voltages are illustrated over time
in a color matrix, where the top values in dark red represents 1.000 p.u. and
where the lowest value is 0.794 p.u. and represented by dark blue. The lowest
voltage is when the train is in the middle of the catenary section. For each
train and time step, the lowest voltage is where the train is located.

mode, resistive force exceeds the tractive force until the train has stopped
and they once again equal each other.

The edginess of the F u curve in Figure 7 is a result of time discretization
steps of 1 min, and of the fact that acceleration in time step δ affects the
speed in time step δ+ 1, c.f. (38), which in turn in time step δ+ 1 affects the
maximal possible tractive force function, c.f. (60). Since the speed is about
160 km/h, and the time step is 1 min, the spatial discretization imposed
by time discretization will be about 22

3
km. In Figure 7 it takes about 8
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Figure 7: The used tractive force, F u, and the resistive force, F r, plotted
for comparison. When speed is constant, the forces equal each other. When
the voltage drops slow down the train, the resistive force exceeds the tractive
force. After passing the power supply system section midpoint, the train
is slowly able to regain its former speed. A 31 nodes, 150 km BT system
section, with 1 train, and 1 minute time step case was studied.

crenatures to reach 20 km, which justifies the conjecture of time discretization
causing the edges.

4.2. Illustrations of the application of the SOS2 variable

In this section, the purpose is to graphically clarify how the optimal
solutions regarding the SOS2 variable might look. The case studied in this
section is a 60 km section, modeled with 40 electrical nodes, 1 train, and
using 0.5 minutes time steps.

In Figure 8, the sub-matrix of α representing the one and only train
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Figure 8: The numerical values of the weighting variable α. Horizontal axis
represents time steps, whereas vertical axis represents node numbers. Note
that along the vertical axis, along the catenary for a given time step, the train
is never represented by more than two nodes – the two most adjacent ones.
Along the horizontal axis however, the train can very well be represented by
the same nodes for many time steps. This is completely realistic if the train
drives slowly.

studied is plotted. Maximally two elements are nonzero for each time step,
the sums of the paired elements for each time step are always 1.

Figure 9 illustrates how the train power consumption, P t
t;δ, is distributed

and shared between the two most adjacent electrical nodes.
In Figure 11 it is illustrated how the voltage levels of the two nodes

most adjacent to the train are weighted together using α to approximate the
pantograph voltage level of the train.
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Figure 9: Illustration by bar diagram, how the actual train power is subdi-
vided as nodal loads to the two nodes most adjacent to the train. Horizontal
axis represents time steps, whereas vertical axis represents nodal active power
consumption P d

n,δ, and train active power consumption P t
t;δ, respectively. All

powers are expressed in p.u., with 5 MVA base power. A zoom on the first
11 time steps is available in Figure 10 to further clarify.

4.3. The impact of time step size variations

Since the problem is cumbersome to solve on personal computers when us-
ing small time step sizes and catenaries longer than 100 km, a 50 km section
is compared for time step sizes of 0.1, 0.2, 0.5, 1, and 2 minutes respectively
and 10 equidistant catenary nodes, c.f. Table 6.

4.4. The impact of catenary node density

For the 1 minute time steps, 1 train, and 50 km catenary case, the train
traveling time results are exactly equal regardless of the number of catenary
nodes. This is because there is no need for detailed power system models if
the grid is strong in comparison to the load, and energy or power consumption
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Figure 10: Illustration by bar diagram, how the actual train power is subdi-
vided as nodal loads to the two nodes most adjacent to the train. Horizontal
axis represents time steps, whereas vertical axis represents nodal active power
consumption P d

n,δ, and train active power consumption P t
t;δ, respectively. All

powers are expressed in p.u., with 5 MVA base power. A zoom on the first
11 time steps. The corresponding α values are listed in Table 5.

is not studied. In Figure 12a, the number of catenary nodes is varied from 3
to 53 and there is a clear linear trend in the computation times for increased
number of nodes.

For the 1 minute time steps, one single train, and 150 km catenary case,
the train traveling time results slowly converge to an objective function value
slightly greater than 410 when the number of catenary nodes exceed 35,
c.f. Figure 13. The trend is that for increased number of nodes, the traveling
times increase. This can be explained with that the voltage drops are with
higher nodal resolution of the power system not evened out as much by
the linear bi-nodal interpolation used. The computational times increase
dramatically and then settle for around 105 seconds illustrated in Figure 12b.
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Table 5: Numerical values of the SOS2 variable α for the 11 first time steps
in the study presented in Section 4.2.

δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6

Node behind 1 0.94834 0.79395 0.53848 0.18465 0.73609
Node in front 0 0.051655 0.20605 0.46152 0.81535 0.26391

δ = 7 δ = 8 δ = 9 δ = 10 δ = 11

Node behind 0.20525 0.61063 0.96584 0.28049 0.56186
Node in front 0.79475 0.38937 0.034156 0.71951 0.43814
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Figure 11: Illustration by bar diagram, how the catenary voltages of the two
most adjacent nodes to the train are weighted together, using α, in order
to determine the voltage level at the pantograph. Horizontal axis represents
time steps, whereas vertical axis represents nodal voltage levels and weighted
train voltage levels in p.u., with 16.5 kV base voltage.
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Table 6: The impact of discretization time step on computation times and
objective values. The results in the table are from a 50 km section, with 10
equidistant catenary nodes, and one single train trafficking. The time step
lengths varies from 2 minutes down to 0.2 minutes (which is 12 s).

Time Step length (min) Objective values Computation times (s)

2 114.33 11.043
1 126.08 18.647
0.5 130.65 158.24
0.2 134.02 5713.1
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Figure 12: Computational Times in s for various number of catenary nodes.

4.5. Solver choice impacts

In the numerical results presented in this paper, the solver SBB (GAMS,
2011) has been used. SBB seems to be the solver that works best with the
SOS2 variables. SBB seems on the other hand to very easily find local optima
far from the desired solution, so lots of helping constraints (like (44)–(56))
need to be added to obtain technically reasonable solutions.

The solver BONMIN (GAMS, 2011) has been tried out as an alternative,
resulting in the same solutions as SBB, but with significantly longer compu-
tation time. What for example took about 15 seconds in SBB took about 20
minutes in BONMIN. That minor test was made on a system with merely a
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Figure 13: Convergence for the 150 km case study and increasing numbers
of catenary nodes

20 km catenary. That test did however include the helping constraints that
possibly BONMIN would be fine without.

4.6. Alternative Objective Functions

Some other objectives were tried out that logically would also aim at
minimizing train traveling times.

Experiments have been done with minimizing negative velocities (e.g. math-
ematically to

min z, (78)

where

z =
∑
t,δ

−vt,δ, (79)
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which physically is to maximize the summed train speed over all trains and
all time steps), the summed squares of the tractive and the braking forces,
and the sums of the driving and braking binary indicator variables. These
experiments resulted in shorter computation times, and slightly longer train
traveling times. What worse is, they also resulted in edgy (c.f. the example in
Figure 14) tractive force curves indicating unrealistic and undesired solutions.
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Figure 14: Electrical and mechanical properties of the train plotted against
time. All the curves are normalized. Their descriptions and their normaliza-
tion factors are stated in Table 4. In contrast to Figure 2, where objective
function (74) is used, the objective function resulting in the plots of this
figure is (80).

Figure 14 describes the results for an objective function minimizing the
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number of time steps that the train is either driving or braking, i.e.

z =
∑
t,δ

(dt,δ + bt,δ) (80)

which can be compared with (74). Comparing Figure 14 with Figure 2 the
observant reader sees that the time in traffic using objective (80) results in 61
minutes in traffic, whereas the objective (74) results in 60 minutes in traffic.
The alternative objective does not only result in edgier curves, it also results
in an inferior result.

5. Conclusions and Summary of Results

The main contributions of this paper is the introduction of a new way
of modeling moving loads in electric power systems. The model has a fixed
number of stationary power system nodes, and is formulated as one single
optimization problem, which

• ... enables combined studies of optimal driving strategies and power
system operation,

• ... offers a surveyable modeling framework contained in one objective
and a set of constraints, and which

• ... makes the model migratable to different hardware and software en-
vironments, e.g. to supercomputers. When the entire train movement
and power supply problems are congregated into one problem, the com-
munication between different parts of the problem can be unconsidered.

The main conclusion to be drawn from the studies made are that the prob-
lem becomes much more complicated to solve when power system matters.
It has been shown that a 5 km nodal distance is enough when minimizing
train running time with respect to voltage drops. The computation times
are very sensitive to time step sizes due to extreme memory consumption for
high temporal resolution.

A useful way of modeling a moving load RPSS as a fixed-node power
system has been presented and proven to be useful. The method is able to
produce exact and trustworthy results. With this type of moving-load power
system model, the electrical nodes are fixed to their number, their numbering,
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and their locations – there is no update of the admittance matrix during the
computation.

For the application of electric railways, the computational times increase
significantly when voltage drops start to affect train traffic performance due
to problem complexity. That is when the mechanical and electrical parts of
the system are interacting. Shorter discretization time steps also result in
increased computational times, in this case due to problem size.

The temporal part of the model has uniform time steps. The model
is on the other hand general in the catenary nodes discretization allowing
nonuniform sampling.

Electrical accuracy is increased by denser located catenary nodes, and
mechanical accuracy is increased by smaller time steps. Accuracy has a price
– computer time.

One can also conclude that, due to the computational times on a normal
PC workstation, if optimal driver strategies or charge/discharge strategies
or similar time-dependent issues are not of interest in a particular study, a
classical simulation software or a revised model might be to prefer.

6. Discussions and Future Work

The proposed solution imposes a large number of nodes for more exact
electrical studies. From the perspective of computational burdens, this over-
weighs the alternative with rearranged nodal matrices for each time step and
nodes only representing moving loads and fixed power system nodes (Taluk-
dar and Koo, 1977). So for studies not aiming at optimization over time, this
model is not to prefer computationally. It does however offer a convenient,
portable, and comprehensible modeling framework, and therefore a revised
model not optimizing over time is worth the consider of development. If
choosing not to optimize over time, and implicitly decoupling the time steps,
the computations will be sped up.

Keeping the SOS2 formulation for easy and neat modeling and bookkeep-
ing, the model could be reformulated such that each time step is optimized
for consecutively. Then, in addition, there will not be any SOS2 variable in
the optimization anymore, the linear weighting will instead be managed by
solving a small system of equations separately for each time step.

Since the model focuses on the power system, the mechanical modeling
has been simplified. For proper models of train-rail interaction, c.f. (Lukaszewicz,
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2001). Less simplified mechanical models including proper models of the
power system are presented in (Abrahamsson, 2008; Boullanger, 2009).

6.1. Node density and accuracy

6.1.1. For strong grids

As long as the studies only focus on possible train tractive performances,
there is no accuracy increase to have many electrical nodes along the catenary
when the grid is comparatively strong in relation to the loads. When studying
weaker or heavier loaded grids node densities matter. In studies where also
energy consumption, peak loads and such are studied, one can expect the
accuracy to be increased somewhat, for increased number of nodes regardless
of power system strength.

6.1.2. Generally

A nonuniform spatial sampling, where sampling is made denser in the
middle of the catenary section, where voltage drops are more likely, could
be expected to create a good tradeoff between accuracy and computational
times.

6.2. Applications to converter control laws

Within the existing modeling framework, optimal operation and control
laws of converters (Abrahamsson et al., 2012) could be added. Not only con-
verters feeding the railway from the public grid or from a railway transmission
line could be optimally operated. That can also be done for converters regu-
lating the charge/discharge of energy storage, or for the on-train converters.
It is e.g. in (Ciccarelli et al., 2012) suggested to charge the super-capacitor
when braking, discharge it when accelerating, and do nothing when cruising.
It can be expected to be more optimal to charge also when cruising if the
catenary voltage is at acceptable levels.

6.3. Solver Choice and Modeling

It could be of interest rewriting the SOS2 variable formulation as an
equivalent system of binary variables in order to see if the model can be
solved well by other solvers not as adapted to the SOS2 variables as the
SBB solver seems to be. It can be expected that solvers like BONMIN are
more accurate, but also demands too extensive computational resources that
a personal computer is not sufficient.
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In generalized future models, for example with changing speed-limits, the
trains must be allowed to be braking and driving alternately so the equation
(44) may have to be altered or taken out from the model. Moreover, this
would make the variable ht,δ obsolete and taken out of the model. That
in turn would also make equations (53)–(55) obsolete, resulting in a more
general model.

Note that the purpose with this paper is not to present a completely
realistic RPSS model, but to present a new concept of modeling moving
power system loads that may appear and disappear within the time-frame
studied. Now that the model of this paper is presented and justified, further
improvements are to come.

Integer variables potentially slow down optimization problems signifi-
cantly, especially problems with nonlinear constraints. Binary variables in
vector form that only change value once could be reformulated as SOS1 vari-
ables.

SOS1 variables have been tried out during the model development pro-
cess to model trains that have started to brake and trains that have finally
stopped. The computational times were not significantly reduced then. The
potential in using SOS1 variables instead of binaries could however still be
further studied, also to indicate that a train has started from standstill po-
sition.

Typical for this problem is that many different physical units are used,
scaled and unscaled. Therefore, it is expected that the numerical performance
would be improved by scaling (Pierre, 1987; Gajulapalli and Lasdon, 2006).

Track topography is normally stored in databases where the inclination
is given in per mille, and the radius curvature is given in m, for different
positions. It is assumed the the inclination or curvature is kept constant until
it is updated in the database. The position-dependent grade and curvature
parts of the running resistances could with favor be modeled using SOS2
variables.

In this paper, the focus was set on the new type of modeling the train
positions in the electric grid, and on the opportunities with the model. Fu-
ture more physically realistic models should sonsider the real adhesive train
masses, and that train accelerations is computed differently depending on if
the train is braking, coasting, and motoring/regenerating. In real-life, only
locomotives without carriages and some types of multiple-unit-trains have
adhesive masses and total train masses the same. More detailed mechanical
models could also consider rotational inertia in the wheel sets and in the
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locomotive. When adhesive masses are considered, co can also the adhesive
forces be – another limiting factor on possible maximal acceleration.
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López-López, A.J., Pecharromán, R.R., Garćıa-Matos, J.A., Fernández-
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